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Dear Prof. Solomatine and reviewers:

Many thanks for your review comments that we received with respect to our paper. Those valuable comments have signifi-

cantly enhanced our paper. We have carefully considered and addressed the reviewers’ comments and suggestions, which will

lead to significant revisions in many parts of the paper. Particularly, we rewrote the introduction section attached at the end of

this view letter. Below we hereby provide our point by point responses to each of the reviewer’s comments.5

1 General questions and remarks:

General question 1 : The aim of the paper should be more clearly stated already (and earlier) in the Introduction.My impres-

sion is that we discover the aim of the study while reading the methods and results (for instance, line 262). I also struggled to

find out what the novelty of the paper is, with regards to other existing post-processing techniques in the literature. What is the

additional (scientific or operational) value of the paper?10

Response : Many thanks for your valuable comments. We rewrote the introduction for better clarifying our research aim.

Particularly, the novelty of this paper is to emphasize that in the practice, not only quantifying comprehensively, but also com-

municating the predictive uncertainties in probabilistic forecasts effectively will become an more essential topic progressively.

And compared to the conventional post-processing methods, such as Affine kernel dressing (AKD), how the multi objective15

genetic algorithm (i.e., here, NSGA-II) can open up the opportunities to improve the forecast quality in harmony with the

forecasting aims and the specific needs of end-users.

General question 2 : Concerning the Introduction, I found it very difficult to follow the argumentation, since I could not

see the direct links between paragraphs, and, most importantly, why the authors were raising, and long discussing, the issue of20

“sources of uncertainty”: if a statistical post-processor is going to be applied, what difference does it make if one, previously,

in the raw ensemble, quantified all sources of uncertainty, or, for instance, all but one source of uncertainty? Wouldn’t the
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post-processor work equally well if we had 50 ensemble members from each hydrological model instead of 50x50 members?

Response : Operational forecasters are open to ensemble forecasting methods and products for assessing the flood in a25

probabilistic way. Their main concerns are how to comprehensively quantify the predictive uncertainties from different sources

as well as how to use the uncertainty information for better decision-making. We rewrote the introduction to build stronger

and more logical between paragraphs. In addition to clarifying the different sources of uncertainty in the hydrometeorological

forecast chain, we explored the possibility of using NSGA-II for better fitting the end-user’s specific needs.

30

General question 3 : Also in the Introduction, overall, I think the key concepts are not introduced very clearly and just

loosely thrown in the sentences. For a reader not used to the techniques, it becomes uncomprehensive. For instance, the whole

paragraph on lines 49-65 reads very confusing to me. We read about “bias-corrected ensemble member”, “normally distributed

data”, “predictive weights”, or “other dressing parameters”, without much explanation about what these terms mean.

35

Response : Thank you for your comments. We rewrote the introduction to give a better explanation of these terms.

General question 4 :Then from line 66 onwards, it is not clear why it is novel to apply NSGA-II and compare it to a

kernel-based dressing method. What are the advantages of using NSGA-II? Line 70: what “different conceptualizations” are

we talking about? Line 74: what do you mean by “credibility”?40

Response : Thanks! "different conceptualizations" refers that the mechanisms of these two statistical post-processing meth-

ods (i.e., kernel-based dressing method and NSGA-II) are different. While the term of "credibility" means "reliability". The

two techniques share one similarity from another perspective, which is they can estimate the probability density directly from

the data (i.e., ensemble forecast) without assuming any particular underlying distribution. The advantages of using NSGA-II45

is to offer the flexibility to improve the forecast quality in harmony with the forecasting aims and the specific needs of end-users

General question 5 : I think the authors should completely re-write the Introduction, and think about better presenting the

literature, the novel aspect of the paper and the questions the paper wants to answer (i.e., its aim). Some review of the literature

presented in the “methods” section 3.2 (page 9, lines 179-204) should go to the Introduction to better explain the reader why50

using NSGA-II could be considered a novel aspect in this paper.

Response : Thanks. We rewrote the introduction to emphasize the novel aspect of this study.

General question 6 : The paper investigates post-processing of ensemble forecasts based on 5 hydrological models and 555

sub-catchments in Canada. However, there is nothing in the paper that discusses the differences in performance among models

and sub-catchments? What drives a better/worse performance of the post-processors used in the study? I missed some reflex-
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ions about this issue, which would certainly increase the value of the paper. Without this reflexion, and without aggregated

(averages) results, I do not understand very well the usefulness of carrying out the study over 5 models and 5 sub-catchments.

What does this diversity of applications bring to the analysis?60

Response : Many thanks for you suggestions. We will add more analysis and discussion for comparing the forecast perfor-

mance among different models and sub-catchments. The emphasis of this study is to highlight that NSGA-II not only improves

the forecast performance compared to conventional post-processing methods but also enhance the predictive uncertainty com-

munication by setting multiple specific objective functions from scratch.65

General question 7 : I found the distinction between training and validation datasets and criteria very confusing. For in-

stance, we present MCRPS as a validation criteria (section 3.3), but it is then said it is used in calibration (line 269). It is

also not clear to me why we do not have a calibration for each lead time. What is the impact of using one unique lead time for

calibration?70

Response : Thanks for you comments. We will modify the criteria for calibration and keep the MCRPS as the verifying

score. Besides, the skill of flood forecasts fades away with increasing lead time. The target ensemble has a horizon that extends

from day 1 to 7. The 4-day-ahead ensemble forecasts issued from each single-model H-EPSs and their corresponding observa-

tions are chosen as a training dataset, since it locates in the middle of the forecast horizon as a compromise.75

General question 8 : Much of the justification for the selection of the study area comes from its operational role in reser-

voir management. However, the post-processing application presented in the paper is based on a “non-operational” context:

the parameters of the post-processor are calibrated over the entire data available (not over a split sample) for a given lead time

(4 days) and validated over different lead times. Operationally, though, a forecaster would have to calibrate the post-processor80

over a long series of past pairs of forecasts and observations, and apply it to a different set of real-time forecast (for which

the observations are not yet available). What are the implications of the method proposed for an operational service? Would

the operational service be fine with a post-processing that is optimized for a 4-day lead time? Is that the lead-time that most

count for the service when forecasting over these catchments? Maybe some lines of discussion would be interesting in the final

section of the paper.85

Response : Thanks for you valuable suggestions. We will add more discussion and reflexions in the final section to explore

what potential benefits will post-processing techniques will bring to the operational services.
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2 Specific questions and remarks:90

Specific question 1 : lines 23-24: these sentences are not very clear to me.

Response : Thanks. We will rewrote the abstract as well to make it more clear.

Specific question 2 : line 38: what are the three main sources mentioned?95

Response : These different sources of uncertainty are related to deficiencies in the: (1) meteorological forcing; (2) mis-

specified hydrologic initial and boundary conditions; (3) inherent hydrologic model structure errors, and biased estimated

parameters.

100

Specific question 3 : line 47-48: what are the implications of autocorrelation in the post-processing? Besides, aren’t mete-

orological forecasts also auto-correlated? Why is it specifically a problem to hydrological forecasts?

Response : Yes, the autocorrelation is the problem for both meteorological forecasts and hydrological forecasts. We deleted

this description in the updated version of introduction.105

Specific question 4 : Fig. 2: I understand these are daily streamflow (it is written: mm/day) averaged over each month, and

not monthly streamflows. Is that so? The caption should state the period over which the averages were obtained.

Response : Yes, these are daily streamflow (mm/day) averaged over each month. We will modify the caption. Thanks.110

Specific question 5 : Table 1: I do not understand the data on reservoir area: why it is important to this paper? Furthermore,

I do not understand all these physical and climatic data provided: if the results are not going to be interpreted according to the

characteristics of the catchments, why are these characteristics presented in the table? In what do they influence the results?

115

Response : Thanks. We will modify this table to keep the useful characteristics especially for this study.

Specific question 6 : Line 122: why have you chosen 5 models and why not work with the 20 models? If this is a matter

of computational time, could you explain it to the reader? How long it takes to post-process one single model H-EPS?

120

Response : All of these 5 models are lumped models. They are representative of the 20 models. It is more of a layout con-

cern rather than computation time.
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Specific question 7 : Line 136: I am used to forecast post-processing, but not with the term “ensemble interpretation

method” or “interpreted ensemble (line 157). I would be happy with more explanations here.125

Response : Thanks. We will add more useful explanations here.

Specific question 8 : Line 147: correct English

130

Response : We will rephrase this content.

Specific question 9 : Line 169: what is this rule of thumb? Please, clarify.

Response : Thanks. We will add more explanation about this parameter hS (Silverman, 1986) in the methodology section.135

Specific question 10 : Equations, overall: it seems to me that not all terms are always defined, explained after the equations

where they are presented. r1, r2, s1, s2, etc. zi is lower case in equation 10 but upper case in equation 11. a is alpha (line 169)?

Please, check the equations and the way terms are presented.

140

Response : Thanks. We will check all those equations and define all related terms.

Specific question 11 : Line 175: “Eq. (6) can be further defined”, should maybe be replaced to “can be re-written”

Response : Thanks. We will rephrase it as "can be re-written".145

Specific question 12 : Line 205: Xt was already defined in line 143. Please, check.

Response : Thanks. Yes, it is. We will remove the description of Xt in Line 205.

150

Specific question 13 : Line 191, 192: I tend not to agree with the authors. I think “accuracy” is what is first of all searched

when issuing a forecast at a given day for a short lead time such as 7 days. This is specially the case for flood events, for

instance. Please, explain your arguments.

Response : Thanks. Yes, probabilistic forecasts must be, first of all, accurate. We will rephrase this paragraph.155
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Specific question 14 : Lines 195-196: not very clear to me. Hydrologists may rely on NSE, but for simulations (long time

series), not necessarily for forecasters. Please, clarify.

Response : Thanks. We will add more clarification here.160

Specific question 15 : Line 200: I do not understand “elitist”. Please, clarify.

Response : The Nondominated sorting genetic algorithm II (NSGA-II; Deb et al. (2002)) is admitted as a fast and eli-

tist multiobjective genetic algorithm, adopted for searching for the Pareto solution set. I will add more description about the165

"elitism" of NGSA-II in section 3.2.

Specific question 16 : Line 215: the concept of crowding distance was not clear to me. Please, clarify.

Response : Thanks. I will add more description about the "crowding distance" of NGSA-II in section 3.2.170

Specific question 17 : line 235: was the MCRPS calculated using empirical distributions or a fitted theoretical distribu-

tion? Please, clarify.

Response : Thanks. We will clarify this in the section 3.3.175

Specific question 18 : line 238: why do you need both, MAE and MSE?

Response : Thanks. We will only keep MSE later.

180

Specific question 19 : line 248-249: I do not understand why the Taylor diagram is mentioned here. Did you use it? How?

Can you explain it?

Response : Thanks. We will remove this short description of the Taylor diagram.

185

Specific question 20 : Figure 3: where do we find “w” in the text (output of NSGA-II in the figure)?

Response :Thanks. We will redraw this flowchart and provide more details.
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Specific question 21 : lines 287-288: it is not unexpected that forecast performance decreases with lead time. I do no190

understand why it is “revealed” here. Please, clarify.

Response :Thanks. We will rephrase this sentence.

Specific question 22 : lines 293-294: check for the English language.195

Response : Thanks. We will check the English here.

Specific question 23 : line 324: delete “In the meanwhile,”

200

Response : Thanks. We will delete "In the meanwhile,".

Specific question 24 : line 335: I understand that “error growth” is usually depicted as an increase in spread with lead time

and decrease in accuracy. Why should it be maintained for a single model H-EPS if the post-processor was calibrated for 4

days of lead time only and applied to other lead times? Please, clarify.205

Response : Thanks. The target ensemble has a horizon that extends from day 1 to 7. The 4-day-ahead ensemble forecasts

issued from each single-model H-EPSs and their corresponding observations are chosen as a training dataset, since it locates

in the middle of the forecast horizon as a compromise. We will add more clarification here.

210

Specific question 25 : Figure 9 is not explained in the text (notably the number of lines in each graph). Also, why AKD

seems to work well with M05?

Response : We will add more explanations in text about Figure 9.

215

Specific question 26 : line 343-344: not clear; please, revise it.

Response : Thanks. We will rephrase this paragraph.

Specific question 27 : line 345: figure 10 shows much more than spread. Please, clarify when presenting (fully) the figure.220

Response : Thanks. We will modify the description and analysis for Figure 10.
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Specific question 28 : Figure 10 is very difficult to read. It is not clear (BW print) which graph is AKD, which is NSGA-II.

We can barely see what is inside the figure. I think it needs to be re-designed.225

Response : We will enlarge the figure size and add more analysis corresponding to Figure 10.

Specific question 29 : Overall, terminology could be uniformed (ex., use of AKD).

230

Response : Thanks. We will uniform the terminology in the whole paper.

Specific question 30 : It is a pity that the paper does not have a discussion section. I would suggest the authors to introduce

one, commenting further the results obtained, comparing post-processing performance among catchments (i.e., geographic lo-

cation) and hydrological models in a summarized way. This piece of work is missing in the paper and would better justify the235

use of several catchments and models in the analysis.

Response : Thanks for this suggestion. We will add further discussion section about: (1) comparing post-processing per-

formance among catchments hydrological models in a summarized way; (2) highlight the novelty and potential benefits that

post-processing techniques may bring to the operational services.240

3 Introduction

Hydrologic forecasting is crucial for flood warning and mitigation (e.g., Shim and Fontane, 2002; Cheng and Chau, 2004),

water supply operation and reservoir management (e.g., Datta and Burges, 1984; Coulibaly et al., 2000; Boucher et al., 2011),

navigation, and other related activities. Sufficient risk awareness, enhanced disaster preparedness in the flood mitigation mea-245

sures, and strengthened early warning systems are crucial in reducing the weather-related event losses. Hydrologic models

are typically driven by dynamic meteorological models in order to issue forecasts over a medium range horizon of 2 to 15

days (Cloke and Pappenberger, 2009). This kind of coupled hydrometeorologic forecasting systems are admitted as effective

tools to issue longer lead times. Inherent in the coupled hydrometeorologic forecasting systems, some predictive uncertainties

are then inevitable given the limits of knowledge and available information (Ajami et al., 2007). In fact, those uncertainties250

occur all along the different steps of the hydrometeorological modeling chain (e.g., Liu and Gupta, 2007; Beven and Binley,

2014). These different sources of uncertainty are related to deficiencies in the meteorological forcing, mis-specified hydrologic

initial and boundary conditions, inherent hydrologic model structure errors, and biased estimated parameters (e.g., Vrugt and

Robinson, 2007; Ajami et al., 2007; Salamon and Feyen, 2010; Thiboult et al., 2016). Among most cases, a single deterministic

forecasts turns out to be way more insufficient.255
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Many substantive theories have been proposed in order to quantify and reduce the different sources of cascading forecast

uncertainties and to add good values to flood forecasting and warning. Among them, the superiority of ensemble forecasting

systems in quantifying the propagation of predictive uncertainties (over deterministic systems) is now well established (e.g.,

Cloke and Pappenberger, 2009; Palmer, 2002; Seo et al., 2006; Velázquez et al., 2009; Abaza et al., 2013; Wetterhall et al., 2013;

Madadgar et al., 2014). Numerous challenges have been well tackled, for example: (1) meteorological ensemble prediction260

systems (M-EPSs) (e.g., Palmer, 1993; Houtekamer et al., 1996; Toth and Kalnay, 1997) are refined and operated worldwide

by national agencies such as the European Centre for Medium-Range Weather Forecasts (ECMWF), the National Center

for Environmental Prediction (NCEP), the Meteorological Service of Canada (MSC), and more; (2) the forecast accuracy is

highly improved by adopting higher resolution data collection and assimilation. Sequential data assimilation techniques, such

as the particle filter (e.g., Moradkhani et al., 2012; Thirel et al., 2013) and the ensemble Kalman filter (e.g., Evensen , 1994;265

Reichle et al., 2002; Moradkhani et al, 2005; McMillan et al., 2013) provide an ensemble of possible re-initializations of the

initial conditions, expressed in the hydrologic model as state variables, such as soil moisture, groundwater level and so on; (3)

forecasting skills of the coupled hydrometeorologic forecasting systems are also improved by tracking predictive errors using

the full uncertainty analysis. Multimodel schemes were proposed to increase performance and decipher structural uncertainty

(e.g., Duan et al., 2007; Fisher et al., 2008; Weigel et al., 2008; Najafi et al., 2011; Velázquez et al., 2011; Marty et al., 2015;270

Mockler et al., 2016). Thiboult et al. (2016) compared many H-EPS, accounting for the three main sources of uncertainties

located along the hydrometeorological modeling chain. They pointed out that EnKF probabilistic data assimilation provided

most of the dispersion for the early forecasting horizons but failed in maintaining its effectiveness with increasing lead times.

A multimodel scheme allowed sharper and more reliable ensemble predictions over a longer forecast horizon; (4) statistical

hydrologic post-processing component is added in the H-EPS for rectifying biases and dispersion errors (i.e., too narrow/too275

large) are numerous, as reviewed by Li et al. (2017). It is noteworthy that many hydrologic variables, such as discharge, follow

a skewed distribution (i.e., low probability associated to the highest streamflow values), which complicates the task. Usually,

in a hydrologic ensemble prediction system (H-EPS) framework (e.g., Schaake et al., 2007; Cloke and Pappenberger, 2009;

Velázquez et al., 2009; Boucher et al., 2012; Abaza et al., 2017), the post-processing procedure over the atmospheric input

ensemble is often referred as pre-processing, while post-processing aims at improving the hydrologic ensemble forecasting280

outputs.

However, another challenge still remains: how to improve the human interpretation of probabilistic forecasts and the com-

munication of integrated ensemble forecast products to end-users (e.g., operational hydrologists, water managers, local con-

servation authorities, stakeholders and other relevant decision makers). This step is considered to be the key part of facilitating

the implementation of H-EPS in real-time operational forecasting effectively. Buizza et al. (2007) emphasized that both func-285

tional and technical qualities are supposed to be assessed for evaluating the overall forecast value of a hydrometeorologic

forecasts. Ramos et al. (2010) further noted that the best way to communicate probabilistic forecast and interpret its usefulness

should be in harmony with the goals of the forecasting system and the specific needs of end-users. She also demonstrated

the main achievements from two studies obtained from a Member States workshop (Thielen et al., 2005) role-play game and

another survey to explore the users’ risk perception of forecasting uncertainties and how they dealt with uncertain forecasts290
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for decision-making. The results revealed that there is still space for enhancing the forecasters’ knowledge and experience on

bridge the community gap between predictive uncertainties quantification and effective decision-making.

Hence, in practice, which forecast quality impacts a given decision the most? Different end-users share their unique require-

ments: Crochemore et al. (2017) produced the seasonal streamflow forecasting by conditioning climatology with precipitations

indices (SPI3). Forecast reliability, sharpness (i.e., spread), overall performance and low-flow event detection were verified to295

assess the conditioning impact. In some cases, the reliability and sharpness could be improved simultaneously while more of-

ten, there was a trade-off between them. Another IMPREX project conduct an optimization for the reservoir-based hydropower

production to explore the relationship between the forecast quality and economic values. They found that an over-estimation

comes along with more penalization. In the operational filed, not only quantifying, but also communicating the predictive

uncertainties in probabilistic forecasts will become an more essential topic progressively.300

The study is a contribution to probe this topic by exploring hydrological post-processing of ensemble streamflow forecasts

based on Affine kernel dressing and Non-dominated sorting genetic algorithm II. The mechanisms of these two statistical

post-processing methods are completely different, however, they share one similarity from another perspective, which is they

can estimate the probability density directly from the data (i.e., ensemble forecast) without assuming any particular underly-

ing distribution. As a more conventional method, Silverman (1986) firstly proposed the kernel density smoothing method to305

estimate the distribution from the data by centering a kernel function K that determines the shape of a probability distribution

(kernel) fitted around every data point (i.e., the bias-corrected ensemble member). The smooth kernel estimate is then the sum

of those kernels. As for the choice of bandwidth h of each dressing kernel, Silverman’s rule of thumb finds an optimal h by as-

suming that the data is normally distributed. Improvements to the original idea were soon to follow. For instance, the improved

Sheather Jones (ISJ) algorithm is more suitable and robust with respect to multimodality (Wand and Jones, 1994). Roulston310

and Smith (2003) rely on the series of “best forecasts” (i.e., best-member dressing) to compute the kernel bandwidth. Wang

and Bishop (2005) as well as Fortin et al. (2006) further improved the best member method. The later advocated that the more

extreme ensemble members are more likely to be the best member of raw under-dispersive forecasts, while the central mem-

bers tend to be more “precise” for over-dispersive ensemble. They proposed the idea that different predictive weights should

be set over each ensemble member, given each member’s rank within the ensemble. Instead of standard dressing kernels that315

act on individual ensemble members, Bröcker and Smith (2008) proposed the affine kernel dressing (AKD) by assuming an

affine mapping between ensemble and observation over the entire ensemble. The mapping parameters are determined from the

training data simultaneously with the other dressing parameters. They approximate the distribution of the observation given

the ensemble.

While the other post-processor of Non-dominated sorting genetic algorithm II (NSGA-II) open up the opportunity of im-320

proving the forecast quality in harmony with the forecasting aims and the specific needs of end-users. Given the single-model

H-EPSs studied here, the hydrologic ensemble is generated by activating two forecasting tools: the ensemble weather forecast

and the EnKF. Henceforth, enhancing the H-EPS forecasting skill by assigning different credibility to ensemble members be-

comes preferred than reducing the number of members. Multiple objective functions (i.e., here, verifying scores) for evaluating

the forecasting performances of the H-EPS are selected to guide the optimization process. The expected output is a group of325
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solutions, also known as Pareto fronts, that can give the trade-offs between different objectives. Other post-processing tech-

niques, like the Non-dominated sorting genetic algorithm II (NSGA-II), are now common (e.g., Liong et al., 2001; De Vos

and Rientjes, 2007; Confesor and Whittaker, 2007). Such techniques are conceptually linked to the multiobjective parameter

calibration of hydrologic models using Pareto approaches. Indeed, formulating a model structure or representing the hydrologic

processes using a unique global optimal parameter set proves to be very subjective. Multiple optimal parameter sets exist with330

satisfying behavior given the different conceptualizations, albeit not identical Beven and Binley (1992). For example, Brochero

et al. (2013) utilized the Pareto fronts generated with NSGA-II for selecting the “best” ensemble from a hydrologic forecasting

model with a pool of 800 streamflow predictors, in order to reduce the H-EPS complexity.

In this study, the daily streamflow ensemble forecasts issued from five single-model H-EPSs over the Gatineau River

(Province of Québec, Canada) are post-processed. Details about the study area, hydrologic models, and hydrometeorologic335

data are described in Section 2. Section 3 explains the methodology and training strategy of Affine kernel dressing (AKD)

and Non-dominated sorting genetic algorithm II (NSGA-II) methods, in parallel with the scoring rules that evaluate the perfor-

mance of the forecasts. Specific concepts associated with those scores are also introduced in this section. Predictive distribution

estimation based on the five single-model H-EPSs configurations, which lack accounting for the model structure uncertainty,

is presented in Section 4. The comparison of both statistical post-processing methods in improving the forecasting quality as340

well as enhancing the uncertainty communication are discussed and analyzed as well. Conclusion follows in Section 5.
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