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Reply on ’Review remarks on the paper "Exploring
hydrologic post-processing of ensemble stream flow

forecasts based on Affine kernel dressing and
Nondominated sorting genetic algorithm II"’

November 11, 2020

Dear Prof. Solomatine and reviewers:

Many thanks for your review comments that we received with respect to our paper.
Those valuable comments have significantly enhanced our paper. We have carefully
considered and addressed the reviewers’ comments and suggestions, which will lead
to significant revisions in many parts of the paper. Particularly, we rewrote the introduc-
tion section attached at the end of this view letter. Below we hereby provide our point
by point responses to each of the reviewer’s comments.
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1 General questions and remarks:

General question 1 : The aim of the paper should be more clearly stated already (and
earlier) in the Introduction.My impression is that we discover the aim of the study
while reading the methods and results (for instance, line 262). I also struggled to find
out what the novelty of the paper is, with regards to other existing post-processing
techniques in the literature. What is the additional (scientific or operational) value of
the paper?

Response : Many thanks for your valuable comments. We rewrote the introduction for
better clarifying our research aim. Particularly, the novelty of this paper is to emphasize
that in the practice, not only quantifying comprehensively, but also communicating
the predictive uncertainties in probabilistic forecasts effectively will become an more
essential topic progressively. And compared to the conventional post-processing
methods, such as Affine kernel dressing (AKD), how the multi objective genetic
algorithm (i.e., here, NSGA-II) can open up the opportunities to improve the forecast
quality in harmony with the forecasting aims and the specific needs of end-users.

General question 2 : Concerning the Introduction, I found it very difficult to follow the
argumentation, since I could not see the direct links between paragraphs, and, most
importantly, why the authors were raising, and long discussing, the issue of “sources of
uncertainty”: if a statistical post-processor is going to be applied, what difference does
it make if one, previously, in the raw ensemble, quantified all sources of uncertainty,
or, for instance, all but one source of uncertainty? Wouldn’t the post-processor work
equally well if we had 50 ensemble members from each hydrological model instead of
50x50 members?

Response : Operational forecasters are open to ensemble forecasting methods and
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products for assessing the flood in a probabilistic way. Their main concerns are how
to comprehensively quantify the predictive uncertainties from different sources as well
as how to use the uncertainty information for better decision-making. We rewrote
the introduction to build stronger and more logical between paragraphs. In addition
to clarifying the different sources of uncertainty in the hydrometeorological forecast
chain, we explored the possibility of using NSGA-II for better fitting the end-user’s
specific needs.

General question 3 : Also in the Introduction, overall, I think the key concepts are
not introduced very clearly and just loosely thrown in the sentences. For a reader
not used to the techniques, it becomes uncomprehensive. For instance, the whole
paragraph on lines 49-65 reads very confusing to me. We read about “bias-corrected
ensemble member”, “normally distributed data”, “predictive weights”, or “other dressing
parameters”, without much explanation about what these terms mean.

Response : Thank you for your comments. We rewrote the introduction to give a better
explanation of these terms.

General question 4 :Then from line 66 onwards, it is not clear why it is novel to apply
NSGA-II and compare it to a kernel-based dressing method. What are the advantages
of using NSGA-II? Line 70: what “different conceptualizations” are we talking about?
Line 74: what do you mean by “credibility”?

Response : Thanks! "different conceptualizations" refers that the mechanisms of
these two statistical post-processing methods (i.e., kernel-based dressing method
and NSGA-II) are different. While the term of "credibility" means "reliability". The two
techniques share one similarity from another perspective, which is they can estimate
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the probability density directly from the data (i.e., ensemble forecast) without assuming
any particular underlying distribution. The advantages of using NSGA-II is to offer the
flexibility to improve the forecast quality in harmony with the forecasting aims and the
specific needs of end-users

General question 5 : I think the authors should completely re-write the Introduction,
and think about better presenting the literature, the novel aspect of the paper and
the questions the paper wants to answer (i.e., its aim). Some review of the literature
presented in the “methods” section 3.2 (page 9, lines 179-204) should go to the
Introduction to better explain the reader why using NSGA-II could be considered a
novel aspect in this paper.

Response : Thanks. We rewrote the introduction to emphasize the novel aspect of this
study.

General question 6 : The paper investigates post-processing of ensemble forecasts
based on 5 hydrological models and 5 sub-catchments in Canada. However, there
is nothing in the paper that discusses the differences in performance among models
and sub-catchments? What drives a better/worse performance of the post-processors
used in the study? I missed some reflexions about this issue, which would certainly
increase the value of the paper. Without this reflexion, and without aggregated
(averages) results, I do not understand very well the usefulness of carrying out the
study over 5 models and 5 sub-catchments. What does this diversity of applications
bring to the analysis?

Response : Many thanks for you suggestions. We will add more analysis and
discussion for comparing the forecast performance among different models and sub-
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catchments. The emphasis of this study is to highlight that NSGA-II not only improves
the forecast performance compared to conventional post-processing methods but
also enhance the predictive uncertainty communication by setting multiple specific
objective functions from scratch.

General question 7 : I found the distinction between training and validation datasets
and criteria very confusing. For instance, we present MCRPS as a validation criteria
(section 3.3), but it is then said it is used in calibration (line 269). It is also not clear to
me why we do not have a calibration for each lead time. What is the impact of using
one unique lead time for calibration?

Response : Thanks for you comments. We will modify the criteria for calibration and
keep the MCRPS as the verifying score. Besides, the skill of flood forecasts fades
away with increasing lead time. The target ensemble has a horizon that extends
from day 1 to 7. The 4-day-ahead ensemble forecasts issued from each single-model
H-EPSs and their corresponding observations are chosen as a training dataset, since
it locates in the middle of the forecast horizon as a compromise.

General question 8 : Much of the justification for the selection of the study area comes
from its operational role in reservoir management. However, the post-processing
application presented in the paper is based on a “non-operational” context: the
parameters of the post-processor are calibrated over the entire data available (not over
a split sample) for a given lead time (4 days) and validated over different lead times.
Operationally, though, a forecaster would have to calibrate the post-processor over a
long series of past pairs of forecasts and observations, and apply it to a different set
of real-time forecast (for which the observations are not yet available). What are the
implications of the method proposed for an operational service? Would the operational
service be fine with a post-processing that is optimized for a 4-day lead time? Is that
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the lead-time that most count for the service when forecasting over these catchments?
Maybe some lines of discussion would be interesting in the final section of the paper.

Response : Thanks for you valuable suggestions. We will add more discussion and
reflexions in the final section to explore what potential benefits will post-processing
techniques will bring to the operational services.

2 Specific questions and remarks:

Specific question 1 : lines 23-24: these sentences are not very clear to me.

Response : Thanks. We will rewrote the abstract as well to make it more clear.

Specific question 2 : line 38: what are the three main sources mentioned?

Response : These different sources of uncertainty are related to deficiencies in the:
(1) meteorological forcing; (2) mis-specified hydrologic initial and boundary condi-
tions; (3) inherent hydrologic model structure errors, and biased estimated parameters.

Specific question 3 : line 47-48: what are the implications of autocorrelation in the
post-processing? Besides, aren’t meteorological forecasts also auto-correlated? Why
is it specifically a problem to hydrological forecasts?

Response : Yes, the autocorrelation is the problem for both meteorological forecasts
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and hydrological forecasts. We deleted this description in the updated version of
introduction.

Specific question 4 : Fig. 2: I understand these are daily streamflow (it is written:
mm/day) averaged over each month, and not monthly streamflows. Is that so? The
caption should state the period over which the averages were obtained.

Response : Yes, these are daily streamflow (mm/day) averaged over each month. We
will modify the caption. Thanks.

Specific question 5 : Table 1: I do not understand the data on reservoir area: why
it is important to this paper? Furthermore, I do not understand all these physical
and climatic data provided: if the results are not going to be interpreted according to
the characteristics of the catchments, why are these characteristics presented in the
table? In what do they influence the results?

Response : Thanks. We will modify this table to keep the useful characteristics
especially for this study.

Specific question 6 : Line 122: why have you chosen 5 models and why not work with
the 20 models? If this is a matter of computational time, could you explain it to the
reader? How long it takes to post-process one single model H-EPS?

Response : All of these 5 models are lumped models. They are representative of the
20 models. It is more of a layout concern rather than computation time.
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Specific question 7 : Line 136: I am used to forecast post-processing, but not with the
term “ensemble interpretation method” or “interpreted ensemble (line 157). I would be
happy with more explanations here.

Response : Thanks. We will add more useful explanations here.

Specific question 8 : Line 147: correct English

Response : We will rephrase this content.

Specific question 9 : Line 169: what is this rule of thumb? Please, clarify.

Response : Thanks. We will add more explanation about this parameter hS (Silverman,
1986) in the methodology section.

Specific question 10 : Equations, overall: it seems to me that not all terms are always
defined, explained after the equations where they are presented. r1, r2, s1, s2, etc.
zi is lower case in equation 10 but upper case in equation 11. a is alpha (line 169)?
Please, check the equations and the way terms are presented.

Response : Thanks. We will check all those equations and define all related terms.

Specific question 11 : Line 175: “Eq. (6) can be further defined”, should maybe be
replaced to “can be re-written”
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Response : Thanks. We will rephrase it as "can be re-written".

Specific question 12 : Line 205: Xt was already defined in line 143. Please, check.

Response : Thanks. Yes, it is. We will remove the description of Xt in Line 205.

Specific question 13 : Line 191, 192: I tend not to agree with the authors. I think
“accuracy” is what is first of all searched when issuing a forecast at a given day for a
short lead time such as 7 days. This is specially the case for flood events, for instance.
Please, explain your arguments.

Response : Thanks. Yes, probabilistic forecasts must be, first of all, accurate. We will
rephrase this paragraph.

Specific question 14 : Lines 195-196: not very clear to me. Hydrologists may rely on
NSE, but for simulations (long time series), not necessarily for forecasters. Please,
clarify.

Response : Thanks. We will add more clarification here.

Specific question 15 : Line 200: I do not understand “elitist”. Please, clarify.

Response : The Nondominated sorting genetic algorithm II (NSGA-II; Deb et al. (2002))
is admitted as a fast and elitist multiobjective genetic algorithm, adopted for searching
for the Pareto solution set. I will add more description about the "elitism" of NGSA-II in
section 3.2.
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Specific question 16 : Line 215: the concept of crowding distance was not clear to me.
Please, clarify.

Response : Thanks. I will add more description about the "crowding distance" of
NGSA-II in section 3.2.

Specific question 17 : line 235: was the MCRPS calculated using empirical distribu-
tions or a fitted theoretical distribution? Please, clarify.

Response : Thanks. We will clarify this in the section 3.3.

Specific question 18 : line 238: why do you need both, MAE and MSE?

Response : Thanks. We will only keep MSE later.

Specific question 19 : line 248-249: I do not understand why the Taylor diagram is
mentioned here. Did you use it? How? Can you explain it?

Response : Thanks. We will remove this short description of the Taylor diagram.

Specific question 20 : Figure 3: where do we find “w” in the text (output of NSGA-II in
the figure)?

Response :Thanks. We will redraw this flowchart and provide more details.
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Specific question 21 : lines 287-288: it is not unexpected that forecast performance
decreases with lead time. I do no understand why it is “revealed” here. Please, clarify.

Response :Thanks. We will rephrase this sentence.

Specific question 22 : lines 293-294: check for the English language.

Response : Thanks. We will check the English here.

Specific question 23 : line 324: delete “In the meanwhile,”

Response : Thanks. We will delete "In the meanwhile,".

Specific question 24 : line 335: I understand that “error growth” is usually depicted
as an increase in spread with lead time and decrease in accuracy. Why should it be
maintained for a single model H-EPS if the post-processor was calibrated for 4 days of
lead time only and applied to other lead times? Please, clarify.

Response : Thanks. The target ensemble has a horizon that extends from day 1 to
7. The 4-day-ahead ensemble forecasts issued from each single-model H-EPSs and
their corresponding observations are chosen as a training dataset, since it locates in
the middle of the forecast horizon as a compromise. We will add more clarification here.

Specific question 25 : Figure 9 is not explained in the text (notably the number of lines
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in each graph). Also, why AKD seems to work well with M05?

Response : We will add more explanations in text about Figure 9.

Specific question 26 : line 343-344: not clear; please, revise it.

Response : Thanks. We will rephrase this paragraph.

Specific question 27 : line 345: figure 10 shows much more than spread. Please,
clarify when presenting (fully) the figure.

Response : Thanks. We will modify the description and analysis for Figure 10.

Specific question 28 : Figure 10 is very difficult to read. It is not clear (BW print) which
graph is AKD, which is NSGA-II. We can barely see what is inside the figure. I think it
needs to be re-designed.

Response : We will enlarge the figure size and add more analysis corresponding to
Figure 10.

Specific question 29 : Overall, terminology could be uniformed (ex., use of AKD).

Response : Thanks. We will uniform the terminology in the whole paper.

Specific question 30 : It is a pity that the paper does not have a discussion section. I
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would suggest the authors to introduce one, commenting further the results obtained,
comparing post-processing performance among catchments (i.e., geographic location)
and hydrological models in a summarized way. This piece of work is missing in
the paper and would better justify the use of several catchments and models in the
analysis.

Response : Thanks for this suggestion. We will add further discussion section about:
(1) comparing post-processing performance among catchments hydrological models in
a summarized way; (2) highlight the novelty and potential benefits that post-processing
techniques may bring to the operational services.

3 Introduction

Hydrologic forecasting is crucial for flood warning and mitigation (e.g., Shim and
Fontane, 2002; Cheng and Chau, 2004), water supply operation and reservoir man-
agement (e.g., Datta and Burges, 1984; Coulibaly et al., 2000; Boucher et al., 2011),
navigation, and other related activities. Sufficient risk awareness, enhanced disaster
preparedness in the flood mitigation measures, and strengthened early warning sys-
tems are crucial in reducing the weather-related event losses. Hydrologic models are
typically driven by dynamic meteorological models in order to issue forecasts over a
medium range horizon of 2 to 15 days (Cloke and Pappenberger, 2009). This kind of
coupled hydrometeorologic forecasting systems are admitted as effective tools to is-
sue longer lead times. Inherent in the coupled hydrometeorologic forecasting systems,
some predictive uncertainties are then inevitable given the limits of knowledge and
available information (Ajami et al., 2007). In fact, those uncertainties occur all along
the different steps of the hydrometeorological modeling chain (e.g., Liu and Gupta,
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2007; Beven and Binley, 2014). These different sources of uncertainty are related to
deficiencies in the meteorological forcing, mis-specified hydrologic initial and boundary
conditions, inherent hydrologic model structure errors, and biased estimated parame-
ters (e.g., Vrugt and Robinson, 2007; Ajami et al., 2007; Salamon and Feyen, 2010;
Thiboult et al., 2016). Among most cases, a single deterministic forecasts turns out to
be way more insufficient.

Many substantive theories have been proposed in order to quantify and reduce the dif-
ferent sources of cascading forecast uncertainties and to add good values to flood fore-
casting and warning. Among them, the superiority of ensemble forecasting systems in
quantifying the propagation of predictive uncertainties (over deterministic systems) is
now well established (e.g., Cloke and Pappenberger, 2009; Palmer, 2002; Seo et al.,
2006; Velázquez et al., 2009; Abaza et al., 2013; Wetterhall et al., 2013; Madadgar et
al., 2014). Numerous challenges have been well tackled, for example: (1) meteoro-
logical ensemble prediction systems (M-EPSs) (e.g., Palmer, 1993; Houtekamer et al.,
1996; Toth and Kalnay, 1997) are refined and operated worldwide by national agen-
cies such as the European Centre for Medium-Range Weather Forecasts (ECMWF),
the National Center for Environmental Prediction (NCEP), the Meteorological Service
of Canada (MSC), and more; (2) the forecast accuracy is highly improved by adopting
higher resolution data collection and assimilation. Sequential data assimilation tech-
niques, such as the particle filter (e.g., Moradkhani et al., 2012; Thirel et al., 2013) and
the ensemble Kalman filter (e.g., Evensen , 1994; Reichle et al., 2002; Moradkhani et
al, 2005; McMillan et al., 2013) provide an ensemble of possible re-initializations of the
initial conditions, expressed in the hydrologic model as state variables, such as soil
moisture, groundwater level and so on; (3) forecasting skills of the coupled hydromete-
orologic forecasting systems are also improved by tracking predictive errors using the
full uncertainty analysis. Multimodel schemes were proposed to increase performance
and decipher structural uncertainty (e.g., Duan et al., 2007; Fisher et al., 2008; Weigel
et al., 2008; Najafi et al., 2011; Velázquez et al., 2011; Marty et al., 2015; Mockler
et al., 2016). Thiboult et al. (2016) compared many H-EPS, accounting for the three

C16

https://hess.copernicus.org/preprints/
https://hess.copernicus.org/preprints/hess-2020-238/hess-2020-238-AC1-print.pdf
https://hess.copernicus.org/preprints/hess-2020-238
http://creativecommons.org/licenses/by/3.0/


HESSD

Interactive
comment

Printer-friendly version

Discussion paper

main sources of uncertainties located along the hydrometeorological modeling chain.
They pointed out that EnKF probabilistic data assimilation provided most of the dis-
persion for the early forecasting horizons but failed in maintaining its effectiveness with
increasing lead times. A multimodel scheme allowed sharper and more reliable ensem-
ble predictions over a longer forecast horizon; (4) statistical hydrologic post-processing
component is added in the H-EPS for rectifying biases and dispersion errors (i.e., too
narrow/too large) are numerous, as reviewed by Li et al. (2017). It is noteworthy that
many hydrologic variables, such as discharge, follow a skewed distribution (i.e., low
probability associated to the highest streamflow values), which complicates the task.
Usually, in a hydrologic ensemble prediction system (H-EPS) framework (e.g., Schaake
et al., 2007; Cloke and Pappenberger, 2009; Velázquez et al., 2009; Boucher et al.,
2012; Abaza et al., 2017), the post-processing procedure over the atmospheric input
ensemble is often referred as pre-processing, while post-processing aims at improving
the hydrologic ensemble forecasting outputs.

However, another challenge still remains: how to improve the human interpretation of
probabilistic forecasts and the communication of integrated ensemble forecast prod-
ucts to end-users (e.g., operational hydrologists, water managers, local conservation
authorities, stakeholders and other relevant decision makers). This step is considered
to be the key part of facilitating the implementation of H-EPS in real-time operational
forecasting effectively. Buizza et al. (2007) emphasized that both functional and tech-
nical qualities are supposed to be assessed for evaluating the overall forecast value of
a hydrometeorologic forecasts. Ramos et al. (2010) further noted that the best way to
communicate probabilistic forecast and interpret its usefulness should be in harmony
with the goals of the forecasting system and the specific needs of end-users. She
also demonstrated the main achievements from two studies obtained from a Member
States workshop (Thielen et al., 2005) role-play game and another survey to explore
the users’ risk perception of forecasting uncertainties and how they dealt with uncertain
forecasts for decision-making. The results revealed that there is still space for enhanc-
ing the forecasters’ knowledge and experience on bridge the community gap between
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predictive uncertainties quantification and effective decision-making.

Hence, in practice, which forecast quality impacts a given decision the most? Different
end-users share their unique requirements: Crochemore et al. (2017) produced the
seasonal streamflow forecasting by conditioning climatology with precipitations indices
(SPI3). Forecast reliability, sharpness (i.e., spread), overall performance and low-flow
event detection were verified to assess the conditioning impact. In some cases, the re-
liability and sharpness could be improved simultaneously while more often, there was
a trade-off between them. Another IMPREX project conduct an optimization for the
reservoir-based hydropower production to explore the relationship between the fore-
cast quality and economic values. They found that an over-estimation comes along
with more penalization. In the operational filed, not only quantifying, but also com-
municating the predictive uncertainties in probabilistic forecasts will become an more
essential topic progressively.

The study is a contribution to probe this topic by exploring hydrological post-processing
of ensemble streamflow forecasts based on Affine kernel dressing and Non-dominated
sorting genetic algorithm II. The mechanisms of these two statistical post-processing
methods are completely different, however, they share one similarity from another per-
spective, which is they can estimate the probability density directly from the data (i.e.,
ensemble forecast) without assuming any particular underlying distribution. As a more
conventional method, Silverman (1986) firstly proposed the kernel density smooth-
ing method to estimate the distribution from the data by centering a kernel function
K that determines the shape of a probability distribution (kernel) fitted around every
data point (i.e., the bias-corrected ensemble member). The smooth kernel estimate
is then the sum of those kernels. As for the choice of bandwidth h of each dress-
ing kernel, Silverman’s rule of thumb finds an optimal h by assuming that the data is
normally distributed. Improvements to the original idea were soon to follow. For in-
stance, the improved Sheather Jones (ISJ) algorithm is more suitable and robust with
respect to multimodality (Wand and Jones, 1994). Roulston and Smith (2003) rely on
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the series of “best forecasts” (i.e., best-member dressing) to compute the kernel band-
width. Wang and Bishop (2005) as well as Fortin et al. (2006) further improved the best
member method. The later advocated that the more extreme ensemble members are
more likely to be the best member of raw under-dispersive forecasts, while the central
members tend to be more “precise” for over-dispersive ensemble. They proposed the
idea that different predictive weights should be set over each ensemble member, given
each member’s rank within the ensemble. Instead of standard dressing kernels that
act on individual ensemble members, Bröcker and Smith (2008) proposed the affine
kernel dressing (AKD) by assuming an affine mapping between ensemble and obser-
vation over the entire ensemble. The mapping parameters are determined from the
training data simultaneously with the other dressing parameters. They approximate
the distribution of the observation given the ensemble.

While the other post-processor of Non-dominated sorting genetic algorithm II (NSGA-
II) open up the opportunity of improving the forecast quality in harmony with the fore-
casting aims and the specific needs of end-users. Given the single-model H-EPSs
studied here, the hydrologic ensemble is generated by activating two forecasting tools:
the ensemble weather forecast and the EnKF. Henceforth, enhancing the H-EPS fore-
casting skill by assigning different credibility to ensemble members becomes preferred
than reducing the number of members. Multiple objective functions (i.e., here, verifying
scores) for evaluating the forecasting performances of the H-EPS are selected to guide
the optimization process. The expected output is a group of solutions, also known as
Pareto fronts, that can give the trade-offs between different objectives. Other post-
processing techniques, like the Non-dominated sorting genetic algorithm II (NSGA-II),
are now common (e.g., Liong et al., 2001; De Vos and Rientjes, 2007; Confesor and
Whittaker, 2007). Such techniques are conceptually linked to the multiobjective param-
eter calibration of hydrologic models using Pareto approaches. Indeed, formulating a
model structure or representing the hydrologic processes using a unique global optimal
parameter set proves to be very subjective. Multiple optimal parameter sets exist with
satisfying behavior given the different conceptualizations, albeit not identical Beven and
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Binley (1992). For example, Brochero et al. (2013) utilized the Pareto fronts generated
with NSGA-II for selecting the “best” ensemble from a hydrologic forecasting model
with a pool of 800 streamflow predictors, in order to reduce the H-EPS complexity.

In this study, the daily streamflow ensemble forecasts issued from five single-model
H-EPSs over the Gatineau River (Province of Québec, Canada) are post-processed.
Details about the study area, hydrologic models, and hydrometeorologic data are de-
scribed in Section 2. Section 3 explains the methodology and training strategy of Affine
kernel dressing (AKD) and Non-dominated sorting genetic algorithm II (NSGA-II) meth-
ods, in parallel with the scoring rules that evaluate the performance of the forecasts.
Specific concepts associated with those scores are also introduced in this section. Pre-
dictive distribution estimation based on the five single-model H-EPSs configurations,
which lack accounting for the model structure uncertainty, is presented in Section 4.
The comparison of both statistical post-processing methods in improving the forecast-
ing quality as well as enhancing the uncertainty communication are discussed and
analyzed as well. Conclusion follows in Section 5.
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