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Abstract. This study advances the understanding and impacts of dry episodes on wheat, corn, and soybean yields over

Argentina’s Core Crop Region. These major crops’ production is intense and represents the country’s Gross Domestic

Product’s main contribution. Our analysis focuses on droughts’ properties, including their magnitude, frequency at different

time scales, duration, and severity. We analyzed 40 years of precipitation and soil moisture anomalies and their corresponding

non-parametric standardized indices at time scales of 1-, 3- and 6-months. The climate variables were complemented with 40

years of the crops’ yield data. Percentage of drought occurrence in northeastern Argentina ranges between 12-18%, with the

larger values located towards the Core Crop region’s eastern/northeastern sector. Analysis of drought duration suggests that

most cases tend to occur for periods shorter than three months, while a few can extend up to one year and fewer even longer.

More importantly, regardless of the duration, droughts have larger impacts when occurring during the crops’ critical growth

period. Corn and soybean have their critical periods during summer and are more sensitive to precipitation and soil moisture

deficits than wheat, which has its critical months during spring. Quantification of the relation between the droughts’ indicators

during the crops’ critical periods and detrended annual crop yields was performed. Large drought severity values during the

crop-sensitive months result in significant crop yield losses. Results suggest that shorter-scale indicators during sensitive

periods are most appropriate to predict crop yield losses than the longer-scale indicators. This new approach can be useful for

regional decision systems that support planning by water managers and agricultural stakeholders,

J Introduction

Southeastern South America (SESA) is a region where agriculture and, cattle ranching are the primary resources and

products accounted for about USD 41.4 billion yearly on average for 2014-2018 (Ministry of Agriculture, Livestock, and
Fisheries of Argentina, MAGYP, 2019). Most of the agriculture is rain-fed, with irrigation accounting for less than 3% of the
total crop region (Siebert et al., 2013). Thus, crops and stockbreeding are susceptible to climate variability and extremes as

they depend highly on natural rainfall. Corn is among the more sensitive crops to water deficits (Minetti et al., 2007), while
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soybean production requires a middle range of water availability,and tends to be negatively impacted by either wet or dry

seasonal extremes (Penalba et al., 2007).

Droughts may have devastating economic and social impacts. Documentation of individual drought events has shown that,
indeed, this is the case. The 1988/1989 drought in Argentina was ranked among the worst episodes on record. The cultivated
area was reduced by about 35%, and the crop yield decreased by about 15% resulting in a 44% loss of productivity and,
consequently, in high economic losses (IMF, 1990). Another severe drought episode took place during the 2003/2004 austral
warm season. The drought started in September 2003 (austral spring), affecting river discharges. By April 2004, the lack of
water in the Uruguay River led to the closure of 13 out of 14 turbines at the Salto Grande hydropower plant (La Nacién, 2004;
Penalba and Vargas, 2008). Yet another severe episode took place during 2008/2009. This drought was at the time one of the
most intense, with reductions of wheat yields of about 50% and leading to the death of 1.5 million cattle heads in Argentina
(Barrionuevo, 2009). The drought of late 2011/2012 had substantial impacts on soybean and corn production, causing losses
of the order of USD 2.5 billion (Webber, 2012). The more recent drought between November 2017 and April 2018 caused a
drop of 33% of soybean production and 15% of maize production during the 2017/2018 season with respect to the previous
year (MAGyP, 2018).

Statistical analyses of extreme events in SESA have,shown that periods of water deficit can occur at different time scales, with

an inverse relationship between frequency and duration, i.e., shorter-lived events tend to be more frequent than those of longer

duration, Hence, many observational studies of drought have centered around two approaches ,Fjrst, studies based on monthly

data to examine droughts” evolution at longer time scales. For instance, Minetti et al. (2007) showed that onesmonth-long
droughts account for about 53% of all cases; two-month droughts are present in 28% of all cases, and droughts of three or
more months represent less than 20% of the cases. Second, studies with daily data have shown that even relatively short dry
spells can have significant impacts if they occur when crops are most sensitive to water availability, as is the case during the
growing season. These dry spells occur over smaller regions than those observed in monthly data, therefore with a limited
damaging effect (Naumann et al., 2008). Dry spell duration is about six days on average in the Humid Pampas, although they
increase in length towards the west (Penalba and Llano, 2008; Llano and Penalba, 2010; Naumann et al., 2012). Longer dry
spells also present an,increasing gradient from east to west, up to 60 days in the eastern sector, and about 190 days in semi-
arid west (Llano and Penalba, 2010).

Dry episodes in SESA have experienced decadal and longer time changes. Changes in the frequency of dry and wet spells
were reported as early as in the 19" Century in a visionary study by Ameghino (1884). He even proposed that such changes
were due to the introduction of Jand-use practices in colonial times, going back to the 17" Century when water-retaining tall
grass was replaced by short grass as agriculture started expanding. Recent studies (e.g., Barrucand et al., 2007; Vargas et al.,

2011; Magrin et al., 2014) have reported that the frequency of dry events was larger during the first half of the 20™" Century,
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decaying during the second half when a notorious positive trend in precipitation favored the expansion of agriculture towards
the west onto once semi-arid regions. Several studies have shown increases in monthly rainfall and reduction in the number of
dry spells during the 20™ Century (Penalba and Vargas, 2008; Naumann et al., 2008; Vargas et al., 2011). Interestingly, other
recent studies (e.g., Krepper and Zucarelli, 2010; Chen et al., 2010; Lovino et al., 2014) have suggested that the positive trend
in monthly precipitation may have slowed down in the first decade of the 21% Century. If confirmed, such change could be

Jeflected injmore droughts.
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The cold phase of ENSO (La Nifia) is widely recognized as an important forcing for the onset and duration of extreme dry
periods in SESA (Labraga et al., 2002; Penalba and Vargas, 2004; Silvestri, 2005; Barrucand et al., 2007; Vargas et al., 2011).
Yet, the ENSO cold phase forcing alone does not always lead to intense droughts (Chen et al., 2010; Cavalcanti, 2012). As
discussed by Seager et al. (2010) and Mo and Berbery (2011), the ENSO signal on SESA droughts becomes more intense and
with a better-defined spatial shape when the cold ENSO phase is concurrent with a warmer than average North Tropical
Atlantic. In addition to the remote forcings, regional and local factors may contribute to extreme event modulation once they
are initiated (Mo and Schemm, 2008; Muller et al., 2014). The moisture transports and soil moisture conditions are all known
to influence the gvents’ duration and intensity. Not least, persistent atmospheric circulations, like those associated with

blocking episodes, may hinder the development of precipitation systems during long periods. A documented case was the 1962
drought when a persistent and intense blocking anticyclone prevented the supply of warm and moist air from Brazil and the
Atlantic Ocean leading to drought conditions over most of Argentina (Malaka and Nufiez, 1980).

Jhis research aims to advance the understanding and impacts of dry episodes on wheat, corn, and soybean yields over

Eliminado: This study advances the documentation-of dry-epis

Argentina’s core crop region. Each crop has its phenology with different critical periods (when drought may significantly

impact the plants’ growth). For this reason, it is essential to consider not only seasonal droughts but also those that center on

the critical months. A drought climatology based on different indices is gssential to identify features that the analysis of a

single index might miss. This is the approach followed here. Our documentation focuses on drought frequency, duration, and

severity,and assesses jts impacts on the,main crops’ yields. Section 2 presents the region of interest and describes the data and

methods. The results and productivity indices are shown in Section 3. Discussion and conclusions are presented in Section 4.
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2 Methods
2.1 Region of interest

Our analysis focuses on SESA (Fig. 1a) and more specifically in the region known as the Core Crop Region bounded by 36-
29°S and 65-59°W (red box in Figs. 1b-d), where most (about 80%) of the Argentine production of wheat, corn, and soybean
are found. .The dark green color points out the regions where gach crop’s production is more intense, \Values of production for
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each crop are also shown in Figs. 1b-d. This region includes almost entirely the Provinces of Cérdoba and Santa Fe, and part

of the Provinces of Entre Rios, Buenos Aires, La Pampa, Santiago del Estero, Corrientes (Provinces are identified in Fig. 1a).

Wheat, corn, and soybean have different life cycles that last about seven to nine months (lower bars in Figs. 1b-d). Wheat is
planted during late austral fall or early winter (May-Jun) and harvested during summer, It is most sensitive to water availability
during its growth period in spring (Oct-Nov). Planting of corn and soybean occurs in austral spring (Oct-Dec), and both are

harvested in the fall. Their most sensitive period takes place during the summer, specifically Dec-Jan for corn and Jan-Feb for

soybeans. Therefore, a year’s crop production could be largely impacted even if a dry period lasting just one month or even /,

less occurs during the critical growth period. While these are the crops’ traditional cycles, it has become possible to have

double-cropping at specific locations, i.e., have two crops with different cycles in one year by making the second cycle shorter.
Crop rotation -which also has the advantage of reducing the need for fertilizers- introduces planting of corn or soybean right

after the wheat harvest—the second crop results in smaller but still profitable production (Senigagliese, 2004).

2.2 Data sets_and drought indices

JThis analysis of droughts focuses on precipitation (P), soil moisture (SM),and their derived standardized indices. Series of P

and SM were turned into anomalies by removing their mean annual cycle. The monthly precipitation data covers 40 vears,
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from January 1979 to December 2018, and, was developed by NCEP’s Climate Prediction Center (CPC), It consists of in situ

observations spatially interpolated to a regular 0.5° x 0.5° latitude-longitude grid cell (Chen et al., 2008). This product has
been used as a benchmark for model, evaluation in South America (Silva et al., 2011). Jn the absence of soil moisture

observations, we employ products obtained from the Global Land Data Assimilation System (GLDAS; Rodell et al., 2004;

Meng et al., 2012; Beaudoing and Rodell, 2019; 2020). . GLDAS uses several land surface models to derive,soil moisture from

the surface water and energy balances forced by observations, The Noah Model is considered here. It has four soil layers (0-

10 cm, 10-40 cm, 40-100 cm, and 100-200 cm) totaling 2 meters depth (Rodell et al., 2004). The total soil moisture in a column ;
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is the sum of the content in the four layers. The soil moisture data set consists of ynonthly values at a spatial resolution of |

0.25°x 0.25° over the same period of analysis as precipitation. Evaluation of GLDAS soil moisture products in the Humid

Pampaswas recently performed by Grings et al. (2015) and_Spennemann et al.(2015; 2020), According to Grings et al. (2015),

GLDAS is a good soil moisture benchmark in the Pampas region since it achieved the highest correlation (r > 0.80) with in

situ soil moisture measurements, Spennemann et al. (2015, 2020) also_reported that GLDAS reproduces soil moisture

observational patterns satisfactorily, They also found that GLDAS products can be used as soil monitoring indices in

\ the Pampas region
\[ Con formato

2agricultural production management,

Several drought indices have been defined to characterize droughts. The World Meteorological Organization (WMO)

recommends selecting a particular index depending on the data available and ease of application (Byakatonda, 2018). It also

recognizes the advantages of the Standard Precipitation Index (SPI) fo study meteorological droughts (Hayes et al., 2011). SPI
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represents a standardized precipitation anomaly and stands among the most used indices fo quantify and monitor droughts
(Keyantash and Dracup, 2002; Mishra et al., 2009; Hayes et al., 2011). In addition to the SPI or any precipitation index, other
environmental variables may need to be included depending on the study region’s characteristics,and climate (e.g., Byakatonda,

2018). Soil moisture is particularly useful in agricultural areas, as they reflect the water content in the upper part of the soil

where crops grow. Then, we used the standard indices SPI for precipitation and SSI for soil moisture (McKee et al., 1993;
1995; Hao and AghaKouchak, 2014; Hao et al., 2014).,

v

SPI and SSI were computed following Hao and AghaKouchak (2014) approach and Farahmand and AghaKouchak (2015),

which allows obtaining non-parametric standardized indices for many climate variables. A growing body of research attests

that 2 non-parametric approach is better than a parametric one for studies of droughts. Unlike parametric approaches, non-

parametric methods do not rely on any theoretical distribution. Parametric and non-parametric (empirical) probability density ‘

functions tend to have differences in the tails, where the parametric distribution may not be a good fit (Farahmand and

AghaKouchak, 2015). A comparison of parametric and non-parametric estimates of SPI (Solékov4 et al., 2014) found that

differences can be significant in terms of drought severity and not as much in terms of duration. According to Mallenahalli

(2020), the non-parametric SPI can better categorize the drought classes, representing better the extent of dryness and normality

conditions than parametric approaches. For these reasons, we adopted a non-parametric methodology that uses an empirical

function (Gringorten, 1963; Farahmand and AghaKouchak, 2015). This method circumvents the use of theoretical functions,

avoids issues with zerq, precipitation values, and js suitable, in precipitation and soil moisture studies. Lastly, it is also an

opportunity to provide a different approach in the index construction that has not been tested yet in the region.

JThe SPI and SSI were calculated following a non-exceedance empirical probability function for extreme events (Gringorten,

1963).

i-0.44
n+0.12 "'

®

Equation 1 represents the associated probability of non-exceedance for the ith element of the series, where x is either P or SM,

p(x) =

i is the rank of non-zero values of the sample, and n is the size of the sample. This probability is then transformed into
Standardized Indices (SI) applying the inverse of the standard normal distribution function (@) to the results of p(x;)
(Farahmand and AghaKouchak, 2015) as follows:

SI=07" (p(x)), @
This approach is applied to precipitation and soil moisture to create the corresponding indices, SP1,and SSI.

Here, SPI and SSI are defined for two different time scales, three and six months, to facilitate monitoring meteorological, and

agricultural droughts. SP13 (values for SPI at 3-months scale) reflect wet or dry conditions for short and medium time ranges
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be a reference point of the start of the anomalous behavior of flows and reservoir levels, which usually have larger time scales

than precipitation itself. As defined by soil moisture content, the less variable SSI index can identify and monitor more directly

seasonal agricultural droughts (Hao et al., 2014). While SP1 is widely used for drought monitoring and prediction, SSI produces

a reliable representation of drought persistence (Farahmand and AghaKouchak, 2015).

Jime series of wheat, corn, and soybean gcrop yield cover the campaigns from 1979/8Q, to 2018/2019,0f the, Santa Fe and

_,{

" _| Eliminado:

Eliminado:

The less variable SSI index, as defined by soil moi

Eliminado:

We used crop yield data for wheat, corn, and soybe

Eliminado:

The

(
[
[
[

Eliminado:

time series

Eliminado:

169

Eliminado:

campaigns.

Eliminado:

Crop yield data here used correspond to

Cdrdoba Provinces, covering most of the Core Crop Region (see Fig,1d). Data are available fromthe Ministry of Agriculture,

Livestock and Fisheries (MAGyP, 2020).,

2.3 Definitions and approach
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the length of the whole period and resolves quasi-periods in the interannual band 1 year < T < 10 years.

Dry events were analyzed by studying their frequency, duration, severity, and areal extent. Drought frequency (F) indicates

the percentage of droughts during the time of analysis with respect to the total possible cases, in scales of months,or the critical /
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Jor each crop’s critical periods. The frequency distribution of drought events also depends on the duration (D), that is, the

length in time an index remains below the threshold_until it reaches again. The drought magnitude is defined as the average
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deficit of an index during the duration of the event. The drought severity (S) is equivalent to the accumulated water deficit on
the event (Dracup et al., 1980), and it is defined as the magnitude times the duration, i.e., S = D x M (see Yevjevich, 1967;
Keyantash and Dracup, 2002). The properties of frequency, duration, and severity of droughts are unique to the thresholds that

define them. The analysis is completed with the examination of the droughts’ areal extent (A).

An analysis of the relation between drought occurrence and annual crop yields of wheat, corn, and soybean is performed for

Santa Fe and Cdérdoba. First, crop yield data were detrended to remove the increasing yields resulting from technological and

genetic improvements. The detrended series can be better related to drought characteristics. Then, we gxamined the Pearson

correlation coefficients between the annual detrended crop yields and the drought indices values for critical crop months (ON

for wheat, DJ for corn, and JF for soybean),

3 Results

3.1 Droughts in the core crop region
3.1.1 Spatial analysis

Figure 2 presents the spatial distribution of the percentage of months under moderate to extreme drought conditions for

northern Argentina as characterized by SPI1, SPI3, SPI6, and soil moisture anomalies. JThe occurrence of drought in /

northeastern Argentina ranges between 12% and 14% for SP11 (Fig. 2a), while months with droughts seem to increase up to

18% as characterized by SP13/6 (Figs. 2b and 2c). Soil moisture anomalies show that droughts are distributed mainly in the

north of Argentina, with about,16% -,18% of months with drought. Droughts, as characterized by SP11/3/6 (Figs. 2a-c), reveal

a homogeneous spatial distribution and an increasing drought percentage as with the time scale of the indicator., In contrast,

the spatial pattern of soil moisture anomalies shows a decrease in drought percentages for arid regions (Fig. 2d). Inside the
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Low-frequency variability modes in the drought indices were
identified using a Singular Spectrum Analysis (SSA) approach (¢
et al., 2002; Wilks, 2006). SSA decomposes the time series in
temporal-empirical orthogonal functions (T-EOFS) and temporal
principal components (T-PCS) and facilitates the interpretation o
processes related to interannual modes of climate variability and
cases of drought. First, a low-pass Lanczos filter (Duchon, 1979)
with an 18-month cut-off period was applied to the monthly-mea
time series of precipitation anomalies to remove its annual cycle
emphasize its interannual variability. Then, the SSA was used to
identify the interannual nonlinear trends and quasi-oscillatory mc
Following Von Storch and Navarra (1995), we choose a window
length (W) of 120 months as it does not exceed one-third of the
length of the whole period and resolves quasi-periods in the
interannual band 1 year < T < 10 years.{
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| Eliminado: Droughts, as characterized by SPI1/3/6 (Figs. 2a-c)

reveal a homogeneous spatial distribution and increasing number
months with drought characteristics expressed as a percentage as
the time scale of the indicator.

Core Crop Region, droughts are more frequent towards the north, with percentages of months under moderate to extreme

represented by SPI6, are equivalent to 18% towards the region;s north and southwest, Conversely, drought presence declines

towards the southeastern core crop region as all SPL.and SM show percentages descend to 12% (Figs. 2a-d),
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-| Eliminado: Fig. 2d indicates that the percentage of months witl

drought conditions, as represented by SPI6, is 18% towards the
region's north and southwest
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The drought’s occurrence during the crops’ critical growing periods provides useful information for decision making. Crops

have a stage during growth when they become more sensitive to water availability, and this changes with the type of crop.

Spring and summer represent the most critical seasons in terms of the crops” critical months. For instance, the crucial period

for wheat occurs in late spring (October and November), for corn, it is during the summer (December and January), and even

later for soybean (January and February). Therefore, Figure 3 presents the spatial distribution of the percentage of months

under moderate to extreme drought conditions characterized by SPI, during the corresponding critical months for each crop.
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The three crop types present many areas where drought conditions are 18% or higher. Figures 3a-c show that shorter duration

droughts characterized by SPI3 tend to be more common towards the west of the region, affecting corn and soybean crops

particularly. Figures 3d-f show that longer duration droughts, as represented by SPI6, have a probability of 18% over all the

Core Crop Region but mainly during corn and soybean critical months..These, results suggest,that droughts over the core crop /

region are more frequent during summer months than during spring, affecting the corn and soybean critical periods more than

the wheat’s critical period.

3.1.2 Temporal variability

Eliminado: Therefore, spring and summer represent the most

"| important seasons in terms of the crops’ critical months. Figure 2

presents the months’ percentages under moderate to extreme drol
conditions probability of droughts characterized by SPI during th
corresponding critical growing period forof each crop. Each The
three crop types presents many areas where the percentage of mo
under drought conditions drought frequencies are 18% or higher.
Given the shift in critical periods from wheat to soybean, Figs. 3:
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Figure 4 presents the time series of SPI1, SP13, SPI6, and soil moisture anomalies, area-averaged over the Core Crop Region.

SPI indices and soil moisture (Figs 4a-d) help identify wet and dry periods and their interannual variability. Notably, as the

SPI time scale increases (from one,month to six,months), the variability is reduced (see Figs. 4a and 4c). Soils function as a

physical filter because the output signal (soil moisture) has a lower frequency variability than the input precipitation, [The
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reason is that the time it takes for the precipitated water to infiltrate the soil and move through deeper layers has a dampening \

or smoothing effect that Entekhabi et al. (2006) described as a low-pass filter.
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The main features in Fig 4 are summarized in, Table 1 that reveals the dominant modes of interannual variability for SPI1,

SPI3, SPI6, and soil moisture. They are (i) a trend, (ii) a band with decadal periodicities, and (iii) 2 band close to 2.3 years

periodicities. Trends explain different percentages of the total variability of the series. Interannual modes in both bands can

explain 35% of the total variability of the SPI6 series and 37% of the soil moisture variability. Decadal cycles in SPI and soil
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moisture series are closely related and reflect the dry periods of 1987-1991, 1994-1999, and 2004-2013 (see Figs. 4a-d). The \

short-term 2.3-year cycle of interannual variability is evidenced by frequent wet and dry events between 2000 and 2018 (see

Fig. 4b-d). Interestingly, higher amplitudes are noticed starting around 2000. This result agrees with Lovino et al. (2018a, b),

who suggested that short-term variability (2.5- to 4-year periods) in precipitation exhibits a large increase in amplitude after
2000,

3.1.3 Frequency distribution

Figure 5 presents histograms of precipitation and,soil moisture anomalies,that were prepared to analyze the distribution of wet
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and dry periods over the Core Crop Region. As we are dealing here with anomalies, a right-skewed histogram indicates more

[Eli inado: the different indices (
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cases of water deficit conditions than water excess conditions, while a left-skewed histogram indicates the opposite. The

kurtosis, in addition, reflects the propensity to produce outliers (Westfall, 2014). The precipitation and soil moisture anomalies
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Eliminado: SPI3, SPI16, SSI3, and SSI6)

display right-skewed histograms (Fig. 5a) with different kurtosis. This result indicates that drought episodes are more common

than wet events over the region. The precipitation histogram (blue, hatched) exhibits extreme events thatare related to a higher

kurtosis (see inset in Fig. 5a) and heavy-tailed distribution (Westfall, 2014). The soil moisture histogram shows a more compact

distribution with low kurtosis and light-tailed histograms. This indicates that weak water deficit events are more frequent (e.g.,
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about 150 events are found in the range -10 to 0 mm). On the other hand, a wider departure from the mean for precipitation

histogram indicates that extreme dry events may occur although their frequency is low, revealing, on the one hand, the need

to use multiple indices and, on the other, the complexity of their simultaneous interpretation,,

v

Jo better understand the seasonal distribution of dry events inside the Core Crop Region, seasonal boxplots were built for

precipitation and soil moisture anomalies (Fig. 5b-c). The use of anomalies leads to an average of 0, while the median is

slightly negative following the skewed histograms in Fig. 5a. Precipitation plots in Fig. 5h, present the widest distribution

during summer (DJF), followed by autumn (MAM) and spring (SON). For each season, boxplot lower and upper whiskers
stand for the 51 and 95™ percentiles; values outside whiskers (i.e., below the 5™ percentile or above the 95™ percentile) represent
the outliers. The figure shows that the more extreme dry events can happen during summer and autumn, with outliers reaching
-100 mm. By contrast, during winter (JJA) most of the values are found near 0 mm with small deviations: outliers around -25
mm indicate that thjs region’s events are not necessarily extreme,

Boxplots for soil moisture in Fig. 5 show that seasonal distributions are more uniform, probably due to their lower variability

and lower range values than precipitation. Interestingly, the outliers have the largest magnitudes during autumn (MAM), |

reaching deviations between -20 and -30 mm. This result is consistent with a delay with respect to precipitation, which showed

the most extreme cases during summer (DJF). The delay also results in that soil moisture gxhibits more extreme cases during

winter (JJA), following the large values for precipitation during autumn (MAM).

3.1.4 Drought duration

Drought duration is defined as the number of months that a given drought index (SPI and SSI) exceeds a certain threshold, X;.
For both SPI and SSI, the value X; = -0.5 identifies mild to extreme droughts, while using X, = -1 detects moderate to extreme

droughts. Figure § shows the SPI and SSI frequency of droughts inside the Core Crop Region regarding different gvents’

durations, expressed in months. Each histogram presents the number of events for each duration, hinting at different types of
droughts.

All histograms in Fig. § present a common pattern with a higher frequency for short-term events (1-3 months). The frequency

(or the number of cases) declines as drought duration increases. These results suggest that long-term droughts, particularly
beyond seven months, are uncommon inside the Core Crop Region. Table 2 presents the percentages of drought occurrence
for short-term droughts and more prolonged than three months events as characterized by SPIs and SSI at time scales of 3 and
6 months. The SPI indices have more ability to identify short-lived droughts than the standardized index based on soil moisture,
In contrast, SSI seems a better fit to detect ;nore prolonged droughts (see Table 2). In summary, short-term droughts are better
represented by an index like SPI, with higher variability and short time scale. Long-term drought events are more easily

detected with an index of lower variability and a higher time scale.
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similarity between each distribution, and kurtosis reveals no
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3.1.5 Severity and spatial extent of droughts Eliminado: important ...ssential to describe droughts, as well.
central to have a measure of severity and spatial extent of the

. . . . : ;i " | drought. Severity can be defined as the product between the drou
Drought duration and magnitude are gssential to describe droughts, as well. It is central to have a measure of severity and /| duration and drought magnitude. A drought’s

spatial extent of the drought. Severity can be defined as the product between the drought duration and drought magnitude. A Eliminado: 8... presents the time series of severity and spatial

extent computed from SPIs and SSs for the Core Crop Region.
According to Figs. 8...a,

total Core Crop Region. Figure 7 presents the time series of severity and spatial extent computed from SPIs and SSis for the { Eliminado: S...ries of drought severity are negative because th
. . . . / It from th
Core Crop Region. According to Figs. 7azb, the most severe droughts occurred during 1988/89, 1995/96, 2008/2009, and the /| result rom thea

drought’s spatial extent refers to the area that exceeds a certain threshold (e.g., X»), and it is expressed as a percentage of the

Eliminado: the center of Argentina...rgentina’s center (shown
Fig. 1). Inside this area...,
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last one during 2017/2018, consistently with the analysis in Fig 4. Time sgeries of drought severity are negative because they /

result from the product of a negative drought magnitude (defined by using a negative threshold like X5) and a positive duration. ,

Severity indexes seem to be greater in magnitude (more negative) when computed from 6-month time scales (SP16 and SSI6),
Eliminado: the more severe droughts were also the ones with a
greater spatial extent... Further, for every severe event, the SPI ti
series indicate that droughts are extended around 80 to 90% of th
core crop region, increasing the ...hese events’ impacts of these

. P A . . . events ...n the region’s main activities of the region... Even drot
The Core Crop Region extends over 500,000 km? in Argentina’s center (shown in Fig. 1) _Figs. 7a and 7c suggest, that the that are not quantitatively as severe can spread almost in equal

more severe droughts are also the ones with a greater spatial extent within this area, Further, for every severe event, the SPI proportions as thos
. N . . . . Eliminado: the events that have occurred in 1988, 1995, and 2(
time series indicate that droughts are extended around 80 to 90% of the core crop region, increasing these events’ impacts on (see magenta

which is due to a lesser index variation as the time aggregation of the index increases.

the region’s main activities, Even droughts that are not quantitatively as severe can spread almost in equal proportions as the Eliminado: 8...c). The soil moisture lower variability results ir

similar time series of SSI3 and SSI6 (Figs. 8b

severe ones; for instance, the shorter droughts detected by SP13 in 1996, 2002, 2006, and 2012 spread through 60% to 80% of
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the core crop region (see yed lines in Fig. /c). The soil moisture lower variability results in similar time series of SSI3 and
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high...ncreased severity and large spatial extension. Therefore, 0

SS16 (Figs. Zb, d)_that have a high ability fo jdentify drought events with jncreased severity and large spatial extension. Our results suggest that even though bothSP1 and SSI indices could

results suggest that both SPI and SSI can identify severe droughts, but they have subtle differences. SPI is useful to detect a “{ con formato
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representation of the more extended severe cases. Con formato: Color de fuente: Texto 1

Con formato: Color de fuente: Texto 1
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2018 area-averaged time series of corn, wheat, and soybean yields for the provinces of Santa Fe and Cérdoba, The wheat and \
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original series, leaving the shorter-term variability (see Figs. 8d-f). Detrended time series of one or more crop yields exhibit Eliminado: 9... ...-f). Detrended time series of one or more cra
yields exhibit the largest negative anomalies concurrently with tt

the largest negative anomalies concurrently with the most severe droughts identified by SPI6 and soil moisture anomalies most severe droughts identified by SP16 and soil moisture anoma
(Figs. 4c and 4d) recorded in 1988/1989, 1995/1996, 2008/2009, and 2017/18 (Figs. &d-). Not all crops are affected equally o e € ecorded in 19881989, 199571996, 2008/2009
by drought as slight differences in the onset of the drought and the crops’ critical growth periods may affect them differently. Eliminado: ote that n...t all crops are affected equally by drou
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critical growth periods that
Table 3 presents the correlation coefficients between detrended crop yields and SPI/SSI during the crops’ critical periods. The /| Eliminado: sensitive. ..irect relation between summer crops (cc
. . . L A X X / and soybean) and deficits in precipitation and soil moisture durin
results suggest a direct relation between summer crops (corn and soybean) and deficits in precipitation and soil moisture during /, both crops'
both crops; critical periods. Of the three crops, wheat yields have the lowest correlations with the indices. Table 3 also shows / [Eliminado:

them a good descriptor of crop yield losses. Then, SPI13 and SSIZ

that the shorter-scale indicators (SP13 and SSI3) achieve a better correlation with crop yields than the Jonger-scale indicators / Eliminado: larger...onger-scale indicators (SPI6 and SSI6), m:

(SP16 and SSI6), making them a good descriptor of crop yield losses, Eliminado: that Drought severity valuesSPI3 is aare good
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Figure 8d-f shows,that large negative anomalies of detrended corn and soybean yields (Figs. 8e and 8f) are consistent with the /[ Eliminado: ....that IL
Jowest values of SP13 during the drought events in 1988/1989, 1995/1996, and 2017/18 (Fig. 7)., Severity, derived from SSI3 \( Eliminado: 9. e and 9
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and SSI6, reached extreme negative values around -8 during the crops’ critical growth period, Similarly, a considerable

reduction in wheat production in 2009 is related to large (negative) drought severity values, particularly for the Santa Fe

Province (see blue line in Fig. 8d)._Although with some differences in the anomaly values, the detrended series of corn and

soybean yield are in phase and exhibit a close resemblance (Figs. 8e and 8f) ; Increases and decreases in production take place ‘ Con formato: Color de fuente: Texto 1, Tachado

nearly simultaneously, unlike the behavior with wheat (Fig. 8d). Both crops present significant yield losses approximately in Eliminado: , which constitute extreme negative values
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two crops have January as a common month during their critical growth in summer.
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The detrended time series (Fig. 8d-f) show declines in production due to major drought events. The losses in production may Eliminado: 9

reach up to 1500 kg ha* for corn and between 500 to 1000 kg ha™* for wheat and soybean. Correlations between SP13 and the Eliminado: |
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different crop yields (Table 3) suggest that corn and soybean are more sensitive to water availability. Figs. 8e and 8f show that

SPI3 values and crop production have a better representation with a detrended series of corn and soybean yields. Notably, a
good fit is observed for the most severe drought events in 1988/1989, 1995/1996, and 2017/2018. Conversely, from 1998 to

2007, no severe events occurred (see Fig. 7a and 7b). For those years, crop production ranges from neutral to positive values,
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with a maximum for corn in Cérdoba. However, in this period without severe droughts, a drop in Cérdoba’ soybean yield
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4 Discussion and conclusions

This study documents droughts in Argentina’s Core Crop Region, where the production of wheat, corn, and soybean is the

most abundant. The investigation is based on the analysis of precipitation and soil moisture analysis, and their derived indices

SPI and SSI, respectively, at different time scales. The drought properties that were examined include magnitude, duration,

severity, and areal extension. The analysis was completed by examining the relationship between drought properties and crop

yields. Droughts were identified as the events with a water shortage exceeding one standard deviation or more of the mean

values. The requirement was slightly relaxed for estimating the duration of events, considering water deficits that depart at

least half a standard deviation. The analysis was performed at different time scales: all-months, and on a monthly basis for

each crop’s critical growing months. Crop yields have increased through the years due to more beneficial climate conditions,
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but more importantly, thanks to agro-technological advancements. We inspected drought impacts on crop yield after removing
those trends.

Our results indicate that the drought’s occurrence percentage depends on whether SPI1 or SM anomalies are used, as the

standardized nature and time aggregation of the SPI index tends to emphasize longer time scales. Short-term droughts are more

easily detected when using an index with higher variability and short time scale. For this reason, short term drought-prone

long-term events is more readily recognized with an index of lower variability and at lower time scales.
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show that values accumulated for 1-3 months account for about 78-88% of the events depending on the threshold and variable [ Eliminado: three
considered. A few can extend up to one year and even fewer even longer. However, if a multiyear drought experienced breaks, [ Eliminado: s
each period would be yegarded as a separate case. These results are consistent with drought frequency values found by Minetti [ Eliminado: when depending of
et al. (2007), who reported that similar 1-3 months events account for 90% of the Argentine Humid Pampa cases. Small %E“mi“a“: considered
Eliminado: cases in the Argentine Humid Pampa
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differences could be related to the use of different indexes and thresholds in the definition of drought. In general, long-term

drought events are more easily detected with an index of lower variability, like SSI, and a higher time scale.

The timing of droughts is central to their impact on crop yields. The reason is that the crops’ fastest growth during the,critical

periods is highly,susceptible to water availability, Even a short duration dry event, if concurrent with the critical growth period,

may have a large impact on the crop performance. Large drought severity values taking place during sensitive months will

result in significant crop yield losses. Suppose a severe drought event is identified and quantified during the crop-sensitive

Jesulting in significant economic losses, Our results suggest that the shorter-scale indicators (SP13 and SSI3) during crop’s

critical periods are most appropriate to predict crop yield losses than the Jonger-scale indicators (SP16 and SSI6).

Argentine agriculture has benefited from the increased use of fertilizers, agrochemicals, and the management of genetically

Eliminado: Each crop type has its fastest growth during short

/| periods sometime in spring or summer. ...T...ese...critical perio

highly are...susceptible to water availability so that e... Evenas
duration dry event, if concurrent with the critical growth period,
have a large impact on the crop performance. Large drought seve
values taking place during sensitive months will result in signific
crop yield losses. This is important because ...uppose a severe
drought event is identified and quantified during the crop-sensiti
months. In that case, if a high severitysevere drought event is
identified and quantified during crop-sensitive months,

[Eliminado: it

P . . . /{ Eliminado: will ...an be useful as an
months. In that case, the drought indicator can be useful as awarning that crop yields can be expected to be lower, potentially |~

. [Eliminado: indication

Eliminado: of that crop ...an be expected to be lower, potentia
experimenting ...esulting in significant economic losses on the n
campaign... In this sense, ourcorrelation...ur results results...ug
that reported that...he shorter-scale indicators (SPI3 and SSI3) d
crop’...s critical periods result...re most appropriate to predict cr
yield losses than the larger

modified crops, leading to important positive trends in crop yields. Removing those trends facilitates,contrasting of year-to-

year yield variability and climate variations. Previous studies have partially addressed the relationship between droughts and

losses on crop vyields (e.g., Podestd et al. 2009; Holzman et al., 2014; Jozami et al., 2018)., Our study advances,the topic by

providing a novel severity analysis and quantifying the link between detrended crop yield and drought indicators (SPI/SSI)

during crop.s critical periods. Wheat yields have the lowest correlations with drought indices. On the other hand, aur results

suggest a direct relation between gorn and soybean yields and deficits in precipitation and soil moisture during both crops,

critical periods. Corn seems to be the most sensitive summer crop to water deficit,in terms of crop productivity, As a note of

caution, corn production may be affected by water availability and temperature, and geographical adaptation (Butler and

Huybers 2013), These two features have not been addressed here, ,

Data availability

CPC precipitation and GLDAS soil moisture data sets are available at NWS, CPC, https://doi.org/10.1029/2007JD009132,
Chen et al, 2008; and GLDAS, https://doi.org/10.5067/9SQ1B3ZXP2C5, and Rodell, 2019;
https://doi.org/10.5067/SXAVCZFAQLNO, Beaudoing and Rodell, 2020. Crop yields data sets are provided by MAGyP,

Beaudoing

available at http://datosestimaciones.magyp.gob.ar/reportes.php?reporte=Estimaciones.,

Eliminado: Many—p;eweas&mée&(eg—Bam;eande&al—Z@Gl

Eliminado: Detrended yield time series ...acilitates
their...comparison...ontrasting of year-to-year yield variability t
and climate variations. Although ...p...evious studies have partic
addressed the relationship between droughts represented by clim:
variables ...nd losses on crop yields (e.g., Podesta et al. 2009;
Holzman et al., 2014; Jozami et al., 2018).,...00...r study advan
the literature. ..dvances in...the topic by providing a novel severi
analysis and quantifying the link between detrended crop yield a

Eliminado: c...orn seems to be the most sensitive summer croj

water deficit {or-exeess)

Eliminado: in the Core Crop Region... As a note of caution
following Butler and Huybers (2013)... corn production may be

[ Eliminado: |

Eliminado: Our study shows that unlike wheat and soybean, cc
seems to be the most sensitive crop to water deficit {or-exeess} in
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sPit sPi3 sPle Anomalies
Trend - 3.2 55 -
Quasi-cycle, T~ 10yr 5.9 13.9 22 25.4
Quasi-cycle, T ~2.3yr - 7.8 13 11.6

Table 1: Percentage of variance explained by the dominant modes of interannual variability detected using SSA with a window<«

length of 120 months. Computations were done over SPI11, SP13, SP16, and soil moisture anomalies from January 1979 to December

2018 in Core Crop Region,,
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Anomalies
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Duration [1-3 months]

Duration [ >3 months]

1(X) (X2) (%) (X2)
SPI3 77.8 88.2 222 11.8
SPI6 68.7 76.7 313 233
Ss13 46.7 49.9 53.2 50.1
SS16 385 44.0 615 56.0

Table 2: Frequency of droughts for different durations, expressed as a percentage of the total drought events in Core Crop Region

from indices SP1s and SSls. Droughts were detected using threshold X; (one half standard deviation) and X, (one standard
deviation) from January 1979 — December 2018. The duration of the events was grouped into short-term [1-3 months] and long-

term droughts [>3 months].
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. (Etimi
. Indices
Province Crop 13 Pl Ssi3 Ssie
wheat 0.15 0.05 017 0.15
Santa Fe corn 0.67 0.58 0.58 0.40
soybean 0.68 0.58 0.62 0.52
i Indices
Province Crop 13 SPlo Ssi3 Ssi6
wheat 0.49 0.04 044 0.38
Cérdoba corn 0.60 0.55 0.51 0.55
soybean 0.73 0.70 0.58 0.70
1775 Table 3: Correlation Coefficients of the annual detrended crop vield and the maximum or minimum index value for critical crop
months (ON for wheat, DJ for corn, and JF for soybean). Maximum or minimum index values are identified according to whether
detrended annual crop vields are negative or positive.
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(a) Southeastern South America (b) Soybean production
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Figure 1: (a) Map of southern South America with topographic levels and country names. Relevant Argentina’s provinces are
identified as well. Argentina’s Core Crop Region (highlighted with a dark brown rectangle) is the most productive region for corn,
wheat, and soybean. The magnitude of production in [tn] was taken from the seasons 2010/11-20017/18 for soybeans and corn and
785 from 2010/11-2018/19 for wheat. The production magnitudes for soybean, wheat, and corn are presented in panels b,c, and d
respectively. The crops’ development cycle is identified in the lower part of each panel. The periods of grain-filling and flowering
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represent the most growth-sensitive months. They are (Oct-Nov) for wheat, (Dec-Jan) for corn, and (Jan-Feb) for soybean
(MAGPYA).
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(a) SPI1 (b) SPI3
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Figure 2: Percentage of months under moderate to extreme drought conditions (months below one standard deviation) of the total
months from January 1979 to December 2018, according to (a) SP11, (b) SPI3, (c) SPI16, and (d) soil moisture anomalies.
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(a) SPI3 wheat critical months {b) SPI3 corn critical months (c) SPI3 soybean critical months

Jan-Feb

Figure 3: Percentage of months under moderate to extreme drought conditions (months below one standard deviation) during the
795 crops’ critical growing months from January 1979 to December 2018. For SP13: (a) wheat during (Oct-Nov), (b) corn during (Dec-
Jan), (c) soybean during (Jan-Feb). Panels (d), (e), and (f) are the same but for SPI6.
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Figure 4: Areal-averaged time series from January 1979 to December 2018 for (a) SPI1, (b) SP13, (c) SP16, and (d) soil moisture

anomalies in the Core Crop Region. The dominant modes of interannual variability are plotted in full lines.
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(a) Anomaly P/SM in core crop region
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(b) Seasonal Precipitation box plot
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(c) Seasonal Soil Moisture box plot
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Figure 5: Frequency histograms in Core Crop Region and Kurtosis values for (a) Precipitation anomalies (blue-hatched) and soil

moisture anomalies (light red); (b) boxplots of seasonally averaged time-series inside Core Crop Region for precipitation anomalies;
805 (c) same as (b) but for soil moisture anomalies (light red). All computations were done from January 1979 to December 2018.
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(a) SPI3 Frequency of droughts for different durations (b) SSI3 Frequency of droughts for different durations
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(c) SP16 Frequency of droughts for different durations (d) SSI6 Frequency of droughts for different durations
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Figure 6: Histograms of droughts for different durations (in months) in the Core Crop Region. (a) SPI3, (b) SSI3, (c) SP16, and (d)
SSI6. Color bars indicate mild to extreme droughts whose values are less than X; = -0.5. Hatched bars in all the panels indicate

815 moderate to extreme droughts whose values are less than X, = -1. All computations were done from January 1979 to December 2018.
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(a) Severity time series for SPI3/SPI6 in core crop region
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(b) Severity time series for SSI3/SSI6 in core crop region
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(c) Spatial extent time series for SPI3/SPI6 in core crop region
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(d) Spatial extent time series for SSI3/SSI6 in core crop region
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Figure 7: (a) Average time-series of drought severity for events below X; in the Core Crop Region based on SPI3 and SPI6 Indices;
820 (b) as panel (a), but for SSI3 and SSI6; (c) Average time-series of the droughts’ spatial extent for events below X; as a percentage of

the Core Crop region’s total area based on SP13 and SPI6 indices; (d) as panel (c) but for SSI3 and SS16. All computations were

done from January 1979 to December 2018.
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(a) Wheat yield (d) Detrended wheat yield
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(c) Soybean yield (f) Detrended soybean yield
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Figure 8: The time series of the area-averaged annual crop yield over the provinces of Santa Fe and Cérdoba from 1979 to 2018. (a)
Wheat; (b) Corn; (c) Soybean. Cubic polynomial trends are shown in dotted lines. Panels d-f present the detrended yields for Santa
Fe (blue) and Cordoba (orange). The superimposed gray bars characterize the SP13 values corresponding to the crops’ critical
growing months: ON for wheat, DJ for corn, and JF for soybean.
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