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Dear Prof. Solomatine and reviewers:

Thank you for your review comments that we received with respect to our paper. Those valuable comments have significantly

enhanced our paper. We have carefully considered and addressed the reviewers’ comments and suggestions, which to significant

revisions in many parts of the paper. Particularly, we re-wrote the Introduction section attached at the end of this letter. Below

we provide a point by point responses to each of the reviewer’s comments.5

1 General questions and remarks:

General question 1 : The aim of the paper should be more clearly stated already (and earlier) in the Introduction.My impres-

sion is that we discover the aim of the study while reading the methods and results (for instance, line 262). I also struggled to

find out what the novelty of the paper is, with regards to other existing post-processing techniques in the literature. What is the

additional (scientific or operational) value of the paper?10

Response :

Thank you for your valuable comments. We re-wrote the Introduction to clarify our research aim. Particularly, the

novelty of this paper is to emphasize that in the practice, not only quantifying comprehensively, but also communicating

the predictive uncertainties in probabilistic forecasts effectively will become an essential topic. Compared to conventional15

post-processing methods, such as Affine kernel dressing (AKD), the multi objective genetic algorithm (i.e., here, NSGA-

II) can open up the opportunities to improve the forecast quality in line with the forecasting aims and the specific needs

of end-users.

General question 2 : Concerning the Introduction, I found it very difficult to follow the argumentation, since I could not

see the direct links between paragraphs, and, most importantly, why the authors were raising, and long discussing, the issue of20

“sources of uncertainty”: if a statistical post-processor is going to be applied, what difference does it make if one, previously,

in the raw ensemble, quantified all sources of uncertainty, or, for instance, all but one source of uncertainty? Wouldn’t the
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post-processor work equally well if we had 50 ensemble members from each hydrological model instead of 50x50 members?

Response :25

Thank you for your comments and questions. Operational forecasters are open to ensemble forecasting methods and

products for assessing the flood in a probabilistic way. Their main concerns are how to comprehensively quantify the

predictive uncertainties from different sources as well as how to use the uncertainty information for better decision-

making. We re-wrote the Introduction section to build stronger and more logical links between paragraphs. In addition

to clarifying the different sources of uncertainty in the hydrometeorological forecast chain, we explored the possibility30

of using NSGA-II for better fitting the end-user’s specific needs.

General question 3 : Also in the Introduction, overall, I think the key concepts are not introduced very clearly and just

loosely thrown in the sentences. For a reader not used to the techniques, it becomes uncomprehensive. For instance, the whole

paragraph on lines 49-65 reads very confusing to me. We read about “bias-corrected ensemble member”, “normally distributed

data”, “predictive weights”, or “other dressing parameters”, without much explanation about what these terms mean.35

Response :

Thank you for your comments. We re-wrote the Introduction section to give a better explanation of these terms.

"Line 71: The study is a contribution to probe this topic by exploring hydrological post-processing of ensem-

ble streamflow forecasts based on Affine kernel dressing and Non-dominated sorting genetic algorithm II. The40

mechanisms of these two statistical post-processing methods are completely different. However, they share one

similarity from another perspective, which is they can estimate the probability density directly from the data (i.e.,

ensemble forecast) without assuming any particular underlying distribution. As a more conventional method, Sil-

verman (1986) firstly proposed the kernel density smoothing method to estimate the distribution from the data by

centering a kernel function K that determines the shape of a probability distribution (i.e., kernel) fitted around45

every data point (i.e., ensemble members). The smooth kernel estimate is then the sum of those kernels. As for

the choice of bandwidth h of each dressing kernel, Silverman’s rule of thumb finds an optimal bandwidth textslh

by assuming that the data is normally distributed. Improvements to the original idea were soon to follow. For

instance, the improved Sheather Jones (ISJ) algorithm is more suitable and robust with respect to multimodal-

ity (Wand and Jones, 1994). Roulston and Smith (2003) rely on the series of “best forecasts” (i.e., best-member50

dressing) to compute the kernel bandwidth h. Wang and Bishop (2005) as well as Fortin et al. (2006) further im-

proved the best member method. The later advocated that the more extreme ensemble members are more likely

to be the best member of raw under-dispersive forecasts, while the central members tend to be more “precise”

for over-dispersive ensemble. They proposed the idea that different predictive weights should be set over each en-

semble member, given each member’s rank within the ensemble. Instead of standard dressing kernels that act on55

individual ensemble members, Bröcker and Smith (2008) proposed the affine kernel dressing (AKD) by assuming
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an affine mapping between ensemble members and observation over the entire ensemble. They approximate the

distribution of the observation given the ensemble."

General question 4 :Then from line 66 onwards, it is not clear why it is novel to apply NSGA-II and compare it to a

kernel-based dressing method. What are the advantages of using NSGA-II? Line 70: what “different conceptualizations” are60

we talking about? Line 74: what do you mean by “credibility”?

Response :

The description of "different conceptualizations" refers to the differences in the mechanisms of these two statistical post-

processing methods (i.e., kernel-based dressing method and NSGA-II). The term "credibility" means "reliability". The65

two techniques share one similarity from another perspective, which is they can estimate the probability density directly

from the data (i.e., ensemble forecast) without assuming any particular underlying distribution. The advantages of using

NSGA-II is to offer the flexibility to improve the forecast quality in harmony with the forecasting aims and the specific

needs of end-users.

"Line 89: NSGA-II opens up the opportunity of improving the forecast quality in harmony with the forecasting70

aims and the specific needs of end-users. Given the single-model H-EPSs studied here, the hydrologic ensemble

is generated by activating two forecasting tools: the ensemble weather forecasts and the EnKF. Henceforth, en-

hancing the H-EPS forecasting skill by assigning different credibility to ensemble members becomes preferred

than reducing the number of members. Multiple objective functions (i.e., here, verifying scores) for evaluating the

forecasting performances of the H-EPS are selected to guide the optimization process. The expected output is a75

group of solutions, also known as Pareto fronts, that can give the trade-offs between different objectives. Other

post-processing techniques, like the Non-dominated sorting genetic algorithm II (NSGA-II), are now common

(e.g., Liong et al., 2001; De Vos and Rientjes, 2007; Confesor and Whittaker, 2007). Such techniques are concep-

tually linked to the multiobjective parameter calibration of hydrologic models using Pareto approaches. Indeed,

formulating a model structure or representing the hydrologic processes using a unique global optimal parameter80

set proves to be very subjective. Multiple optimal parameter sets exist with satisfying behavior given the different

conceptualizations, albeit not identical Beven and Binley (1992). For example, Brochero et al. (2013) utilized the

Pareto fronts generated with NSGA-II for selecting the “best” ensemble from a hydrologic forecasting model with

a pool of 800 streamflow predictors, in order to reduce the H-EPS complexity."

General question 5 : I think the authors should completely re-write the Introduction, and think about better presenting the85

literature, the novel aspect of the paper and the questions the paper wants to answer (i.e., its aim). Some review of the literature

presented in the “methods” section 3.2 (page 9, lines 179-204) should go to the Introduction to better explain the reader why

using NSGA-II could be considered a novel aspect in this paper.
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Response :90

Thank you for your suggestions. We re-wrote the Introduction section to emphasize the novel aspect of this study.

General question 6 : The paper investigates post-processing of ensemble forecasts based on 5 hydrological models and 5

sub-catchments in Canada. However, there is nothing in the paper that discusses the differences in performance among models

and sub-catchments? What drives a better/worse performance of the post-processors used in the study? I missed some reflex-

ions about this issue, which would certainly increase the value of the paper. Without this reflexion, and without aggregated95

(averages) results, I do not understand very well the usefulness of carrying out the study over 5 models and 5 sub-catchments.

What does this diversity of applications bring to the analysis?

Response :

Thank you for you suggestions. The 5 hydrologic models exploited in this study are randomly selected from HydrOlOg-100

ical Prediction Laboratory (HOOPLA; Thiboult et al. (2020)) that provides a modular framework to perform calibration,

simulation, and streamflow prediction using multiple hydrologic models (up to 20 models) (Perrin, 2000; Seiller et al.,

2012). All of these 20 models are lumped models. We opted for only 5 models more because of a layout concern rather

than computation time.

We would also like to emphasize that the novelty of this study is that NSGA-II could not only improves the forecast per-105

formance compared to conventional post-processing methods but also enhance the predictive uncertainty communication

by setting multiple specific objective functions from scratch.

General question 7 : I found the distinction between training and validation datasets and criteria very confusing. For in-

stance, we present MCRPS as a validation criteria (section 3.3), but it is then said it is used in calibration (line 269). It is also

not clear to me why we do not have a calibration for each lead time. What is the impact of using one unique lead time for110

calibration?

Response :

Thank you for your questions. We conduct the affine mapping between the ensemble and observation over the train-

ing dataset (i.e., 4-day-ahead forecast). The observation time series are used to identify the free parameter vector115

θ = [a,r1, r2,s1,s2], minimizing the MCRPS to obtain the kernel-dressed ensemble. Then we tested it on other lead

times to assess the robustness of the AKD predictive model. For verifying the forecast performance and skill of the raw,

AKD and NSGA-II predictive models, we used 5 more verifying scores (e.g., KGE’, RMSE, NSE, spread and MAE

shown in Figure 8). MCRPS was also included for reference only.

The skill of flood forecasts fades away with increasing lead time. The target ensemble has a horizon that extends from day120

1 to 7. The 4-day-ahead ensemble forecasts issued from each single-model H-EPSs and their corresponding observations
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are chosen as a training dataset, since it locates in the middle of the forecast horizon as a compromise. Here, this specific

procedure we selected is mainly for an example. We conduct the calibration on day-4 and then tested it on other lead

times to assess the robustness of the predictive models. Now we know that it is quite robust, however others may try some

alternatives, such as implementing the calibration/validation procedures separately for each days. For better clarification,125

we added more explanations about why we opted for this strategy in the 3.4 Experimental setup section as well as some

discussion about the robustness and potential flexibility of this application in the Conclusions section.

"Line 308: (1) Determine the length of the training period. The target ensemble for interpretation has a horizon that

extends from day 1 to 7. It is a well-known fact that the skill of hydrologic forecasts fades away with increasing lead time.

The 4-day-ahead ensemble forecasts issued from each single-model H-EPSs and their corresponding observations130

are chosen as a training dataset, since located in the middle of the forecast horizon. The validation dataset thus

consists of the remaining forecasts: day 1-3 and 5-7 ahead raw forecasts issued from the associated H-EPSs. Here,

this specific procedure we selected is mainly for an example. We conducted the calibration on day-4 and then

tested it on other lead times to assess the robustness of the predictive models. Yet one may decide otherwise, such

as implementing the calibration/validation procedures separately for each days. "135

"Line 419: The single-model H-EPSs explored in this study account for both forcing uncertainty and initial conditions un-

certainty by using the ensemble weather forecasts (ECMWF) and data assimilation (EnKF). Hydrologic post-processing

with AKD and NSGA-II rely on very different assumptions and methodology. However, they both transform the raw

ensembles into probability distributions. Results show that the post-processed forecasts achieve stronger predictive skill

and better reliability than raw forecasts. In particular, the NSGA-II post-processed forecasts achieve the most reliable140

performances, since this method improves both bias and ensemble dispersion. However, over-dispersion may exist oc-

casionally over the Baskatong catchment for NSGA-II. Kernel dressed ensemble succeed in adjusting the ensemble

dispersion properly, but bias increases. Note that here we calibrated the models on day 4 and then tested it on the

other days to assess the robustness of the procedure. The results show that both AKD and NSGA-II predictive

models could offer an efficient post-processing skill and the procedure is quite robust as well. Others may try145

some alternatives, such as implementing the models separately on other lead times."

General question 8 : Much of the justification for the selection of the study area comes from its operational role in reser-

voir management. However, the post-processing application presented in the paper is based on a “non-operational” context:

the parameters of the post-processor are calibrated over the entire data available (not over a split sample) for a given lead time

(4 days) and validated over different lead times. Operationally, though, a forecaster would have to calibrate the post-processor150

over a long series of past pairs of forecasts and observations, and apply it to a different set of real-time forecast (for which

the observations are not yet available). What are the implications of the method proposed for an operational service? Would

the operational service be fine with a post-processing that is optimized for a 4-day lead time? Is that the lead-time that most

count for the service when forecasting over these catchments? Maybe some lines of discussion would be interesting in the final
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section of the paper.155

Response :

Thank you for you valuable suggestions. We added more discussion in the final section to discuss robustness and po-

tential flexibility of application and explore what potential benefits will post-processing techniques could bring to the

operational services.160

"Line 429: In the operational field, not only quantifying, but also communicating the predictive uncertainties in

probabilistic forecasts will become an essential topic. As mentioned in the introduction, another challenge that

remains is how we can bridge the communication gap between the forecasters’ interpretation about probabilistic

forecasts and the end-users, such as the operational hydrologists, local conservation authorities, and some other

relevant stakeholders. What factor may have the strongest impact on decision-making? The different end-users165

may have their unique preference and demand. For instance, the reliability and sharpness (i.e., spread) could be

improved simultaneously or there could be a trade-off between them. Compared to conventional post-processing

method, such as AKD, NSGA-II demonstrated its superior ability for improving the forecast performance. In par-

allel, the use of NSGA-II opens up the opportunities to enhance the forecast quality in line with the specific needs

of end-users, since it allows for setting multiple specific objective functions from scratch. This flexibility should170

be considered as a key part of facilitating the implementation of H-EPSs in real-time operational forecasting

effectively."

2 Specific questions and remarks:

Specific question 1 : lines 23-24: these sentences are not very clear to me.

175

Response :

Thank you. We re-wrote the Introduction for better clarification.

Specific question 2 : line 38: what are the three main sources mentioned?

Response :180

These different sources of uncertainty are related to deficiencies in the: (1) meteorological forcing; (2) mis-specified

hydrologic initial and boundary conditions; (3) inherent hydrologic model structure errors, and biased estimated param-

eters.
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Specific question 3 : line 47-48: what are the implications of autocorrelation in the post-processing? Besides, aren’t mete-

orological forecasts also auto-correlated? Why is it specifically a problem to hydrological forecasts?185

Response :

Yes, the autocorrelation is a problem for both meteorological and hydrological forecasts. We deleted this description in

the updated version of the Introduction.

Specific question 4 : Fig. 2: I understand these are daily streamflow (it is written: mm/day) averaged over each month, and190

not monthly streamflows. Is that so? The caption should state the period over which the averages were obtained.

Response :

Yes, these are daily streamflow (mm/day) averaged over each month. We modified the caption.

195

Figure 1. Hydrograph of daily streamflows (mm/day) averaged over each month during 33 years from 1985 to 2017.
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Specific question 5 : Table 1: I do not understand the data on reservoir area: why it is important to this paper? Furthermore,

I do not understand all these physical and climatic data provided: if the results are not going to be interpreted according to the

characteristics of the catchments, why are these characteristics presented in the table? In what do they influence the results?

200

Response :

Thank you. We modified this table to keep the useful characteristics (e.g., geographic coordinates, catchment area and

mean annual streamflow) especially for this study.

Table 1. Hydroclimatic characteristics of five sub-catchments of the Gatineau River.

Name Lat. Lon. Catchment Area (km2) Mean annual Q (mm)

Cabonga 47.21 -76.59 2,665 1.35

Baskatong 47.21 -75.95 13,057 1.49

Maniwaki 46.53 -76.25 4,145 1.24

Paugan 46.07 -76.13 2,790 1.29

Chelsea 45.70 -76.01 1,142 1.27

205

Specific question 6 : Line 122: why have you chosen 5 models and why not work with the 20 models? If this is a matter

of computational time, could you explain it to the reader? How long it takes to post-process one single model H-EPS?

Response :

The 5 hydrologic models exploited in this study are randomly selected from HydrOlOgical Prediction Laboratory210

(HOOPLA; Thiboult et al. (2020)) that provides a modular framework to perform calibration, simulation, and streamflow

prediction using multiple hydrologic models (up to 20 models) (Perrin, 2000; Seiller et al., 2012). All of these 20 models

are lumped models. It is more of a layout concern than a computation time concern.

Specific question 7 : Line 136: I am used to forecast post-processing, but not with the term “ensemble interpretation

method” or “interpreted ensemble (line 157). I would be happy with more explanations here.215

Response :

Thank you. The term "ensemble interpretation" is widely used in some previous researches, such as Jewson (2003),

Gneiting et al. (2005) and Bröcker and Smith (2008).

Specific question 8 : Line 147: correct English220

Response :

We corrected the misspelling.
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"Line 175: In a general form, the probability density function of p(y;X,θ) defines the interpreted ensemble (i.e.,

kernel dressed ensemble) given the original ensemble with free parameter vector θ:"225

Specific question 9 : Line 169: what is this rule of thumb? Please, clarify.

Response :

We added more explanation about parameter hS (Silverman, 1986) in the methodology section.

"Line 195: Here, hS is Silverman’s factor (Silverman, 1986). Technically, we can use some scores (e.g., mean230

square error, etc) to select the optimal bandwidth h for a kernel density estimation, yet this would be difficult to

estimate for general kernels. Hence, the first rule of thumb proposed by Silverman gives the optimal bandwidth

h which is the standard deviation of the distribution. And in this case, the kernel is also assumed to be Gaussian.

The parameters θ = [a,r1, r2,s1,s2] are free parameters and usually r1 = 0, r2 = 1, s1 = 0 and r2 = 1 are ratio-

nal initial selections (Bröcker and Smith, 2008). Once the optimal free parameter vector θ = [a,r1, r2,s1,s2] is235

obtained, the interpreted ensemble can be set to:"

Specific question 10 : Equations, overall: it seems to me that not all terms are always defined, explained after the equations

where they are presented. r1, r2,s1,s2, etc. zi is lower case in equation 10 but upper case in equation 11. a is alpha (line 169)?

Please, check the equations and the way terms are presented.

240

Response :

Thank you. We corrected all those terms in the equations and define all related ones.

"Line 198: The parameters θ = [a,r1, r2,s1,s2] are free parameters and usually r1 = 0, r2 = 1, s1 = 0 and r2 = 1

are rational initial selections (Bröcker and Smith, 2008)."

Specific question 11 : Line 175: “Eq. (6) can be further defined”, should maybe be replaced to “can be re-written”245

Response :

We rephrased it as: "Line 206: can be re-written as".

Specific question 12 : Line 205: Xt was already defined in line 143. Please, check.

250

Response :

Yes, it was. We have removed the description of Xt in this paragraph.

Specific question 13 : Line 191, 192: I tend not to agree with the authors. I think “accuracy” is what is first of all searched

when issuing a forecast at a given day for a short lead time such as 7 days. This is specially the case for flood events, for
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instance. Please, explain your arguments.255

Response :

Yes, probabilistic forecasts must be, first of all, accurate. We rephrased this paragraph as below:

"Line 221: Similar ideas can be utilized in this study as the goal is to achieve a “good forecast”. Various efficiency

criteria are needed when we verify whether an H-EPS is competent issuing accurate and reliable forecasts. Accu-260

racy might be the first idea that crosses our mind that indicates that there is a good match between the forecasts

and the observations. Since here we are focused on probabilistic streamflow forecast, the accuracy could be mea-

sured by computing the distances between the forecast densities with the observed ones (Wilks, 2011). Usually,

hydrologists could rely on the Nash-Sutcliffe efficiency criterion (NSE, Nash and Sutcliffe (1970)) for measuring

how well forecasts can reproduce the observed time series. Transforming the time series beforehand allows spe-265

cializing it (i.e., NSEinv , NSEsqrt) for specific needs (e.g., Seiller et al., 2017). NSE is dimensionless and varies

on the interval of [−∞,1]. A perfect model forecast output would have an NSE value that equals to one."

"Line 229: Meanwhile, bias, also known as systematic error, refers to the correspondence between the average

forecast and the average observation, which is different from accuracy. For example, systematic bias exists in the

streamflow forecasts that are consistently too high or too low. Hence, NSE and bias are utilized here as objective270

functions, which is to say that it is seeking to minimize the bias and maximize the NSE simultaneously. This brings

us a multi-objective optimization question to solve."

Specific question 14 : Lines 195-196: not very clear to me. Hydrologists may rely on NSE, but for simulations (long time

series), not necessarily for forecasters. Please, clarify.

275

Response :

Thank you. Yes, the NSE is a conventional mean-squared-error verification measure. This measure shows great sensitiv-

ity to errors in the simulation or forecast of high stremflow events. And for the probabilistic forecasts we studied, NSE

turned out to be a very convenient measure for verifying the overall forecast performance. Hence, we selected NSE as

one objective function (i.e., to maximaize the NSE and the larger value implies a better forecast mean) here.280

Specific question 15 : Line 200: I do not understand “elitist”. Please, clarify.

Response :

Thank you. First of all, inserting the elitism in the multi-objective optimization algorithms is not compulsory. However,

it would have a strong influence if the algorithms could preserve the best individuals (i.e., elites) that were found during285

the search process and then incorporated the elitism back in the evolutionary process (Groşaelin et al., 2003). The
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Nondominated sorting genetic algorithm II (NSGA-II; Deb et al. (2002)) proposed this classic, fast and elitist multi-

objective genetic algorithm, adopted for searching for the Pareto solution set.

Specific question 16 : Line 215: the concept of crowding distance was not clear to me. Please, clarify.

290

Response :

Thank you. Deb et al. (2002) explained "the crowding distance" calculated in the NSGA-II algorithm as "it is a measure

of how close an individual is to its neighbors. Large average crowding distance will result in better diversity in the

population" and "the basic idea behind the crowing distance is finding the euclidian distance between each individual

in a front based on their m objectives in the m dimensional hyper space. The individuals in the boundary are always295

selected since they have infinite distance assignment."

We also clarified in the manuscript as: "Line 248: Find the crowding distance for each individual in each front.

Deb et al. (2002) pointed out the basic idea of the "crowding distance" calculated in the NSGA-II is "to find the

EuclidianDistance between each individual in a front based on their m objectives in the m dimensional hyper

space. The individuals in the boundary are always selected since they have infinite distance assignment. The large300

average crowding distance will result in better diversity in the population". This step ensures the diversity of the

population. For example, for the first front, sort the values of the objective functions in an ascending order. The

boundary solutions (i.e., maximum and minimum solutions) are then the value at infinity. The crowding distance

for other individuals can be assigned as:"

Specific question 17 : line 235: was the MCRPS calculated using empirical distributions or a fitted theoretical distribu-305

tion? Please, clarify.

Response :

Thank you. We clarified the description about the MCRPS score in the section 3.3.

"Line 271: The overall accuracy and reliability of the probabilistic forecast can be evaluated using the Continuous310

ranked probability score (CRPS, Matheson and Winkler, 1976, Hersbach, Gneiting and Raftery, 2007). Hersbach

(2000) decomposed the CRPS into two parts: reliability and resolution. In practice, The Mean continuous ranked

probability score (MCRPS) is the average value of CRPS over the whole time series T and is calculated using

empirical distributions. Besides, MCRPS is negatively oriented and the optimal MCRPS value is 0:"

Specific question 18 : line 238: why do you need both, MAE and MSE?315

Response :
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Thank you. We replaced the MSE with the of Root mean squared error (RMSE ) here. Both MAE and RMSE could

evaluates the average forecast error and have the range of [0,+∞]. Besides, both of them are negatively oriented so that

the smaller values imply a better forecast. These are the similarities. However, the RMSE score is more sensitive to large320

errors. In some cases that the variance corresponding to the frequency distribution in higher, the RMSE will experiment

a larger increase while the MAE remains stable.

"Line 279: As for the deterministic metrics, we adopt the Mean absolute error (MAE) and Root mean squared

error (RMSE, e.g., Brochero et al., 2013) for verifying the average forecast error of the variable of interest. Both

MAE and RMSE are negatively oriented and range from 0 to +∞. More accurate forecasts lead to lower MAE325

and RMSE. Note that the RMSE score tends to penalize the large errors more than MAE. In some cases that

the variance corresponding to the frequency distribution in higher, the RMSE will have larger increase while the

MAE remains stable."

Specific question 19 : line 248-249: I do not understand why the Taylor diagram is mentioned here. Did you use it? How?

Can you explain it?330

Response :

Thank you. We removed this short description of the Taylor diagram.

Specific question 20 : Figure 3: where do we find “w” in the text (output of NSGA-II in the figure)?

335

Response :

Thank you. Actually, the description about the weight matrix is in the section 3.2 as: "3) Elitism strategy is introduced in

the main loop. Offspring populationQt is firstly generated from parent population Pt after mutation and gene cross-over.

Then the above-mentioned nondominated sorting and crowding distance assignment are conducted on the composed

population Rt that contain both Qt and Pt with the size of 2m. The first-rate nondominated solutions will be assigned340

to the new parent population Pt+1. "Line 263: Outputs after the whole evolutionary search are the un-repeated

nondomination solutions and a weight matrix can also be extracted from the solutions." Specifically, in this study,

the population size is set to 50, the number of objective functions equals to 2, the boundary is from 0 to 1, the mutation

probability and crossing-over rate are 0.1 and 0.7, and the maximum evolution runs are 430 times."

Specific question 21 : lines 287-288: it is not unexpected that forecast performance decreases with lead time. I do no345

understand why it is “revealed” here. Please, clarify.

Response :

Thank you. We rephrased this sentence as: "Interchangeability is here assessed visually, simultaneously looking at the

individual RMSE values of all 5,000 members, 7 daily forecast horizons, and 5 H-EPSs. Figure 4 displays (typical) values350
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for day 500 and Baskatong sub-catchment - a video covering the full time series is available as a supplemental material

to this paper). For each H-EPS forecast horizon boxes, horizontal lines consist of 100 EnKF members and vertical lines,

of 50 meteorological members. "Line 356: Mosaics with redder colors represent higher values of the RMSE. The

decreasing predictive skill of the H-EPSs with lead time is hence shown by an increasingly red mosaic."

Specific question 22 : lines 293-294: check for the English language.355

Response :

Thank you. We corrected the English as: "Figure 4 displays the hydrologic forecasts build upon the 50-member ECMWF

ensemble forecasts. The basic idea behind Figure 4 (and its accompanying video) is to visually assess if the initial inter-

changeability of the weather forecasts holds for the hydrologic forecasts (i.e., horizontal lines). The interchangeability360

of the probabilistic data assimilation scheme is assessed in parallel (vertical lines).

Specific question 23 : line 324: delete “In the meanwhile,”

Response :

Thank you. We deleted "In the meanwhile," in this paragraph.365

Specific question 24 : line 335: I understand that “error growth” is usually depicted as an increase in spread with lead time

and decrease in accuracy. Why should it be maintained for a single model H-EPS if the post-processor was calibrated for 4

days of lead time only and applied to other lead times? Please, clarify.

Response :370

Thank you for your question. Here, this specific procedure we selected is to be taken as an example. We conducted the

calibration on day-4 and then tested it on other lead times to assess the robustness of the predictive models. Now that

we know that it is quite robust, others may try alternatives such as implementing the calibration/validation procedures

separately for each days. We provided more detailed responses for the General question 7.

Specific question 25 : Figure 9 is not explained in the text (notably the number of lines in each graph). Also, why AKD375

seems to work well with M05?

Response :

Thank you. We added more explanations in the text for Figure 9.

"Line 385: The trained optimal free parameter vector θ = [α,r1, r2,s1,s2] or weight estimates are obtained over380

the 4-day ahead ensemble forecasts. They are then applied to the validation data set. It comprises the 1-, 3-, 5-,

and 7-day ahead raw forecasts issued from the associated H-EPSs. Figure 9 shows the reliability diagrams for raw,
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kernel dressed, and NSGA-II forecasts for the validation data set over five individual catchment. Therefore, there

are 15 lines shown in each sub diagram. Again, raw forecasts (i.e., blue lines) display a severe under-dispersion,

revealing that error growth is not maintained well in a single-model H-EPS. In general, the other two statistical385

post-processing methods succeed in improving the forecast reliability, with the curves closer to the bisector lines.

Especially, the NSGA-II (i.e., red curves) demonstrates its superior ability for maintaining the reliability with the

lead time. The over-dispersion appears with most of the AKD transformed ensembles (i.e., yellow lines), especially

at shorter lead times. The ensemble spread tends to a proper level as the lead time increases. Note that there is

one special case that the predictive distributions of the kernel dressed ensemble are the most reliable for model390

M05 over almost all individual catchments."

Specific question 26 : line 343-344: not clear; please, revise it.

Response :

Thank you. We deleted this sentence in this paragraph.395

Specific question 27 : line 345: figure 10 shows much more than spread. Please, clarify when presenting (fully) the figure.

Response :

Thank you. We added more description and analysis for Figure 10.

Specific question 28 : Figure 10 is very difficult to read. It is not clear (BW print) which graph is AKD, which is NSGA-II.400

We can barely see what is inside the figure. I think it needs to be re-designed.

Response :

We enlarged the figure and added more analysis corresponding to Figure 10.

Specific question 29 : Overall, terminology could be uniformed (ex., use of AKD).405

Response :

We uniformized the terminology throughout the whole manuscipt.

Specific question 30 : It is a pity that the paper does not have a discussion section. I would suggest the authors to introduce

one, commenting further the results obtained, comparing post-processing performance among catchments (i.e., geographic lo-410

cation) and hydrological models in a summarized way. This piece of work is missing in the paper and would better justify the

use of several catchments and models in the analysis.

Response :
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Thank you for this suggestion. We added more discussion in the final section to highlight the novelty and potential415

benefits that post-processing techniques may bring to the operational services.

"Line 429: In the operational field, not only quantifying, but also communicating the predictive uncertainties in

probabilistic forecasts will become an essential topic. As mentioned in the introduction, another challenge that

remains is how we can bridge the communication gap between the forecasters’ interpretation about probabilistic

forecasts and the end-users, such as the operational hydrologists, local conservation authorities, and some other420

relevant stakeholders. What factor may have the strongest impact on decision-making? The different end-users

may have their unique preference and demand. For instance, the reliability and sharpness (i.e., spread) could be

improved simultaneously or there could be a trade-off between them. Compared to conventional post-processing

method, such as AKD, NSGA-II demonstrated its superior ability for improving the forecast performance. In par-

allel, the use of NSGA-II opens up the opportunities to enhance the forecast quality in line with the specific needs425

of end-users, since it allows for setting multiple specific objective functions from scratch. This flexibility should

be considered as a key part of facilitating the implementation of H-EPSs in real-time operational forecasting

effectively."

3 Introduction

Hydrologic forecasting is crucial for flood warning and mitigation (e.g., Shim and Fontane, 2002; Cheng and Chau,430

2004), water supply operation and reservoir management (e.g., Datta and Burges, 1984; Coulibaly et al., 2000; Boucher

et al., 2011), navigation, and other related activities. Sufficient risk awareness, enhanced disaster preparedness in the

flood mitigation measures, and strengthened early warning systems are crucial in reducing the weather-related event

losses. Hydrologic models are typically driven by dynamic meteorological models in order to issue forecasts over a

medium range horizon of 2 to 15 days (Cloke and Pappenberger, 2009). This kind of coupled hydrometeorologic fore-435

casting systems are admitted as effective tools to issue longer lead times. Inherent in the coupled hydrometeorologic

forecasting systems, some predictive uncertainties are then inevitable given the limits of knowledge and available infor-

mation (Ajami et al., 2007). In fact, those uncertainties occur all along the different steps of the hydrometeorological

modeling chain (e.g., Liu and Gupta, 2007; Beven and Binley, 2014). These different sources of uncertainty are related to

deficiencies in the meteorological forcing, mis-specified hydrologic initial and boundary conditions, inherent hydrologic440

model structure errors, and biased estimated parameters (e.g., Vrugt and Robinson, 2007; Ajami et al., 2007; Salamon

and Feyen, 2010; Thiboult et al., 2016). Among most cases, a single deterministic forecasts turns out to be way more

insufficient.

Many substantive theories have been proposed in order to quantify and reduce the different sources of cascading fore-

cast uncertainties and to add good values to flood forecasting and warning. Among them, the superiority of ensemble445
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forecasting systems in quantifying the propagation of predictive uncertainties (over deterministic systems) is now well

established (e.g., Cloke and Pappenberger, 2009; Palmer, 2002; Seo et al., 2006; Velázquez et al., 2009; Abaza et al.,

2013; Wetterhall et al., 2013; Madadgar et al., 2014). Numerous challenges have been well tackled, for example: (1)

meteorological ensemble prediction systems (M-EPSs) (e.g., Palmer, 1993; Houtekamer et al., 1996; Toth and Kalnay,

1997) are refined and operated worldwide by national agencies such as the European Centre for Medium-Range Weather450

Forecasts (ECMWF), the National Center for Environmental Prediction (NCEP), the Meteorological Service of Canada

(MSC), and more; (2) the forecast accuracy is highly improved by adopting higher resolution data collection and assim-

ilation. Sequential data assimilation techniques, such as the particle filter (e.g., Moradkhani et al., 2012; Thirel et al.,

2013) and the ensemble Kalman filter (e.g., Evensen , 1994; Reichle et al., 2002; Moradkhani et al, 2005; McMillan et

al., 2013) provide an ensemble of possible re-initializations of the initial conditions, expressed in the hydrologic model455

as state variables, such as soil moisture, groundwater level and so on; (3) forecasting skills of the coupled hydrometeoro-

logic forecasting systems are also improved by tracking predictive errors using the full uncertainty analysis. Multimodel

schemes were proposed to increase performance and decipher structural uncertainty (e.g., Duan et al., 2007; Fisher et al.,

2008; Weigel et al., 2008; Najafi et al., 2011; Velázquez et al., 2011; Marty et al., 2015; Mockler et al., 2016). Thiboult

et al. (2016) compared many H-EPS, accounting for the three main sources of uncertainties located along the hydrome-460

teorological modeling chain. They pointed out that EnKF probabilistic data assimilation provided most of the dispersion

for the early forecasting horizons but failed in maintaining its effectiveness with increasing lead times. A multimodel

scheme allowed sharper and more reliable ensemble predictions over a longer forecast horizon; (4) statistical hydrologic

post-processing component is added in the H-EPS for rectifying biases and dispersion errors (i.e., too narrow/too large)

are numerous, as reviewed by Li et al. (2017). It is noteworthy that many hydrologic variables, such as discharge, follow465

a skewed distribution (i.e., low probability associated to the highest streamflow values), which complicates the task.

Usually, in a hydrologic ensemble prediction system (H-EPS) framework (e.g., Schaake et al., 2007; Cloke and Pappen-

berger, 2009; Velázquez et al., 2009; Boucher et al., 2012; Abaza et al., 2017), the post-processing procedure over the

atmospheric input ensemble is often referred as pre-processing, while post-processing aims at improving the hydrologic

ensemble forecasting outputs.470

However, another challenge still remains: how to improve the human interpretation of probabilistic forecasts and the

communication of integrated ensemble forecast products to end-users (e.g., operational hydrologists, water managers,

local conservation authorities, stakeholders and other relevant decision makers). Buizza et al. (2007) emphasized that

both functional and technical qualities are supposed to be assessed for evaluating the overall forecast value of a hy-

drometeorologic forecasts. Ramos et al. (2010) further note that the best way to communicate probabilistic forecast and475

interpret its usefulness should be in harmony with the goals of the forecasting system and the specific needs of end-users.

She also demonstrated the main achievements from two studies obtained from a Member States workshop (Thielen et al.,

2005) role-play game and another survey to explore the users’ risk perception of forecasting uncertainties and how they

dealt with uncertain forecasts for decision-making. The results revealed that there is still space for enhancing the fore-
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casters’ knowledge and experience on bridging the communication gap between predictive uncertainties quantification480

and effective decision-making.

Hence, in practice, which forecast quality impacts a given decision the most? Different end-users share their unique

requirements: Crochemore et al. (2017) produced the seasonal streamflow forecasting by conditioning climatology with

precipitations indices (SPI3). Forecast reliability, sharpness (i.e., the ensemble spread), overall performance and low-

flow event detection were verified to assess the conditioning impact. In some cases, the reliability and sharpness could485

be improved simultaneously while more often, there was a trade-off between them. Another IMPREX project conduct

an optimization for the reservoir-based hydropower production to explore the relationship between the forecast quality

and economic values. They found that an over-estimation comes along with more penalization.

The study is a contribution to probe this topic by exploring hydrological post-processing of ensemble streamflow fore-

casts based on Affine kernel dressing (AKD) and Non-dominated sorting genetic algorithm II (NSGA-II). The mecha-490

nisms of these two statistical post-processing methods are completely different. However, they share one similarity from

another perspective, which is they can estimate the probability density directly from the data (i.e., ensemble forecast)

without assuming any particular underlying distribution. As a more conventional method, Silverman (1986) firstly pro-

posed the kernel density smoothing method to estimate the distribution from the data by centering a kernel function K

that determines the shape of a probability distribution (i.e., kernel) fitted around every data point (i.e., ensemble mem-495

bers). The smooth kernel estimate is then the sum of those kernels. As for the choice of bandwidth h of each dressing

kernel, Silverman’s rule of thumb finds an optimal bandwidth h by assuming that the data is normally distributed. Im-

provements to the original idea were soon to follow. For instance, the improved Sheather Jones (ISJ) algorithm is more

suitable and robust with respect to multimodality (Wand and Jones, 1994). Roulston and Smith (2003) rely on the series

of “best forecasts” (i.e., best-member dressing) to compute the kernel bandwidth h. Wang and Bishop (2005) as well500

as Fortin et al. (2006) further improved the best member method. The later advocated that the more extreme ensemble

members are more likely to be the best member of raw under-dispersive forecasts, while the central members tend to

be more “precise” for over-dispersive ensemble. They proposed the idea that different predictive weights should be set

over each ensemble member, given each member’s rank within the ensemble. Instead of standard dressing kernels that

act on individual ensemble members, Bröcker and Smith (2008) proposed the AKD method by assuming an affine map-505

ping between ensemble members and observation over the entire ensemble. They approximate the distribution of the

observation given the ensemble.

Line 89: NSGA-II opens up the opportunity of improving the forecast quality in harmony with the forecasting aims

and the specific needs of end-users. Given the single-model H-EPSs studied here, the hydrologic ensemble is generated

by activating two forecasting tools: the ensemble weather forecasts and the EnKF. Henceforth, enhancing the H-EPS510

forecasting skill by assigning different credibility to ensemble members becomes preferred than reducing the number

of members. Multiple objective functions (i.e., here, verifying scores) for evaluating the forecasting performances of
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the H-EPS are selected to guide the optimization process. The expected output is a group of solutions, also known as

Pareto fronts, that can give the trade-offs between different objectives. Other post-processing techniques, like the Non-

dominated sorting genetic algorithm II (NSGA-II), are now common (e.g., Liong et al., 2001; De Vos and Rientjes, 2007;515

Confesor and Whittaker, 2007). Such techniques are conceptually linked to the multiobjective parameter calibration

of hydrologic models using Pareto approaches. Indeed, formulating a model structure or representing the hydrologic

processes using a unique global optimal parameter set proves to be very subjective. Multiple optimal parameter sets

exist with satisfying behavior given the different conceptualizations, albeit not identical Beven and Binley (1992). For

example, Brochero et al. (2013) utilized the Pareto fronts generated with NSGA-II for selecting the “best” ensemble520

from a hydrologic forecasting model with a pool of 800 streamflow predictors, in order to reduce the H-EPS complexity.

In this study, the daily streamflow ensemble forecasts issued from five single-model H-EPSs over the Gatineau River

(Province of Québec, Canada) are post-processed. Details about the study area, hydrologic models, and hydrometeoro-

logic data are described in Section 2. Section 3 explains the methodology and training strategy of AKD and NSGA-II

methods, in parallel with the scoring rules that evaluate the performance of the forecasts. Specific concepts associated525

with those scores are also introduced in this section. Predictive distribution estimation based on the five single-model

H-EPSs configurations, which lack accounting for the model structure uncertainty, is presented in Section 4. The compar-

ison of both statistical post-processing methods in improving the forecasting quality as well as enhancing the uncertainty

communication are discussed and analyzed as well. Conclusion follows in Section 5.
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Dear Prof. Solomatine and reviewers:

Thank you for your review comments that we received with respect to our paper. Those valuable comments have significantly

enhanced our paper. We have carefully considered and addressed the reviewers’ comments and suggestions, which to significant

revisions in many parts of the paper. Particularly, we rewrote the Introduction section attached at the end of this letter. Below

we provide our point by point responses to each of the reviewer’s comments.5

1 General questions and remarks:

General question 1 : The objective(s) of the research is(are) in my view not clearly stated, nor the intended contribution to

the literature. Could the authors describe these?

Response :10

Thank you for your comments. We rewrote the Introduction to clarify our research objective. Particularly, the novelty of

this paper is to emphasize practicality, not only quantifying comprehensively, but also communicating the predictive un-

certainties in probabilistic forecasts effectively will become an essential topic. Compared to conventional post-processing

methods, such as Affine kernel dressing (AKD), the multi objective genetic algorithm (i.e., here, NSGA-II) can open up

the opportunities to improve the forecast quality in line with various unique needs of end-users.15

General question 2 : This perhaps also makes the literature review rather general, not zooming-in to identify a gap or

under-represented aspects / applications of ensemble prediction, or a particular forecast challenge in the case study catchment.

Response :

Thank you for your comments. We re-designed the Introduction structure and added more literature review from the20

operational perspective. Operational forecasters are open to ensemble forecasting methods and products for assessing
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floods in a probabilistic way. The main challenges for them are how to comprehensively quantify the predictive uncer-

tainties from different sources as well as how to use the uncertainty information for better decision-making. We rewrote

the introduction to build stronger and more logical sequence of thoughts. In addition to clarifying the different sources

of uncertainty in the hydrometeorological forecast chain, we explored the possibility of using NSGA-II for better fitting25

the end-user’s specific needs.

General question 3 : As I understand, post-processing of the meteorological ensemble forecasts was not done. Could the

authors comment in the paper on the performance of the meteorological ensemble forecasts and state the reason for not also

applying meteorological post-processing?

30

Response :

Thank you. We rewrote the Introduction section to give a better explanation: “Line 48: It is noteworthy that many

hydrologic variables, such as discharge, follow a skewed distribution (i.e., low probability associated to the highest

streamflow values), which complicates the task. Usually, in a hydrologic ensemble prediction system (H-EPS)

framework (e.g., Schaake et al., 2007; Cloke and Pappenberger, 2009;Velázquez et al., 2009; Boucher et al., 2012;35

Abaza et al., 2017), the post-processing procedure over the atmospheric input ensemble is often referred as pre-

processing, while post-processing aims at improving the hydrologic ensemble forecasting outputs.”

General question 4 : Based on Figure 4, presenting one forecast, I do not understand how it can be concluded that the mem-

bers generated from the meteorological eps as forcing are not fully interchangeable, which is the basis of applying weights

with NSGA-II. Perhaps that the video (I am sorry I could not find it, this is probably my omission) shows this, but this is not40

explicitly stated in the paper.

Response :

Thank you. The size of the animation we mentioned in the manuscript is around 3.7G which is too large for uploading

to the CO Editor Portal. Hence we prepared 12 screenshots (i.e., take a screenshot every two hundred days and there are45

2,192 days in total). It could reveal the phenomenon of not fully interchangeable of the meteorological forcing members

for your consideration.

General question 5 : I do not understand why the authors choose to calibrate the post-processors on only one forecast

horizon (day-4) and validate on the other horizons (1-3, 5-7). Because of a generally present decrease of skill with increasing

forecast horizon, usually a post-processor is calibrated for each forecast horizon separately. It also seems that the analysis50

period for which re-forecasts have been prepared has not been split in a calibration and validation period (or a leave-one-out

approach). There may be good reasons for choosing this approach, e.g. stemming from catchment or application characteristics

versus limited data availability, or as a research objective, but I missed the explanation in the paper. Could the authors perhaps

explain the chosen calibration/validation approach?

55
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Response :

Thank you for you comments. The skill of flood forecasts fades away with increasing lead time. The target ensemble has

a horizon that extends from day 1 to 7. The 4-day-ahead ensemble forecasts issued from each single-model H-EPSs and

their corresponding observations are chosen as a training dataset, since it is located in the middle of the forecast horizon

as a compromise. Here, this specific procedure was selected mainly for an example. We conducted the calibration on60

day-4 and then tested it on other lead times to assess the robustness of the predictive models. Now that we know that

the procedure is quite robust, others may try alternatives such as implementing the calibration/validation procedures

separately for each days. For better clarification, we added more explanations about why we opted for this strategy in

the 3.4 Experimental setup section as well as some discussion about the robustness and potential flexibility of this

application in the Conclusions section.65

"Line 308: (1) Determine the length of the training period. The target ensemble for interpretation has a horizon that

extends from day 1 to 7. It is a well-known fact that the skill of hydrologic forecasts fades away with increasing lead time.

The 4-day-ahead ensemble forecasts issued from each single-model H-EPSs and their corresponding observations

are chosen as a training dataset, since located in the middle of the forecast horizon. The validation dataset thus

consists of the remaining forecasts: day 1-3 and 5-7 ahead raw forecasts issued from the associated H-EPSs. Here,70

this specific procedure we selected is mainly for an example. We conduct the calibration on day-4 and then tested

it on other lead times to assess the robustness of the predictive models. Yet one may decide otherwise, such as

implementing the calibration/validation procedures separately for each days. "

"Line 419: The single-model H-EPSs explored in this study account for both forcing uncertainty and initial conditions un-

certainty by using the ensemble weather forecasts (ECMWF) and data assimilation (EnKF). Hydrologic post-processing75

with AKD and NSGA-II rely on very different assumptions and methodology. However, they both transform the raw

ensembles into probability distributions. Results show that the post-processed forecasts achieve stronger predictive skill

and better reliability than raw forecasts. In particular, the NSGA-II post-processed forecasts achieve the most reliable

performances, since this method improves both bias and ensemble dispersion. However, over-dispersion may exist oc-

casionally over the Baskatong catchment for NSGA-II. Kernel dressed ensemble succeed in adjusting the ensemble80

dispersion properly, but bias increases. Note that here we calibrated the models on day 4 and then tested it on the

other days to assess the robustness of the procedure. The results show that both AKD and NSGA-II predictive

models could offer an efficient post-processing skill and the procedure is quite robust as well. Others may try

alternatives such as implementing the models separately on other lead days."

General question 6 : Lastly, I would kindly encourage the authors to expand the presentation and interpretation / discussion85

of the results. For example, why present the 5 sub-catchments, what should we learn from the results? What about the inflows

to the reservoirs? Why present the 5 single h-eps, what should we learn from the results? Why not assess the performance of

the combined grand multi-model ensemble? How does the performance of the raw and post-processed forecasts compare with
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the performance of a reference forecast such as climatology or persistence (forecast skill)?

90

Response :

Thank you for your kind suggestions. Actually, the 5 hydrologic models exploited in this study are randomly selected

from HydrOlOgical Prediction Laboratory (HOOPLA; Thiboult et al. (2020)) that provides a modular framework to

perform calibration, simulation, and streamflow prediction using multiple hydrologic models (up to 20 models) (Perrin,

2000; Seiller et al., 2012). All of these 20 models are lumped models. So, it is more of a layout concern. We also added95

further discussion about the novelty and potential benefits that post-processing techniques may bring to the operational

services.

"Line 429: In the operational field, not only quantifying, but also communicating the predictive uncertainties in

probabilistic forecasts will become an essential topic. As mentioned in the introduction, another challenge that

remains is how we can bridge the communication gap between the forecasters’ interpretation about probabilistic100

forecasts and the end-users, such as the operational hydrologists, local conservation authorities, and some other

relevant stakeholders. What factor may have the strongest impact on decision-making? The different end-users

may have their unique preference and demand. For instance, the reliability and sharpness (i.e., spread) could be

improved simultaneously or there could be a trade-off between them. Compared to conventional post-processing

method, such as AKD, NSGA-II demonstrated its superior ability for improving the forecast performance. In par-105

allel, the use of NSGA-II opens up the opportunities to enhance the forecast quality in line with the specific needs

of end-users, since it allows for setting multiple specific objective functions from scratch. This flexibility should

be considered as a key part of facilitating the implementation of H-EPSs in real-time operational forecasting

effectively."

Besides, we have another article mainly focus on exploring "the hydrological post-processing of streamflow forecasts is-110

sued from multimodel ensemble prediction systems" published already. Please check:Xu, J., Anctil, F. and Boucher,

M.A., 2019Hydrological post−processing of streamflow forecasts issued frommultimodel ensemble prediction

systems, J. Hydrol., 578, p.124002, https : //doi.org/10.1016/j.jhydrol. 2019. 124002. if this may interest you.

2 Detailed comments:

Detailed comments 1 : Introduction: Could you add explanation why AKD and NSGA-II have been chosen for this research?115

(line 51)

Response :

Thank you for your comments. We rewrote the Introduction section and further explained the reason why we selected

these two post-processing techniques.120
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"Line 71: The study is a contribution to probe this topic by exploring hydrological post-processing of ensem-

ble streamflow forecasts based on Affine kernel dressing (AKD) and Non-dominated sorting genetic algorithm II

(NSGA-II). The mechanisms of these two statistical post-processing methods are completely different. However,

they share one similarity from another perspective, which is they can estimate the probability density directly

from the data (i.e., ensemble forecast) without assuming any particular underlying distribution. As a more con-125

ventional method, Silverman (1986) firstly proposed the kernel density smoothing method to estimate the distri-

bution from the data by centering a kernel function K that determines the shape of a probability distribution

(i.e., kernel) fitted around every data point (i.e., ensemble members). The smooth kernel estimate is then the sum

of those kernels. As for the choice of bandwidth h of each dressing kernel, Silverman’s rule of thumb finds an

optimal bandwidth h by assuming that the data is normally distributed. Improvements to the original idea were130

soon to follow. For instance, the improved Sheather Jones (ISJ) algorithm is more suitable and robust with respect

to multimodality (Wand and Jones, 1994). Roulston and Smith (2003) rely on the series of “best forecasts” (i.e.,

best-member dressing) to compute the kernel bandwidth h. Wang and Bishop (2005) as well as Fortin et al. (2006)

further improved the best member method. The later advocated that the more extreme ensemble members are

more likely to be the best member of raw under-dispersive forecasts, while the central members tend to be more135

“precise” for over-dispersive ensemble. They proposed the idea that different predictive weights should be set

over each ensemble member, given each member’s rank within the ensemble. Instead of standard dressing ker-

nels that act on individual ensemble members, Bröcker and Smith (2008) proposed the AKD method by assuming

an affine mapping between ensemble members and observation over the entire ensemble. They approximate the

distribution of the observation given the ensemble."140

"Line 89: NSGA-II opens up the opportunity of improving the forecast quality in harmony with the forecasting

aims and the specific needs of end-users. Given the single-model H-EPSs studied here, the hydrologic ensemble

is generated by activating two forecasting tools: the ensemble weather forecast and the EnKF. Henceforth, en-

hancing the H-EPS forecasting skill by assigning different credibility to ensemble members becomes preferred

than reducing the number of members. Multiple objective functions (i.e., here, verifying scores) for evaluating the145

forecasting performances of the H-EPS are selected to guide the optimization process. The expected output is a

group of solutions, also known as Pareto fronts, that can give the trade-offs between different objectives. Other

post-processing techniques, like the Non-dominated sorting genetic algorithm II (NSGA-II), are now common

(e.g., Liong et al., 2001; De Vos and Rientjes, 2007; Confesor and Whittaker, 2007). Such techniques are concep-

tually linked to the multiobjective parameter calibration of hydrologic models using Pareto approaches. Indeed,150

formulating a model structure or representing the hydrologic processes using a unique global optimal parameter

set proves to be very subjective. Multiple optimal parameter sets exist with satisfying behavior given the different

conceptualizations, albeit not identical Beven and Binley (1992). For example, Brochero et al. (2013) utilized the
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Pareto fronts generated with NSGA-II for selecting the “best” ensemble from a hydrologic forecasting model with

a pool of 800 streamflow predictors, in order to reduce the H-EPS complexity."155

Detailed comments 2 : Introduction, data description, and / or Results section: Could you comment on observational un-

certainty?

Response :

Thank you. Observational uncertainty was indirectly taken into account in the data assimilation phase of the forecasts160

generation as the Ensemble Kalman Filter (EnKF) asks for the perturbation of the precipitation and temperature inputs

and of the streamflow observations. More specifically, streamflow uncertainties are assumed to be proportional to the

value, and are expressed in terms of percentage of the observed amounts. In practice, a hyperparameter of 10% was

applied to the streamflow, following the detailed analysis of Thiboult and Anctil (2015) using the same HEPS over

watersheds in the vicinity of the one studied here. As this issue does not interference with the post-processing process,165

we feel that there is no need to discuss it in length.

Nonetheless we added the following description at the end of section 2: Line 157: The EnKF hyperparameters se-

lection follows the work of Thiboult and Anctil (2015). Streamflow and precipitation uncertainties are assumed

proportional; they are set to 10% and 50%, respectively. Temperature uncertainty is considered constant; it

amounts to 2°C. A Gaussian describes the streamflow and temperature uncertainty and a gamma law represents170

the precipitation uncertainty.

Detailed comments 3 : Line 92: Does the analysis of forecast performance take into account these different flood generat-

ing processes, and related seasonality? Would be interesting.

Response :175

Thank you for your interesting questions. Actually, the seasonality diversity analysis was not the main focus of this re-

search. Here, we would really like to focus on and emphasize that in the operational filed, not only quantifying correctly,

but also communicating the predictive uncertainties in probabilistic forecasts in a proper way matters. And compared

with conventional statistical post-processor, NSGA-II demonstrates its superior ability for improving the forecast perfor-

mance as well as provides much flexibility to enhance the forecast quality in line with the specific needs of end-users.180

Detailed comments 4 : Line 99: In this section, kindly add some information on catchment response time to rainfall/snow

melt, and travel time (routing), to inform us about potential forecast lead times without meteorological forecasts as forcing.

Response :

Unfortunately, we do not hold that information. We understand that they would be helpful.185
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Detailed comments 5 : Line 104: Could you mention why inflow to the reservoirs is not measured (for some reservoirs),

and how the inflow time series have been constructed?

Response :

Thank you. The hydroclimatic times series were provided by Hydro-Québec that operates the Gatineau River system for190

hydroelectricity production. They constitute the operational database of this public company that have been operating

their own hydrological prediction system for many decades.

Climatic time series were created by applying kriging to the observations collected in the study area, while the stream-

flows are reconstructed from the measurements of the water level in the reservoirs as well as some standard streamflow

observations whenever available. This methodology is of course imperfect, especially for quite large reservoirs.195

We added the following text to the manuscript: Line 126: All hydroclimatic time series to the project were made

available by Hydro-Québec that carefully constructed them for their own hydropower operations.

Detailed comments 6 : Line 105/106: Could you briefly describe the observational network, and methods used to create

sub-basin average precipitation? (to inform observational uncertainty, and perhaps a reason for not going for meteorological

forecast post-processing).200

Response :

Thank you. We modified this table to keep the useful characteristics (e.g., geographic coordinates, catchment area and

mean annual streamflow) especially for this study.

Table 1. Hydroclimatic characteristics of five sub-catchments of the Gatineau River.205

Name Lat. Lon. Catchment Area (km2) Mean annual Q (mm)

Cabonga 47.21 -76.59 2,665 1.35

Baskatong 47.21 -75.95 13,057 1.49

Maniwaki 46.53 -76.25 4,145 1.24

Paugan 46.07 -76.13 2,790 1.29

Chelsea 45.70 -76.01 1,142 1.27

Detailed comments 7 : Line 168: I think we are missing here, what the parameters are optimised on. From the later para-

graph on Experimental set-up it seems that parameterization of AKD was done by minimising MCRPS.

Response :210

Yes, the parameterization of AKD was done by minimizing MCRPS. We added further clarifications about these relevant

parameters in Section 3.1.

7



"Line 195: Here, hS is Silverman’s factor (Silverman, 1986). Technically, we can use some scores (e.g., mean

square error, etc) to select the optimal bandwidth h for a kernel density estimation, yet this would be difficult to

estimate for general kernels. Hence, the first rule of thumb proposed by Silverman gives the optimal bandwidth215

h which is the standard deviation of the distribution. And in this case, the kernel is also assumed to be Gaussian.

The parameters θ = [a,r1, r2,s1,s2] are free parameters and usually r1 = 0, r2 = 1, s1 = 0 and r2 = 1 are ratio-

nal initial selections (Bröcker and Smith, 2008). Once the optimal free parameter vector θ = [a,r1, r2,s1,s2] is

obtained, the interpreted ensemble can be set to:"

"Line 315: (2) AKD mapping between the ensemble and observation over the training dataset. The observation220

time series are used to identify the free parameter vector θ = [a,r1, r2,s1,s2], minimizing the MCRPS to obtain

the kernel-dressed ensemble. Note that AKD acts on the entire ensemble rather than on each individual member."

Detailed comments 8 : Lines 224-226: Kindly explain why these parameter values were chosen, and if a sensitivity anal-

ysis was done? Was the maximum evolution runs a result of a stopping criterion? If so, please mention this.

225

Response :

Thank you for your comments. We added more description about NSGA-II method in Section 3.2. The objective func-

tions we selected here is NSE and bias as an example, one may try alternatives. The population size of 50, the mutation

probability of 0.1, crossing-over rate of 0.7 the maximum runs of 430 were obtained through several tests. From our

own experience, it is better to start testing the population size, mutation probability and number of generations with230

some lower values (e.g., 50, 100 for population size, and 0.1, 0.2 for mutation probability, etc.). While the opposite is

recommended for the cross-over rate.

Detailed comments 9 : Lines 272-273: Please introduce the use of a moving window in Section 3.2, and expand expla-

nation. Also the mentioning here of operational requirements is interesting and further explanation and discussion would be

welcome.235

Response :

We rephrased the explanation about why we chose using "a 30-day moving window" in the procedure from an operational

perspective.

"Line 315: (3) Evaluate the Pareto fronts (i.e., nondominated solutions that minimize/maximize the bias and the240

NSE) and the weight matrix, applying NSGA-II over the training dataset. Sloughter et al. (2007) mentioned that

the training period should be specific for each dataset or region. Here a 30-day moving window is selected so

it contains enough training samples with coherent consistency. Especially, from the operational perspective, a

monthly moving window is more coherent and efficient in the real world, with limited length for time series."
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Detailed comments 10 : Figure 5: The differences in bias and NSE over the range of the Pareto front are small. Please245

discuss. What weights are in the weight matrices of these solutions?

Response :

We added some analysis about the weights obtained from the Pareto solutions.

"Line 355: The NSGA-II Pareto front drawn in Figure 5 (model M01 over the Baskatong catchment) is quite250

typical. In this multiobjective evolutionary search, 35 (nondominated) Pareto solutions are identified. No objective

can be improved more without the sacrifice of another. The optimal NSE is inevitably accompanied with the

highest bias (e.g., NES = 0.84594, bias = 0.034055), or vice versa. The solutions in the elbow region of the Pareto

front are the compromise between both two objective functions. Pareto fronts with different numbers of solutions

can be attained daily via setting the sliding window. Therefore, rather than choosing only one fixed position in the255

front, we opted to pick the solution randomly for respecting and exploring the diversity within. Figure 6 confirms

NSGA-II convergence."

Detailed comments 11 : Line 338: This is interesting. Could you discuss what could be the reason? Something specific

about Model M05?

260

Response :

Thank you. The 5 lumped models exploited in this study are randomly selected from HydrOlOgical Prediction Labora-

tory (HOOPLA; Thiboult et al. (2020)) which means they are quite equally competitive. We would like to treat it as one

special case: Line 390: In general, the other two statistical post-processing methods succeed in improving the fore-

cast reliability, with the curves closer to the bisector lines. Especially, the NSGA-II (i.e., red curves) demonstrates265

its superior ability for maintaining the reliability with the lead time. The over-dispersion appears with most of the

AKD transformed ensembles (i.e., yellow lines), especially at shorter lead times. The ensemble spread tends to a

proper level as the lead time increases. Note that there is one special case that the predictive distributions of the

kernel dressed ensemble are the most reliable for model M05 over almost all individual catchments.

3 Editorials:270

Editorials 1 : Lines 25-27. Deterministic systems do not asses/quantify uncertainty, so the superiority question, I think, did

not concern uncertainty quantification, that difference is simply a given. The superiority question concerned more the value

when using the forecasts in decision making, and ensemble mean versus deterministic forecast performance.

Response :275
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Thank you for this comment. Yes, the main challenge for the operational forecasters are how to comprehensively quan-

tify the predictive uncertainties from different sources as well as how to use the uncertainty information for better

decision-making. The essential topic here is to bridge the gap between the "theory" (i.e., accuracy, reliability, etc.) and

the "practice" (i.e., decision-driven trade-offs). We would like to emphasize this point in this paper.

Editorials 2 : Figure 1: Please indicate in the map more clearly the main river reach and flow direction.280

Response :

Thank you. The map in Figure 1 was refined.

Editorials 3 : Lines 82-84: Not clear from this sentence if in Section 4 the results are analysed for each model individually

first (not taking into account model structure uncertainty), and then are considered and processed as a grand multi-model en-285

semble, which does take into account model structure uncertainty.

Response :

Thank you. We have another article focused on exploring "the hydrological post-processing of streamflow forecasts

issued from multimodel ensemble prediction systems" published: Xu, J., Anctil, F. and Boucher, M.A., 2019290

Hydrological post−processing of streamflow forecasts issued frommultimodel ensemble prediction systems,

J. Hydrol., 578, p.124002, https : //doi.org/10.1016/j.jhydrol. 2019. 124002. In this above-mentioned paper, we

took all sources of uncertainties into account since we tested on the grand multi-model ensemble forecast. For the

manuscript discussed here, we mainly focused on the single-model H-EPSs and that is the reason why we analysed each

model individually.295

Editorials 4 : Lines 137-139: Consider to move up to Introduction for literature review, or down in the sections below. In

these few introductory sentences to the methodology I would focus on announcing what was the general approach followed to

reach the research objectives. After having introduced the overall methodology, going into the details of the two post-processing

methods as of section 3.1 makes sense.

300

Response :

Thank you. We moved some description down to section 3.1.

Editorials 5 : Figure 3: Qobs is not output, so can be left out on the right. It is also not indicated that the output or final

results concerns post-processed (interpreted) Qfcsts. The flowchart ending in only one set of post-processed forecasts is con-

fusing, because up to now I was under the impression that AKD and NSGA-II would be used independently post-process and305

hence each method to result in a set of post-processed forecasts, after which the performance of each method will be analysed

and compared.
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Response :

Thank you for your comments about the flowchart. We refined this flowchart.310

Figure 1. Schematic of the experimental setup flowchart.

Editorials 6 : Line 256: Spread Skill plots are announced, but later not presented.

315

Response :

Thank you. The Spread Skill plot (SSP ) were referd as "spread" in the corresponding results (i.e., Figure 8 and 10). We

rephrased the text to make it easier to track.

Editorials 7 : Figure 8: Presenting results in spider plots is a nice idea, but with the scores selected this does not work well,

because some scores indicate a better performance with lower value (RMSE ) while others the other way around (NSE ), and320

some have a scale only to 1 (NSE ) while others are not limited. This makes interpretation of the plots rather difficult.

Response :

Thank you for your comment. Yes, we chose this kind of radar plots for a layout concern. We enlarged the figure size .

Editorials 8 : Lines 357-362: General/Literature - I suggest to delete or move to Introduction.325

Response :

Thank you. We deleted this paragraph.
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Editorials 9 : Lines 366-369: Consider to move to Introduction or Methodology.

330

Response :

We rephrased the final section.

4 Introduction

Hydrologic forecasting is crucial for flood warning and mitigation (e.g., Shim and Fontane, 2002; Cheng and Chau,

2004), water supply operation and reservoir management (e.g., Datta and Burges, 1984; Coulibaly et al., 2000; Boucher335

et al., 2011), navigation, and other related activities. Sufficient risk awareness, enhanced disaster preparedness in the

flood mitigation measures, and strengthened early warning systems are crucial in reducing the weather-related event

losses. Hydrologic models are typically driven by dynamic meteorological models in order to issue forecasts over a

medium range horizon of 2 to 15 days (Cloke and Pappenberger, 2009). This kind of coupled hydrometeorologic fore-

casting systems are admitted as effective tools to issue longer lead times. Inherent in the coupled hydrometeorologic340

forecasting systems, some predictive uncertainties are then inevitable given the limits of knowledge and available infor-

mation (Ajami et al., 2007). In fact, those uncertainties occur all along the different steps of the hydrometeorological

modeling chain (e.g., Liu and Gupta, 2007; Beven and Binley, 2014). These different sources of uncertainty are related to

deficiencies in the meteorological forcing, mis-specified hydrologic initial and boundary conditions, inherent hydrologic

model structure errors, and biased estimated parameters (e.g., Vrugt and Robinson, 2007; Ajami et al., 2007; Salamon345

and Feyen, 2010; Thiboult et al., 2016). Among most cases, a single deterministic forecasts turns out to be way more

insufficient.

Many substantive theories have been proposed in order to quantify and reduce the different sources of cascading fore-

cast uncertainties and to add good values to flood forecasting and warning. Among them, the superiority of ensemble

forecasting systems in quantifying the propagation of predictive uncertainties (over deterministic systems) is now well350

established (e.g., Cloke and Pappenberger, 2009; Palmer, 2002; Seo et al., 2006; Velázquez et al., 2009; Abaza et al.,

2013; Wetterhall et al., 2013; Madadgar et al., 2014). Numerous challenges have been well tackled, for example: (1)

meteorological ensemble prediction systems (M-EPSs) (e.g., Palmer, 1993; Houtekamer et al., 1996; Toth and Kalnay,

1997) are refined and operated worldwide by national agencies such as the European Centre for Medium-Range Weather

Forecasts (ECMWF), the National Center for Environmental Prediction (NCEP), the Meteorological Service of Canada355

(MSC), and more; (2) the forecast accuracy is highly improved by adopting higher resolution data collection and assim-

ilation. Sequential data assimilation techniques, such as the particle filter (e.g., Moradkhani et al., 2012; Thirel et al.,

2013) and the ensemble Kalman filter (e.g., Evensen , 1994; Reichle et al., 2002; Moradkhani et al, 2005; McMillan et

al., 2013) provide an ensemble of possible re-initializations of the initial conditions, expressed in the hydrologic model

12



as state variables, such as soil moisture, groundwater level and so on; (3) forecasting skills of the coupled hydrometeoro-360

logic forecasting systems are also improved by tracking predictive errors using the full uncertainty analysis. Multimodel

schemes were proposed to increase performance and decipher structural uncertainty (e.g., Duan et al., 2007; Fisher et al.,

2008; Weigel et al., 2008; Najafi et al., 2011; Velázquez et al., 2011; Marty et al., 2015; Mockler et al., 2016). Thiboult

et al. (2016) compared many H-EPS, accounting for the three main sources of uncertainties located along the hydrome-

teorological modeling chain. They pointed out that EnKF probabilistic data assimilation provided most of the dispersion365

for the early forecasting horizons but failed in maintaining its effectiveness with increasing lead times. A multimodel

scheme allowed sharper and more reliable ensemble predictions over a longer forecast horizon; (4) statistical hydrologic

post-processing component is added in the H-EPS for rectifying biases and dispersion errors (i.e., too narrow/too large)

are numerous, as reviewed by Li et al. (2017). It is noteworthy that many hydrologic variables, such as discharge, follow

a skewed distribution (i.e., low probability associated to the highest streamflow values), which complicates the task.370

Usually, in a hydrologic ensemble prediction system (H-EPS) framework (e.g., Schaake et al., 2007; Cloke and Pappen-

berger, 2009; Velázquez et al., 2009; Boucher et al., 2012; Abaza et al., 2017), the post-processing procedure over the

atmospheric input ensemble is often referred as pre-processing, while post-processing aims at improving the hydrologic

ensemble forecasting outputs.

However, another challenge still remains: how to improve the human interpretation of probabilistic forecasts and the375

communication of integrated ensemble forecast products to end-users (e.g., operational hydrologists, water managers,

local conservation authorities, stakeholders and other relevant decision makers). Buizza et al. (2007) emphasized that

both functional and technical qualities are supposed to be assessed for evaluating the overall forecast value of a hy-

drometeorologic forecasts. Ramos et al. (2010) further note that the best way to communicate probabilistic forecast and

interpret its usefulness should be in harmony with the goals of the forecasting system and the specific needs of end-users.380

She also demonstrated the main achievements from two studies obtained from a Member States workshop (Thielen et al.,

2005) role-play game and another survey to explore the users’ risk perception of forecasting uncertainties and how they

dealt with uncertain forecasts for decision-making. The results revealed that there is still space for enhancing the fore-

casters’ knowledge and experience on bridging the communication gap between predictive uncertainties quantification

and effective decision-making.385

Hence, in practice, which forecast quality impacts a given decision the most? Different end-users share their unique

requirements: Crochemore et al. (2017) produced the seasonal streamflow forecasting by conditioning climatology with

precipitations indices (SPI3). Forecast reliability, sharpness (i.e., the ensemble spread), overall performance and low-

flow event detection were verified to assess the conditioning impact. In some cases, the reliability and sharpness could

be improved simultaneously while more often, there was a trade-off between them. Another IMPREX project conduct390

an optimization for the reservoir-based hydropower production to explore the relationship between the forecast quality

and economic values. They found that an over-estimation comes along with more penalization.
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The study is a contribution to probe this topic by exploring hydrological post-processing of ensemble streamflow fore-

casts based on Affine kernel dressing (AKD) and Non-dominated sorting genetic algorithm II (NSGA-II). The mecha-

nisms of these two statistical post-processing methods are completely different. However, they share one similarity from395

another perspective, which is they can estimate the probability density directly from the data (i.e., ensemble forecast)

without assuming any particular underlying distribution. As a more conventional method, Silverman (1986) firstly pro-

posed the kernel density smoothing method to estimate the distribution from the data by centering a kernel function K

that determines the shape of a probability distribution (i.e., kernel) fitted around every data point (i.e., ensemble mem-

bers). The smooth kernel estimate is then the sum of those kernels. As for the choice of bandwidth h of each dressing400

kernel, Silverman’s rule of thumb finds an optimal bandwidth h by assuming that the data is normally distributed. Im-

provements to the original idea were soon to follow. For instance, the improved Sheather Jones (ISJ) algorithm is more

suitable and robust with respect to multimodality (Wand and Jones, 1994). Roulston and Smith (2003) rely on the series

of “best forecasts” (i.e., best-member dressing) to compute the kernel bandwidth h. Wang and Bishop (2005) as well

as Fortin et al. (2006) further improved the best member method. The later advocated that the more extreme ensemble405

members are more likely to be the best member of raw under-dispersive forecasts, while the central members tend to

be more “precise” for over-dispersive ensemble. They proposed the idea that different predictive weights should be set

over each ensemble member, given each member’s rank within the ensemble. Instead of standard dressing kernels that

act on individual ensemble members, Bröcker and Smith (2008) proposed the AKD method by assuming an affine map-

ping between ensemble members and observation over the entire ensemble. They approximate the distribution of the410

observation given the ensemble.

Line 89: NSGA-II opens up the opportunity of improving the forecast quality in harmony with the forecasting aims

and the specific needs of end-users. Given the single-model H-EPSs studied here, the hydrologic ensemble is generated

by activating two forecasting tools: the ensemble weather forecasts and the EnKF. Henceforth, enhancing the H-EPS

forecasting skill by assigning different credibility to ensemble members becomes preferred than reducing the number415

of members. Multiple objective functions (i.e., here, verifying scores) for evaluating the forecasting performances of

the H-EPS are selected to guide the optimization process. The expected output is a group of solutions, also known as

Pareto fronts, that can give the trade-offs between different objectives. Other post-processing techniques, like the Non-

dominated sorting genetic algorithm II (NSGA-II), are now common (e.g., Liong et al., 2001; De Vos and Rientjes, 2007;

Confesor and Whittaker, 2007). Such techniques are conceptually linked to the multiobjective parameter calibration420

of hydrologic models using Pareto approaches. Indeed, formulating a model structure or representing the hydrologic

processes using a unique global optimal parameter set proves to be very subjective. Multiple optimal parameter sets

exist with satisfying behavior given the different conceptualizations, albeit not identical Beven and Binley (1992). For

example, Brochero et al. (2013) utilized the Pareto fronts generated with NSGA-II for selecting the “best” ensemble

from a hydrologic forecasting model with a pool of 800 streamflow predictors, in order to reduce the H-EPS complexity.425
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In this study, the daily streamflow ensemble forecasts issued from five single-model H-EPSs over the Gatineau River

(Province of Québec, Canada) are post-processed. Details about the study area, hydrologic models, and hydrometeoro-

logic data are described in Section 2. Section 3 explains the methodology and training strategy of AKD and NSGA-II

methods, in parallel with the scoring rules that evaluate the performance of the forecasts. Specific concepts associated

with those scores are also introduced in this section. Predictive distribution estimation based on the five single-model430

H-EPSs configurations, which lack accounting for the model structure uncertainty, is presented in Section 4. The compar-

ison of both statistical post-processing methods in improving the forecasting quality as well as enhancing the uncertainty

communication are discussed and analyzed as well. Conclusion follows in Section 5.
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