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Reply on ’Referee comment on "Exploring hydrologic
post-processing of ensemble stream flow forecasts
based on Affine kernel dressing and Nondominated

sorting genetic algorithm II"’

November 11, 2020

Dear Prof. Solomatine and reviewers:

Many thanks for your review comments that we received with respect to our paper.
Those valuable comments have significantly enhanced our paper. We have carefully
considered and addressed the reviewers’ comments and suggestions, which will lead
to significant revisions in many parts of the paper. Particularly, we rewrote the introduc-
tion section attached at the end of this view letter. Below we hereby provide our point
by point responses to each of the reviewer’s comments.
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1 General questions and remarks:

General question 1 : The objective(s) of the research is(are) in my view not clearly
stated, nor the intended contribution to the literature. Could the authors describe
these?

Response : Many thanks for your comments. We rewrote the introduction for better
clarifying our research objective. Particularly, the novelty of this paper is to emphasize
that in the practice, not only quantifying comprehensively, but also communicating
the predictive uncertainties in probabilistic forecasts effectively will become an more
essential topic progressively. And compared to the conventional post-processing
methods, such as Affine kernel dressing (AKD), how the multi objective genetic
algorithm (i.e., here, NSGA-II) can open up the opportunities to improve the forecast
quality in harmony with the forecasting aims and the specific needs of end-users.

General question 2 : This perhaps also makes the literature review rather general, not
zooming-in to identify a gap or under-represented aspects / applications of ensemble
prediction, or a particular forecast challenge in the case study catchment.

Response : Thanks for your comments. We re-designed the introduction structure and
added more literature review from the operational perspective. Operational forecasters
are open to ensemble forecasting methods and products for assessing the flood in a
probabilistic way. The main challenges for them are how to comprehensively quantify
the predictive uncertainties from different sources as well as how to use the uncertainty
information for better decision-making. We rewrote the introduction to build stronger
and more logical between paragraphs. In addition to clarifying the different sources of
uncertainty in the hydrometeorological forecast chain, we explored the possibility of
using NSGA-II for better fitting the end-user’s specific needs.
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General question 3 : As I understand, post-processing of the meteorological ensemble
forecasts was not done. Could the authors comment in the paper on the performance
of the meteorological ensemble forecasts and state the reason for not also applying
meteorological post-processing?

Response : Thanks. We rewrote the introduction to give a better explanation: “It
is noteworthy that many hydrologic variables, such as discharge, follow a skewed
distribution (i.e., low probability associated to the highest streamflow values), which
complicates the task. Usually,in a hydrologic ensemble prediction system (H-EPS)
framework (e.g., Schaake et al., 2007; Cloke and Pappenberger, 2009;Velázquez et
al., 2009; Boucher et al., 2012; Abaza et al., 2017), the post-processing procedure
over the atmospheric input ensemble is often referred as pre-processing, while
post-processing aims at improving the hydrologic ensemble forecasting outputs.”

General question 4 : Based on Figure 4, presenting one forecast, I do not understand
how it can be concluded that the members generated from the meteorological eps
as forcing are not fully interchangeable, which is the basis of applying weights with
NSGA-II. Perhaps that the video (I am sorry I could not find it, this is probably my
omission) shows this, but this is not explicitly stated in the paper.

Response : Thanks! We will prepare and upload the animation (too large) that can
reveal the phenomenon of not fully interchangeable of the meteorological forcing
members for your consideration.

General question 5 : I do not understand why the authors choose to calibrate the post-
processors on only one forecast horizon (day-4) and validate on the other horizons
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(1-3, 5-7). Because of a generally present decrease of skill with increasing forecast
horizon, usually a post-processor is calibrated for each forecast horizon separately. It
also seems that the analysis period for which re-forecasts have been prepared has not
been split in a calibration and validation period (or a leave-one-out approach). There
may be good reasons for choosing this approach, e.g. stemming from catchment or
application characteristics versus limited data availability, or as a research objective,
but I missed the explanation in the paper. Could the authors perhaps explain the
chosen calibration/validation approach?

Response : Thanks for you comments. The skill of flood forecasts fades away with
increasing lead time. The target ensemble has a horizon that extends from day 1 to
7. The 4-day-ahead ensemble forecasts issued from each single-model H-EPSs and
their corresponding observations are chosen as a training dataset, since it locates in
the middle of the forecast horizon as a compromise. We will explain further the division
of the calibration and validation period in the section 3.4.

General question 6 : Lastly, I would kindly encourage the authors to expand the pre-
sentation and interpretation / discussion of the results. For example, why present the 5
sub-catchments, what should we learn from the results? What about the inflows to the
reservoirs? Why present the 5 single h-eps, what should we learn from the results?
Why not assess the performance of the combined grand multi-model ensemble? How
does the performance of the raw and post-processed forecasts compare with the
performance of a reference forecast such as climatology or persistence (forecast skill)?

Response : Thanks for this suggestion. We will add further discussion about: (1)
comparing post-processing performance among catchments hydrological models in a
summarized way; (2) highlight the novelty and potential benefits that post-processing
techniques may bring to the operational services. And we have already published an-
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other article mainly focus on exploring "the hydrological post-processing of streamflow
forecasts issued from multimodel ensemble prediction systems". Please check: Xu,
J., Anctil, F. and Boucher, M.A., 2019 Hydrological post− processing of streamflow
forecasts issued from multimodel ensemble prediction systems, J. Hydrol., 578,
p.124002, https : //doi.org/10.1016/j.jhydrol. 2019. 124002. if this may interest you.

2 Detailed comments:

Detailed comments 1 : Introduction: Could you add explanation why AKD and NSGA-II
have been chosen for this research? (line 51)

Response : Thank you for your comments. We rewrote the introduction and further
explained the reason for selecting these two post-processing techniques.

Detailed comments 2 : Introduction, data description, and / or Results section: Could
you comment on observational uncertainty?

Response : Thanks. We plan to add further description about the observational
uncertainty in the section 2.

Detailed comments 3 : Line 92: Does the analysis of forecast performance take into
account these different flood generating processes, and related seasonality? Would
be interesting.

Response : Seasonality diversity analysis was not the the focus of our previous script.
C7

But I will add further comparison and analysis in the result section (Section 4).

Detailed comments 4 : Line 99: In this section, kindly add some information on
catchment response time to rainfall/snow melt, and travel time (routing), to inform us
about potential forecast lead times without meteorological forecasts as forcing.

Response : Many thanks for you suggestions. We will add more detailed information
on catchment response tie to rainfall/snow melt, and travel time.

Detailed comments 5 : Line 104: Could you mention why inflow to the reservoirs
is not measured (for some reservoirs), and how the inflow time series have been
constructed?

Response : Thanks. We will add further clarification about how the inflow times series
have been constructed in Section 2.

Detailed comments 6 : Line 105/106: Could you briefly describe the observational
network, and methods used to create sub-basin average precipitation? (to inform
observational uncertainty, and perhaps a reason for not going for meteorological
forecast post-processing).

Response : Thanks. We will add more detailed description about the observational
network to inform the observation uncertainty.

Detailed comments 7 : Line 168: I think we are missing here, what the parameters
are optimised on. From the later paragraph on Experimental set-up it seems that
parameterization of AKD was done by minimising MCRPS.
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Response : Yes, the parameterization of AKD was done by minimizing MCRPS. We
will further clarify these relevant parameters in Section 3.1.

Detailed comments 8 : Lines 224-226: Kindly explain why these parameter values
were chosen, and if a sensitivity analysis was done? Was the maximum evolution runs
a result of a stopping criterion? If so, please mention this.

Response : Thank you for your comments. We will add further description about
NSGA-II method in Section 3.2.

Detailed comments 9 : Lines 272-273: Please introduce the use of a moving window
in Section 3.2, and expand explanation. Also the mentioning here of operational
requirements is interesting and further explanation and discussion would be welcome.

Response : Thanks. We will give further explanation about why we chose using
"moving window" in the experiments from the operational perspective.

Detailed comments 10 : Figure 5: The differences in bias and NSE over the range of
the Pareto front are small. Please discuss. What weights are in the weight matrices of
these solutions?

Response : Thanks. We will give further analysis about the weights obtained from the
Pareto solutions.

Detailed comments 11 : Line 338: This is interesting. Could you discuss what could
C9

be the reason? Something specific about Model M05?

Response : Thanks. We will add more analysis about the potentail reason why the
predictive distributions of the kernel dressed ensemble are the most reliable for model
M05 over almost all individual catchments.

3 Editorials:

Editorials 1 : Lines 25-27. Deterministic systems do not asses/quantify uncertainty,
so the superiority question, I think, did not concern uncertainty quantification, that
difference is simply a given. The superiority question concerned more the value when
using the forecasts in decision making, and ensemble mean versus deterministic
forecast performance.

Response : Many thanks for this comment. Yes, the main challenge for the opera-
tional forecasters are how to comprehensively quantify the predictive uncertainties
from different sources as well as how to use the uncertainty information for better
decision-making. The essential topic here is to bridge the gap between the "theory"
(i.e., accuracy, reliability, etc.) and the "practice" (i.e., decision-driven trade-offs). We
would like to emphasize this point in this paper.

Editorials 2 : Figure 1: Please indicate in the map more clearly the main river reach
and flow direction.

Response : Thanks. We will refine the map in Figure 1.
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Editorials 3 : Lines 82-84: Not clear from this sentence if in Section 4 the results are
analysed for each model individually first (not taking into account model structure un-
certainty), and then are considered and processed as a grand multi-model ensemble,
which does take into account model structure uncertainty.

Response : Thanks. We will add further explanation here about how we consider the
model structure uncertainty.

Editorials 4 : Lines 137-139: Consider to move up to Introduction for literature review,
or down in the sections below. In these few introductory sentences to the methodology
I would focus on announcing what was the general approach followed to reach the
research objectives. After having introduced the overall methodology, going into the
details of the two post-processing methods as of section 3.1 makes sense.

Response : Thank you for your suggestion. We plan to re-design the paper structure
carefully.

Editorials 5 : Figure 3: Qobs is not output, so can be left out on the right. It is also not
indicated that the output or final results concerns post-processed (interpreted) Qfcsts.
The flowchart ending in only one set of post-processed forecasts is confusing, because
up to now I was under the impression that AKD and NSGA-II would be used inde-
pendently post-process and hence each method to result in a set of post-processed
forecasts, after which the performance of each method will be analysed and compared.

Response : Thank you for proposing your concerns about the flowchart. We will refine
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this flowchart.

Editorials 6 : Line 256: Spread Skill plots are announced, but later not presented.

Response : Thanks. The Spread Skill plot (SSP ) were referd as "spread" in the
corresponding results (i.e., Figure 8 and 10). We will rephrase the text to make it
easier to track.

Editorials 7 : Figure 8: Presenting results in spider plots is a nice idea, but with
the scores selected this does not work well, because some scores indicate a better
performance with lower value (RMSE) while others the other way around (NSE),
and some have a scale only to 1 (NSE) while others are not limited. This makes
interpretation of the plots rather difficult.

Response : Thank you for your comment. We will re-plot those figures to fix the scale
issue.

Editorials 8 : Lines 357-362: General/Literature - I suggest to delete or move to
Introduction.

Response : Thanks. We will delete the general literature review here.

Editorials 9 : Lines 366-369: Consider to move to Introduction or Methodology.

Response : Thanks. We will move these descriptions here to the methodology section.
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4 Introduction

Hydrologic forecasting is crucial for flood warning and mitigation (e.g., Shim and
Fontane, 2002; Cheng and Chau, 2004), water supply operation and reservoir man-
agement (e.g., Datta and Burges, 1984; Coulibaly et al., 2000; Boucher et al., 2011),
navigation, and other related activities. Sufficient risk awareness, enhanced disaster
preparedness in the flood mitigation measures, and strengthened early warning sys-
tems are crucial in reducing the weather-related event losses. Hydrologic models are
typically driven by dynamic meteorological models in order to issue forecasts over a
medium range horizon of 2 to 15 days (Cloke and Pappenberger, 2009). This kind of
coupled hydrometeorologic forecasting systems are admitted as effective tools to is-
sue longer lead times. Inherent in the coupled hydrometeorologic forecasting systems,
some predictive uncertainties are then inevitable given the limits of knowledge and
available information (Ajami et al., 2007). In fact, those uncertainties occur all along
the different steps of the hydrometeorological modeling chain (e.g., Liu and Gupta,
2007; Beven and Binley, 2014). These different sources of uncertainty are related to
deficiencies in the meteorological forcing, mis-specified hydrologic initial and boundary
conditions, inherent hydrologic model structure errors, and biased estimated parame-
ters (e.g., Vrugt and Robinson, 2007; Ajami et al., 2007; Salamon and Feyen, 2010;
Thiboult et al., 2016). Among most cases, a single deterministic forecasts turns out to
be way more insufficient.

Many substantive theories have been proposed in order to quantify and reduce the dif-
ferent sources of cascading forecast uncertainties and to add good values to flood fore-
casting and warning. Among them, the superiority of ensemble forecasting systems in
quantifying the propagation of predictive uncertainties (over deterministic systems) is
now well established (e.g., Cloke and Pappenberger, 2009; Palmer, 2002; Seo et al.,
2006; Velázquez et al., 2009; Abaza et al., 2013; Wetterhall et al., 2013; Madadgar et
al., 2014). Numerous challenges have been well tackled, for example: (1) meteoro-
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logical ensemble prediction systems (M-EPSs) (e.g., Palmer, 1993; Houtekamer et al.,
1996; Toth and Kalnay, 1997) are refined and operated worldwide by national agen-
cies such as the European Centre for Medium-Range Weather Forecasts (ECMWF),
the National Center for Environmental Prediction (NCEP), the Meteorological Service
of Canada (MSC), and more; (2) the forecast accuracy is highly improved by adopting
higher resolution data collection and assimilation. Sequential data assimilation tech-
niques, such as the particle filter (e.g., Moradkhani et al., 2012; Thirel et al., 2013) and
the ensemble Kalman filter (e.g., Evensen , 1994; Reichle et al., 2002; Moradkhani et
al, 2005; McMillan et al., 2013) provide an ensemble of possible re-initializations of the
initial conditions, expressed in the hydrologic model as state variables, such as soil
moisture, groundwater level and so on; (3) forecasting skills of the coupled hydromete-
orologic forecasting systems are also improved by tracking predictive errors using the
full uncertainty analysis. Multimodel schemes were proposed to increase performance
and decipher structural uncertainty (e.g., Duan et al., 2007; Fisher et al., 2008; Weigel
et al., 2008; Najafi et al., 2011; Velázquez et al., 2011; Marty et al., 2015; Mockler
et al., 2016). Thiboult et al. (2016) compared many H-EPS, accounting for the three
main sources of uncertainties located along the hydrometeorological modeling chain.
They pointed out that EnKF probabilistic data assimilation provided most of the dis-
persion for the early forecasting horizons but failed in maintaining its effectiveness with
increasing lead times. A multimodel scheme allowed sharper and more reliable ensem-
ble predictions over a longer forecast horizon; (4) statistical hydrologic post-processing
component is added in the H-EPS for rectifying biases and dispersion errors (i.e., too
narrow/too large) are numerous, as reviewed by Li et al. (2017). It is noteworthy that
many hydrologic variables, such as discharge, follow a skewed distribution (i.e., low
probability associated to the highest streamflow values), which complicates the task.
Usually, in a hydrologic ensemble prediction system (H-EPS) framework (e.g., Schaake
et al., 2007; Cloke and Pappenberger, 2009; Velázquez et al., 2009; Boucher et al.,
2012; Abaza et al., 2017), the post-processing procedure over the atmospheric input
ensemble is often referred as pre-processing, while post-processing aims at improving
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the hydrologic ensemble forecasting outputs.

However, another challenge still remains: how to improve the human interpretation of
probabilistic forecasts and the communication of integrated ensemble forecast prod-
ucts to end-users (e.g., operational hydrologists, water managers, local conservation
authorities, stakeholders and other relevant decision makers). This step is considered
to be the key part of facilitating the implementation of H-EPS in real-time operational
forecasting effectively. Buizza et al. (2007) emphasized that both functional and tech-
nical qualities are supposed to be assessed for evaluating the overall forecast value of
a hydrometeorologic forecasts. Ramos et al. (2010) further noted that the best way to
communicate probabilistic forecast and interpret its usefulness should be in harmony
with the goals of the forecasting system and the specific needs of end-users. She
also demonstrated the main achievements from two studies obtained from a Member
States workshop (Thielen et al., 2005) role-play game and another survey to explore
the users’ risk perception of forecasting uncertainties and how they dealt with uncertain
forecasts for decision-making. The results revealed that there is still space for enhanc-
ing the forecasters’ knowledge and experience on bridge the community gap between
predictive uncertainties quantification and effective decision-making.

Hence, in practice, which forecast quality impacts a given decision the most? Different
end-users share their unique requirements: Crochemore et al. (2017) produced the
seasonal streamflow forecasting by conditioning climatology with precipitations indices
(SPI3). Forecast reliability, sharpness (i.e., spread), overall performance and low-flow
event detection were verified to assess the conditioning impact. In some cases, the re-
liability and sharpness could be improved simultaneously while more often, there was
a trade-off between them. Another IMPREX project conduct an optimization for the
reservoir-based hydropower production to explore the relationship between the fore-
cast quality and economic values. They found that an over-estimation comes along
with more penalization. In the operational filed, not only quantifying, but also com-
municating the predictive uncertainties in probabilistic forecasts will become an more
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essential topic progressively.

The study is a contribution to probe this topic by exploring hydrological post-processing
of ensemble streamflow forecasts based on Affine kernel dressing and Non-dominated
sorting genetic algorithm II. The mechanisms of these two statistical post-processing
methods are completely different, however, they share one similarity from another per-
spective, which is they can estimate the probability density directly from the data (i.e.,
ensemble forecast) without assuming any particular underlying distribution. As a more
conventional method, Silverman (1986) firstly proposed the kernel density smooth-
ing method to estimate the distribution from the data by centering a kernel function
K that determines the shape of a probability distribution (kernel) fitted around every
data point (i.e., the bias-corrected ensemble member). The smooth kernel estimate
is then the sum of those kernels. As for the choice of bandwidth h of each dress-
ing kernel, Silverman’s rule of thumb finds an optimal h by assuming that the data is
normally distributed. Improvements to the original idea were soon to follow. For in-
stance, the improved Sheather Jones (ISJ) algorithm is more suitable and robust with
respect to multimodality (Wand and Jones, 1994). Roulston and Smith (2003) rely on
the series of “best forecasts” (i.e., best-member dressing) to compute the kernel band-
width. Wang and Bishop (2005) as well as Fortin et al. (2006) further improved the best
member method. The later advocated that the more extreme ensemble members are
more likely to be the best member of raw under-dispersive forecasts, while the central
members tend to be more “precise” for over-dispersive ensemble. They proposed the
idea that different predictive weights should be set over each ensemble member, given
each member’s rank within the ensemble. Instead of standard dressing kernels that
act on individual ensemble members, Bröcker and Smith (2008) proposed the affine
kernel dressing (AKD) by assuming an affine mapping between ensemble and obser-
vation over the entire ensemble. The mapping parameters are determined from the
training data simultaneously with the other dressing parameters. They approximate
the distribution of the observation given the ensemble.
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While the other post-processor of Non-dominated sorting genetic algorithm II (NSGA-
II) open up the opportunity of improving the forecast quality in harmony with the fore-
casting aims and the specific needs of end-users. Given the single-model H-EPSs
studied here, the hydrologic ensemble is generated by activating two forecasting tools:
the ensemble weather forecast and the EnKF. Henceforth, enhancing the H-EPS fore-
casting skill by assigning different credibility to ensemble members becomes preferred
than reducing the number of members. Multiple objective functions (i.e., here, verifying
scores) for evaluating the forecasting performances of the H-EPS are selected to guide
the optimization process. The expected output is a group of solutions, also known as
Pareto fronts, that can give the trade-offs between different objectives. Other post-
processing techniques, like the Non-dominated sorting genetic algorithm II (NSGA-II),
are now common (e.g., Liong et al., 2001; De Vos and Rientjes, 2007; Confesor and
Whittaker, 2007). Such techniques are conceptually linked to the multiobjective param-
eter calibration of hydrologic models using Pareto approaches. Indeed, formulating a
model structure or representing the hydrologic processes using a unique global optimal
parameter set proves to be very subjective. Multiple optimal parameter sets exist with
satisfying behavior given the different conceptualizations, albeit not identical Beven and
Binley (1992). For example, Brochero et al. (2013) utilized the Pareto fronts generated
with NSGA-II for selecting the “best” ensemble from a hydrologic forecasting model
with a pool of 800 streamflow predictors, in order to reduce the H-EPS complexity.

In this study, the daily streamflow ensemble forecasts issued from five single-model
H-EPSs over the Gatineau River (Province of Québec, Canada) are post-processed.
Details about the study area, hydrologic models, and hydrometeorologic data are de-
scribed in Section 2. Section 3 explains the methodology and training strategy of Affine
kernel dressing (AKD) and Non-dominated sorting genetic algorithm II (NSGA-II) meth-
ods, in parallel with the scoring rules that evaluate the performance of the forecasts.
Specific concepts associated with those scores are also introduced in this section. Pre-
dictive distribution estimation based on the five single-model H-EPSs configurations,
which lack accounting for the model structure uncertainty, is presented in Section 4.
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The comparison of both statistical post-processing methods in improving the forecast-
ing quality as well as enhancing the uncertainty communication are discussed and
analyzed as well. Conclusion follows in Section 5.
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