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Abstract 11 

Soil moisture plays an important role in the partitioning of rainfall into evapotranspiration, 12 

infiltration and runoff, hence a vital state variable in hydrological modelling. However, due to 13 

the heterogeneity of soil moisture in space most existing in-situ observation networks rarely 14 

provide sufficient coverage to capture the catchment-scale soil moisture variations. Clearly, 15 

there is a need to develop a systematic approach for soil moisture network design, so that with 16 

the minimal number of sensors the catchment spatial soil moisture information could be 17 

captured accurately. In this study, a simple and low-data requirement method is proposed. It is 18 

based on the Principal Component Analysis (PCA) for the investigation of the network 19 

redundancy degree; and K-means Cluster Analysis (CA) and a selection of statistical criteria 20 

for the determination of the optimal sensor number and placements. Furthermore, the long-21 

term (10-year) 5 km surface soil moisture datasets estimated through the advanced Weather 22 

Research and Forecasting (WRF) model are used as the network design inputs. In the case of 23 

the Emilia Romagna catchment, the results show the proposed network is very efficient in 24 

estimating the catchment-scale surface soil moisture (i.e., with NSE and r at 0.995 and 0.999, 25 

respectively for the areal mean estimation; and 0.973 and 0.990, respectively for the areal 26 

standard deviation estimation). To retain 90% variance, a total of 50 sensors in a 22,124 km2 27 



2 

 

catchment is needed, which in comparison with the original number of WRF grids (828 grids), 28 

the designed network requires significantly fewer sensors. However, refinements and 29 

investigations are needed to further improve the design scheme which are also discussed in the 30 

paper.  31 

Keywords: Soil moisture network design, Hydrological modelling, Principal Component 32 

Analysis (PCA), K-means Cluster Analysis (CA), Weather Research and Forecasting (WRF), 33 

Optimising, Data mining. 34 

1. Introduction  35 

Soil moisture is at the heart of the Earth system and it plays an important role in the exchanges 36 

of water and energy at the land surface (Dorigo et al., 2017;Robock et al., 2000;Crow et al., 2018). 37 

In hydrology, soil moisture is the key component for the partitioning of rainfall into 38 

evapotranspiration, infiltration and runoff (Vereecken et al., 2008;Brocca et al., 2017;Rajib et al., 39 

2016;Fuamba et al., 2019). In particular, the antecedent soil moisture condition of a catchment is 40 

among one of the most important factors for flood triggering (Uber et al., 2018;Zhuo and Han, 41 

2017). For hydrological modelling, soil moisture is a vital state variable. Especially, during 42 

real-time flood forecasting, the accurate updating of the soil moisture state variable is a critical 43 

step to reduce the accumulation of model errors (i.e., time drift problem) (Lopez et al., 44 

2016;Laiolo et al., 2016;Zwieback et al., 2019). Therefore, the intensive monitoring of catchment-45 

scale soil moisture content would benefit a number of hydrological applications.  46 

In-situ soil moisture sensors (e.g., capacitance probe and Time Domain Reflectometry) can 47 

provide point-based soil moisture measurements with relatively high accuracy (after calibration) 48 

in comparison with the modelling and the remotely sensed approaches (Albergel et al., 2012). 49 

Therefore, they are a crucial source of information for hydrological research (Western et al., 50 

2004;Brocca et al., 2017). However, due to the spatial heterogeneity of soil moisture and the 51 
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economic considerations (e.g., installation and maintenance cost), most existing in-situ 52 

networks rarely provide sufficient coverage to capture the catchment spatial soil moisture 53 

variations (Chaney et al., 2015). There have been enormous works carried out by the USA 54 

National Soil Moisture Network (NSMN, 2020), USA state Mesonets and the International Soil 55 

Moisture Network (ISMN) (Dorigo et al., 2013) on soil moisture network integration and 56 

database setup, however they are based on existing in-situ networks and the majority of which 57 

are not purposely designed for catchment scale hydrological studies. In particular, in a number 58 

of cases, soil moisture sensors are mainly installed close to the residential plain areas (e.g., due 59 

to easy accessibility and maintenance reasons), and there is a lack of sensors installed in the 60 

complex topographic areas (Zhuo et al., 2019b). 61 

Therefore, there is a need to develop a systematic approach for the soil moisture network design, 62 

so that with the minimal number of sensors the catchment-scale soil moisture information could 63 

be captured accurately. Although a number of projects have been carried out in the field of soil 64 

moisture network design, for instance through various NASA soil moisture campaigns (SMEX, 65 

SMAPVEX, etc.), they are mainly focused on satellite soil moisture evaluations and algorithm 66 

improvements, so the in-situ sensors are purposely designed to best match satellite’s footprint, 67 

with high sensor coverage in small experimental scales. Moreover, most existing soil moisture 68 

network studies are based on using in-situ/aircraft datasets at small experimental areas, which 69 

can hamper their applications in data-sparse regions. However, to our knowledge, there is a 70 

lack of existing literature covering soil moisture network design, and particularly for the 71 

catchment-scale hydrological applications (Chaney et al., 2015). 72 

Therefore, to address the aforementioned research gap, the aim of this paper is to propose an 73 

efficient soil moisture network design scheme for catchment-scale studies, based on a 74 

combination of statistical approaches and globally available modelling datasets. In particular, 75 

the Principal Component Analysis (PCA) is adopted to investigate the network redundancy 76 
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degree, and K-means Cluster Analysis (CA) and a selection of statistical criteria are used to 77 

determine the optimal sensor number and placements. Although other statistical methodologies 78 

could also be explored (e.g., the Temporal Stability Analysis (Vachaud et al., 1985) and the 79 

Empirical Orthogonal Functions (Perry and Niemann, 2007) which have been applied for soil 80 

moisture network design by the community), PCA/CA are a simple statistical approach that 81 

works efficiently with a large array of datasets and have been successfully explored by Curtis 82 

et al. (2019) on classifying soil moisture response units in a catchment. Long-term (10-year) 83 

soil moisture datasets estimated through the advanced Numerical Weather Prediction (NWP) 84 

Weather Research and Forecasting (WRF) model (Skamarock et al., 2008)  are used as the design 85 

inputs. WRF model has been applied in a wide range of applications with good performances 86 

(Srivastava et al., 2015;Zaitchik et al., 2013;Zhuo et al., 2019a;Stéfanon et al., 2014). Although WRF 87 

estimated soil moisture cannot represent the ground truth, they are ideal datasets to provide 88 

catchment characteristics, such as land cover, soil properties, topographies, which are the main 89 

drivers of local soil moisture heterogeneity (Friesen et al., 2008). Therefore, such globally 90 

available datasets together with the proposed statistical approaches would provide useful 91 

insights for the soil moisture network design research (i.e., to minimise the redundancy of 92 

information, and improve accuracy), in particular, for those currently ungauged catchments. In 93 

this study, the proposed method is implemented in the Emilia Romagna region, northern Italy 94 

as a case study due to its high-exposure of flood events.  95 

The paper is organised as: the study area is introduced in Section 2; soil moisture network 96 

design methodologies are described in Section 3; the results are presented in Section 4; and 97 

discussions and conclusions are included in Section 5.  98 

2. Study Area  99 
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In this study, the Emilia Romagna region (latitude 43o50’N–45o00’N; longitude 9◦20’E–12◦40’E) 100 

is selected for the case study which is in Northern Italy (Figure 1). The region’s total coverage 101 

is approximately 22,124 km2. It is surrounded by the Apennines to the south and the Adriatic 102 

Sea to the east, with over half of the area as a plain agricultural zone (12,000 km2). The climate 103 

condition is highly varied in the region which is largely influenced by the mountains and the 104 

sea, with subcontinental in the Po river plain and surrounding hilly areas, and cool temperate 105 

in the mountain range (Nistor, 2016). It has distinct wet and dry seasons (i.e. dry season between 106 

May and October, and wet season between November and April) (Zhuo et al., 2019b). Based on 107 

the ESA Climate Change Initiative land cover map (Bontemps et al., 2013), the region is mainly 108 

covered by Herbaceous (37%), followed by Tree (22%), and Cropland (21%). The majority of 109 

the area is on the quaternary alluvial deposits, which are characterised by a high degree of 110 

heterogeneity (Pistocchi et al., 2015). The annual temperature ranges from 8.2 to 19.3oC; and the 111 

annual mean precipitation is between 520 and 820 mm (Pistocchi et al., 2015).  112 

For the soil moisture network in the region, currently, there is a total of 19 soil moisture sensors 113 

installed (all located in the plain area); however only one of them can provide long-term 114 

continuous soil moisture monitoring datasets. The network is managed by the Regional Agency 115 

for Environmental Protection Emilia Romagna Region. Through further investigations, it has 116 

been found, a number of the sensors have actually never provided proper soil moisture 117 

measurements since the installation. Only one soil moisture sensor at the plain area is clearly 118 

not sufficient for any catchment-scale applications. Therefore, it is hoped the proposed soil 119 

moisture network design scheme could provide some useful guidance to the local authority on 120 

an improved network in the future (i.e., a minimum number of sensors for reduced installation 121 

and maintenance cost, but at the right locations).  122 

3. Methodologies 123 
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3.1 WRF Model  124 

The WRF model is a next-generation, non-hydrostatic mesoscale NWP system designed for 125 

both atmospheric research and operational forecasting applications (Skamarock et al., 2005). The 126 

model is capable of modelling a wide range of meteorological applications varying from tens 127 

of metres to thousands of kilometres (NCAR, 2018). Apart from the WRF’s aforementioned 128 

advantage on including the catchment characteristics for the soil moisture estimations, it also 129 

has other merits that make it an ideal tool for providing the distributed soil moisture information 130 

for the network design. For instance, WRF model’s spatial and temporal resolutions can be 131 

changed depending on the input datasets to fit various application requirements, and a number 132 

of globally-available data products can be selected to provide the necessary boundary and 133 

initial conditions for running the model. Therefore, WRF is able to provide valuable 134 

information for this study. Here WRF version 3.8 is used. 135 

3.1.1 Model Parameterization 136 

Apart from the atmospheric forcing, parameterization is also required to drive the WRF model. 137 

In particular, the microphysics scheme is important in simulating accurate rainfall information 138 

which in turn is significant for estimating the accurate soil moisture fluctuations. WRF V3.8 139 

supports 23 microphysics options ranging from simple to more sophisticated mixed-phase 140 

physical options. In this study, the WRF Single-Moment 6-class scheme is adopted which 141 

considers ice, snow and graupel processes and is suitable for high-resolution applications (Zaidi 142 

and Gisen, 2018). The physical options used in the WRF setup are Dudhia shortwave radiation 143 

(Dudhia, 1989) and Rapid Radiative Transfer Model (RRTM) longwave radiation (Mlawer et 144 

al., 1997). Cumulus parameterization is based on the Kain-Fritsch scheme (Kain, 2004) which 145 

is capable of representing sub-grid scale features of the updraft and rain processes, and such a 146 

feature is useful for real-time modelling (Gilliland and Rowe, 2007). The surface layer 147 
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parameterization is based on the Revised fifth-generation Pennsylvania State University–148 

National Center for Atmospheric Research Mesoscale Model (MM5) Monin-Obukhov scheme 149 

(Jiménez et al., 2012). The planetary boundary layer is calculated based on the Yonsei University 150 

scheme (Hong et al., 2006jimenez). In WRF, its land surface model plays a vital role in the 151 

integration of information generated through the surface layer scheme, the radiative forcing 152 

from the radiation scheme, the precipitation forcing from the microphysics and convective 153 

schemes, and the land surface conditions to simulate the water and energy fluxes (Ek et al., 154 

2003). In this study, the Noah Multiparameterization (Noah-MP) is chosen, because it has 155 

shown more accurate soil moisture estimation performance than the other two main schemes 156 

(Noah and CLM4) in other studies (Cai et al., 2014;Zhuo et al., 2019a). Table 1 shows the selected 157 

WRF parameterization schemes. The static inputs (i.e., land use and soil texture) are chosen in 158 

the WRF pre-processing package. Here, the land use categorisation is interpolated from the 159 

MODIS 21-category data classified by the International Geosphere Biosphere Programme 160 

(IGBP). The soil texture data are based on the Food and Agriculture Organization of the United 161 

Nations Global 5-minutes grid cell soil database. 162 

3.1.2 Model Setup  163 

The WRF model is centred over the Emilia Romagna Region, and integrates three nested 164 

domains (D1, D2, D3), with the horizontal spacing of 45 km x 45 km (outer domain, D1), 15 165 

km x 15 km (inner domain, D2), and 5 km x 5 km (innermost domain, D3). In this study, the 166 

innermost domain D3 is used (88 x 52 grids [west-east and south-north, respectively]), with a 167 

two-way nesting scheme considered letting the information from the child domain to be fed 168 

back to the parent domain. To drive the WRF model, the European Centre for Medium-Range 169 

Weather Forecasts (ECMWF) reanalysis (ERA-Interim) is adopted to provide the study 170 

region’s boundary and initial conditions. ERA-Interim is a global atmospheric reanalysis that 171 

is available from 1979 to 2019 (ERA-5 as a recent update to ERA-Interim may also be used). 172 
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The spatial resolution of the datasets is approximately 80 km on 60 levels in the vertical from 173 

the surface up to 0.1 hPa. It contains 6-hourly gridded estimates of three-dimensional 174 

meteorological variables, and 3-hourly estimates of a large number of surface parameters and 175 

other two-dimensional fields. Please see (Berrisford et al., 2011) for a detailed documentation of 176 

the ERA-Interim. 177 

After the initialization, the model needs to be spun-up to derive a physical valid state (e.g., 178 

equilibrium state) (Cai et al., 2014;Cai, 2015).  In this study, WRF is spun-up by running through 179 

the whole year of 2005. After the spin-up, the WRF model is run in daily timestep from January 180 

1, 2006, to December 31, 2015, using the ERA-Interim datasets. The modelled WRF grids 181 

within the Emilia Romagna catchment (total of 828 grids) are shown in Figure 2 as black dots, 182 

with the elevation map also illustrated in the background. For the exploration purpose, this 183 

study uses the WRF surface soil moisture at 0-10 cm for the network design. This is because 184 

the surface soil moisture changes more frequently in comparison with the root-zone soil 185 

moisture. And in theory, the root-zone soil moisture should follow the general trend of the 186 

surface soil moisture (in a delayed mode). In our future study, the WRF root zone soil moisture 187 

will also be explored.  188 

3.2 Soil Moisture Network Design 189 

For the soil moisture network design, three main problems need to be tackled. First is how 190 

redundant the network is, second is how many soil moisture sensors are needed within a 191 

catchment, and finally where are the best locations to place them. To solve the first problem, 192 

the PCA is used to investigate the redundancy degree of the network. To solve the latter two 193 

problems, the K-means CA is adopted. It should be noted that the information used for the 194 

PCA/CA is based on the soil moisture temporal variations (e.g., the 10-year time series data), 195 

so that areas following similar soil moisture variations can be grouped together, and location 196 
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information is not used here. However, due to the influence of local characteristics, the resultant 197 

clusters should more or less reflect the geographical feature. 198 

3.2.1. Principal Component Analysis (PCA) for Network Redundancy Analysis 199 

When soil moisture data are collected from p soil moisture sensors, these data are often 200 

correlated. This correlation reflects the complexity of the catchment and indicates that some of 201 

the information collected from one sensor is also contained in the remaining p-1 sensors 202 

(Gangopadhyay et al., 2001). The role of the PCA is to examine the redundancy of the WRF 5 203 

km gridded soil moisture outputs (Dai et al., 2017). PCA is a statistical procedure for 204 

multivariance feature extraction. It adopts an orthogonal transformation to convert a set of 205 

possibly correlated observations into a set of linearly uncorrelated variables called principal 206 

components. This transformation is defined in such a way that the first principal component 207 

has the largest possible variance, and each succeeding component in order has the highest 208 

variance possible under the constraint that it is orthogonal to the preceding components (Wold 209 

et al., 1987). 210 

In this study, we have p WRF soil moisture grids with N observations (the time series of the 211 

data, i.e., 10-year daily datasets). The covariance matrix p x p can be calculated which is 212 

denoted as X, and the eigenvectors and the eigenvalues of the matrix can also be determined, 213 

correspondingly. Since eigenvectors of X are orthogonal, the p eigenvectors are used to 214 

construct the principal components, which can be represented as: 215 

eigenvector = (𝑒𝑖𝑔
1

  𝑒𝑖𝑔
2

 𝑒𝑖𝑔
3

 …  𝑒𝑖𝑔
𝑝

)                                                                                (1) 216 

with such a relationship, the original datasets can be transformed in terms of eigenvectors into 217 

a new dataset Z. Z is shown as the following:  218 

𝑍𝑖 = 𝑋1𝑒𝑖𝑔𝑖,1 + 𝑋2𝑒𝑖𝑔𝑖,2+. . . +𝑋𝑝𝑒𝑖𝑔𝑖,𝑝   ,    𝑖 = 1, … , 𝑝                                                              (2) 219 
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where Zi is the new dataset, Xi is the original dataset. The variance of each of the component is 220 

the eigenvalue. The eigenvector with the highest eigenvalue is the principal component of the 221 

dataset.  Since the optimal number of principal components is dependent on the amount of 222 

original variance the network should retain, the examination of the network redundancy is 223 

implemented based on the desired rate of variance contribution, and the number of principal 224 

components can thus be calculated correspondingly.   225 

3.2.2. K-means Cluster Analysis (CA) for Sensor Number and Placements 226 

Determination  227 

After exploring the redundancy level of the network, it is necessary to determine how many 228 

WRF grids to select so that the maximum level of information can be retained. Similar to the 229 

relationship between the number of principal components and the variance contribution rates, 230 

the appropriate number of grids are also dependent on the amount of original variance the 231 

network would like to retain. Since the number of components from the PCA do not directly 232 

represent the physical number of grids, we propose to use the elbow method to find the 233 

corresponding number of grids. The elbow method is based on K-means clustering and looks 234 

at the variance contribution rate as a function of the number of grids. Generally, the required 235 

number of grids increases when the variance contribution rate increases. However, the growth 236 

rate is not constant and changes significantly at a critical point (threshold), which is used in 237 

this study as the desired rate for the soil moisture network design. If for a specific desired 238 

variance, the determined number of grids is significantly less than the total number of the WRF 239 

soil moisture grids, then it can be concluded that the network is heavily redundant, and even 240 

by removing a large number of grids, the remaining can still provide sufficient soil moisture 241 

information for the entire catchment; and vice versa. In this paper, the variance contribution 242 

rate of 70%~99% is tested.  243 
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K-means approach is a typical distance-based clustering method which uses the distance as the 244 

indicator for similarity among objects (i.e., the smaller the distance, the higher the similarity 245 

of two objects) (Kodinariya and Makwana, 2013). In this study, the Euclidean distance is adopted 246 

as the distance measurement. It is a simple and widely used way of calculating the distances 247 

between objects in a multidimensional space (Danielsson, 1980). The centroid of each cluster is 248 

the point which the sum of Euclidean distances from all objects in that cluster is minimized. It 249 

is an iterative approach repeated for all of the clusters.  250 

After deciding the number of soil moisture grids from the elbow method and setting up the 251 

optimal clusters, we propose two ways to find the most suitable grid for the sensor placements. 252 

One way is by finding the grid which gives the median averaged soil moisture (i.e., averaged 253 

over the whole study period) in each of the cluster (denoted as CA-Med), and another is through 254 

identifying the maximum averaged soil moisture in each of the cluster (denoted as CA-Max) 255 

(Dai et al., 2017). The CA-Max is focused on extreme soil moisture conditions, whilst the CA-256 

Med is on the median condition. Since they provide results in two aspects, it is useful to explore 257 

both in this study. As a result, for each cluster, there is one optimal grid, and grouped with the 258 

other optimal grids found in other clusters, the ideal placements for the soil moisture sensors 259 

are identified. The group of the selected grids is considered to be the optimal combination of 260 

locations that can provide the desired variance of the original WRF soil moisture measurements 261 

over the whole catchment.   262 

3.3 Network Evaluation 263 

Since there is no existing optimal in-situ soil moisture network that can be used as a reference 264 

for the evaluation, it is challenging to assess the designed network performance based on a 265 

comparison study. However, the designed network should be efficient enough to represent the 266 

maximum amount of information with the minimum number of sensors within a catchment. In 267 

other words, the designed network should retain the main catchment-scale soil moisture 268 
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information of the original WRF’s full outputs, which is particularly important for the 269 

hydrological modelling. To assess the network in such an aspect, the soil moisture information 270 

contained by the designed and the original network are compared. Two statistical indicators 271 

are used for the purpose, namely the Pearson correlation coefficient and the Nash–Sutcliffe 272 

coefficient.  273 

The Pearson correlation coefficient (r) is a statistical measure of the linear correlation between 274 

two sets of datasets, which in this study can estimate the systematic deviation between the 275 

designed (Sd) and the original (So) catchment-scale soil moisture variations, and it is calculated 276 

by the following equation: 277 

𝑟𝑆𝑜,𝑆𝑑
=

𝐸[𝑆𝑑𝑆𝑂]−𝐸[𝑆𝑑]𝐸[𝑆𝑂]

√(𝐸[𝑆𝑑
2]−𝐸[𝑆𝑑]2)×(𝐸[𝑆𝑂

2]−𝐸[𝑆𝑂]2)

                (3) 278 

where E is the mean value of the corresponding vector. In this study, the optimal performance 279 

is achieved when 𝑟𝑆𝑜,𝑆𝑑
 equals to 1 280 

Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) is used widely in hydrology to 281 

evaluate the prediction accuracy in hydrological modelling, which can be obtained by: 282 

𝑁𝑆𝐸 = 1 −
∑(𝑆𝑜

𝑡−𝑆𝑑
𝑡 )

2

∑(𝑆𝑜
𝑡−𝐸[𝑆𝑜])

2        (4) 283 

where t is the time-step of the dataset. The NSE ranges [1,-∞). The closer NSE is to 1, the more 284 

accurate the designed network is. 285 

4. Results  286 

4.1. Soil Moisture Network Redundancy Analysis 287 

Within the study area of 22,124 km2, there is a total number of 828 WRF soil moisture grids. 288 

With such a dense dataset, there should exist information redundancy. To explore this, a cross-289 
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correlation (r) matrix for all of the grids over the whole study period is plotted in Figure 3. It 290 

can be seen that the majority part of the matrix is in blue-tone, which means most of the grids 291 

(85%) are correlated (r > 0.5) with most of the others (as shown in Table 2). In addition, over 292 

half of the grids (52%) have high correlation (r>0.8) with the rest of the grids; and even 15% 293 

of the grids can achieve very high correlation (r>0.9). However, it is clear from the map some 294 

grids (e.g., grid number 396-398, 523-529) are less strongly correlated with the others (red-295 

tone, with low correlation <0.3 observed), which means more soil moisture sensors might need 296 

to be installed in those locations. A further exploration of cross-correlation performance using 297 

box plots is shown in Figure 4b). The locations of the selected grids (as in Figure 4b) are 298 

marked in Figure 4a) with red circles. It can be seen the nine grids are distributed evenly within 299 

the catchment in order to represent a spectrum of catchment features (e.g., different land covers, 300 

elevations, soil types etc.). From the box plot, it can be seen for a specific grid, the cross-301 

correlation can range from as low as below 0.1 to as high as almost 1. The large range is 302 

particularly obvious for Grid 500, which is located at the plain zone near the east boundary of 303 

the catchment and is close to the Valli di Comacchio lagoon. The closeness to the waterbody 304 

could mean its soil moisture is dominated more by the shallow water table at that location 305 

which makes the soil moisture relatively insensitive to the weather, in comparison with grids 306 

located further away. For Grid 100, its correlation with the rest of the grids in the catchment is 307 

relatively low, with 75% percentile of the cross-correlations less than 0.6. The potential reason 308 

could be because it is located in the southern mountainous zone, with high-density of tree 309 

coverage and complex topographic conditions, its soil moisture changes more differently than 310 

the other grids. A similar condition is observed for Grid 1 which is also located in a hilly zone 311 

in the southern boundary of the catchment (i.e., lower correlation as shown in the boxplots). 312 

Such a phenomenon is not unexpected and could mean more sensors are needed in those 313 

complex zones for better soil moisture monitoring purpose. However, for Grids like 300, and 314 
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600 (and the surrounding areas), since the majority of their correlations are high and they are 315 

located in plain areas with no water boundary nearby, they could be arranged with a smaller 316 

number of soil moisture sensors.  317 

4.2. PCA Analysis and Sensor Number 318 

In summary, through the cross-correlation exploration, many parts of the WRF soil moisture 319 

dataset are significantly redundant. To systematically investigate the redundancy degree of the 320 

network, the PCA approach is applied. Figure 5a) shows the PCA results to provide useful 321 

guidance on the acceptable loss of information.  It is clear to see the first principal component 322 

carries close to 80% of the total variance, with the second component bringing this to nearly 323 

90%. This result again indicates the high redundancy exists in the dataset, and just one 324 

component can contain almost 80% of the total soil moisture information. To better understand 325 

the relationship between the principal component numbers, the variance contribution rate, as 326 

well as the corresponding required grids number (through elbow method), a set of variance 327 

contribution rates from 70% to 97.5% is used as the representatives. The required number of 328 

components and the grids are listed accordingly in Table 3. It can be seen only one component 329 

with 6 grids is sufficient to retain 70% of the soil moisture information. Even when the variance 330 

is set at 80%, only two components are needed to meet the requirement, and the corresponding 331 

number of soil moisture girds is 11 (1.3% percent of the total grids). To satisfy 90% variance, 332 

three components are needed, and although the total number of grids is increased to 50, it is 333 

still significantly less than the WRF’s full inputs. The detailed numbers further indicate the 334 

relatively high level of redundancy in the WRF’s original dataset.  335 

The trend can also be observed through the elbow curve which is illustrated in Figure 5b). It 336 

presents the relationship between the variance and the number of grids.  It can be seen to meet 337 

the increment of variance, the required number of grids also increases. But the growth rate is 338 



15 

 

the most significant when the variance is smaller than 70% and then slows down gradually 339 

after that. When the variance meets 95%, the rate is further weakened. Based on the curve, it 340 

is suggested the desired variance (i.e., trade-off point) between 80% and 95%. The required 341 

number of soil moisture grids for 80%, 85%, 90%, and 95% is 11, 21, 50, and 184 respectively. 342 

It is clear, in order to achieve the 95% variance, a significantly greater number of additional 343 

grids are required, that is 268% more than for the 90% variance case. Therefore, for further 344 

improvement of variance from 90% to 95%, the economic cost for the additional number of 345 

sensors might not be as valuable as for the 85% to 90% case (138% additional sensors are 346 

required for the enhancement).  347 

4.3. Soil Moisture Sensor Location Design 348 

Once the degree of redundancy for the full WRF soil moisture network is established, the next 349 

step is to determine the optimal locations for sensor placements. Here, CA-Max and CA-Med 350 

are used. The designed networks for CA-Max and CA-Med are illustrated in Figure 6 and 7, 351 

respectively. The indicated locations in the figures provide guidance on the preferential areas 352 

for the soil moisture sensor placements. Each of the methods gives a different set of sensor 353 

locations, for instance, the selected optimal soil moisture grids from the CA-Max method tend 354 

to be located at the catchment boundary, and the situation is particularly obvious for the low 355 

variance cases (i.e., 70% - 80%). For example, when the variance is set at 70%, the selected 356 

optimal locations from the CA-Max is mostly distributed near the catchment’s southern 357 

boundary, while from the CA-Med, it is more homogeneously distributed (i.e., one at the 358 

southern boundary, one at the north, two at the north-western part, and two at the north-eastern 359 

part). This is because CA-Max selects the maximum averaged soil moisture of a cluster. In the 360 

case study area, since the southern boundary of the catchment is mainly covered by dense tree 361 

which generally has higher soil moisture contents than the rest of the catchment, the selected 362 
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locations tend to distribute near the southern boundary. For the CA-Med, as it selects the 363 

median averaged soil moisture of a cluster, the resultant locations are more evenly distributed. 364 

When the variance is increased, for instance at 90%, the difference between the two CA 365 

methods becomes less distinctive. Despite this, it can still be seen for the CA-Max, there is less 366 

coverage of sensors at the western and the eastern parts of the catchment, with most of the 367 

sensors located at the mid-region. However, for the same variance, the sensor distribution from 368 

the CA-Med looks more evenly distributed visually. Nevertheless, when the variance reaches 369 

as high as 97.5%, the difference from the two methods becomes rather small, as 367 sensors 370 

are located covering most parts of the catchment in both cases.   371 

4.4. Soil Moisture Network Evaluation 372 

The evaluation of the designed network is challenging, as there are no standard assessment 373 

criteria available to guide on what kind of network is the most appropriate for a given study 374 

area. In essence, the designed network should be efficient, which means the network should 375 

contain the maximum amount of information with a minimal number of sensors. In this study 376 

since we focus on the soil moisture’s hydrological applications (catchment-scale), to evaluate 377 

the efficiency of the proposed schemes, the catchment-scale soil moisture data derived by the 378 

designed networks are compared with the WRF’s full inputs (828 grids). Both the areal spatial 379 

mean and standard deviation are calculated. The Pearson correlation coefficient and the Nash–380 

Sutcliffe coefficient are used to quantify the relationships between the two soil moisture 381 

datasets. The results for both the CA-Med and the CA-Max are compared in Figure 8. Based 382 

on the areal mean soil moisture (Figure 8 a) and c)), it is clear to see the CA-Med outperforms 383 

the CA-Max for the majority of the variance cases (both NSE and r), except for the NSE results 384 

when the variance is over 90%. Moreover, for the NSE results, a decline of the performance 385 

can be observed clearly after it passes the 90% variance point, which illustrates that an 386 
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increment of sensor number does not necessarily mean a arise of the performance. For the 387 

standard deviation, the disparity between the two methods is smaller. When the variance is 388 

below 80%, the growth trend for the CA-Med case is not clear, as it firstly drops at the 75% 389 

point and then climbs up again when the variance increases. Whereas for the CA-Max case, 390 

there is a clear upward trend. Similar to Figure 8 a), it is interesting to see for the areal standard 391 

deviation in Figure 8 b) and d), the NSE and r also start to drop after reaching around 90%. The 392 

evaluation results are summarised in Table 4 for numerical comparison. Since CA-Med 393 

surpasses CA-Max for most of the cases, it is chosen for the network design. In the aspect of 394 

the desired variance, because as discussed earlier, when the variance climbs over 90%, the 395 

performance instead drops. Therefore 90% variance is suitable to be used for the network 396 

design in this case.  397 

The time series plots of the areal soil moisture mean and standard deviation are shown in Figure 398 

9. Generally, the designed network can estimate the catchment’s mean soil moisture very well, 399 

as it follows the variation of the WRF’s full input dataset closely (NSE = 0.995 and r = 0.999). 400 

For the standard deviation, the general trend from both datasets shows a higher spatial variation 401 

of soil moisture over the dry season and lower variation during the wet season. The spatial 402 

variation is averaged around 0.04 m3/m3 throughout the whole study period. However, there 403 

are some disparities between the two datasets, in particular, during the wet season (bottom 404 

peaks in the STD plot), the designed network at several occasions overestimates the spatial soil 405 

moisture variation, and during the dry season (top peaks in the STD plot), it underestimates 406 

instead. Nevertheless, the differences are small and the correlation between the two datasets is 407 

high, with NSE = 0.973 and r = 0.990 obtained.  In conclusion, the designed network can 408 

maintain the dominated information of the WRF’s full-grid input well.  409 

The sensor displacements for the designed and the existing (in-situ) networks are illustrated in 410 

Figure 10. In comparison with the distribution of the proposed network, the existing network 411 
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is clearly biased, with all of the sensors located in the mid-plain zone only. Such distribution 412 

(i.e., no sensors located at the southern mountainous (highly-vegetated) region) can have 413 

adverse impacts on the accuracy of the areal mean soil moisture estimation. However, we can 414 

see some of the existing sensors are located near some of the designed sensors, which could be 415 

kept if located within the same cluster. But a lot more sensors are indeed required in the hilly 416 

zone, where currently no sensors are installed. The existing stations could be initially installed 417 

for irrigation purpose, which are hence mainly located in the plain area. Scatterplots of the areal 418 

mean soil moisture calculated from the designed and the existing networks are also presented 419 

in Figure 11. The performance difference between the two networks is clear to observe. For 420 

the proposed network, the points are located close to the identical line, whereas for the existing 421 

network, due to the inappropriate sensor distributions over the catchment, the points are more 422 

dispersive (NSE = 0.889). The performance of the existing network (i.e., using WRF grid data 423 

from the existing locations) in comparison with the proposed networks is worse, in particular, 424 

its NSE is lower than the 70% CA-Med case in the designed network (i.e., 0.949). For the 425 

existing network, without putting sensors in the highly vegetated region, the network clearly 426 

underestimates soil moisture variations during the dry season (i.e., for the cases when the soil 427 

moisture is less than 0.25 m3/m3) 428 

5. Discussions and Conclusions 429 

With the low-cost soil moisture sensors becoming more and more available and modern 430 

communication technology (i.e., Internet of Things), it is expected more in-situ soil moisture 431 

sensors will be installed in the future. Although there is a wide range of soil moisture networks 432 

around the world (e.g., USA NSMN, ISMN, USA state Mesonets), majority of them are not 433 

purposely designed for catchment scale hydrological studies. Moreover, to our knowledge most 434 

existing soil moisture network studies are based on using in-situ/aircraft datasets at small 435 

experimental areas, which can hamper their applications in data sparse regions. In this paper, a 436 
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low-data requirement scheme (only WRF simulated soil moisture information is required, 437 

which can be generated globally) together with simple statistical analysis (PCA/CA) is 438 

proposed to overcome the aforementioned shortcomings. Through a series of evaluations of the 439 

developed network, it can be concluded that the method can provide efficient catchment-scale 440 

soil moisture estimations (i.e., high accuracy of the areal mean and standard deviation soil 441 

moisture estimations). To retain 90% variance, a total of 50 sensors in a 22,124 km2 catchment 442 

is needed. In comparison with the original number of WRF’s grids (828 grids), the proposed 443 

network requires significantly smaller number of sensors. Furthermore, in comparison with the 444 

existing soil moisture network in the Emilia Romagna region, the proposed network has sensors 445 

more evenly distributed, covering most representative parts of the catchment (e.g., both plain 446 

and mountainous regions), and can obtain more accurate catchment-scale soil moisture 447 

estimation. However, there are several points need to be discussed as follows. 448 

The first point is about the uncertainty of the WRF’s soil moisture estimations, which could 449 

influence the accuracy of the network design. It is acknowledged that the reliability of the 450 

designed network is influenced by the performance of the WRF model. To evaluate the WRF 451 

results and test whether the proposed network can produce the catchment-scale soil moisture 452 

well, a long-term densely covered soil moisture network will be required. Setting up such a 453 

network is challenging and difficult to realise due to the high installation and maintenance cost. 454 

In this study, a long-term WRF soil moisture estimation with 1-year spin-up time is used which 455 

could to some extent produce a more stable result. But since “all models are wrong” (by George 456 

E. P. Box), an uncertainty model (Zhuo et al., 2016) could be proposed to be integrated with the 457 

network design scheme. For example, we can generate a large number of probable “true soil 458 

moisture” datasets based on the proposed uncertainty model so that a set of possible soil 459 

moisture networks can be produced. As a result, the designed network will be expressed in a 460 

probabilistic form instead of a determinate form. In addition, a decision-making scheme 461 
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considering different conditions (e.g., accessibility, installation and maintenance cost) under 462 

the uncertainty can be developed to select the most suitable soil moisture network. The 463 

uncertainty influence of the WRF soil moisture on the network design will be investigated in 464 

future studies. 465 

Second, the case study is based on the daily soil moisture inputs for the hydrological 466 

applications. With different research needs (meteorology, climatology, hydrology, water 467 

resources, geology, etc.), various temporal-scale of soil moisture data might be required, for 468 

example, climate change study requires soil moisture data in decades or hundreds of years 469 

which often needs annual-scale measurements; drought assessment requires monthly to 470 

seasonal datasets; while for hydrometeorological prediction applications, hourly datasets might 471 

be needed. For the network design, the input data’s temporal scale (daily, weekly, monthly, 472 

yearly) can influence the final network design, therefore it is worth investigating in future 473 

studies about the temporal-scale effect on the network design.  474 

Third, for a complex catchment like Emilia Romagna, other uncertainty sources apart from the 475 

WRF model can also affect the performance of the designed network; for instance, the study 476 

area has varied climate conditions (a mixture of subcontinental and cool temperate) and distinct 477 

seasonal changes (wet/dry seasons). Therefore separating/combining networks under different 478 

catchment conditions could result in an improved soil moisture network design. Furthermore, 479 

the poor accessibility to sensors is another challenging point that can hamper the performance 480 

of the designed network in real life. To overcome the accessibility issue, advanced soil moisture 481 

sensors (e.g., Cosmic-ray soil moisture sensor (Zreda et al., 2012)) with low maintenance 482 

requirement, could provide good alternative for long-term deployment in complex terrain. 483 

Moreover, the accessibility factor could also be considered for the network design (e.g., can be 484 

considered during the CA for the sensor placements).  485 
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Fourth, the proposed method assumes that a soil moisture station placed inside a 5-km grid cell 486 

can perfectly represent the mean soil moisture condition for that grid cell. However, in reality 487 

it is not the case. As a result, the scale mismatch between the footprint of an in situ point-based 488 

soil moisture station and the 5-km data set used here would be expected to degrade the 489 

performance of the resulting network (Crow et al., 2012). Advanced soil moisture sensing 490 

technology as aforementioned such as the Global Navigation Satellite Systems (GNSS) and the 491 

Cosmic-ray could provide alternative solutions over point-based sensors to reduce such 492 

impacts. In particular, COSMOSUK (Evans et al., 2016) network is moving towards integration 493 

with operational weather forecasts, and Cosmic-ray is suitable to be used in complex terrain 494 

and might be a good option to be used for national network as compared with point-based in-495 

situ sensors.   496 

Fifth, regarding the temporal variation factor, as has been mentioned earlier that the 497 

information we used for the PCA/CA is based on the soil moisture temporal variations, so that 498 

areas following similar soil moisture temporal variations can be identified. Although location 499 

information is not used for the PCA/CA analysis, due to the influence of local characteristics, 500 

the resultant clusters should more or less reflect the geographical feature. The resultant clusters 501 

are shown in Figure 12. It can be seen most of the clusters are geographically connected. 502 

Although k-means has issues in dealing with nonconvex clusters and geographically there 503 

might exist nonconvex shaped clusters, as demonstrated in this paper k-means indeed is very 504 

useful for the soil moisture network design (the time series datasets are used instead of the 505 

location information).   506 

Since the forcing data for the WRF model is globally covered, the proposed scheme can largely 507 

benefit ungauged catchments. On the other hand, in places where dense soil moisture networks 508 

are already available, the proposed scheme could also help in minimizing the cost by reducing 509 

the number of sensors. Another advantage of the method is that the number of soil moisture 510 
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sensors can be changed based on different variances to meet various requirements. Through 511 

selecting different variance levels, the redundancy of the WRF’s full-input network can be 512 

assessed, and the corresponding optimal sensor number can be determined. However, the 513 

proposed scheme is still in its infancy with a lot of refinements and further explorations needed, 514 

therefore it is hoped this paper will stimulate more studies by the community in tackling the 515 

soil moisture network design problem.  516 
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 687 

Table 1. WRF parameterizations used in this study. 688 

 Settings/ Parameterizations References  

Map projection  Lambert  

Central point of domain  Latitude: 44.54; Longitude: 11.02  

Latitudinal grid length  5 km  

Longitudinal grid length 5 km  

Model output time step  Daily  

Nesting  Two-way  

Land surface model Noah-MP  

Simulation period 1/1/2006 – 31/12/2015  

Spin-up period  1/1/2005 – 31/12/2005  

Microphysics  New Thompson (Thompson et al., 2008) 

Shortwave radiation  Dudhia scheme (Dudhia, 1989) 

Longwave radiation Rapid Radiative Transfer Model (Mlawer et al., 1997) 

Surface layer Revised MM5 (Jiménez et al., 2012;Chen 

and Dudhia, 2001) 

Planetary boundary layer Yonsei University method (Hong et al., 2006) 

Cumulus Parameterization Kain-Fritsch (new Eta) scheme (Kain, 2004) 

 689 
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Table 2. The relationship between the percentage of grids, and the cross-correlation.  691 

Cross-correlation (r) Percentage of grids (%) 

0.5 85 

0.6 78 

0.7 70 

0.8 52 

0.9 15 

0.95 3 

  692 



32 

 

Table 3. The number of components and grids to reach % variance threshold (based on the 693 

PCA method and the elbow curve method). 694 

Variance (%) Components Number of grids 

70.0 1 6 

75.0 1 7 

80.0 2 11 

85.0 2 21 

90.0 3 50 

92.5 3 94 

95.0 3 184 

97.5 3 367 

 695 

 696 

 697 
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Table 4. NSE and correlation r performance of CA_Med and CA_Max.  699 

Variance  No. of grids CA_Max_Mean CA_Med_Mean CA_Max_STD CA_Med_STD 

  NSE r NSE r NSE r NSE r 

70.0 6 0.831 0.978 0.949 0.985 0.601 0.834 0.716 0.876 

75.0 7 0.851 0.984 0.978 0.993 0.778 0.887 0.746 0.870 

80.0 11 0.894 0.990 0.991 0.996 0.867 0.945 0.901 0.951 

85.0 21 0.976 0.997 0.991 0.998 0.926 0.967 0.930 0.976 

90.0 50 0.988 0.998 0.995 0.999 0.963 0.986 0.973 0.990 

92.5 94 0.997 0.998 0.990 0.999 0.969 0.989 0.960 0.992 

95.0 184 0.994 0.999 0.985 0.999 0.932 0.990 0.914 0.986 

97.5 367 0.988 1.000 0.983 1.000 0.910 0.986 0.895 0.982 

 700 

 701 

 702 

 703 

 704 
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 706 

Figure 1. The geographical map of the Emilia Romagna region. The copyright of the 707 

background map belongs to Esri (Light Gray Canvas Basemap). 708 
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 709 

 710 

Figure 2. WRF grids used in the analysis, with DEM map in the background. 711 
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 713 

Figure 3. Cross correlation matrix for the whole catchment. 714 

 715 
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 717 

 718 

Figure 4.  a) WRF selected grid number; b) correlation boxplot for the selected grids as 719 

highlighted in red in a). For the boxplot, it shows the minimum, maximum, 0.25, 0.50, and 720 

0.75 percentiles and outliers (red cross). 721 

 722 

 723 

 724 

 725 

 726 

 727 

 728 

 729 

 730 

 731 

a) 

b) 
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 732 

 733 

Figure 5. a) PCA analysis; b) elbow curve. 734 

 735 

a) 

b) 
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 736 

Figure 6. Designed soil moisture sensor locations, based on CA-Max. The total number of 737 

grids used for the design is 6, 11, 21, 50, 184, 367 for 70%, 80%, 85%, 90%, 95%, 97.5% 738 

variance, respectively.  739 

740 
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 741 

Figure 7. Designed soil moisture sensor locations, based on CA-Med. The number of grids 742 

used for the design is 6, 11, 21, 50, 184, 367 for 70%, 80%, 85%, 90%, 95%, 97.5% variance, 743 

respectively.  744 

   745 
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 746 

Figure 8. NSE and r plots: a) NSE performance based on the areal mean soil moisture, b) NSE 747 

performance based on the areal standard deviation soil moisture (STD), c) r performance based 748 

on the areal mean soil moisture, d) r performance based on the areal standard deviation soil 749 

moisture.  750 

  751 

a) b) 

c) d) 
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 752 

Figure 9. a) The areal mean soil moisture of the designed and the WRF’s full-input networks, 753 

b) the areal soil moisture standard deviation of the designed and the WRF’s full-input networks. 754 

The designed network is based on CA-Med, 90% variance contribution rate, and 50 sensors.  755 
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 757 

Figure 10. Comparison between the existing and the designed soil moisture networks. 758 

  759 



44 

 

 760 

Figure 11. Scatterplots for areal mean soil moisture: a) WRF full grid inputs against the 761 

proposed network (NSE = 0.995, r = 0.998); b) WRF full grid inputs against the existing in-762 

situ network (NSE = 0.889, r = 0.987).   763 

 764 
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 766 

Figure 12. Cluster map.  767 

 768 
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