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Abstract. A better understanding of the reasons why hydrological model performance is unsatisfying represents a crucial part 

of meaningful model evaluation. However, current evaluation efforts are mostly based on aggregated efficiency measures such 

as Kling-Gupta Efficiency (KGE) or Nash-Sutcliffe Efficiency (NSE). These aggregated measures provide a relative gradation 

of model performance. Especially in the case of a weak model performance it is important to identify the different errors which 

may have caused such unsatisfactory predictions. These errors may originate from the model parameters, the model structure, 10 

and/or the input data. In order to provide more insight, we define three types of errors which may be related to their source: 

constant error (e.g. caused by consistent input data error such as precipitation), dynamic error (e.g. structural model errors such 

as a deficient storage routine) and timing error (e.g. caused by input data errors or deficient model routines/parameters). Based 

on these types of errors, we propose the novel Diagnostic Efficiency (DE) measure, which accounts for these three error types. 

The disaggregation of DE into its three metric terms can be visualized in a plain radial space using diagnostic polar plots. A 15 

major advantage of this visualization technique is that error contributions can be clearly differentiated. In order to provide a 

proof of concept, we first generated time series artificially with the three different error types (i.e. simulations are surrogated 

by manipulating observations). By computing DE and the related diagnostic polar plots for the reproduced errors, we could 

then supply evidence for the concept. Finally, we tested the applicability of our approach for a modelling example. For a 

particular catchment, we compared streamflow simulations realized with different parameter sets to the observed streamflow. 20 

For this modelling example, the diagnostic polar plot suggests, that dynamic errors explain the overall error to a large extent. 

The proposed evaluation approach provides a diagnostic tool for model developers and model users and the diagnostic polar 

plot facilitates interpretation of the proposed performance measure as well as a relative gradation of model performance similar 

to the well-established efficiency measures in hydrology. 

 25 
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1 Introduction 

Performance metrics quantify hydrological model performance. They are employed for calibration and evaluation purposes. 

For these purposes, the Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970) and the Kling-Gupta efficiency (KGE; Gupta 

et al., 2009) are two commonly used performance metrics in hydrology (e.g. Newman et al., 2017;Towner et al., 2019). NSE 

and KGE measure the overall model performance with only a single numerical value within the range of minus infinity and 30 

one. A value close to one indicates a better model accuracy, whereas with increasing distance to one the model accuracy 

deteriorates. From this point of view, the model performance can only be assessed in terms of a relative gradation. However, 

cases of a weaker model performance immediately lead to the following questions: Why is my model performance not 

satisfactory? What could improve the model performance? 

In order to answer such questions, Gupta et al. (2008) proposed an evaluation approach that includes diagnostic information. 35 

Such a diagnostic approach requires appropriate information. Considering only the overall metric values of NSE and KGE may 

not provide any further insights. Additionally, an in-depth analysis of KGE metric terms may provide more information on the 

causes of the model error (e.g. Towner et al., 2019). Although including the KGE metric terms may enrich model evaluation, 

due to their statistical nature the link to hydrological process is less clear. Current diagnostic approaches are either based on 

entropy-based measures (Pechlivanidis et al., 2010) or on process-based signatures (Yilmaz et al., 2008;Shafii et al., 2017). 40 

The latter one improves measuring the realism of hydrological processes by capturing them in hydrological signatures. These 

signatures represent a main element of a powerful diagnostic approach (Gupta et al., 2008). 

Although the numerical value of the overall model performance is diagnostically not meaningful, the overall model 

performance determines whether diagnostic information will be valuable to the modeller or not. Diagnostic information may 

only be useful if the overall model performance does not fulfil the modeller’s requirements. It will then be cumbersome to 45 

select the appropriate signatures or measures which may answer the modeller’s questions about the causes. Visualising 

evaluation results in a comprehensive way poses another challenge for diagnostically meaningful interpretation. Therefore, we 

see a high potential in compressing the complex error terms into one diagram simplifying the interpretation and the comparison 

of multiple simulations. In this study, we propose a specific model evaluation approach with a strong focus on the error 

identification which contributes to existing diagnostic evaluation approaches and builds on existing approaches. 50 

2 Methodology 

2.1 Diagnostic efficiency 

In general, the quality of evaluation data (e.g. streamflow observations) should be verified before simulations and observations 

are compared against each other. Model evaluation data with insufficient accuracy should not be considered for model 
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evaluation (e.g. Coxon et al., 2015). Likewise, accuracy of initial and boundary conditions should be inspected beforehand 55 

(e.g. Staudinger et al., 2019). Remaining errors in hydrological simulations may then be caused by the following sources: 

- model parameters (e.g. Wagener and Gupta, 2005) 

- model structure (e.g. Clark et al., 2008;Clark et al., 2011)  

- uncertainties in input data (e.g. Yatheendradas et al., 2008) 

Thus, within our approach we focus on errors caused by model parameters, model structure and input data. In order to diagnose 60 

the source of the errors, we define three error types which might be linked to potential error sources (e.g. model parameters, 

model structure and input data): (i) constant error describes the average deviation between simulations and observations; (ii) 

dynamic error defines the deviation at different simulated and observed magnitudes; (iii) timing error comprises the temporal 

agreement between simulations and observations. Model errors may have different sources. Assigning the error type to its 

source requires expert knowledge (e.g. shortcomings of the input data) or statistical analysis (e.g. linking the error types with 65 

the model parameters). We provide here some examples how expert knowledge might be used to link the input data with the 

error type. A constant error might be linked to the precipitation input, for example, Beck et al. (2017) found a negative constant 

errors in snow-dominated catchments. In case the precipitation input error varies between rainfall events, the input data might 

be the source for dynamic errors (e.g. Yatheendradas et al., 2008). On the other hand, errors in the spatio-temporal rainfall 

pattern might be the source for timing errors (e.g. Grundmann et al., 2019). 70 

In order to quantify the overall error, we introduce the diagnostic efficiency (DE; Eq. 1): 

𝐷𝐸 = √𝐵𝑟𝑒𝑙
̅̅ ̅̅ ̅2

+ |𝐵𝑎𝑟𝑒𝑎|2 + (𝑟 − 1)2,  (1) 

where 𝐵𝑟𝑒𝑙
̅̅ ̅̅ ̅ is a measure for the constant error, |Barea| for the dynamic error, and r for the timing error. DE ranges from 0 to  

and DE = 0 indicates, that there are no errors (i.e. perfect agreement between simulations and observations). In contrast to 

KGE and NSE, DE represents an error score. This means, that model performance is decreasing for increasing values of DE.   75 

First, we introduce the three terms which define the DE. The first two terms 𝐵𝑟𝑒𝑙
̅̅ ̅̅ ̅ and |𝐵𝑎𝑟𝑒𝑎| are based on the flow duration 

curve (FDC). Since FDC-based signatures do not include information on temporal performance, we have added correlation (r) 

between the simulated time series and the observed time series as a third term. 𝐵𝑟𝑒𝑙
̅̅ ̅̅ ̅ reflects the constant error and is represented 

by the arithmetic mean of the relative bias (Eq. 2): 

𝐵𝑟𝑒𝑙
̅̅ ̅̅ ̅ =  

1

𝑁
 ∑ 𝐵𝑟𝑒𝑙(i)𝑖=1

𝑖=0 , (2) 80 

i represents the exceedance probability, N the total number of data points and Brel is the relative bias of the simulated and 

observed flow duration curve; 𝐵𝑟𝑒𝑙  = 0 indicates no constant error; 𝐵𝑟𝑒𝑙  < 0 indicates a negative bias; 𝐵𝑟𝑒𝑙  > 0 indicates a 

positive bias. The relative bias between the simulated and observed flow duration curve (Brel) calculates as follows (Eq. 3): 

𝐵𝑟𝑒𝑙(i) =
𝑄𝑠𝑖𝑚(𝑖) − 𝑄𝑜𝑏𝑠(𝑖)

𝑄𝑜𝑏𝑠(𝑖)
, (3) 
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Qsim is the simulated streamflow at exceedance probability i and Qobs the observed streamflow at exceedance probability i. 85 

The dynamic error is described by the absolute area of the residual bias (|Barea|; Eq. 4): 

|𝐵𝑎𝑟𝑒𝑎| =  ∫ |𝐵𝑟𝑒𝑠(𝑖)|
1

0
 𝑑𝑖,  (4) 

where the residual bias Bres is integrated over the entire domain of the flow duration curve. Combining Eq. (2) and Eq. (3) 

results in: 

𝐵𝑟𝑒𝑠(i) = 𝐵𝑟𝑒𝑙(i) − 𝐵𝑟𝑒𝑙
̅̅ ̅̅ ̅, (5) 90 

by subtracting 𝐵𝑟𝑒𝑙  we remove the constant error and the dynamic error remains. |Barea| = 0 indicates no dynamic error; |Barea| 

> 0 indicates a dynamic error. 

To consider timing errors, the Pearson’s correlation coefficient (r) is calculated (Eq. 6):  

𝑟 =  
∑ (𝑄𝑜𝑏𝑠(𝑡)− 𝜇𝑜𝑏𝑠)(𝑄𝑠𝑖𝑚(𝑡)− 𝜇𝑠𝑖𝑚)𝑛

𝑡=1

√(∑ (𝑄𝑜𝑏𝑠(𝑡)− 𝜇𝑜𝑏𝑠)𝑛
𝑡=1

2
)(∑ (𝑄𝑠𝑖𝑚(𝑡)− 𝜇𝑠𝑖𝑚)𝑛

𝑡=1
2

)

 , (6) 

where Qsim is the simulated streamflow at time t, Qobs the observed streamflow at time t, obs the simulated mean streamflow, 95 

and obs the observed mean streamflow. Other non-parametric correlation measures could be used as well. 

2.2 Diagnostic polar plot 

DE can be used as another aggregated efficiency by simply calculating the overall error. However, the aggregated value only 

allows for a limited diagnosis since information of the metric terms is not interpreted. Thus, we project DE and its metric terms 

in a radial plane to construct a diagnostic polar plot. An annotated version for a diagnostic polar plot is given in Fig. 3. For the 100 

diagnostic polar plot, we calculate the direction of the dynamic error (Bdir; Eq. 7): 

𝐵𝑑𝑖𝑟 =  ∫ 𝐵𝑟𝑒𝑠(𝑖)
0.5

0
 𝑑𝑖, (7) 

where the integral of Bres includes values from 0th percentile to 50th percentile. Since we removed the constant error (see Eq. 

5), the left half of the integral is positive and the right half (i.e. 50th percentile to 100th percentile) will, thus, be negative and 

vice versa if the left half of the integral is negative. 105 

In order to differentiate the dynamic error type, we computed the slope of the residual bias (Bslope; Eq. 8): 

𝐵𝑠𝑙𝑜𝑝𝑒 =  {

|𝐵𝑎𝑟𝑒𝑎|  ∙  (−1),          𝐵𝑑𝑖𝑟 > 0

|𝐵𝑎𝑟𝑒𝑎|               ,          𝐵𝑑𝑖𝑟 < 0
0                         ,          𝐵𝑑𝑖𝑟 = 0

 , (8) 

Bslope = 0 expresses no dynamic error; Bslope < 0 indicates that there is a tendency of simulations to overestimate high flows 

and/or underestimate low flows while Bslope > 0 indicates a tendency of simulations to underestimate high flows and/or 

overestimate low flows. 110 

We used the inverse tangent to derive the ratio between constant error and dynamic error in radians (; Eq. 9): 
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𝜑 =  𝑎𝑟𝑐𝑡𝑎𝑛2(𝐵𝑟𝑒𝑙
̅̅ ̅̅ ̅, 𝐵𝑠𝑙𝑜𝑝𝑒), (9) 

 

Instead of using a benchmark to decide whether model diagnostics is valuable or not, we introduce certain threshold for 

deviation-from-perfect. We set a threshold value (l) for which metric terms deviate from perfect and insert it in Eq. (1): 115 

𝐷𝐸𝑙 = √𝑙2 +  𝑙2 + ((1 − 𝑙) − 1)2, (11)  

for this study l is set by default to 0.05. Here, we assume that for a deficient simulation each metric term deviates at least 5% 

from its best value. l can be either relaxed or expanded depending on the requirements of model accuracy. Correspondingly, 

DEl  represents a threshold to discern whether an error diagnosis (DE > DEl) is valuable. 

Finally, the following conditions describe whether a diagnosis can be drawn (Eq. 12): 120 

𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 =  {

𝑦𝑒𝑠,                 |𝐵𝑟𝑒𝑙
̅̅ ̅̅ ̅| ≤ l & 𝐵𝑠𝑙𝑜𝑝𝑒 > l & 𝐷𝐸 > 𝐷𝐸𝑙

𝑦𝑒𝑠,                 |𝐵𝑟𝑒𝑙
̅̅ ̅̅ ̅| > l & 𝐵𝑠𝑙𝑜𝑝𝑒 ≤ l & 𝐷𝐸 >  𝐷𝐸𝑙

𝑦𝑒𝑠,                 |𝐵𝑟𝑒𝑙
̅̅ ̅̅ ̅| > l & 𝐵𝑠𝑙𝑜𝑝𝑒 > l & 𝐷𝐸 > 𝐷𝐸𝑙

 ,  (12) 

There exists a special case for which timing error only can be diagnosed (Eq. 13): 

𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 =  𝑡𝑖𝑚𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 𝑜𝑛𝑙𝑦,               |𝐵𝑟𝑒𝑙
̅̅ ̅̅ ̅| ≤ l & 𝐵𝑠𝑙𝑜𝑝𝑒 ≤ l & 𝐷𝐸 > 𝐷𝐸𝑙, (13) 

If DE and its metric terms are within the boundaries of acceptance, no diagnosis is required which is expressed by the following 

conditions (Eq. 14): 125 

𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 =  𝑛𝑜,               |𝐵𝑟𝑒𝑙
̅̅ ̅̅ ̅| ≤ l & 𝐵𝑠𝑙𝑜𝑝𝑒 ≤ l & 𝐷𝐸 ≤ 𝐷𝐸𝑙, (14) 

In this case, the model performance is sufficiently accurate and errors are too small. 

2.3 Comparison to KGE and NSE 

In order to allow a comparison to commonly used KGE and NSE, we calculated the overall metric values and for KGE its three 

individual metric terms. We used the original KGE proposed by Gupta et al. (2009): 130 

𝐾𝐺𝐸 = 1 − √(𝛽 − 1)2 + (𝛼 − 1)2 + (𝑟 − 1)2,  (15) 

where  is the bias error,  represents the flow variability error, and r shows the linear correlation between simulations and 

observations (Eq. 16): 

𝐾𝐺𝐸 = 1 − √(
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
− 1)

2
+ (

𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
− 1)

2
+ (𝑟 − 1)2,  (16) 

where obs is the standard deviation in observations, sim the standard deviation in simulations. Moreover, we applied the polar 135 

plot concept (see Sect. 2.2) to KGE and the accompanying three metric terms. In contrast to DE (see Sect. 2.1), KGE ranges 

from 1 to - and the metric formulation of KGE is entirely based on statistical signatures. By replacing the first two terms of 

KGE with FDC-based signatures, we aim to improve the hydrological focus and provide a stronger link to hydrological 

processes (e.g. Ghotbi et al., 2020).  

NSE (Nash and Sutcliffe, 1970) calculates as follows (Eq. 17):  140 
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𝑁𝑆𝐸 = 1 − 
∑ (𝑄𝑜𝑏𝑠(𝑡) − 𝑄𝑠𝑖𝑚(𝑡))2𝑡=𝑇

𝑡=1

∑ (𝑄𝑜𝑏𝑠(𝑡)−𝜇𝑜𝑏𝑠) 2𝑡=𝑇
𝑡=1

,  (17) 

where T is the total number of time steps, Qsim the simulated streamflow at time t, Qobs the observed streamflow at time t and 

obs. NSE = 1 displays perfect fit between simulations and observations; NSE = 0 indicates that simulations performs equally 

well as the mean of the observations; NSE < 0 indicates that simulations perform worse than the mean of the observations. 

3 Proof of concept 145 

To provide a proof of concept any perennial streamflow time series coming from a near-natural catchment and having 

sufficiently long temporal record (i.e. > 30 years) may be used. We selected an observed streamflow time series from the 

CAMELS dataset (Fig. 1; Addor et al., 2017). In order to generate specific model errors, we systematically manipulated the 

observed time series. Thus, we produced different time series which serve as a surrogate for simulated time series with a certain 

error type which we call manipulated time series. These manipulated time series are characterised by a single error type or 150 

multiple error types, respectively. We calculated DE for each manipulated time series and visualised the results in a diagnostic 

polar plot. 

  

Figure 1: Observed streamflow time series from CAMELS dataset (Addor et al., 2017; gauge id: 13331500; gauge name: 

Minam River near Minam, OR, U.S.) 155 

3.1 Generation of artificial errors 

In the following section, we portray how we manipulated observed time series to generate artificial modelling errors. Table 1 

provides a brief summary on the error types and how we combined them. The resultant FDCs are illustrated in Figure 2. For 
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the corresponding time series, we refer to the supplement (Fig. S1). We first describe the genesis of the time series for 

individual errors: 160 

(a) Positive constant error: We generated a positive offset by multiplying the observed time series with a constant 1.25 

(see Fig. 2a and Fig. S1a). Constant required to be > 1. 

(b) Negative constant error: We generated a negative offset by multiplying the observed time series with a constant 0.75 

(see Fig. 2b and Fig. S1b). Constant required to be < 1. 

(c) Positive dynamic error: We built a linearly interpolated vector (1+p, …, 1, …, p) with p set to 0.5. We then generated 165 

the error by multiplying the observed FDC with the linearly interpolated vector. With that we increased high flows 

and decreased low flows. As a consequence, hydrological extremes are amplified (see Fig. 2c and Fig. S1c). Note that 

the original temporal order of the time series is maintained. 

(d) Negative dynamic error: We built a linearly interpolated vector (p, …, 1, …, 1+p) with p set to 0.5. We then generated 

the error by multiplying the observed FDC with the linearly interpolated vector. With that we decreased high flows 170 

and increased low flows. As a consequence, hydrological extremes are moderated (see Fig. 2d and Fig. S1d). Note 

that the original temporal order of the time series is maintained. 

(e) We reproduced a timing error by randomizing the order of the observed time series (see Fig. 2e and Fig. S1e). 

We then assembled the individual techniques (a-d) for the genesis of time series which are characterised by a combination of 

constant error and dynamic error. The two errors contribute with an equal share: 175 

(f) Negative constant error and negative dynamic error (see Fig. 2f and Fig. S1f) 

(g) Positive constant error and negative dynamic error (see Fig. 2g and Fig. S1g) 

(h) Negative constant error and positive dynamic error (see Fig. 2h and Fig. S1h) 

(i) Positive constant error and positive dynamic error (see Fig. 2i and Fig. S1i) 

and time series which contain constant error, dynamic error (again both errors are contributing with an equal share) and timing 180 

error (a-e): 

(j) Negative constant error, negative dynamic error and timing error (see Fig. S1j) 

(k) Positive constant error, negative dynamic error and timing error (see Fig. S1k) 

(l) Negative constant error, positive dynamic error and timing error (see Fig. S1l) 

(m) Positive constant error, positive dynamic error and timing error (see Fig. S1m) 185 

Note that for j-m FDCs are identical to f-i and are therefore not shown in Figure 2. 

The diagnostic polar plot for synthetic error cases is shown in Fig. 3. Since each synthetic error case is different, related points 

are located in different error regions. For individual errors (a-d), related points are placed in the four cardinal directions of 

each region (Fig. 3). Within these regions the dominant error type can be easily identified. The more central the direction of 

the point, the more dominant is the error type. In case there is only a timing error present (e) an arrow with two ends instead 190 

of a point is used (Fig. 3). This is because dynamic error source becomes arbitrary (i.e. high flows and low flows are being 

both underestimated and overestimated (see Fig. S1e)). For combinations of constant and dynamic error (f-i), related points 
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are located on boundaries of constant error and dynamic error meaning that both errors are equally dominant (Fig. 3). The 

same applies for combinations of constant error, dynamic error and timing error except that points shifted towards outer scope 

of the plot due to added timing error. Numeric values of DE are listed in Table 2. DE values are lower for individual errors 195 

(except for timing error) than for combined errors. Increasing the number of errors added to a time series, leads to greater DE 

values. For the numeric values of the individual metric terms, we refer to Table S1. 

 

Figure 2: Flow duration curves (FDCs) of observed (blue) and manipulated (dashed red) streamflow time series. Manipulated FDCs 

are depicted for (a-b) constant errors only, (c-d) dynamic errors only, (e) timing error only, and (f-i) combination of dynamic and 200 

constant errors. The combination of constant errors, dynamic errors and timing error is not shown, since their FDCs are identical 

to f-i. Y-axis is shown in log space. 

A comparison of DE, KGE, and NSE calculated for the manipulated time series is shown in Table 2. Moreover, values for DE 

exhibit a regular pattern (i.e. generating single error types or multiple error types, respectively, leads to an equidistant decrease 

in performance). By contrast, values for KGE and NSE are characterised by an irregular pattern (i.e. generating single error 205 

types or multiple error types, respectively, leads to a non-equidistant decrease in performance). This non-equidistant decrease 

of KGE and NSE scores suggests that KGE and NSE are differently sensitive to the generated errors. KGE is more sensitive to 

constant errors and dynamic errors (Table 2a-d), whereas NSE is more sensitive to timing errors (Table 2e). Particularly, the 

spurious timing of the peak flows leads to an strong decrease of NSE (Table 2m). When combining positive constant error and 

negative dynamic error, and vice versa (see Table 1g,h), KGE and NSE display better performance (Table 2g,h) than for single 210 

constant and dynamic error types (Table 2a-d). 
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Table 1: Summary on error types and its combinations as described in Sect. 3.1 (a-m). + (-) reflects a positive (negative) error type. 

For timing error, only one error type exists (x). 215 

 a b c d e f g h i j k l m 

Constant error (+/-) + -    - + - + - + - + 

Dynamic error (+/-)   + -  - - + + - - + + 

Timing error (x)     x     x x x x 

 

Figure 3: (left) Diagnostic polar plot for manipulated time series generated characterized by constant errors, dynamic errors and 

timing errors (a-m) visualizing the overall model performance (DE; contour lines) and contribution of constant error, dynamic 

error and timing error (purple (yellow) indicates temporal match (mismatch)). (e*) timing error only: type of dynamic error 

cannot be distinguished. (right) Annotated diagnostic polar plot illustrating the interpretation (similar to Zipper et al. (2018)). 220 

Hypothetic FDC plots and hydrograph plots give examples for the error types. 

Table 2: Comparison of DE, KGE and NSE calculated for manipulated time series characterized by constant errors, dynamic errors 

and timing errors (a-m). Lowest model performance for each error case is in bold. 

 a b c d e f g h i j k l m 

DE 0.25 0.25 0.25 0.25 1 0.35 0.35 0.35 0.35 1.06 1.06 1.06 1.06 

KGE 0.65 0.65 0.43 0.43 0 0.08 0.75 0.75 0.08 -0.36 -0.04 -0.04 -0.36 

NSE 0.9 0.9 0.7 0.7 -1 0.27 0.94 0.94 0.27 -0.25 -0.59 -1.58 -3.26 
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3.2 Modelling example 

In order to demonstrate the applicability, we also use simulated streamflow time series which have been derived from Addor 225 

et al. (2017). Streamflow time series have been simulated by the coupled Snow-17 and SAC-SMA system for the same 

catchment as in Fig. 1. We briefly summarize here their modelling approach consisting of Snow-17 which “is a conceptual air- 

temperature-index snow accumulation and ablation model” (Newman et al., 2015) and SAC-SMA model which is “a 

conceptual hydrologic model that includes representation of physical processes such as evapotranspiration, percolation, surface 

flow, and subsurface lateral flow” (Newman et al., 2015). Snow-17 runs first to partition precipitation into rain and snow and 230 

delivers the input for SAC-SMA model. For further details about the modelling procedure we refer to Sect. 3.1 in Newman et 

al. (2015). In particular, we evaluated three model runs with different parameter sets, but the same input data. Simulated time 

series and simulated FDCs are shown in Fig. 4. The diagnostic polar plot for the three simulated time series is provided in Fig. 

5. Simulations realised by parameter set with set_id 94 outperform the other two parameter sets. All simulations have in 

common, that positive dynamic error type (i.e. high flows are underestimated and low flows are overestimated) dominates 235 

accompanied by a slight positive constant error. Timing contributes least to the overall error. The modelling example highlights 

one advantage of the proposed evaluation approach that multiple simulations can be easily compared to each other. For the 

case of the modelling example, model performance of slightly different parameter sets can be clearly distinguished although 

the parameter sets are characterized by a similar error type. After identifying the error type and its contributions, these results 

can be used in combination with expert knowledge (e.g. model developer) or statistical analysis to infer hints on improving 240 

the simulations. 

4 Discussion 

Aggregated performance metrics (e.g. KGE and NSE) are being criticised for not being hydrologically informative (Gupta et 

al., 2008). Although we systematically generated errors, we found a disjointed pattern for KGE and NSE (Table 2) which 

makes the interpretation of KGE and NSE more difficult. Particularly, in-depth analysis of the KGE metric terms revealed, that 245 

the  term and  term are not orthogonal to each other (see Fig. S2 and Fig. S3c). We also lump model performance into a 

single value, but DE has the following advantages: (i) metric formulation is based rather on a hydrological understanding than 

a purely statistical understanding; (ii) the combined visualization of the efficiency metric and the different metric terms enables 

the identification of the dominant error type; (iii) diagnostic polar plots facilitate comparison of multiple simulations. Using 

DE as an error score improves the interpretation of the numerical value. DE equals zero can be cleanly interpreted as zero 250 

errors. Additionally, numerical values of the first and the second metric term of DE equal to zero can also be interpreted as 

zero errors. Compared to KGE, the included FDC-based measures may be easier linked to different hydrologic processes than 

purely statistical measures. For example, slow flow processes (e.g. baseflow) control the low flow segment of the FDC while 

fast flow processes (e.g. surface runoff) control the high flow segment of the FDC (Ghotbi et al., 2020). When using KGE and 
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NSE for evaluation purposes, we recommend a comparison to hydrologically meaningful benchmarks which may add 255 

diagnostic value to KGE (e.g. Knoben et al., 2019) and NSE (e.g. Schaefli and Gupta, 2007). Based on such benchmark, skill 

scores have been recently proposed to evaluate simulations (Knoben et al., 2019;Towner et al., 2019;Hirpa et al., 2018) to 

communicate model performance and to improve hydrologic interpretation. So far a way to define hydrologically meaningful 

benchmarks has not been extensively addressed by the hydrologic modelling community (Knoben et al., 2019). 

 260 

Figure 4: Simulated and observed streamflow time series of modelling example for the year 2000 (a, c and e) and the related flow 

duration curves for the entire time series (b, d and f). Time series are derived from the CAMELS dataset (Addor et al., 2017). 

Observations and simulations belong to the same catchment as in Figure 1. Simulations were produced by model runs with different 

parameter sets (set_id) but same input data (see Newman et al., 2015).  
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 265 

Figure 5: Diagnostic polar plot for modelling example. Simulations were realised with three different parameter sets (05, 48, 94; see 

Fig. 4). All simulations perform well. However, the remaining error is dominated by a negative dynamic error type while timing is 

excellent. 

Our approach focuses on model errors. Since the DE can be interpreted as an error score, we do not propose a skill score 

measure for DE. Skill scores are known to introduce a scaling issue on communicating model errors (Knoben et al., 2019). DE 270 

does not rely on any benchmark to decide whether model diagnostics are required or not. Without considering any benchmark, 

DE may be interpreted as a deviation-from-perfect, measured by its constant error, dynamic and temporal error terms. In Sect. 

2.2 (see Eq. 11) we introduced certain threshold for deviation-from-perfect (e.g. DE=0.09), if all error terms deviate by a 

certain degree (e.g. 5%; 𝐵𝑟𝑒𝑙
̅̅ ̅̅ ̅=0.05, |Barea|=0.05, r=0.95). Only for simulations in which deviation-from-perfect is sufficiently 

large, model diagnostics will be valuable. 275 

By including FDC-based information into DE, we aimed for capturing rainfall-runoff response behaviour (Vogel and 

Fennessey, 1994) where different aspects of the FDC are inherently related to different processes (Ghotbi et al., 2020). But the 

way the dynamic error term is calculated (see Eqs. 4,5 and 7) limits the applicability to catchments with perennial streamflow. 

Moreover, the second metric term of DE (see Eq. 1) is limited to measure only the overall dynamic error. The question whether 

high flow errors or low flow errors are more prominent cannot be answered. Measuring the timing error by linear correlation 280 

may also have limitations. Linear correlation can be criticised for neglecting specific hydrological behaviour (Knoben et al., 
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2019), for example, flow recession or peak flow timing. But DE could also be calculated for different time periods and hence 

specific periods (e.g. wet periods versus dry periods) could be diagnosed separately. 

Combining DE and diagnostic polar plots is, however, limited to three metric terms, because higher dimensional information 

cannot be effectively visualised by polar plots. We emphasize that the proposed metric terms of DE might not be perfectly 285 

suitable for every evaluation purpose. For more specific evaluation, we suggest tailoring the proposed formulation of DE (see 

Eq. 1) by exchanging the metric terms with, for example, low-flow-specific terms (e.g. see Fowler et al., 2018) or high-flow-

specific terms (e.g. see Mizukami et al., 2019), respectively. Moreover, we suggest that different formulations of DE can be 

combined to a multi-criteria diagnostic evaluation (see Appendix A). 

5 Conclusions 290 

The proposed approach is used as a tool for diagnostic model evaluation. Incorporating the information of the overall error 

and the metric terms into the evaluation process represents a major advantage. Although different error types may have 

different contributions, these may be explored visually by diagnostic polar plots. A proof of concept and the application to a 

modelling example confirmed the applicability of our approach. Particularly, diagnostic polar plots facilitate interpretation of 

model evaluation results and the comparison of multiple simulations. These plots may advance model development and 295 

application. The comparison to Kling-Gupta Efficiency and Nash-Sutcliffe Efficiency revealed, that they rely on a comparison 

to hydrological meaningful benchmarks to become diagnostically interpretable. We tried to base the formulation of the newly 

introduced diagnostic efficiency on a general hydrological understanding and can thus be interpreted as deviation-from-perfect. 

More generally, our approach may serve as a blueprint for developing other Diagnostic Efficiency measures in the future. 

 300 
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Appendix A 325 

We briefly describe how DE could be extended to a tailored single-criteria metric (A1): 

𝐷𝐸𝑒𝑥𝑡 = √𝑡𝑒𝑟𝑚1
2 + 𝑡𝑒𝑟𝑚2

2 + 𝑡𝑒𝑟𝑚3
2,  (A1) 

Multiple single-criteria metric can be combined to a multi-criteria metric (A2): 

𝐷𝐸𝑚𝑢𝑙𝑡𝑖−𝑒𝑥𝑡 =
1

𝑁
 ∑ 𝐷𝐸𝑁

𝑖=1 𝑒𝑥𝑡,𝑖
,  (A2) 

For a multi-criteria approach, diagnostic polar plots can be displayed for each single-criteria metric included into A2. 330 

References 

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample 

studies, in, version 2.0 ed., Boulder, CO: UCAR/NCAR, 2017. 

Beck, H. E., van Dijk, A. I. J. M., de Roo, A., Dutra, E., Fink, G., Orth, R., and Schellekens, J.: Global evaluation of runoff from 10 state-

of-the-art hydrological models, Hydrology and Earth System Sciences, 21, 2881–2903, 10.5194/hess-21-2881-2017, 2017. 335 
Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta, H. V., Wagener, T., and Hay, L. E.: Framework for Understanding 

Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models, Water Resources Research, 44, 

10.1029/2007wr006735, 2008. 

Clark, M. P., Kavetski, D., and Fenicia, F.: Pursuing the method of multiple working hypotheses for hydrological modeling, Water Resources 

Research, 47, 10.1029/2010wr009827, 2011. 340 
Coxon, G., Freer, J., Westerberg, I. K., Wagener, T., Woods, R., and Smith, P. J.: A novel framework for discharge uncertainty quantification 

applied to 500 UK gauging stations, Water Resources Research, 51, 5531-5546, 10.1002/2014wr016532, 2015. 

Fowler, K., Peel, M., Western, A., and Zhang, L.: Improved Rainfall-Runoff Calibration for Drying Climate: Choice of Objective Function, 

Water Resources Research, 54, 3392-3408, 10.1029/2017wr022466, 2018. 

Ghotbi, S., Wang, D., Singh, A., Blöschl, G., and Sivapalan, M.: A New Framework for Exploring Process Controls of Flow Duration 345 
Curves, Water Resources Research, 56, 10.1029/2019WR026083, 2020. 



15 

 

Grundmann, J., Hörning, S., and Bárdossy, A.: Stochastic reconstruction of spatio-temporal rainfall patterns by inverse hydrologic modelling, 

Hydrol. Earth Syst. Sci., 23, 225-237, 10.5194/hess-23-225-2019, 2019. 

Gupta, H. V., Wagener, T., and Liu, Y.: Reconciling theory with observations: elements of a diagnostic approach to model evaluation, 

Hydrological Processes, 22, 3802-3813, 10.1002/hyp.6989, 2008. 350 
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: 

Implications for improving hydrological modelling, Journal of Hydrology, 377, 80-91, 10.1016/j.jhydrol.2009.08.003, 2009. 

Hirpa, F. A., Salamon, P., Beck, H. E., Lorini, V., Alfieri, L., Zsoter, E., and Dadson, S. J.: Calibration of the Global Flood Awareness 

System (GloFAS) using daily streamflow data, Journal of Hydrology, 566, 595-606, 10.1016/j.jhydrol.2018.09.052, 2018. 

Knoben, W. J. M., Freer, J. E., and Woods, R. A.: Technical note: Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta 355 
efficiency scores, Hydrol. Earth Syst. Sci., 23, 4323–4331, 10.5194/hess-23-4323-2019, 2019. 

Mizukami, N., Rakovec, O., Newman, A. J., Clark, M. P., Wood, A. W., Gupta, H. V., and Kumar, R.: On the choice of calibration metrics 

for “high-flow” estimation using hydrologic models, Hydrol. Earth Syst. Sci., 23, 2601-2614, 10.5194/hess-23-2601-2019, 2019. 

Nash, J. E., and Sutcliffe, J. V.: River flow forecasting through conceptual models part I - A discussion of principles, Journal of Hydrology, 

10, 282-290, 10.1016/0022-1694(70)90255-6, 1970. 360 
Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A., Viger, R. J., Blodgett, D., Brekke, L., Arnold, J. R., Hopson, 

T., and Duan, Q.: Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set 

characteristics and assessment of regional variability in hydrologic model performance, Hydrol. Earth Syst. Sci., 19, 209-223, 

10.5194/hess-19-209-2015, 2015. 

Newman, A. J., Mizukami, N., Clark, M. P., Wood, A. W., Nijssen, B., and Nearing, G.: Benchmarking of a Physically Based Hydrologic 365 
Model, Journal of Hydrometeorology, 18, 2215-2225, 10.1175/jhm-d-16-0284.1, 2017. 

Pechlivanidis, I., Jackson, B., and McMillan, H.: The use of entropy as a model diagnostic in rainfall-runoff modelling, International 

Congress on Environmental Modelling and Software, Ottawa, Canada, 2010,  

Schaefli, B., and Gupta, H. V.: Do Nash values have value?, Hydrological Processes, 21, 2075-2080, 10.1002/hyp.6825, 2007. 

Shafii, M., Basu, N., Craig, J. R., Schiff, S. L., and Van Cappellen, P.: A diagnostic approach to constraining flow partitioning in hydrologic 370 
models using a multiobjective optimization framework, Water Resources Research, 53, 3279-3301, 10.1002/2016wr019736, 2017. 

Staudinger, M., Stoelzle, M., Cochand, F., Seibert, J., Weiler, M., and Hunkeler, D.: Your work is my boundary condition!: Challenges and 

approaches for a closer collaboration between hydrologists and hydrogeologists, Journal of Hydrology, 571, 235-243, 

10.1016/j.jhydrol.2019.01.058, 2019. 

Towner, J., Cloke, H. L., Zsoter, E., Flamig, Z., Hoch, J. M., Bazo, J., Coughlan de Perez, E., and Stephens, E. M.: Assessing the performance 375 
of global hydrological models for capturing peak river flows in the Amazon basin, Hydrol. Earth Syst. Sci., 23, 3057-3080, 10.5194/hess-

23-3057-2019, 2019. 

Vogel, R. M., and Fennessey, N. M.: Flow Duration Curves. I: New Interpretation and Confidence Intervals, Journal of Water Resources 

Planning and Management, 120, 485-504, 10.1061/(ASCE)0733-9496(1994)120:4(485), 1994. 

Wagener, T., and Gupta, H. V.: Model identification for hydrological forecasting under uncertainty, Stochastic Environmental Research and 380 
Risk Assessment, 19, 378-387, 10.1007/s00477-005-0006-5, 2005. 

Yatheendradas, S., Wagener, T., Gupta, H., Unkrich, C., Goodrich, D., Schaffner, M., and Stewart, A.: Understanding uncertainty in 

distributed flash flood forecasting for semiarid regions, Water Resources Research, 44, 10.1029/2007wr005940, 2008. 

Yilmaz, K. K., Gupta, H. V., and Wagener, T.: A process-based diagnostic approach to model evaluation: Application to the NWS distributed 

hydrologic model, Water Resources Research, 44, 10.1029/2007wr006716, 2008. 385 
Zipper, S. C., Dallemagne, T., Gleeson, T., Boerman, T. C., and Hartmann, A.: Groundwater Pumping Impacts on Real Stream Networks: 

Testing the Performance of Simple Management Tools, Water Resources Research, 54, 5471-5486, 10.1029/2018wr022707, 2018. 

  


	1 Introduction
	2 Methodology
	2.1 Diagnostic efficiency
	2.2 Diagnostic polar plot
	2.3 Comparison to KGE and NSE

	3 Proof of concept
	3.1 Generation of artificial errors
	3.2 Modelling example

	4 Discussion
	5 Conclusions
	Appendix A
	References

