
Response to Reviewer #1 
We would like to thank the anonymous referee for his/her interest and the comments on our manuscript. Below, 

reviewer comments are in italic font and our replies are in plain blue font. 

 
General comments 

The manuscript presents a potential useful new metric and method for evaluating hydrologic model inadequacy, 

which is definitely in the journal scope. The technical note has been somewhat improved by the revisions, and 

most comments have been addressed to some degree. The methods are valid and fully outlined, the results are 

adequately discussed and sufficient to support the conclusions. The overall structure of the technical note is fine, 

but there are some issues with the text and figures which detract from the comprehensibility of the paper. Some 

minor revisions should be completed prior to publication. 

We thank the reviewer for his/her helpful comments. 
 
Specific comments 

53-62: This section is not clear. The text states that observations should be checked for accuracy, but then 

uncertainties in observations remain, therefore we will not focus on uncertainties in observations. This is not 

helpful in clarifying why some sources of uncertainty were the focus of the new metric. 

We rephrased the section and replaced observations with evaluation data. 

 

65-70: This may be a minor point, but what good is it three defined error types to be linked to potential error 

sources when, in your example, any of the three types can be linked to the same source (precipitation input)? If 

expert knowledge is need, how is the novel metric helping? 

The novel metric shows which of three error types is dominating. The expert can then define which error may 

dominate and provide measure to either reduce the error or at least better consider the effect of the uncertainty. 

 

98: Polar plots are not very much like clocks, given both angle and distance from the origin matter in polar plots. 

This comparison is more confusing than helpful. 

We agree and removed the comparison. 
 
Figure 1: The y-axis has no title. 
We added a title to the y-axis. 
 
Figure 2: The y-axis has no title. 
We added a title to the y-axis. 

 

Figure 4: Why are the FDC y-axes in log space? It initially appears as though the simulation only over estimates 

low flows, when the magnitude of high flow under estimation is in fact similar. 

Using a linear y-axis the differences for the low flows would have been barely visible, therefore we decided to use 

log discharge axis. We are aware that this emphasis the low flow part more, but there is unfortunately no really 

good approach in comparing high flow and low flow with a similar scale. 

  

Figure 5: One benefit of the novel metric and method which may not be highlighted in the manuscript is its ability 

to facilitate simulation comparisons. While the FDC curves contain more information than the polar plot, a single 



diagnostic polar plot can clearly summarize the errors in dozens or hundreds of simulations (which would be 

unreadable in a single FDC plot). 

We included a sentence which highlights this benefit. Thanks for pointing this out, this was clearly in our mind, 

but sometimes things get lost at the end. 

 

Technical corrections: 

30: ‘Measure’ twice 

191: ‘Interdependently’ is either being used incorrectly, or was not the word intended 

256: ‘Illogical’ is not a good descriptor for the quirks and irregularities of the NSE and KGE 

We included all technical corrections in the manuscript. 

 

The authors may also wish to review the erratic comma usage, although this is not impeding the manuscript’s 

comprehensibility. 

We reviewed the erratic comma usage. 
 



Response to Reviewer #3 
We would like to thank Wouter Knoben for his interest and the comments on our manuscript. Below, reviewer 

comments are in italic font and our replies are in plain blue font. We would also like to point out, that some remarks 

of this new reviewer are more difficult to approach, since changes we did in the first round of this review process were 

not known or considered or may have even be in a different direction as the reviews in the first round. 

 

General comments  

The authors introduce a new efficiency metric called Diagnostic Efficiency (DE), which replaces the bias and 

variability components of the Kling-Gupta efficiency with two statistical measures derived from the observed and 

simulated flow duration curve. The goal is to improve the connection between efficiency metric score and specific 

errors in the modelling setup, so that diagnosing model deficiencies becomes easier. Several synthetic test cases are 

shown to describe the metric’s functionality and the metric is also used on a real-world test case. 

  

I have read this paper with interest and I think that metrics that help diagnose model failures are a relevant area of 

research. I do think that this paper needs some improvements before it can published. In my opinion, the benefits of 

DE are currently a bit overstated and there are some methodological choices that would benefit from a clearer 

explanation. In particular, (1) I do not think that the interpretation of DE’s error types as being caused by specific 

types of model deficiencies is currently well-supported, and (2) I do think that DE needs to be used in combination 

with some form of hydrologically meaningful benchmark/threshold if it is to be used to determine if model simulations 

are deficient or not. Regarding the methodology, I have some questions about (1) how the constant error term can be 

interpreted in cases where the simulated FDC is both above and below the observed one; (2) how the calculation of 

Bdir works, and (3) how deviations between two FDCs can be used to trace model deficiencies. More details are in 

the comments below.  

We thank the reviewer for his helpful comments. The provided support on the causes of the specific error types may 

serve as a general advice how the errors might be linked to their source. This is more thought as an example, certainly 

not as a strong linkage to specific model deficiencies. We want to emphasize that our goal is not to replace current 

metrics. Moreover, DE is not designed to answer the question whether simulations are “good enough”. This is in our 

opinion a philosophical question and many others have already tried to answer this question. But this is a problem for 

all metrics except there is a perfect agreement. Instead, we aim to provide a new alternative metric which focuses on 

the error identification. Moreover, we aim to facilitate the comparison between multiple simulations.  

 

The constant error term represents the average of the relative bias distribution. Positive values for the constant error 

term can be always interpreted as overestimation on average whereas negative values can be interpreted as 

underestimation on average. Bdir is the integral of residual error (i.e. relative bias of the two FDCs after subtracting the 

constant error (see Eq. 5)) that reaches from 0th percentile to the 50th percentile. The deviation between the observed 

FDC and the simulated FDC contains some hydrologic information. For example, in case the high flow part of the 

simulated FDC is greater than the high flow part of the observed FDC indicates that the simulations overestimate the 

peak flows. Bdir is required to calculate Bslope. 



  

Specific comments  

l11. “Input data”; it may be more accurate to rephrase this as “data uncertainty” because errors in the evaluation 

data could equally lead to unsatisfactory model performance although in that case it may be that what we consider as 

the “truth” is faulty and not the simulations. 

We assume that the evaluation data represents the truth. We do not want to question whether the evaluation data is 

truly representative or not. Instead, we presume that the data quality of the evaluation data is checked beforehand. 

Answering the question about the “truth” is partly a philosophical one and cannot be answered by this technical note. 

 

l31. “value close to one indicates a better model performance”. Given the nature of the paper, it would be good to 

define what is meant by “better model performance” and similar words and phrases. Some readers may interpret this 

as meaning that the model is an appropriate representation of the catchment in question (high model “fidelity”), but, 

as the authors indicate, a NSE or KGE score of 1 only indicates a perfect numerical match between observations and 

simulations (high model accuracy, but not necessarily for the right reasons). The metrics themselves do not provide 

any interpretations about how well the model simulations represent real-world hydrology and it would be good to be 

explicit about this. 

We agree and include the term accuracy to describe the model performance.  

 

L59. Do input data errors and observation uncertainty (l60) not fall under observations with insufficient accuracy 

mentioned in line 54? 

With observations we mean the data used for the evaluation. We rephrase this line. 

 

L62. It’s not immediately obvious to me why this paper addresses three out of the 5 error sources mentioned in lines 

57-61. Can it be clarified why these three errors are the focus of this work? 

In general, metrics are based on a comparison between observations and simulations. Consequently, metrics do not 

have the purpose to quantify the uncertainty of the evaluation data. Accounting for errors caused by initial/boundary 

conditions require a more complex approach. The approach we presented here is not suitable to quantify errors caused 

by initial and/or boundary conditions. 

 

L64. Using these three error terms seems the core assumption of this paper. The provided examples help in 

understanding what they mean but I think formal definitions of each error term should be included here. 

We added some formal definitions. And we would also like to point out, that the core of the paper is the new metric 

and its potential advantages to other metrics, not the error terms. 

 

L64. I would expect some form of justification to support the choice of these three types of errors. Are they sufficient 

to describe all possible deviations from observations that simulations could show? 



These three error types are common errors generated by many hydrological models. The three error types might not 

be sufficient to describe all possible deviations. In order to account for a wider range of deviations, we recommend to 

use different error terms or choosing a multi-criteria approach (see line 277f). 

 

L71. I expect the authors chose an equation of the form DE = 1-X to match the way NSE and KGE are formulated, but 

I think this makes the metric vulnerable to wrong interpretation. NSE is a skill score, where any simulations with NSE 

> 0 can be said to have outperformed the mean flow benchmark model included in the NSE equation. KGE has no 

such benchmark, but due to its formulation as KGE = 1-Y it is an easy mistake to assume that KGE = 0 has some 

distinct meaning even though it does not. DE does not seem to be a skill score either and I don’t immediately see that 

DE = 0 has any special meaning. I would strongly recommend to reformulate the metric as DE = X, so that DE = 0 

can be cleanly interpreted as “there are zero errors”. 

We agree on using an error score and a perfect fit should indicate a value of 0. The idea of using DE = 1-Y was to 

make it comparable with KGE. So it may also be discussed, why KGE was accepted the way it is. But we see the point 

and change DE from DE = 1-Y to DE = X. 0 means zero errors.  

 

L77. It’s not fully clear to me why 𝐵𝑟𝑒𝑙̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅     
     
     
     
     

 indicates a constant error. What happens in cases where the simulated FDC 

both overestimates and underestimates the observed one? 𝐵𝑟𝑒𝑙̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅     
     
     
     
     

 will likely still fall on one side of zero but that does not 

mean that all simulations showcase a constant error of 𝐵𝑟𝑒𝑙̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅     
     
     
     
     

. 

Brel represents the average of the relative bias distribution. Positive values for the constant error term can be always 

interpreted as an average overestimation whereas negative values can be always interpreted as an average 

underestimation. Overestimation and underestimation of the simulated FDC are captured by Barea. Brel describes only 

the average behaviour. 

 

L82. How would this equation deal with catchments where the observations drop to zero, but the simulations do not? 

This indicates a model error that should show during evaluation but equation 3 will break in such a scenario. 

We are fully aware about this shortcoming. Therefore, the metric is only valid for catchments with perennial 

streamflow (see line 268). 

 

L94. The conceptual novelty of DE seems to be that it uses observed and simulated FDC’s for two of its three metrics. 

For 𝐵𝑟𝑒𝑙̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅     
     
     
     
     

 and |𝐵𝑎𝑟𝑒𝑎|, the series of observed and simulated Q values are thus not used as a time series but ordered 

into a flow duration curve. A major consequence of this is that the temporal connection between observations and 

simulations is mostly lost, because the two series are not compared on a per-time step basis. With the data ordered as 

FDCs, it’s no longer clear at which point in the simulation certain errors were generated and thus where model 

deficiencies may be found. An extreme example would be a case where a model matches all observations perfectly, but 

for some reason returns zero flow on those time steps where the observations are highest. When the simulations are 

shown as a FDC, those zero flows will have exceedance probabilities of 100% and thus we might think that the model 

underestimates the low flows, even though the model in fact simulates the low flows just fine but massively 

underestimates the high flows. It is therefore unclear to me why quantifying the errors between both flow duration 



curves leads to increased understanding of model errors. From my point of view, it seems equally possible that the 

temporal disconnect between observations and simulations will mask certain model errors instead. I realize that 

neither NSE nor KGE would be of much use in this example either, but the almost complete temporal disconnect of the 

simulations and observations in DE is worthy of discussion. It could also be helpful to define a few more extreme cases 

of model errors and see to what extent DE can be used to trace those errors.  

Again the metric is only valid for catchments with perennial streamflow (see line 268). Of course, comparing the 

observed FDC and simulated FDC disconnects the time steps. However, the timing error term is not related to the 

FDC. We used Pearson’s correlation coefficient (see Eq. 6) to compare the simulated time series and observed time 

series on per-time step basis. We want to emphasize that DE is not the perfect metric. Instead DE represents an 

alternative tool which can be used in addition for model evaluation.   

 

L102. I tried implementing equations 2, 3 and 5 with real data but could not reproduce 50% of the integral being 

positive values and 50% being negative. Instead, my Bres plot alternates between being negative and positive and only 

~45% of its values are negative (see figure). I have included my code below. Assuming that I didn’t make any mistakes, 

can the authors clarify whether the equations and assumptions in the manuscript are correct? 

The equations are correct. We do not assume that 50% of the be either entirely positive or entirely negative. In your 

case (i.e. ~45% of its values are negative) it means the left part of the FDC is mostly underestimated and the right part 

of the FDC is mostly overestimated.   

 

L106. Why is this referred to as a slope? This equation seems to only change |Barea| back into Barea through a 

somewhat roundabout way. “Slope” implies some value with units [distance/distance]. 

We use the term slope which is referred to the inclination of the dynamic error. For example, Yilmaz et al. (2008) used 

a similar terminology. In case Bslope is positive low flows are underestimated and high flows are overestimated (i.e. left 

integral of Bres is negative and right integral Bres is positive). Vice versa, if Bslope is negative low flows are overestimated 

and high flows are underestimated (i.e. left integral of Bres is positive and right integral Bres is negative). 

 

L120. It’s not entirely clear to me why |Brel_bar| has this specific threshold at 1. 

The threshold refers to the letter l. 

 

L126. I understand that section 2.2 tries to outline different scenarios for Brel_bar, Bslope, DE and Del but I find this 

quite difficult to follow. I’m struggling to follow the reasoning that leads to equations 12- 14 and feel a bit lost with 

all these variables that I’m seeing for the first time. Maybe a longer explanation, or a graphical example, or placing 

the scenarios in a table or even a flowchart could help to clarify this section. 

There is only one new variable which is DEl. The equations 12-14 represent the conditions for which a diagnosis can 

be made.  

 

L166. “Note that the original temporal order is maintained.” Is this correct? The FDC contains no temporal 

information. Should the mention of “FDC” on line 164 be “time series” instead? Also on line 168.  



The sentence was corrected. It should be time series.  

 

L191. “Interdependently... regions.” I don’t understand what this sentence means.  

We rephrased the sentence. 

 

L202. “Numerically, ... NSE.” I suggest to remove this sentence. The fact that DE scores are higher than NSE and 

KGE scores is irrelevant (there is no reason why these scores can or should be compared in a relative sense) and 

referring to this as “better performance” may be confusing to readers who associate “better [model] performance” 

with “more accurate representations of real-world hydrology”.  

We removed the sentence. 

 

L207. “For example, lowest KGE values ... (Table 2a-d).” I’m not sure how to interpret this sentence. Can this be 

clarified? 

We rephrased the sentence. The point we want to make here is that KGE and NSE are differently sensitive to the 

generated errors. 

  

L237-243. I find this attribution of causes to certain error types very speculative. For example, underestimation of 

high flows and overestimation of low flows could equally indicate that precipitation input is smeared out over time, 

which tends to happen with gridded forcing products interpolated from station data, or with climate models that have 

a tendency to drizzle. Equally, a constant positive error (overestimation of flows) may indicate a model structure issue 

such as an inappropriate evaporation routine (not enough water returns to the atmosphere) or a “impervious runoff” 

routine that allows part of the incoming precipitation to bypass the soil moisture routine entirely or a “subsurface 

water exchange process” that imports water from an underlying aquifer. Parameter issues could also play a role here, 

for example if soil moisture storage capacity is set too low and part of the incoming precipitation directly goes into 

streamflow as saturation excess runoff, or if evaporation is limited by some form of inappropriately set wilting point. 

I suggest to either remove this section or better support why certain types of errors must (or are at least most likely to) 

be generated from the causes described here.  

We removed this pargraph. 

 

L261. I think point (iii) is a somewhat optimistic view. The link between error type and associated model deficiencies 

is a bit tenuous in the current manuscript (see previous comment) and needs to be better supported before this can be 

presented as a feature provided by DE.  

We agree and rephrased point (iii). 

 

L269. DE may not use a benchmark simulation, but it does have the same issue that it is difficult to say which DE 

scores indicate that a model is “good enough”. The authors have not justified their use of a 5% deviation threshold 

on each of the DE components, which I assume was chosen for illustrative purposes only. Therefore, DE has the same 



interpretation challenges as KGE (which is also a deviation-from- perfect kind of metric) and the recommendations 

for KGE should apply to DE too. I suggest to clarify this in the text. 

We have chosen the 5% deviation mainly for illustrative purposes. The threshold can be set to any value. This is more 

about whether it is worth to diagnose the error and not about whether a model is “good enough”. In comparison to 

KGE, the deviation is measured by a percentage of error.  

 

L291. “A proof of concept and the application to a modelling example showed that errors coming from input data, 

model parameters and model structure can be unravelled with the help of expert knowledge or a statistical analysis. 

Particularly, diagnostic polar plots facilitate interpretation of model evaluation results. These plots may advance 

model development and application.” This seems to be mostly speculation in the current manuscript (see comment 

about lines 237-243). I suggest to either improve the support for this statement or remove it from the conclusions.  

We rephrased the sentence and removed the speculation. 

 

L294. “We tried to base the formulation of the newly introduced diagnostic efficiency on a general hydrological 

understanding and can thus be interpreted as deviation-from-perfect, we do not need to define benchmarks.” This 

seems a bit optimistic. DE cannot answer the question “is my model good enough” without a statement about the level 

of deviation-from-perfect that is considered acceptable for a given purpose. Justifying where this level is set is 

functionally equivalent to specifying a benchmark. I suggest to remove the last part of this sentence. 

We removed the last part of the sentence. We want to emphasize that our goal is not to answer “Is my model good 

enough?”. The goal is to facilitate the comparison of multiple simulations and to easily identify dominant error types. 

In addition, we provide a graphical tool (i.e. diagnostic polar plots). 

 

L319. I appreciate this stepping stone to more work on efficiency metrics but the provided equations seem a bit trivial 

and in the case of A1 perhaps even overly specific. There is no real need for future metrics to be of the shape De = 1 

– X (arguably, DE = X would lead to less ambiguity) nor do such metrics need to have three components and not two 

or four or some other number. I expect that this appendix can be removed without harming the main manuscript. 

We appreciate this comment, but we decided to keep the Appendix in the manuscript. 

 

Editorial  

l29. Replace “can be measured by only” with “with”.  

l34. “satisfying” > “satisfactory”  

l160, l162. “requires” > “required”? 

We included all technical corrections in the manuscript. 

 

 



List of all relevant changes 
 

- We added formal definitions for the error terms   

- We changed the formula of DE from DE=1-Y to DE=X 

- We further strengthened the difference between DE and KGE 
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Technical note: Diagnostic efficiency – specific evaluation of model 
performance  
Robin Schwemmle1, Dominic Demand1, Markus Weiler1 

1University of Freiburg, Faculty of Environment and Natural Resources, Chair of Hydrology, Freiburg, Germany 

Correspondence to: Robin Schwemmle (robin.schwemmle@hydrology.uni-freiburg.de) 5 

Abstract. A better understanding of the reasons why hydrological model performance is unsatisfying represents a crucial part 

of meaningful model evaluation. However, current evaluation efforts are mostly based on aggregated efficiency measures such 

as Kling-Gupta Efficiency (KGE) or Nash-Sutcliffe Efficiency (NSE). These aggregated measures provide a relative gradation 

of model performance. Especially in the case of a weak model performance it is important to identify the different errors which 

may have caused such unsatisfactory predictions. These errors may originate from the model parameters, the model structure, 10 

and/or the input data. In order to provide more insight, we define three types of errors which may be related to their source: 

constant error (e.g. caused by consistent input data error such as precipitation), dynamic error (e.g. structural model errors such 

as a deficient storage routine) and timing error (e.g. caused by input data errors or deficient model routines/parameters). Based 

on these types of errors, we propose the novel Diagnostic Efficiency (DE) measure, which accounts for these three error types. 

The disaggregation of DE into its three metric terms can be visualized in a plain radial space using diagnostic polar plots. A 15 

major advantage of this visualization technique is that error contributions can be clearly differentiated. In order to provide a 

proof of concept, we first generated time series artificially with the three different error types (i.e. simulations are surrogated 

by manipulating observations). By computing DE and the related diagnostic polar plots for the reproduced errors, we could 

then supply evidence for the concept. Finally, we tested the applicability of our approach for a modelling example. For a 

particular catchment, we compared streamflow simulations realized with different parameter sets to the observed streamflow. 20 

For this modelling example, the diagnostic polar plot suggests, that dynamic errors explain the model performanceoverall error 

to a large extent. The proposed evaluation approach provides a diagnostic tool for model developers and model users and the 

diagnostic polar plot facilitates interpretation of the proposed performance measure as well as a relative gradation of model 

performance similar to the well-established efficiency measures in hydrology. 

 25 
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1 Introduction 

Performance metrics quantify hydrological model performance. They are employed for calibration and evaluation purposes. 

For these purposes, the Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970) and the Kling-Gupta efficiency (KGE; Gupta 

et al., 2009) are two commonly used performance metrics in hydrology (e.g. Newman et al., 2017;Towner et al., 2019). NSE 

and KGE measure the overall model performance can be measured bywith only a single numerical value within the range of 30 

minus infinity and one. A value close to one indicates a better model performanceaccuracy, whereas with increasing distance 

to one the model performanceaccuracy deteriorates. From this point of view, the model performance can only be assessed in 

terms of a relative gradation. However, cases of a weaker model performance immediately lead to the following questions: 

Why is my model performance not satisfyingsatisfactory? What could improve the model performance? 

In order to answer such questions, Gupta et al. (2008) proposed an evaluation approach that includes diagnostic information. 35 

Such a diagnostic approach requires appropriate information. Considering only the overall metric values of NSE and KGE may 

not provide any further insights. Additionally, an in-depth analysis of KGE metric terms may provide more information on the 

causes of the model error (e.g. Towner et al., 2019). Although including the KGE metric terms may enrich model evaluation, 

due to their statistical nature the link to hydrological process is less clear. Current diagnostic approaches are either based on 

entropy-based measures (Pechlivanidis et al., 2010) or on process-based signatures (Yilmaz et al., 2008;Shafii et al., 2017). 40 

The latter one improves measuring the realism of hydrological processes by capturing them in hydrological signatures. These 

signatures represent a main element of a powerful diagnostic approach (Gupta et al., 2008). 

Although the numerical value of the overall model performance is diagnostically not meaningful, the overall model 

performance determines whether diagnostic information will be valuable to the modeller or not. Diagnostic information may 

only be useful if the overall model performance does not fulfil the modeller’s requirements. It will then be cumbersome to 45 

select the appropriate signatures or measures which may answer the modeller’s questions about the causes. Visualising 

evaluation results in a comprehensive way poses another challenge for diagnostically meaningful interpretation. Therefore, we 

see a high potential in compressing the complex error terms into one diagram simplifying the interpretation. and the comparison 

of multiple simulations. In this study, we propose a specific model evaluation approach with a strong focus on the error 

identification which contributes to existing diagnostic evaluation approaches and builds on existing approaches. 50 

2 Methodology 

2.1 Diagnostic efficiency 

In general, the quality of observations should be verified before simulations and observations are compared against each other. 

Observations with insufficient accuracy should not be considered for model evaluation. Likewise, accuracy of initial and 

boundary conditions should be inspected beforehand.evaluation data (e.g. streamflow observations) should be verified before 55 
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simulations and observations are compared against each other. Model evaluation data with insufficient accuracy should not be 

considered for model evaluation (e.g. Coxon et al., 2015). Likewise, accuracy of initial and boundary conditions should be 

inspected beforehand (e.g. Staudinger et al., 2019). Remaining errors in hydrological simulations may then be caused by the 

following sources: 

- model parameters (e.g. Wagener and Gupta, 2005) 60 

- model structure (e.g. Clark et al., 2008;Clark et al., 2011)  

- uncertainties in input data (e.g. Yatheendradas et al., 2008) 

- uncertainties in observations (e.g. Coxon et al., 2015) 

- initial and boundary conditions (e.g. Staudinger et al., 2019) 

Thus, within our approach we focus on errors caused by model parameters, model structure and input data. In order to diagnose 65 

the source of the errors, we define three error types which might be linked to potential error sources (e.g. model parameters, 

model structure and input data): (i) constant error describes the average deviation between simulations and observations; (ii) 

dynamic error defines the deviation at different simulated and observed magnitudes; (iii) timing error comprises the temporal 

agreement between simulations and observations. Model errors may have different sources. Assigning the error type to its 

source requires expert knowledge (e.g. shortcomings of the input data) or statistical analysis (e.g. linking the error types with 70 

the model parameters). We provide here some examples how expert knowledge might be used to link the input data with the 

error type. A constant error might be linked to the precipitation input, for example, Beck et al. (2017) found a negative constant 

errors in snow-dominated catchments. In case the precipitation input error varies between rainfall events, the input data might 

be the source for dynamic errors (e.g. Yatheendradas et al., 2008). On the other hand, errors in the spatio-temporal rainfall 

pattern might be the source for timing errors (e.g. Grundmann et al., 2019). 75 

In order to expand existing diagnostic evaluation approaches quantify the overall error, we introduce the diagnostic efficiency 

(DE; Eq. 1): 

𝐷𝐸 = 1 −  √𝐵𝑟𝑒𝑙̅̅ ̅̅ ̅2 +  |𝐵𝑎𝑟𝑒𝑎|2 +  (𝑟 − 1)2√𝐵𝑟𝑒𝑙̅̅ ̅̅ ̅2 +  |𝐵𝑎𝑟𝑒𝑎|2 +  (𝑟 − 1)2,  (1) 

where 𝐵𝑟𝑒𝑙̅̅ ̅̅ ̅ is a measure for the constant error, |Barea| for the dynamic error, and r for the timing error. Similar to NSE and KGE, 

DE ranges from 10 to -f.f and DE = 10 indicates, that there are no errors (i.e. perfect agreement between simulations and 80 

observations.). In contrast to KGE and NSE, DE represents an error score. This means, that model performance is decreasing 

for increasing values of DE.   

First, we introduce the three terms which define the DE. The first two terms 𝐵𝑟𝑒𝑙̅̅ ̅̅ ̅ and |𝐵𝑎𝑟𝑒𝑎| are based on the flow duration 

curve (FDC). Since FDC-based signatures do not include information on temporal performance, we have added correlation (r) 

between the simulated time series and the observed time series as a third term. 𝐵𝑟𝑒𝑙̅̅ ̅̅ ̅ reflects the constant error and is represented 85 

by the arithmetic mean of the relative bias (Eq. 2): 
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𝐵𝑟𝑒𝑙̅̅ ̅̅ ̅ =  1
𝑁

 ∑ 𝐵𝑟𝑒𝑙(i)𝑖=1
𝑖=0 , (2) 

i represents the exceedance probability, N the total number of data points and Brel is the relative bias of the simulated and 

observed flow duration curve; 𝐵𝑟𝑒𝑙 = 0 indicates no constant error; 𝐵𝑟𝑒𝑙 < 0 indicates a negative bias; 𝐵𝑟𝑒𝑙 > 0 indicates a 

positive bias. The relative bias between the simulated and observed flow duration curve (Brel) calculates as follows (Eq. 3): 90 

𝐵𝑟𝑒𝑙(i) = 𝑄𝑠𝑖𝑚(𝑖) − 𝑄𝑜𝑏𝑠(𝑖)
𝑄𝑜𝑏𝑠(𝑖)

, (3) 

Qsim is the simulated streamflow at exceedance probability i and Qobs the observed streamflow at exceedance probability i. 

The dynamic error is described by the absolute area of the residual bias (|Barea|; Eq. 4): 

|𝐵𝑎𝑟𝑒𝑎| =  ∫ |𝐵𝑟𝑒𝑠(𝑖)|1
0  𝑑𝑖,  (4) 

where the residual bias Bres is integrated over the entire domain of the flow duration curve. Combining Eq. (2) and Eq. (3) 95 

results in: 

𝐵𝑟𝑒𝑠(i) = 𝐵𝑟𝑒𝑙(i) −  𝐵𝑟𝑒𝑙̅̅ ̅̅ ̅, (5) 

by subtracting 𝐵𝑟𝑒𝑙 we remove the constant error and the dynamic error remains. |Barea| = 0 indicates no dynamic error; |Barea| 

> 0 indicates a dynamic error. 

To consider timing errors, the Pearson’s correlation coefficient (r) is calculated (Eq. 6):  100 

𝑟 =  ∑ (𝑄𝑜𝑏𝑠(𝑖)− 𝜇𝑜𝑏𝑠)(𝑄𝑠𝑖𝑚(𝑖)− 𝜇𝑠𝑖𝑚)𝑛
𝑖=1

√(∑ (𝑄𝑜𝑏𝑠(𝑖)− 𝜇𝑜𝑏𝑠)𝑛
𝑖=1

2)(∑ (𝑄𝑠𝑖𝑚(𝑖)− 𝜇𝑠𝑖𝑚)𝑛
𝑖=1

2)
𝑟 =  ∑ (𝑄𝑜𝑏𝑠(𝑡)− 𝜇𝑜𝑏𝑠)(𝑄𝑠𝑖𝑚(𝑡)− 𝜇𝑠𝑖𝑚)𝑛

𝑡=1

√(∑ (𝑄𝑜𝑏𝑠(𝑡)− 𝜇𝑜𝑏𝑠)𝑛
𝑡=1

2)(∑ (𝑄𝑠𝑖𝑚(𝑡)− 𝜇𝑠𝑖𝑚)𝑛
𝑡=1

2)
 , (6) 

where Qsim is the simulated streamflow at time t, Qobs the observed streamflow at time t, Pobs the simulated mean streamflow, 

and Pobs the observed mean streamflow. Other non-parametric correlation measures could be used as well. 

2.2 Diagnostic polar plot 

DE can be used as another aggregated efficiency by simply calculating the overall model performance.error. However, the 105 

aggregated value only allows for a limited diagnosis since information of the metric terms is not interpreted. Thus, we project 

DE and its metric terms in a radial plane (i.e. similar to a clock) to construct a diagnostic polar plot. An annotated version for 

a diagnostic polar plot is given in Fig. 3. For the diagnostic polar plot, we calculate the direction of the dynamic error (Bdir; 

Eq. 7): 

𝐵𝑑𝑖𝑟 =  ∫ 𝐵𝑟𝑒𝑠(𝑖)0.5
0  𝑑𝑖, (7) 110 

where the integral of Bres includes values from 0th percentile to 50th percentile. Since we removed the constant error (see Eq. 

5), the left half of the integral is positive and the right half (i.e. 50th percentile to 100th percentile) will, thus, be negative and 

vice versa if the left half of the integral is negative. 
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In order to differentiate the dynamic error type, we computed the slope of the residual bias (Bslope; Eq. 8): 

𝐵𝑠𝑙𝑜𝑝𝑒 =  {
|𝐵𝑎𝑟𝑒𝑎| ∙  (−1),          𝐵𝑑𝑖𝑟 > 0
|𝐵𝑎𝑟𝑒𝑎|               ,          𝐵𝑑𝑖𝑟 < 0
0                         ,          𝐵𝑑𝑖𝑟 = 0

 , (8) 115 

Bslope = 0 expresses no dynamic error; Bslope < 0 indicates that there is a tendency of simulations to overestimate high flows 

and/or underestimate low flows while Bslope > 0 indicates a tendency of simulations to underestimate high flows and/or 

overestimate low flows. 

We used the inverse tangent to derive the ratio between constant error and dynamic error in radians (M; Eq. 9): 

𝜑 =  𝑎𝑟𝑐𝑡𝑎𝑛2(𝐵𝑟𝑒𝑙̅̅ ̅̅ ̅, 𝐵𝑠𝑙𝑜𝑝𝑒), (9) 120 

 

Instead of using a benchmark to decide whether model diagnostics is valuable or not, we introduce certain threshold for 

deviation-from-perfect. We set a threshold value (l) for which metric terms deviate from perfect and insert it in Eq. (1): 

𝐷𝐸𝑙 = 1 −  √𝑙2 +  𝑙2 +  ((1 − 𝑙) − 1)2√𝑙2 +  𝑙2 +  ((1 − 𝑙) − 1)2, (11)  

for this study l is set by default to 0.05. Here, we assume that for a deficient simulation each metric term deviates at least 5% 125 

from its best value. l can be either relaxed or expanded depending on the requirements of model accuracy. Correspondingly, 

DEl  represents a threshold which discerns between a deficient simulation (DE ≤ DEl) and a good simulation (DE > DEl).to 

discern whether an error diagnosis (DE > DEl) is valuable. 

Finally, the following conditions describe whether a diagnosis can be drawn (Eq. 12): 

𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 =  {
𝑦𝑒𝑠,                 |𝐵𝑟𝑒𝑙̅̅ ̅̅ ̅| ≤ l & 𝐵𝑠𝑙𝑜𝑝𝑒 > l & 𝐷𝐸 ≤ 𝐷𝐸𝑙

𝑦𝑒𝑠,                 |𝐵𝑟𝑒𝑙̅̅ ̅̅ ̅| > l & 𝐵𝑠𝑙𝑜𝑝𝑒 ≤ l & 𝐷𝐸 ≤  𝐷𝐸𝑙

𝑦𝑒𝑠,                 |𝐵𝑟𝑒𝑙̅̅ ̅̅ ̅| > l & 𝐵𝑠𝑙𝑜𝑝𝑒 > l & 𝐷𝐸 ≤ 𝐷𝐸𝑙

{
𝑦𝑒𝑠,                 |𝐵𝑟𝑒𝑙̅̅ ̅̅ ̅| ≤ l & 𝐵𝑠𝑙𝑜𝑝𝑒 > l & 𝐷𝐸 > 𝐷𝐸𝑙

𝑦𝑒𝑠,                 |𝐵𝑟𝑒𝑙̅̅ ̅̅ ̅| > l & 𝐵𝑠𝑙𝑜𝑝𝑒 ≤ l & 𝐷𝐸 >  𝐷𝐸𝑙

𝑦𝑒𝑠,                 |𝐵𝑟𝑒𝑙̅̅ ̅̅ ̅| > l & 𝐵𝑠𝑙𝑜𝑝𝑒 > l & 𝐷𝐸 > 𝐷𝐸𝑙

 , 130 

 (12) 

There exists a special case for which timing error only can be diagnosed (Eq. 13): 

𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 =  𝑡𝑖𝑚𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 𝑜𝑛𝑙𝑦,               |𝐵𝑟𝑒𝑙̅̅ ̅̅ ̅| ≤ l & 𝐵𝑠𝑙𝑜𝑝𝑒 ≤ l & 𝐷𝐸 ≤ 𝐷𝐸𝑙,l & 𝐵𝑠𝑙𝑜𝑝𝑒 ≤ l & 𝐷𝐸 > 𝐷𝐸𝑙, (13) 

If DE and its metric terms are within the boundaries of acceptance, no diagnosis is required which is expressed by the following 

conditions (Eq. 14): 135 

𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 =  𝑛𝑜,               |𝐵𝑟𝑒𝑙̅̅ ̅̅ ̅| ≤ l & 𝐵𝑠𝑙𝑜𝑝𝑒 ≤ l & 𝐷𝐸 > 𝐷𝐸𝑙 ≤ 𝐷𝐸𝑙, (14) 

In this case, the model performance is sufficiently accurate and can be denoted as a good simulationerrors are too small. 

2.3 Comparison to KGE and NSE 

In order to allow a comparison to commonly used KGE and NSE, we calculated the overall metric values and for KGE its three 

individual metric terms. We used the original KGE proposed by Gupta et al. (2009): 140 

𝐾𝐺𝐸 = 1 − √(𝛽 − 1)2 + (𝛼 − 1)2 +  (𝑟 − 1)2,  (15) 
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where E is the bias error, D represents the flow variability error, and r shows the linear correlation between simulations and 

observations (Eq. 16): 

𝐾𝐺𝐸 = 1 − √(𝜇𝑠𝑖𝑚
𝜇𝑜𝑏𝑠

− 1)
2

+ (𝜎𝑠𝑖𝑚
𝜎𝑜𝑏𝑠

− 1)
2

+  (𝑟 − 1)2,  (16) 

where Vobs is the standard deviation in observations, Vsim the standard deviation in simulations. Moreover, we applied the polar 145 

plot concept (see Sect. 2.2) to KGE and the accompanying three metric terms. In contrast to DE (see Sect. 2.1) the formulation 

of KGE is entirely based on statistical signatures. By replacing the first two terms of KGE with FDC-based signatures, we aim 

to improve the hydrological focus and provide a stronger link to the error sources.2.1), KGE ranges from 1 to -f and the metric 

formulation of KGE is entirely based on statistical signatures. By replacing the first two terms of KGE with FDC-based 

signatures, we aim to improve the hydrological focus and provide a stronger link to hydrological processes (e.g. Ghotbi et al., 150 

2020).  

NSE (Nash and Sutcliffe, 1970) calculates as follows (Eq. 17):  

𝑁𝑆𝐸 = 1 −  ∑ (𝑄𝑜𝑏𝑠(𝑡) − 𝑄𝑠𝑖𝑚(𝑡))2𝑡=𝑇
𝑡=1
∑ (𝑄𝑜𝑏𝑠(𝑡)−𝜇𝑜𝑏𝑠) 2𝑡=𝑇

𝑡=1
,  (17) 

where T is the total number of time steps, Qsim the simulated streamflow at time t, Qobs the observed streamflow at time t and 

Pobs. NSE = 1 displays perfect fit between simulations and observations; NSE = 0 indicates that simulations performs equally 155 

well as the mean of the observations; NSE < 0 indicates that simulations perform worse than the mean of the observations. 

3 Proof of concept 

To provide a proof of concept any perennial streamflow time series coming from a near-natural catchment and having 

sufficiently long temporal record (i.e. > 30 years) may be used. We selected an observed streamflow time series from the 

CAMELS dataset (Fig. 1; Addor et al., 2017). In order to generate specific model errors, we systematically manipulated the 160 

observed time series. Thus, we produced different time series which serve as a surrogate for simulated time series with a certain 

error type which we call manipulated time series. These manipulated time series are characterised by a single error type or 

multiple error types, respectively. We calculated DE for each manipulated time series and visualised the results in a diagnostic 

polar plot. 
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  165 

  

Figure 1: Observed streamflow time series from CAMELS dataset (Addor et al., 2017; gauge id: 13331500; gauge name: 

Minam River near Minam, OR, U.S.) 

3.1 Generation of artificial errors 

In the following section, we portray how we manipulated observed time series to generate artificial modelling errors. Table 1 170 

provides a brief summary on the error types and how we combined them. The resultant FDCs are illustrated in Figure 2. For 

the corresponding time series, we refer to the supplement (Fig. S1). We first describe the genesis of the time series for 

individual errors: 
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(a) Positive constant error: We generated a positive offset by multiplying the observed time series with a constant 1.25 

(see Fig. 2a and Fig. S1a). Constant requiresrequired to be > 1. 175 

(b) Negative constant error: We generated a negative offset by multiplying the observed time series with a constant 0.75 

(see Fig. 2b and Fig. S1b). Constant requiresrequired to be < 1. 

(c) Positive dynamic error: We built a linearly interpolated vector (1+p, …, 1, …, p) with p set to 0.5. We then generated 

the error by multiplying the observed FDC with the linearly interpolated vector. With that, we increased high flows 

and decreased low flows. As a consequence, hydrological extremes are amplified (see Fig. 2c and Fig. S1c). Note that 180 

the original temporal order of the time series is maintained. 

(d) Negative dynamic error: We built a linearly interpolated vector (p, …, 1, …, 1+p) with p set to 0.5. We then generated 

the error by multiplying the observed FDC with the linearly interpolated vector. With that, we decreased high flows 

and increased low flows. As a consequence, hydrological extremes are moderated (see Fig. 2d and Fig. S1d). Note 

that the original temporal order of the time series is maintained. 185 

(e) We reproduced a timing error by randomizing the order of the observed time series (see Fig. 2e and Fig. S1e). 

We then assembled the individual techniques (a-d) for the genesis of time series which are characterised by a combination of 

constant error and dynamic error. The two errors contribute with an equal share: 

(f) Negative constant error and negative dynamic error (see Fig. 2f and Fig. S1f) 

(g) Positive constant error and negative dynamic error (see Fig. 2g and Fig. S1g) 190 

(h) Negative constant error and positive dynamic error (see Fig. 2h and Fig. S1h) 

(i) Positive constant error and positive dynamic error (see Fig. 2i and Fig. S1i) 

and time series which contain constant error, dynamic error (again both errors are contributing with an equal share) and timing 

error (a-e): 

(j) Negative constant error, negative dynamic error and timing error (see Fig. S1j) 195 

(k) Positive constant error, negative dynamic error and timing error (see Fig. S1k) 

(l) Negative constant error, positive dynamic error and timing error (see Fig. S1l) 

(m) Positive constant error, positive dynamic error and timing error (see Fig. S1m) 

Note that for j-m FDCs are identical to f-i and are therefore not shown in Figure 2. 

 200 
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Figure 2: Flow duration curves (FDCs) of observed (blue) and manipulated (dashed red) streamflow time series. Manipulated FDCs 

are depicted for (a-b) constant errors only, (c-d) dynamic errors only, (e) timing error only, and (f-i) combination of dynamic and 

constant errors. The combination of constant errors, dynamic errors and timing error is not shown, since their FDCs are identical 

to f-i. Y-axis is shown in log space. 205 

The diagnostic polar plot for synthetic error cases is shown in Fig. 3. Interdependently whichSince each synthetic error has 

been generatedcase is different, related points are located in different error regions. For individual errors (a-d), related points 

are placed in the four cardinal directions of each region (Fig. 3). Within these regions the dominant error type can be easily 

identified. The more central the direction of the point, the more dominant is the error type. In case there is only a timing error 

present (e) an arrow with two ends instead of a point is used (Fig. 3). This is because dynamic error source becomes arbitrary 210 

(i.e. high flows and low flows are being both underestimated and overestimated (see Fig. S1e)). For combinations of constant 

and dynamic error (f-i), related points are located on boundaries of constant error and dynamic error meaning that both errors 

are equally dominant (Fig. 3). The same applies for combinations of constant error, dynamic error and timing error except that 

points shifted towards outer scope of the plot due to added timing error. Numeric values of DE are listed in Table 2. DE values 

are greaterlower for individual errors (except for timing error) than for combined errors. Increasing the number of errors added 215 

to a time series, leads to lowergreater DE values. For the numeric values of the individual metric terms, we refer to Table S1. 
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Figure 2: Flow duration curves (FDCs) of observed (blue) and manipulated (dashed red) streamflow time series. Manipulated FDCs 

are depicted for (a-b) constant errors only, (c-d) dynamic errors only, (e) timing error only, and (f-i) combination of dynamic and 

constant errors. The combination of constant errors, dynamic errors and timing error is not shown, since their FDCs are identical 220 
to f-i. Y-axis is shown in log space. 

A comparison of DE, KGE, and NSE calculated for the manipulated time series is shown in Table 2. Numerically, DE generally 

indicates a better performance than KGE and NSE. Moreover, values for DE exhibit a regular pattern (i.e. generating single 

error types or multiple error types, respectively, leads to an equidistant decrease in performance). By contrast, values for KGE 

and NSE are characterised by an irregular pattern (i.e. generating single error types or multiple error types, respectively, leads 225 

to a non-equidistant decrease in performance). This non-equidistant decrease of KGE and NSE scores suggests that KGE and 

NSE are differently sensitive to the generated errors. For example, lowest KGE values for single KGE is more sensitive to 

constant errors and dynamic errors are obtained by only introducing one error type (Table 2a-d).), whereas NSE is pronemore 

sensitive to timing errors (Table 2e), particularly to). Particularly, the spurious timing of the peak flows leads to an strong 

decrease of NSE (Table 2m). When combining positive constant error and negative dynamic error, and vice versa (see Table 230 

1g,h), KGE and NSE display better performance (Table 2g,h) than for single constant and dynamic error types (Table 2a-d). 

 

 
Table 1: Summary on error types and its combinations as described in Sect. 3.1 (a-m). + (-) reflects a positive (negative) error type. 

For timing error, only one error type exists (x). 235 
 a b c d e f g h i j k l m 

Constant error (+/-) + -    - + - + - + - + 
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Dynamic error (+/-)   + -  - - + + - - + + 

Timing error (x)     x     x x x x 
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Figure 3: (left) Diagnostic polar plot for manipulated time series generated characterized by constant errors, dynamic errors and 

timing errors (a-m) visualizing the overall model performance (DE; contour lines) and contribution of constant error, dynamic 

error and timing error (purple (yellow) indicates temporal match (mismatch)). (e*) timing error only: type of dynamic error 240 
cannot be distinguished. (right) Annotated diagnostic polar plot illustrating the interpretation (similar to Zipper et al. (2018)). 

Hypothetic FDC plots and hydrograph plots give examples for the error types. 

Table 2: Comparison of DE, KGE and NSE calculated for manipulated time series characterized by constant errors, dynamic errors 

and timing errors (a-m). Lowest model performance for each error case is in bold. 

 a b c d e f g h i j k l m 

DE 0.75
25 

0.752
5 

0.75
25 

0.75
25 01 0.65

35 
0.65
35 

0.65
35 

0.65
35 

-
01.06 

-
01.06 

-
01.06 

-
01.06 

KGE 0.65 0.65 0.43 0.43 0 0.08 0.75 0.75 0.08 -0.36 -0.04 -0.04 -0.36 

NSE 0.9 0.9 0.7 0.7 -1 0.27 0.94 0.94 0.27 -0.25 -0.59 -1.58 -3.26 

3.2 Modelling example 245 

In order to demonstrate the applicability, we also use simulated streamflow time series which have been derived from Addor 

et al. (2017). Streamflow time series have been simulated by the coupled Snow-17 and SAC-SMA system for the same 

catchment as in Fig. 1. We briefly summarize here their modelling approach consisting of Snow-17 which “is a conceptual air- 
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temperature-index snow accumulation and ablation model” (Newman et al., 2015) and SAC-SMA model which is “a 

conceptual hydrologic model that includes representation of physical processes such as evapotranspiration, percolation, surface 250 

flow, and subsurface lateral flow” (Newman et al., 2015). Snow-17 runs first to partition precipitation into rain and snow and 

delivers the input for SAC-SMA model. For further details about the modelling procedure we refer to Sect. 3.1 in Newman et 

al. (2015). In particular, we evaluated three model runs with different parameter sets, but the same input data. Simulated time 

series and simulated FDCs are shown in Fig. 4. The diagnostic polar plot for the three simulated time series is provided in Fig. 

5. Simulations realised by parameter set with set_id 94 outperform the other two parameter sets. All simulations have in 255 

common, that positive dynamic error type (i.e. high flows are underestimated and low flows are overestimated) dominates 

accompanied by a slight positive constant error. Timing contributes least to the overall error. The modelling example highlights 

one advantage of the proposed evaluation approach that multiple simulations can be easily compared to each other. For the 

case of the modelling example, model performance of slightly different parameter sets can be clearly distinguished although 

the parameter sets are characterized by a similar error type. After identifying the error type and its contributions, these results 260 

can be used in combination with expert knowledge (e.g. model developer) or statistical analysis to infer hints on improving 

the simulations. 

After identifying the error type and its contributions, we can infer hints on how to improve the simulations. From a process-

based (perceptual) perspective, the apparent negative dynamic error described by high flow underestimation and low flow 

overestimation suggest that process realism (e.g. snow melt, infiltration, storage outflow) appears to be deficient. Measures 265 

for improvement could start with adjusting the model parameters (e.g. refining the calibration procedure). If necessary, a 

follow-up measure could be to alter the model structure (e.g. adjusting the model equations). Additionally, there is a positive 

constant error available. Because a constant error may be linked to input data errors, this implies that adjusting the input data 

(e.g. precipitation correction, estimation of evapotranspiration) might improve the simulations. 

 270 
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Figure 4: Simulated and observed streamflow time series of modelling example for the year 2000 (a, c and e) and the related flow 

duration curves for the entire time series (b, d and f). Time series are derived from the CAMELS dataset (Addor et al., 2017). 

Observations and simulations belong to the same catchment as in Figure 1. Simulations were produced by model runs with different 

parameter sets (set_id) but same input data (see Newman et al., 2015).  275 
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Figure 5: Diagnostic polar plot for modelling example. Simulations were realised with three different parameter sets (05, 48, 94; see 

Fig. 4). All simulations perform well. However, the remaining error is dominated by a negative dynamic error type while timing is 

excellent. 

4 Discussion 280 

Aggregated performance metrics (e.g. KGE and NSE) are being criticised for not being hydrologically informative (Gupta et 

al., 2008). Although we systematically generated errors, we found an illogicala disjointed pattern for KGE and NSE (Table 2) 

which makes the interpretation of KGE and NSE more difficult. Particularly, in-depth analysis of the KGE metric terms 

revealed, that the E term and D term are not orthogonal to each other (see Fig. S2 and Fig. S3c). We also lump model 

performance into a single value, but DE differs mainly in two points from the KGE and the NSEhas the following advantages: 285 

(i) metric formulation is based rather on a hydrological understanding than a purely statistical understanding; (ii) the combined 

visualization of the efficiency metric and the different metric terms enables the identification of the dominant error type; (iii) 

diagnostic polar plots facilitate exploration of model deficiencies and diagnostics.comparison of multiple simulations. Using 

DE as an error score improves the interpretation of the numerical value. DE equals zero can be cleanly interpreted as zero 

errors. Additionally, numerical values of the first and the second metric term of DE equal to zero can also be interpreted as 290 

zero errors. Compared to KGE, the included FDC-based measures may be easier linked to different hydrologic processes than 
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purely statistical measures. For example, slow flow processes (e.g. baseflow) control the low flow segment of the FDC while 

fast flow processes (e.g. surface runoff) control the high flow segment of the FDC (Ghotbi et al., 2020). When using KGE and 

NSE for evaluation purposes, we recommend a comparison to hydrologically meaningful benchmarks which may add 

diagnostic value to KGE (e.g. Knoben et al., 2019) and NSE (e.g. Schaefli and Gupta, 2007). Based on such benchmark, skill 295 

scores have been recently proposed to evaluate simulations (Knoben et al., 2019;Towner et al., 2019;Hirpa et al., 2018) to 

communicate model performance and to improve hydrologic interpretation. So far a way to define hydrologically meaningful 

benchmarks has not been extensively addressed by the hydrologic modelling community (Knoben et al., 2019). 

 
Figure 4: Simulated and observed streamflow time series of modelling example for the year 2000 (a, c and e) and the related flow 300 
duration curves for the entire time series (b, d and f). Time series are derived from the CAMELS dataset (Addor et al., 2017). 

Observations and simulations belong to the same catchment as in Figure 1. Simulations were produced by model runs with different 

parameter sets (set_id) but same input data (see Newman et al., 2015).  
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Figure 5: Diagnostic polar plot for modelling example. Simulations were realised with three different parameter sets (05, 48, 94; see 305 
Fig. 4). All simulations perform well. However, the remaining error is dominated by a negative dynamic error type while timing is 

excellent. 

Our approach focuses on model deficiencies. Weerrors. Since the DE can be interpreted as an error score, we do not propose 

a skill score measure for DE since skill. Skill scores are known to introduce a scaling issue on communicating model errors 

(Knoben et al., 2019). DE does not rely on any benchmark to decide whether model diagnostics are required or not. Without 310 

considering any benchmark, DE may be interpreted as a deviation-from-perfect, measured by its constant error, dynamic and 

temporal error terms. In Sect. 2.2 (see Eq. 11) we introduced certain threshold for deviation-from-perfect (e.g. DE=0.9109), if 

all error terms deviate by a certain degree (e.g. 5%; 𝐵𝑟𝑒𝑙̅̅ ̅̅ ̅=0.05, |Barea|=0.05, r=0.95). Only for simulations in which deviation-

from-perfect is sufficiently large, model diagnostics will be valuable. 

By including FDC-based information into DE, we aimed for capturing rainfall-runoff response behaviour (Vogel and 315 

Fennessey, 1994) where different aspects of the FDC are inherently related to different processes (Ghotbi et al., 2020). But the 

way the dynamic error term is calculated (see Eqs. 4,5 and 7) limits the applicability to catchments with perennial streamflow. 

Moreover, the second metric term of DE (see Eq. 1) is limited to measure only the overall dynamic error. The question whether 

high flow errors or low flow errors are more prominent cannot be answered. Measuring the timing error by linear correlation 

may also have limitations. Linear correlation can be criticised for neglecting specific hydrological behaviour (Knoben et al., 320 
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2019), for example, flow recession or peak flow timing. But DE could also be calculated for different time periods and hence 

specific periods (e.g. wet periods versus dry periods) could be diagnosed separately. 

Combining DE and diagnostic polar plots is, however, limited to three metric terms, because higher dimensional information 

cannot be effectively visualised by polar plots. We emphasize that the proposed metric terms of DE might not be perfectly 

suitable for every evaluation purpose. For more specific evaluation, we suggest tailoring the proposed formulation of DE (see 325 

Eq. 1) by exchanging the metric terms with, for example, low-flow-specific terms (e.g. see Fowler et al., 2018) or high-flow-

specific terms (e.g. see Mizukami et al., 2019), respectively. Moreover, we suggest that different formulations of DE can be 

combined to a multi-criteria diagnostic evaluation (see Appendix A). 

5 Conclusions 

The proposed approach is used as a tool for diagnostic model evaluation. Incorporating the information of the model 330 

performanceoverall error and the metric terms into the evaluation process represents a major advantage. Although 

errorsdifferent error types may have multiple sourcesdifferent contributions, these may be explored visually by diagnostic 

polar plots. A proof of concept and the application to a modelling example showed that errors coming from input data, model 

parameters and model structure can be unravelled withconfirmed the helpapplicability of expert knowledge or a statistical 

analysis.our approach. Particularly, diagnostic polar plots facilitate interpretation of model evaluation results and the 335 

comparison of multiple simulations. These plots may advance model development and application. The comparison to Kling-

Gupta Efficiency and Nash-Sutcliffe Efficiency revealed, that they rely on a comparison to hydrological meaningful 

benchmarks to become diagnostically interpretable. We tried to base the formulation of the newly introduced diagnostic 

efficiency on a general hydrological understanding and can thus be interpreted as deviation-from-perfect, we do not need to 

define benchmarks.. More generally, our approach may serve as a blueprint for developing other Diagnostic Efficiency 340 

measures in the future. 
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Appendix A 

We briefly describe how DE could be extended to a tailored single-criteria metric (A1): 

𝐷𝐸𝑒𝑥𝑡 = 1 −  √𝑡𝑒𝑟𝑚1
2 + 𝑡𝑒𝑟𝑚2

2 + 𝑡𝑒𝑟𝑚3
2√𝑡𝑒𝑟𝑚1

2 + 𝑡𝑒𝑟𝑚2
2 + 𝑡𝑒𝑟𝑚3

2,  (A1) 

Multiple single-criteria metric can be combined to a multi-criteria metric (A2): 370 

𝐷𝐸𝑚𝑢𝑙𝑡𝑖−𝑒𝑥𝑡 = 1
𝑁

 ∑ 𝐷𝐸𝑁
𝑖=1 𝑒𝑥𝑡,𝑖,  (A2) 

For a multi-criteria approach, diagnostic polar plots can be displayed for each single-criteria metric included into A2. 
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