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Abstract 12 

Soil moisture plays an important role in the partitioning of rainfall into evapotranspiration, 13 

infiltration and runoff, hence a vital state variable in the hydrological modelling. However, due 14 

to the heterogeneity of soil moisture in space most existing in-situ observation networks rarely 15 

provide sufficient coverage to capture the catchment-scale soil moisture variations. Clearly, 16 

there is a need to develop a systematic approach for soil moisture network design, so that with 17 

the minimal number of sensors the catchment spatial soil moisture information could be 18 

captured accurately. In this study, a simple and low-data requirement method is proposed. It is 19 

based on the Principal Component Analysis (PCA) and Elbow curve for the determination of 20 

the optimal number of soil moisture sensors; and K-means Cluster Analysis (CA) and a 21 

selection of statistical criteria for the identification of the sensor placements. Furthermore, the 22 

long-term (10-year) soil moisture datasets estimated through the advanced Weather Research 23 

and Forecasting (WRF) model are used as the network design inputs. In the case of the Emilia 24 

Romagna catchment, the results show the proposed network is very efficient in estimating the 25 

catchment-scale soil moisture (i.e., with NSE and r at 0.995 and 0.999, respectively for the 26 

areal mean estimation; and 0.973 and 0.990, respectively for the areal standard deviation 27 

estimation). To retain 90% variance, a total of 50 sensors in a 22,124 km2 catchment is needed, 28 
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which in comparison with the original number of WRF grids (828 grids), the designed network 29 

requires significantly fewer sensors. However, refinements and investigations are needed to 30 

further improve the design scheme which are also discussed in the paper.  31 

Keywords: Soil moisture network design, Principal Component Analysis (PCA), K-means 32 

Cluster Analysis (CA), Weather Research and Forecasting (WRF) Model, Optimising, 33 

Numerical Weather Prediction (NWP) model. 34 

 35 

 36 

1. Introduction  37 

Soil moisture is at the heart of the Earth system and it plays an important role in the exchanges 38 

of water and energy at the land surface (Dorigo et al., 2017;Robock et al., 2000;Crow et al., 2018). 39 

In hydrology, soil moisture is the key component for the partitioning of rainfall into 40 

evapotranspiration, infiltration and runoff (Vereecken et al., 2008;Brocca et al., 2017;Rajib et al., 41 

2016;Fuamba et al., 2019). In particular, the antecedent soil moisture condition of a catchment is 42 

among one of the most important factors for flood triggering (Uber et al., 2018;Zhuo and Han, 43 

2017). For hydrological modelling, soil moisture is a vital state variable. Especially, during 44 

real-time flood forecasting, the accurate updating of the soil moisture state variable is a critical 45 

step to reduce the accumulation of model errors (i.e., time drift problem) (Lopez et al., 46 

2016;Laiolo et al., 2016;Zwieback et al., 2019). Therefore, the intensive monitoring of catchment-47 

scale soil moisture content would benefit a number of hydrological applications.  48 

In-situ soil moisture sensors (e.g., capacitance probe, and Time Domain Reflectometry), as one 49 

of the oldest and most common methods used around the world, can provide point-based soil 50 

moisture measurements with relatively high accuracy in comparison with the modelling and 51 

the remotely sensed approaches (Albergel et al., 2012). Therefore, they are a crucial source of 52 

information for the hydrological research (Western et al., 2004;Brocca et al., 2017). However, due 53 

to the heterogeneity of soil moisture in large space and the economic considerations, most 54 
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existing in-situ networks rarely provide sufficient coverage to capture the catchment soil 55 

moisture variations (Chaney et al., 2015). In particular, in a number of cases, soil moisture 56 

sensors are mainly installed close to the residential plain areas (e.g., due to easy accessibility 57 

and maintenance reasons), and there is a lack of sensors installed in the complex topographic 58 

areas where they are really the most needed (Zhuo et al., 2019b). Therefore, there is a need to 59 

develop a systematic approach for the soil moisture network design, so that with the minimal 60 

number of sensors the catchment-scale soil moisture information could be captured accurately. 61 

However, to our knowledge, there is a lack of existing literature covering such a research area 62 

particularly for the hydrological applications (Chaney et al., 2015), albeit numerous studies have 63 

been carried out on the rain gauge network design by the community (Dai et al., 2017;Adhikary 64 

et al., 2015;Pardo-Igúzquiza, 1998;Chen et al., 2008;Bayat et al., 2019). 65 

Therefore, to address the aforementioned research gap, the aim of this paper is to propose a 66 

pioneer soil moisture network design scheme for catchment-scale studies, based on a 67 

combination of statistical approaches. In particular, the Principal Component Analysis (PCA) 68 

and Elbow curve are adopted to determine the optimal number of soil moisture sensors within 69 

a catchment, and K-means Cluster Analysis (CA) and a selection of statistical criteria are used 70 

for the identification of the soil moisture sensor placements. Although the methodologies 71 

themselves are not new, it is the first time they are applied for the soil moisture network design. 72 

Furthermore, long-term (10-year) soil moisture datasets estimated through the advanced 73 

Numerical Weather Prediction (NWP) Weather Research and Forecasting (WRF) model 74 

(Skamarock et al., 2008)  are used as the design inputs. WRF model has been applied in a wide 75 

range of applications with good performances (Srivastava et al., 2015;Zaitchik et al., 2013;Zhuo et 76 

al., 2019a;Stéfanon et al., 2014). Although WRF estimated soil moisture cannot represent the 77 

ground truth, they are ideal datasets to provide catchment characteristics, such as land cover, 78 

soil properties, topographies, which are the main drivers of local soil moisture heterogeneity 79 
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(Friesen et al., 2008). Therefore, such globally available datasets together with the proposed 80 

statistical approaches would provide useful insights for the soil moisture network design 81 

research (i.e., to minimise the redundancy of information, and improve accuracy), in particular, 82 

for those currently ungauged catchments. In this study, the proposed method is implemented 83 

in the Emilia Romagna region, northern Italy as a case study due to its high-exposure of flood 84 

events.  85 

The paper is organised as: the study area is introduced in Section 2; soil moisture network 86 

design methodologies are described in Section 3; the results are presented in Section 4; and 87 

discussions and conclusions are included in Section 5.  88 

2. Study Area  89 

In this study, the Emilia Romagna region (latitude 43o50’N–45o00’N; longitude 9◦20’E–12◦40’E) 90 

is selected for the case study which is in Northern Italy (Figure 1). The region’s total coverage 91 

is approximately 22,124 km2. It is surrounded by the Apennines to the south and the Adriatic 92 

Sea to the east, with over half of the area as a plain agricultural zone (12,000 km2). The climate 93 

condition is highly varied in the region which is largely influenced by the mountains and the 94 

sea, with subcontinental in the Po Plain and hilly areas, and cool temperate in the mountain 95 

range (Nistor, 2016). It has distinct wet and dry seasons (i.e. dry season between May and 96 

October, and wet season between November and April) (Zhuo et al., 2019b). Based on the ESA 97 

CCI land cover map (Bontemps et al., 2013), the region is mainly covered by Herbaceous (37%), 98 

followed by Tree (22%), and Cropland (21%). The majority of the area is on the quaternary 99 

alluvial deposits, which are characterised by a high degree of heterogeneity (Pistocchi et al., 100 

2015). The annual temperature ranges from 8.2 to 19.3oC; and the annual mean precipitation is 101 

between 520 and 820 mm (Pistocchi et al., 2015).  102 
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For the soil moisture network in the region, currently, there is a total of 19 soil moisture sensors 103 

installed (all located in the plain area); however only one of them can provide long-term 104 

continuous soil moisture monitoring datasets. The network is managed by the Regional Agency 105 

for Environmental Protection Emilia Romagna Region. Through further investigations, it has 106 

been found, a number of the sensors have actually never provided proper soil moisture 107 

measurements since the installation. For such a highly heterogeneous catchment, only one soil 108 

moisture sensor at the plain area is clearly not sufficient for any catchment-scale applications. 109 

Therefore, it is hoped the proposed soil moisture network design scheme could provide some 110 

useful guidance to the local authority on an improved network in the future (i.e., a minimum 111 

number of sensors for reduced installation and maintenance cost, but at the right locations).  112 

3. Methodologies 113 

3.1 WRF Model  114 

The WRF model is a next-generation, non-hydrostatic mesoscale NWP system designed for 115 

both atmospheric research and operational forecasting applications (Skamarock et al., 2005). The 116 

model is capable of modelling a wide range of meteorological applications varying from tens 117 

of metres to thousands of kilometres (NCAR, 2018). Apart from the WRF’s aforementioned 118 

advantage on including the catchment characteristics for the soil moisture estimations, it also 119 

has other merits that make it an ideal tool for providing the distributed soil moisture information 120 

for the network design. For instance, WRF model’s spatial and temporal resolutions can be 121 

changed depending on the input datasets to fit various application requirements, and a number 122 

of globally-available data products can be selected to provide the necessary boundary and 123 

initial conditions for running the model. Therefore, WRF is able to provide valuable 124 

information for this study. Here WRF version 3.8 with the ARW dynamic core is used. 125 

3.1.1 Model Parameterization 126 
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Apart from the atmospheric forcing, parameterization is also required to drive the WRF model. 127 

In particular, the microphysics scheme is important in simulating accurate rainfall information 128 

which in turn is significant for estimating the accurate soil moisture fluctuations. WRF V3.8 129 

supports 23 microphysics options ranging from simple to more sophisticated mixed-phase 130 

physical options. In this study, the WRF Single-Moment 6-class scheme is adopted which 131 

considers ice, snow and graupel processes and is suitable for high-resolution applications (Zaidi 132 

and Gisen, 2018). The physical options used in the WRF setup are Dudhia shortwave radiation 133 

(Dudhia, 1989) and Rapid Radiative Transfer Model (RRTM) longwave radiation (Mlawer et 134 

al., 1997). Cumulus parameterization is based on the Kain-Fritsch scheme (Kain, 2004b) which 135 

is capable of representing sub-grid scale features of the updraft and rain processes, and such a 136 

feature is useful for real-time modelling (Gilliland and Rowe, 2007). The surface layer 137 

parameterization is based on the Revised fifth-generation Pennsylvania State University–138 

National Center for Atmospheric Research Mesoscale Model (MM5) Monin-Obukhov scheme 139 

(Jiménez et al., 2012a). The planetary boundary layer is calculated based on the Yonsei 140 

University scheme (Hong et al., 2006a). In WRF, its land surface model plays a vital role in 141 

the integration of information generated through the surface layer scheme, the radiative forcing 142 

from the radiation scheme, the precipitation forcing from the microphysics and convective 143 

schemes, and the land surface conditions to simulate the water and energy fluxes (Ek et al., 144 

2003). In this study, the Noah Multiparameterization (Noah-MP) is chosen, because it has 145 

shown more accurate soil moisture estimation performance than the other two main schemes 146 

(Noah and CLM4) in other studies (Cai et al., 2014;Zhuo et al., 2019a). Table 1 shows the selected 147 

WRF parameterization schemes. The static inputs (i.e., land use and soil texture) are chosen in 148 

the WRF pre-processing package. Here, the land use categorisation is interpolated from the 149 

MODIS 21-category data classified by the International Geosphere Biosphere Programme 150 
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(IGBP). The soil texture data are based on the Food and Agriculture Organization of the United 151 

Nations Global 5-minutes soil database. 152 

3.1.2 Model Setup  153 

The WRF model is centred over the Emilia Romagna Region, and integrates three nested 154 

domains (D1, D2, D3), with the horizontal spacing of 45 km x 45 km (outer domain, D1), 15 155 

km x 15 km (inner domain, D2), and 5 km x 5 km (innermost domain, D3). In this study, the 156 

innermost domain D3 is used (88 x 52 grids (west-east and south-north, respectively)), with a 157 

two-way nesting scheme considered letting the information from the child domain to be fed 158 

back to the parent domain. To drive the WRF model, the European Centre for Medium-Range 159 

Weather Forecasts (ECMWF) reanalysis (ERA-Interim) is adopted to provide the study 160 

region’s boundary and initial conditions. ERA-Interim is a global atmospheric reanalysis that 161 

is available from 1979 to 2019 (ERA-5 as a recent update to ERA-Interim may also be used). 162 

The spatial resolution of the datasets is approximately 80 km on 60 levels in the vertical from 163 

the surface up to 0.1 hPa. It contains 6-hourly gridded estimates of three-dimensional 164 

meteorological variables, and 3-hourly estimates of a large number of surface parameters and 165 

other two-dimensional fields. Please see (Berrisford et al., 2011) for a detailed documentation of 166 

the ERA-Interim. 167 

After the initialization, the model needs to be spun-up to derive a physical valid state (e.g., 168 

equilibrium state) (Cai et al., 2014;Cai, 2015).  In this study, WRF is spun-up by running through 169 

the whole year of 2005. After the spin-up, the WRF model is run in daily timestep from January 170 

1, 2006, to December 31, 2015, using the ERA-Interim datasets. The modelled WRF grids 171 

within the Emilia Romagna catchment (total of 828 grids) are shown in Figure 2 as black dots, 172 

with the elevation map also illustrated in the background.   173 

3.2 Soil Moisture Network Design 174 
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For the soil moisture network design, two main problems need to be tackled. First is how many 175 

soil moisture sensors are needed within a catchment, and the second is where are the best 176 

locations to place them. To solve the first problem, the PCA is used to obtain the optimal 177 

number of soil moisture sensors through a threshold analysis. And for the second problem, the 178 

K-means CA is adopted to determine the locations for the sensor placements.  179 

3.2.1. Principal Component Analysis (PCA) 180 

When soil moisture data are collected from p soil moisture sensors, these data are often 181 

correlated. This correlation reflects the complexity of the catchment and indicates that some of 182 

the information collected from one sensor is also contained in the remaining p-1 sensors 183 

(Gangopadhyay et al., 2001). The role of the PCA is to examine the redundancy of the WRF soil 184 

moisture network, and more importantly to highlight the grids that provide the most significant 185 

contribution to the principal components (Dai et al., 2017). The optimal number of sensors is 186 

dependent on the amount of original variance the network should retain. PCA is a statistical 187 

procedure for multivariance feature extraction. It adopts an orthogonal transformation to 188 

convert a set of possibly correlated observations into a set of linearly uncorrelated variables 189 

called principal components. This transformation is defined in such a way that the first principal 190 

component has the largest possible variance, and each succeeding component in order has the 191 

highest variance possible under the constraint that it is orthogonal to the preceding components 192 

(Wold et al., 1987). 193 

In this study, we have p WRF soil moisture grids with N observations (the time series of the 194 

data, i.e., 10-year daily datasets). The covariance matrix p x p can be calculated which is 195 

denoted as X, and the eigenvectors and the eigenvalues of the matrix can also be determined, 196 

correspondingly. Since the eigenvectors of the X are orthogonal, the p eigenvectors are used to 197 

construct the principal components, which can be represented as: 198 
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eigenvector = (𝑒𝑖𝑔
1

  𝑒𝑖𝑔
2

 𝑒𝑖𝑔
3

 …  𝑒𝑖𝑔
𝑝

)                                                                                (1) 199 

with such a relationship, the original datasets can be transformed in terms of eigenvectors into 200 

a new dataset Z. Z is shown as the following:  201 

𝑍𝑖 = 𝑋1𝑒𝑖𝑔𝑖,1 + 𝑋2𝑒𝑖𝑔𝑖,2+. . . +𝑋𝑝𝑒𝑖𝑔𝑖,𝑝   ,    𝑖 = 1, … , 𝑝                                                              (2) 202 

where Zi is the new dataset, Xi is the original dataset. The variance of each of the component is 203 

the eigenvalue. The eigenvector with the highest eigenvalue is the principal component of the 204 

dataset.  The examination of the network redundancy is implemented based on the desired rate 205 

of variance contribution, and the number of principal components can thus be calculated 206 

correspondingly. In other words, the appropriate number of soil moisture sensors are dependent 207 

on the amount of original variance the network would like to retain. If for a specific desired 208 

variance, the determined number of principal components (k) is significantly less than the total 209 

number of the WRF soil moisture grids (p), then it can be concluded that the network is heavily 210 

redundant, and even by removing a large number of grids, the remaining can still provide 211 

sufficient soil moisture information for the entire catchment; and vice versa. In this paper, the 212 

variance contribution rate of 70%~99% is tested. Generally, the required number of grids 213 

increases when the variance contribution rate increases. However, the growth rate is not 214 

constant that normally changes significantly at a critical point (threshold), which is used in this 215 

study as the desired rate for the soil moisture network design.  216 

3.2.2. K-means Cluster Analysis (CA) 217 

After deciding the optimal number of soil moisture sensors from the PCA step, CA is then 218 

applied to find the best locations for the sensors. CA is a multivariate method which aims to 219 

classify a sample of objects into a number of groups so that similar objects are placed in the 220 

same group (Everitt et al., 2001). The advantage of adopting the CA method for the network 221 

design is that there is no prior knowledge required about which objects belong to which clusters. 222 

 223 
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Because the optimal number of clusters (k) has already been determined by the PCA, k-means 224 

clustering method is utilised in this study to divide the original p datasets into k clusters. k-225 

means approach is a typical distance-based clustering method which uses the distance as the 226 

indicator for similarity among objects (i.e., the smaller the distance, the higher the similarity 227 

of two objects) (Kodinariya and Makwana, 2013). In this study, the Euclidean distance is adopted 228 

as the distance measurement. It is a simple and widely used way of calculating the distances 229 

between objects in a multidimensional space (Danielsson, 1980). The centroid of each cluster is 230 

the point which the sum of Euclidean distances from all objects in that cluster is minimized. It 231 

is an iterative approach repeated for all of the clusters. Since an initial set of cluster centres is 232 

needed to be given for the CA to start, the resultant performance will be sensitive to the initial 233 

setting. In order to obtain an efficient performance, the WRF grids are ordered by their long-234 

term mean soil moisture and the initial cluster centres are selected evenly from the new 235 

sequence (based on the number of k from the PCA). After which, the WRF grids are attributed 236 

to the closest cluster accordingly. 237 

  238 

Within each of the optimised clusters, we propose two ways to find the most suitable grid for 239 

the sensor placement. One way is by finding the grid which gives the median averaged soil 240 

moisture in each of the cluster (denoted as CA-Med), and another is through identifying the 241 

maximum averaged soil moisture in each of the cluster (denoted as CA-Max) (Dai et al., 2017). 242 

As a result, for each cluster, there is one optimal grid, and grouped with the other optimal grids 243 

found in other clusters, the ideal placements for the soil moisture sensors are identified. The 244 

group of the selected grids is considered to be the optimal combination of locations that can 245 

provide the desired variance of the original WRF soil moisture measurements over the whole 246 

catchment.   247 

3.3 Network Evaluation 248 
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Since there is no existing optimal in-situ soil moisture network that can be used as a reference 249 

for the evaluation, it is challenging to assess the designed network performance based on a 250 

comparison study. However, the designed network should be efficient enough to represent the 251 

maximum amount of information with the minimum number of sensors within a catchment. In 252 

other words, the designed network should retain the main catchment-scale soil moisture 253 

information of the original WRF network, which is particularly important for the hydrological 254 

modelling. To assess the network in such an aspect, the soil moisture information contained by 255 

the designed and the original network are compared. Two statistical indicators are used for the 256 

purpose, namely the Pearson correlation coefficient and the Nash–Sutcliffe coefficient.  257 

The Pearson correlation coefficient (r) is a statistical measure of the linear correlation between 258 

two sets of datasets, which in this study can estimate the systematic deviation between the 259 

designed (Rd) and the original (Ro) catchment-scale soil moisture variations, and it is calculated 260 

by the following equation: 261 

𝑟𝑅𝑜,𝑅𝑑
=

𝐸[𝑅𝑑𝑅𝑂]−𝐸[𝑅𝑑]𝐸[𝑅𝑂]

√(𝐸[𝑅𝑑
2]−𝐸[𝑅𝑑]2)×(𝐸[𝑅𝑂

2]−𝐸[𝑅𝑂]2)

                (3) 262 

where E is the mean value of the corresponding vector. In this study, the optimal performance 263 

is achieved when 𝑟𝑅𝑜,𝑅𝑑
 equals to 1 264 

Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) is used widely in hydrology to 265 

evaluate the prediction accuracy in hydrological modelling, which can be obtained by: 266 

𝑁𝑆𝐸 = 1 −
∑(𝑅𝑜

𝑡 −𝑅𝑑
𝑡 )

2

∑(𝑅𝑜
𝑡 −𝐸[𝑅𝑜])

2        (4) 267 

where t is the time-step of the dataset. The NSE ranges [1,-∞). The closer NSE is to 1, the more 268 

accurate the designed network is. 269 

4. Results  270 
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4.1. Soil Moisture Network Redundancy Analysis 271 

Within the study area of 22,124 km2, there is a total number of 828 WRF soil moisture grids. 272 

With such a dense network, there should exist information redundancy. To explore this, a cross-273 

correlation (r) matrix for all of the grids over the whole study period is plotted in Figure 3. It 274 

can be seen that the majority part of the map is in blue-tone, which means most of the grids 275 

(85%) are correlated (r > 0.5) with the others (as shown in Table 2). In addition, over half of 276 

the grids (52%) have high correlation (r>0.8) with the rest of the grids; and even 15% of the 277 

grids can achieve very high correlation (r>0.9). However, it is clear from the map some grids 278 

(e.g., grid number 396-398, 523-529) are more heterogeneous than the others (red-tone, with 279 

low correlation <0.3 observed), which means more soil moisture sensors might need to be 280 

installed in those locations. The catchment map with the indicated WRF grid numbers is 281 

presented in Figure 4a). A further exploration of cross-correlation performance using box plots 282 

is shown in Figure 4b). The locations of the selected grids (as in Figure 4b) are marked in 283 

Figure 4a) with red circles. It can be seen the nine grids are distributed evenly within the 284 

catchment in order to represent a spectrum of catchment features (e.g., different land covers, 285 

elevations, soil types etc.). From the box plot, it can be seen for a specific grid, the cross-286 

correlation can range from as low as below 0.1 to as high as almost 1. The large range is 287 

particularly obvious for Grid 500, which is located at the plain zone near the east boundary of 288 

the catchment and is close to the Valli di Comacchio lagoon. The closeness to the waterbody 289 

could mean its soil moisture is dominated more by the waterbody than by the local weather 290 

conditions, in comparison with grids located further away. For Grid 100, its correlation with 291 

the rest of the grids in the catchment is relatively low, with 75% percentile of the cross-292 

correlations less than 0.6. The potential reason could be because it is located in the southern 293 

mountainous zone, with high-density of tree coverage and complex topographic conditions, its 294 

soil moisture is more heterogeneous than the other grids. A similar condition is observed for 295 

https://doi.org/10.5194/hess-2020-24
Preprint. Discussion started: 28 January 2020
c© Author(s) 2020. CC BY 4.0 License.



13 

 

Grid 1 which is also located in a hilly zone in the southern boundary of the catchment (i.e., 296 

lower correlation as shown in the boxplots). Such a phenomenon is not unexpected and could 297 

mean more sensors are needed in those complex zones for better soil moisture monitoring 298 

purpose. However, for Grids like 300, and 600 (and the surrounding areas), since the majority 299 

of their correlations are high and they are located in plain areas with no water boundary nearby, 300 

they could be arranged with a smaller number of soil moisture sensors.  301 

4.2. Soil Moisture Sensor Number 302 

In summary, through the cross-correlation exploration, many parts of the WRF soil moisture 303 

network are significantly redundant, whilst for some parts, a denser network is indeed needed. 304 

To systematically investigate the redundancy degree of the network, the PCA approach is 305 

applied. Figure 5a) shows the PCA results to provide useful guidance on the acceptable loss of 306 

information.  It is clear to see the first principal component carries close to 80% of the total 307 

variance, with the second component bringing this to nearly 90%. This result again indicates 308 

the high redundancy exists in the network, and just one component can contain almost 80% of 309 

the total soil moisture information. To better understand the relationship between the principal 310 

component numbers, the variance contribution rate, as well as the corresponding required grids 311 

number, a set of variance contribution rates from 70% to 97.5% is used as the representatives. 312 

The required number of components and the grids are listed accordingly in Table 3. It can be 313 

seen only one component with 6 grids is sufficient to retain 70% of the soil moisture 314 

information. Even when the variance is set at 80%, only two components are needed to meet 315 

the requirement, and the corresponding number of soil moisture girds is 11 (1.3% percent of 316 

the total grids). To satisfy 90% variance, three components are needed, and although the total 317 

number of grids is increased to 50, it is still significantly less than the WRF’s full inputs. The 318 

detailed numbers further indicate the relatively high level of redundancy in the WRF’s original 319 

soil moisture network.  320 
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The trend can also be observed through the Elbow curve which is illustrated in Figure 5b). It 321 

presents the relationship between the variance and the number of grids.  It can be seen to meet 322 

the increment of variance, the required number of grids also increases. But the growth rate is 323 

the most significant when the variance is smaller than 70% and then slows down gradually 324 

after that. When the variance meets 95%, the rate is further weakened. Based on the curve, it 325 

is suggested the desired variance (i.e., trade-off point) between 80% and 95%. The required 326 

number of soil moisture grids for 80%, 85%, 90%, and 95% is 11, 21, 50, and 184 respectively. 327 

It is clear, in order to achieve the 95% variance, a significantly greater number of additional 328 

grids are required, that is 268% more than for the 90% variance case. Therefore, for further 329 

improvement of variance from 90% to 95%, the economic cost for the additional number of 330 

sensors might not be as valuable as for the 85% to 90% case (138% additional sensors are 331 

required for the enhancement).  332 

4.3. Soil Moisture Sensor Location Design 333 

Once the degree of redundancy for the full WRF soil moisture network is established, the next 334 

step is to determine the optimal locations for sensor placements. Because the components from 335 

the PCA do not directly represent the physical WRF grids, cluster analysis is thus carried out 336 

to identify the specific grid locations. Here, CA-Max and CA-Med are used. The designed 337 

networks for CA-Max and CA-Med are illustrated in Figure 6 and 7, respectively. The 338 

indicated locations in the figures provide guidance on the preferential areas for the soil moisture 339 

sensor placements. Each of the methods gives a different set of sensor locations, for instance, 340 

the selected optimal soil moisture grids from the CA-Max method tend to be located at the 341 

catchment boundary, and the situation is particularly obvious for the low variance cases (i.e., 342 

70% - 80%). For example, when the variance is set at 70%, the selected optimal locations from 343 

the CA-Max is mostly distributed near the catchment’s southern boundary, while from the CA-344 

Med, it is more homogeneously distributed (i.e., one at the southern boundary, one at the north, 345 
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two at the north-western part, and two at the north-eastern part). When the variance is increased, 346 

for instance at 90%, the difference between the two CA methods becomes less distinctive. 347 

Despite this, it can still be seen for the CA-Max, there is less coverage of sensors at the western 348 

and the eastern parts of the catchment, with most of the sensors located at the mid-region. 349 

However, for the same variance, the sensor distribution from the CA-Med looks more evenly 350 

distributed visually. Nevertheless, when the variance reaches as high as 97.5%, the difference 351 

from the two methods becomes rather small, as 367 sensors are located covering most parts of 352 

the catchment in both cases.   353 

4.4. Soil Moisture Network Evaluation 354 

The evaluation of the designed network is challenging, as there are no standard assessment 355 

criteria available to guide on what kind of network is the most appropriate for a given study 356 

area. In essence, the designed network should be efficient, which means the network should 357 

contain the maximum amount of information with a minimal number of sensors. In this study 358 

since we focus on the soil moisture’s hydrological applications (catchment-scale), to evaluate 359 

the efficiency of the proposed schemes, the catchment-scale soil moisture data derived by the 360 

designed networks are compared with the WRF’s full inputs (828 grids). Both the areal spatial 361 

mean and standard deviation are calculated. The Pearson correlation coefficient and the Nash–362 

Sutcliffe coefficient are used to quantify the relationships between the two soil moisture 363 

datasets. The results for both the CA-Med and the CA-Max are compared in Figure 8. Based 364 

on the areal mean soil moisture (Figure 8 a) and c)), it is clear to see the CA-Med outperforms 365 

the CA-Max for the majority of the variance cases (both NSE and r), except for the NSE results 366 

when the variance is over 90%. Moreover, for the NSE results, a decline of the performance 367 

can be observed clearly after it passes the 90% variance point, which illustrates that an 368 

increment of sensor number does not necessarily mean a arise of the performance. For the 369 

standard deviation, the disparity between the two methods is smaller. When the variance is 370 
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below 80%, the growth trend for the CA-Med case is not clear, as it firstly drops at the 75% 371 

point and then climbs up again when the variance increases. Whereas for the CA-Max case, 372 

there is a clear upward trend. Similar to Figure 8 a), it is interesting to see for the areal standard 373 

deviation in Figure 8 b) and d), the NSE and r also start to drop after reaching around 90%, 374 

which again indicates the increment of sensor number does not positively link to the 375 

improvement of network performance (here in the aspect of spatial variation). The evaluation 376 

results are summarised in Table 4 for numerical comparison. Since CA-Med surpasses CA-377 

Max for most of the cases, it is chosen for the network design. In the aspect of the desired 378 

variance, because as discussed earlier, when the variance climbs over 90%, the performance 379 

instead drops. Therefore 90% variance is suitable to be used for the network design in this case.  380 

The time series plots of the areal soil moisture mean and standard deviation are shown in Figure 381 

9. Generally, the designed network can estimate the catchment’s mean soil moisture very well, 382 

as it follows the variation of the WRF’s full input dataset closely (NSE = 0.995 and r = 0.999). 383 

For the standard deviation, the general trend from both datasets shows a higher spatial variation 384 

of soil moisture over the dry season and lower variation during the wet season. The spatial 385 

variation is averaged around 0.04 m3/m3 throughout the whole study period. However, there 386 

are some disparities between the two datasets, in particular, during the wet season (bottom 387 

peaks in the STD plot), the designed network at several occasions overestimates the spatial soil 388 

moisture variation, and during the dry season (top peaks in the STD plot), it underestimates 389 

instead. Nevertheless, the differences are small and the correlation between the two datasets is 390 

high, with NSE = 0.973 and r = 0.990 obtained.  In conclusion, the designed network can 391 

maintain the dominated information of the WRF’s full-grid input well.  392 

The sensor displacements for the designed and the existing (in-situ) networks are illustrated in 393 

Figure 10. In comparison with the distribution of the proposed network, the existing network 394 

is clearly biased, with all of the sensors located in the mid-plain zone only. Such distribution 395 
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(i.e., no sensors located at the southern mountainous (highly-vegetated) region) can have 396 

adverse impacts on the accuracy of the areal mean soil moisture estimation. Scatterplots of the 397 

areal mean soil moisture calculated from the designed and the existing networks are also 398 

presented in Figure 11. The performance difference between the two networks is clear to 399 

observe. For the proposed network, the points are located close to the identical line, whereas 400 

for the existing network, due to the inappropriate sensor distributions over the catchment, the 401 

points are more dispersive (NSE = 0.889). The performance of the existing network in 402 

comparison with the proposed networks indicates that it cannot retain even 70% of the variance 403 

(as compared with the NSE results in Table 4), as the NSE for the 70% CA-Med can achieve 404 

0.949. For the existing network, without putting sensors in the highly vegetated region, the 405 

network clearly underestimates soil moisture variations during the dry season (i.e., for the cases 406 

when the soil moisture is less than 0.25 m3/m3) 407 

5. Discussions and conclusions 408 

With the low-cost soil moisture sensors becoming more and more available and modern 409 

communication technology (i.e., Internet of Things), it is expected more in-situ soil moisture 410 

sensors will be installed in the future. However, unlike the rich literature in the rain gauge 411 

network design field, there is a research gap in soil moisture network design for catchment-412 

scale applications. As a result, research is urgently needed to fill this important knowledge gap. 413 

As one of the pioneering studies in this field, a low-data requirement method is proposed in 414 

this study for the in-situ soil moisture network design. Through a series of evaluations of the 415 

developed network, it can be concluded that the method can provide efficient catchment-scale 416 

soil moisture estimations (i.e., high accuracy of the areal mean and standard deviation soil 417 

moisture estimations). To retain 90% variance, a total of 50 sensors in a 22,124 km2 catchment 418 

is needed. In comparison with the original number of WRF’s grids (828 grids), the proposed 419 

network requires significantly smaller number of sensors. Furthermore, in comparison with the 420 
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existing soil moisture network in the Emilia Romagna region, the proposed network has sensors 421 

more evenly distributed, covering most representative parts of the catchment (e.g., both plain 422 

and mountainous regions), and can obtain more accurate catchment-scale soil moisture 423 

estimation. However, there are several points need to be discussed as follows. 424 

The first point is about the uncertainty of the WRF’s soil moisture estimations, which could 425 

influence the accuracy of the network design. It is acknowledged that the reliability of the 426 

designed network is influenced by the performance of the WRF model. To evaluate the WRF 427 

results and test whether the proposed network can produce the catchment-scale soil moisture 428 

well, a long-term densely covered soil moisture network will be required. Setting up such a 429 

network is challenging and difficult to realise due to the high installation and maintenance cost. 430 

In this study, a long-term WRF soil moisture estimation with 1-year spin-up time is used which 431 

could to some extent produce a more stable result. But since “all models are wrong” (by George 432 

E. P. Box), an uncertainty model (Zhuo et al., 2016) could be proposed to be integrated with the 433 

network design scheme. For example, we can generate a large number of probable “true soil 434 

moisture” datasets based on the proposed uncertainty model so that a set of possible soil 435 

moisture networks can be produced. As a result, the designed network will be expressed in a 436 

probabilistic form instead of a determinate form. In addition, a decision-making scheme 437 

considering different conditions (e.g., accessibility, installation and maintenance cost) under 438 

the uncertainty can be developed to select the most suitable soil moisture network. The 439 

uncertainty influence of the WRF soil moisture on the network design will be investigated in 440 

future studies. 441 

Second, the case study is based on the daily soil moisture inputs for the hydrological 442 

applications. With different research needs (meteorology, climatology, hydrology, water 443 

resources, geology, etc.), various temporal-scale of soil moisture data might be required, for 444 

example, climate change study requires soil moisture data in decades or hundreds of years 445 
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which often needs annual-scale measurements; drought assessment requires monthly to 446 

seasonal datasets; while for hydrometeorological prediction applications, hourly datasets might 447 

be needed. For the network design, the input data’s temporal scale (daily, weekly, monthly, 448 

yearly) can influence the final network design, therefore it is worth investigating in future 449 

studies about the temporal-scale effect on the network design.  450 

Third, for a complex catchment like Emilia Romagna, other uncertainty sources apart from the 451 

WRF model can also affect the performance of the designed network; for instance, the study 452 

area has varied climate conditions (a mixture of subcontinental and cool temperate) and distinct 453 

seasonal changes (wet/dry seasons). Therefore separating/combining networks under different 454 

catchment conditions could result in an improved soil moisture network design. Furthermore, 455 

the poor accessibility to sensors is another challenging point that can hamper the performance 456 

of the designed network in real life, for instance, even an in-situ network follows tightly 457 

through a systematic design scheme, without proper maintenance due to the accessibility issue, 458 

the quality of the retrieved data can be highly affected. Therefore, the accessibility factor 459 

should also be considered for the network design (e.g., can be considered during the CA for 460 

the sensor placements).  461 

Since the forcing data for the WRF model is globally covered, the proposed scheme can largely 462 

benefit ungauged catchments. On the other hand, in places where dense soil moisture networks 463 

are already available, the proposed scheme could also help in minimizing the cost by reducing 464 

the number of sensors. Another advantage of the method is that the number of soil moisture 465 

sensors can be changed based on different variances to meet various requirements. Through 466 

selecting different variance levels, the redundancy of the WRF’s full-input network can be 467 

assessed, and the corresponding optimal sensor number can be determined. However, the 468 

proposed scheme is still in its infancy with a lot of refinements and further explorations needed, 469 

https://doi.org/10.5194/hess-2020-24
Preprint. Discussion started: 28 January 2020
c© Author(s) 2020. CC BY 4.0 License.



20 

 

therefore it is hoped this paper will stimulate more studies by the community in tackling the 470 

soil moisture network design problem.  471 
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Table 1. WRF parameterizations used in this study. 631 

 Settings/ Parameterizations References  

Map projection  Lambert  

Central point of domain  Latitude: 44.54; Longitude: 11.02  

Latitudinal grid length  5 km  

Longitudinal grid length 5 km  

Model output time step  Daily  

Nesting  Two-way  

Land surface model Noah-MP  

Simulation period 1/1/2006 – 31/12/2015  

Spin-up period  1/1/2005 – 31/12/2005  

Microphysics  New Thompson (Thompson et al., 2008) 

Shortwave radiation  Dudhia scheme (Dudhia, 1989) 

Longwave radiation Rapid Radiative Transfer Model (Mlawer et al., 1997) 

Surface layer Revised MM5 (Jiménez et al., 

2012b;Chen and Dudhia, 

2001) 

Planetary boundary layer Yonsei University method (Hong et al., 2006b) 

Cumulus Parameterization Kain-Fritsch (new Eta) scheme (Kain, 2004a) 

 632 

  633 
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Table 2. The relationship between the percentage of grids, and the cross-correlation.  634 

Cross-correlation (r) Percentage of grids (%) 

0.5 85 

0.6 78 

0.7 70 

0.8 52 

0.9 15 

0.95 3 

  635 
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Table 3. The number of components and grids to reach % variance threshold (based on the 636 

PCA method and the Elbow curve method). 637 

Variance (%) Components Number of grids 

70.0 1 6 

75.0 1 7 

80.0 2 11 

85.0 2 21 

90.0 3 50 

92.5 3 94 

95.0 3 184 

97.5 3 367 

 638 

 639 

 640 
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Table 4. NSE and correlation r performance of CA_Med and CA_Max.  642 

Variance  CA_Max_Mean CA_Med_Mean CA_Max_STD CA_Med_STD 

 NSE r NSE r NSE r NSE r 

70.0 0.831 0.978 0.949 0.985 0.601 0.834 0.716 0.876 

75.0 0.851 0.984 0.978 0.993 0.778 0.887 0.746 0.870 

80.0 0.894 0.990 0.991 0.996 0.867 0.945 0.901 0.951 

85.0 0.976 0.997 0.991 0.998 0.926 0.967 0.930 0.976 

90.0 0.988 0.998 0.995 0.999 0.963 0.986 0.973 0.990 

92.5 0.997 0.998 0.990 0.999 0.969 0.989 0.960 0.992 

95.0 0.994 0.999 0.985 0.999 0.932 0.990 0.914 0.986 

97.5 0.988 1.000 0.983 1.000 0.910 0.986 0.895 0.982 
 643 

 644 

 645 

 646 

 647 
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 649 

Figure 1. The geographical map of the Emilia Romagna region. 650 
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 651 

 652 

Figure 2. WRF grids used in the analysis, with DEM map in the background. 653 
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 655 

Figure 3. Cross correlation matrix for the whole catchment. 656 

 657 
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 659 

 660 

Figure 4.  a) WRF grid number; b) correlation boxplot for the selected grids as highlighted in 661 

red in a). For the boxplot, it shows the minimum, maximum, 0.25, 0.50, and 0.75 percentiles 662 

and outliers (red cross). 663 

 664 

 665 

 666 

 667 

 668 

 669 

 670 

 671 

 672 

 673 

a) 

b) 
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 674 

 675 

Figure 5. a) PCA analysis; b) Elbow curve. 676 

 677 

a) 

b) 
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 678 

Figure 6. Designed soil moisture sensor locations, based on CA-Max. 679 

680 
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 681 

Figure 7. Designed soil moisture sensor locations, based on CA-Med.  682 
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 683 

Figure 8. NSE and r plots: a) NSE performance based on the areal mean soil moisture, b) NSE 684 

performance based on the areal standard deviation soil moisture (STD), c) r performance based 685 

on the areal mean soil moisture, d) r performance based on the areal standard deviation soil 686 

moisture.  687 

  688 

a) b) 

c) d) 
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 689 

Figure 9. a) The areal mean soil moisture of the designed and the WRF’s full-input networks, 690 

b) the areal soil moisture standard deviation of the designed and the WRF’s full-input networks.  691 
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 693 

Figure 10. Comparison between the existing and the designed soil moisture networks. 694 
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 696 

Figure 11. Scatterplots for areal mean soil moisture: a) WRF full grid inputs against the 697 

proposed network (NSE = 0.995, r = 0.998); b) WRF full grid inputs against the existing in-698 

situ network (NSE = 0.889, r = 0.987).   699 

 700 

 701 
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