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Abstract. Billions of people rely on groundwater as an accessible source for drinking water and irrigation, especially in times 

of drought. Its importance will likely increase with a changing climate. It is still unclear, however, how climate change will 25 

impact groundwater systems globally and thus the availability of this vital resource. Groundwater recharge is an important 

indicator for groundwater availability, but it is a water flux that is difficult to estimate as uncertainties in the water balance 

accumulate, leading to possibly large errors in particular in dry regions. This study investigates uncertainties in groundwater 

recharge projections using a multi-model ensemble of eight global hydrological models (GHMs) that are driven by the bias-

adjusted output of four global circulation models (GCMs). Pre-industrial and current groundwater recharge values are 30 

compared with recharge for different global warming (GW) levels as a result of three representative concentration pathways 

(RCPs). Results suggest that projected changes strongly vary among the different GHM-GCM combinations, and statistically 

significant changes are only computed for few regions of the world. Statistically significant GWR increases are projected for 

Northern Europe and some parts of the Arctic, East Africa and India. Statistically significant decreases are simulated in 

southern Chile, parts of Brazil, central USA, the Mediterranean, and southeast China. In some regions, reversals of 35 

groundwater recharge trends can be observed with global warming. Because most GHMs do not simulate the impact of 

changing atmospheric CO2 and climate on vegetation and thus evapotranspiration, we investigate how estimated changes in 
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GWR are affected by the inclusion of these processes. In some regions, inclusion leads to differences in groundwater recharge 

changes of up to 100 mm year-1. Most GHMs with active vegetation simulate less severe decreases of groundwater recharge 

than GHMs without active vegetation and in some regions even increases instead of decreases. However, in regions where 40 

GCMs predict decreases in precipitation and groundwater availability is most important, model agreement among GHMs with 

active vegetation is lowest. Additional research on simulating groundwater processes in GHMs is necessary. 

1 Introduction 

The critical role of groundwater as an accessible source for irrigation and drinking water in particular during dry periods, 

droughts, and floods will intensify with climate change because increased precipitation variability is expected to decrease the 45 

reliability of surface water supply (Taylor et al., 2013; Döll et al., 2018; Kundzewicz and Döll, 2009). While demand for 

groundwater is likely to increase in the future,  groundwater abstractions have already led to depleted aquifers in many regions 

around the globe (Thomas and Famiglietti, 2019; Cuthbert et al., 2019a; Wada et al., 2012; Konikow and Kendy, 2005; Döll 

et al., 2014b). They have also resulted in the reduction of groundwater discharge to rivers with negative impacts on water 

availability for humans and freshwater biota in particular during low-flow periods (Herbert and Döll, 2019). To what extent 50 

groundwater can serve for sustaining ecosystem health and for supporting human adaptation to climate variability and change 

strongly depends on future groundwater availability, which is strongly affected by climate change (Kundzewicz and Döll, 

2009; Döll, 2009; Taylor et al., 2013; Cuthbert et al., 2019b). 

Groundwater recharge (GWR) is a central indicator of potential groundwater availability (Herbert and Döll, 2019). 

GWR is the vertical water flux to the groundwater from the soil (diffuse GWR) and from surface water bodies (point or focused 55 

recharge) (Small, 2005). It is a function of the local climate, topography, soil, land cover, land use (urbanization, woodland 

establishment, crop rotation, and irrigation practices), atmospheric CO2 concentrations, and geology (Small, 2005). Changes 

in GWR alter groundwater levels and their temporal patterns, which affect vital ecosystem services (Kløve et al., 2014). 

Knowledge of the dynamics and process interactions determining GWR is a fundamental prerequisite to assess groundwater 

quality and quantity under climate change (Green et al., 2011). The simulation of GWR is possibly one of the most challenging 60 

components of the water budget as it accumulates the uncertainties of all other components of the budget. Especially in 

semiarid regions, uncertainties in precipitation and evapotranspiration lead to considerable uncertainty in recharge. An 

additional factor in estimating groundwater recharge is the simulation of the groundwater table and thus capillary rise and 

focused recharge. This has not been achieved yet in GHMs, however, recently, global hydrological models (GHMs) started 

integrating gradient-based groundwater models to better estimate the flows between surface water and groundwater as well as 65 

the impact of humans and the changing climate on the groundwater system (de Graaf et al., 2019; Reinecke et al., 2019). 

Neglecting capillary rise may lead to an overestimation of decreases and increases of GWR due to a changing climate. 

Assessing the response of GWR to climate change is difficult even at the local scale, one of the reasons being that 

groundwater recharge, different from streamflow, is rarely measured, and long time series of groundwater recharge are not 
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available (Earman and Dettinger, 2011). In local groundwater modelling, groundwater recharge is often determined by 70 

calibration using hydraulic head observation, while integrated modelling relies on the partitioning of precipitation into 

evapotranspiration, storage change, and runoff (GWR plus surface and subsurface runoff). Moreover, projections of GWR 

often neglect the impact of changing climate and higher CO2 levels on plants and thus evapotranspiration and GWR (Taylor 

et al., 2013). With higher CO2 levels, terrestrial plants open their stomata less, which reduces evapotranspiration and increases 

runoff (physiological effect) while they might grow better, increasing evapotranspiration (structural effect) (Gerten et al., 75 

2014). Vegetation models that include these effects disagree about the balance of both effects (Gerten et al., 2014). However, 

based on a large ensemble of GCMs that include the impact of CO2 and changing climate on vegetation and evapotranspiration, 

rising CO2 can be expected to decrease transpiration and thus increase total runoff (Milly and Dunne, 2016). Therefore, GHMs 

that do not consider active vegetation may underestimate runoff, and thus GWR increases, or they may overestimate GWR 

decreases. 80 

While there have been review articles on the relation of groundwater and climate change (Smerdon, 2017; Jing et al., 

2020; Refsgaard et al., 2016), global-scale studies that quantify the impact of climate change on GWR are rare. They have 

evolved regarding the way climate scenarios were implemented and how many global climate models (GCMs) and GHMs 

were included in the study. While Döll (2009) could only use the delta change method to integrate information from two GCMs 

in the GHM WaterGAP (Alcamo et al., 2003; Müller Schmied et al., 2014), Portmann et al. (2013) could feed their simulations 85 

of future changes in GWR with WaterGAP directly by the bias-adjusted output with five GCMs. They found that changes in 

GWR increase with increasing greenhouse gas emissions. Acknowledging that not only GCMs but also GHMs contribute to 

the uncertain translation of emissions scenarios to changes in GWR (Moeck et al., 2016), the study of Döll et al. (2018) 

included two GHMs (WaterGAP and LPJmL, Rost et al. (2008), Schaphoff et al. (2013)) driven by the bias-adjusted of four 

GCMs. They evaluated relative changes of GWR with climate change, which can arguably serve as a better indicator of climate 90 

change hazard than absolute changes of GWR. On the other hand, the usage of relative change led to the result that change in 

GWR could not be reliably computed for 55% of the global land area due to very small GWR for the reference period simulated 

by LPJmL (Döll et al., 2018). While the LPJmL model considered, different from the WaterGAP model, the effect of rising 

CO2 on groundwater recharge, the impact of this on GWR projections were not analyzed in Döll et al. (2018). In general, 

studies investigating the difference between GHMs with and without dynamic vegetation are rare (Davie et al., 2013). 95 

This study assesses the impact of climate change on GWR based on the output of a multi-model ensemble 

encompassing eight GHMs, each forced by the bias-adjusted output of four GCMs under three different representative 

concentration pathways (RCPs). The ensemble was generated in the framework of the Inter-Sectoral Impact Model 

Intercomparison Project (ISIMIP) using simulation protocol ISIMIP2b (Frieler et al., 2017). The ISIMIP global water sector 

incorporates global models, including water resources models, land surface models, and dynamic vegetation models that can 100 

compute water flows and storages on the continents of the Earth; in this study, all three model types are referred to as GHMs. 

The ISIMIP2b ensemble has already been used in multiple climate change studies investigating, e.g., flood risk (Willner et al., 
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2018; Thober et al., 2017; Alfieri et al., 2017), low flows in Europe (Marx et al., 2018), evapotranspiration (Wartenburger et 

al., 2018), runoff and snow in Europe (Donnelly et al., 2017) or multi-sectoral impacts (Byers et al., 2018).  

Here, we analyze how GWR is projected to change globally and regionally for multiple global warming (GW) levels, 105 

determine the contributions from GHMs and GCMs to the variance of simulated changes and discuss the implications for 

future assessments of global groundwater resources. Furthermore, we show the effect of including the physiological impacts 

of evolving CO2 on global estimates of GWR. To this end, the remainder of this paper is structured as follows. Section 2 

provides an overview of the used GHMs and the methods to calculate changes of GWR per GW level and sources of 

uncertainty. The results in section 3 show the significant changes in GWR per GW and the differences in between GHMs and 110 

GCMs. We then compare the influence of GCMs, GHMs, and RCPs on the variance of simulated GWR, assess the differences 

in GWR due to including active vegetation in GHMs and compare the GHM simulations to interpolated measured GWR. The 

paper closes with a discussion of these findings (Sect. 4) and conclusions (Sect. 5). 

2 Methods 

2.1 Simulation of groundwater recharge  115 

This study encompasses eight GHMs that differ in their representation of various hydrological processes. Four of these models, 

described in more detail in the following, are able to simulate the impact of evolving CO2 concentrations on vegetation: CLM 

4.5, JULES-W1, LPJmL, MATSIRO (Table 1). In the remainder of this paper, we use the term active vegetation for models 

that consider the physiological effect of changes in CO2 on vegetation and the term dynamic vegetation for the models that 

allow for changing vegetation regarding LAI (Leaf Area Index) and/or vegetation type. A comprehensive overview of GHMs 120 

and their properties can be found in Sood and Smakhtin (2014) and the primary publications referred to in the subsections 

below. The definition of GWR and groundwater varies in between GHMs (discussed in Sect. 4). The analysis in this study is 

based on monthly GWR (variable qr in ISIMIP) in 0.5° x 0.5° grid cells simulated by the eight GHMs taking part in the 

ISIMIP2b protocol (Frieler et al., 2017). Some GHMs contained small negative GWR values, e.g., due to capillary rise; these 

values were set to zero in the analysis. We do not consider focused recharge in this study as no model offers a reliable 125 

implementation of these processes until now. 

 

Table 1 Overview which models are able to simulate the impact of evolving CO2 concentrations on vegetation and how it is implemented. 

GHM Considers 

CO2 

Summary of considered vegetation processes in ISIMIP2b Reference  

WaterGAP2 No - - 

CLM4.5 Yes Photosynthesis in the model depends on root zone soil moisture 

availability. The description is similar to LPJmL listed below. The area 

(Di Liu and 

Mishra, 2017) 
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a population of plant functional types (PFTs) takes up is prescribed and 

only changes if the input data changes. 

H08 No - - 

JULES-W1 Yes Evapotranspiration is considered from five PFTs and four non-

vegetative surface types. Each grid cell is composed of different 

fractions of those nine surface types. Transpiration occurring from 

vegetation is based on the photosynthetic process, which is subject to 

stomatal conductance regulated by the CO2 concentration. Furthermore, 

transpiration is also controlled by soil moisture availability in the root 

zone. 

(Best et al., 2011; 

Clark et al., 2011) 

LPJmL Yes Vegetation composition is determined by the fractional coverage of 

PFTs at the grid-scale. PFTs are defined to account for the variety of 

structure and function within a stand and are therefore simulated as 

average individuals competing for light and water according to their 

crown area, LAI, and rooting profiles. The vegetation dynamics 

component of LPJmL includes carbon allocation to different PFT tissue 

compartments, PFT interaction, and establishment and mortality 

processes. Photosynthesis and stomatal response are simulated 

following Farquhar et al. (1980) and the generalization by Collatz et al. 

(1991) for global modelling, based on the function of absorbed 

photosynthetically active radiation, temperature, day-length, and canopy 

conductance for each PFT present in a grid cell. 

(Schaphoff et al., 

2018) 

PCR-

GLOBWB 

No - - 

CWatM No - - 

MATSIRO Yes The consideration of CO2 effects is functionally similar to that in CLM, 

and there is no dynamic vegetation scheme. CO2 is prescribed in the 

model, which is used in the photosynthesis scheme to calculate stomatal 

conductance, among other parameters, following Farquhar et al. (1980). 

Soil moisture stress on photosynthesis is considered using moisture 

availability in the root zone with root distribution fraction in each soil 

layer. All of that is done for different PFTs. 

(Takata et al., 

2003) 

 

WaterGAP2 130 

The WaterGAP2 model (Alcamo et al., 2003) computes human water use in five sectors and the resulting net abstractions from 

groundwater and surface water for all land areas of the globe, excluding Antarctica. These net abstractions are then taken from 

the respective water storages in the WaterGAP Global Hydrology Model (WGHM) (Müller Schmied et al., 2014; Döll et al., 

2003; Döll et al., 2012; Döll et al., 2014b). With daily time steps, WGHM simulates flows among the water storage 

compartments canopy, snow, soil, groundwater, lakes, human-made reservoirs, wetlands, and rivers. GWR in WaterGAP2 is 135 

calculated as a fraction from runoff from land-based on soil texture, relief, aquifer type, and the existence of permafrost or 

glaciers, taking into account a soil texture dependent maximum daily groundwater recharge rate (Döll and Fiedler, 2008). If a 
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grid cell is defined as semiarid/arid and has a medium or coarse soil texture, GWR will only occur if daily precipitation exceeds 

a critical value (Döll and Fiedler, 2008); otherwise, the water runs off. Runoff from land that does not contribute to GWR is 

transferred to surface water bodies as fast surface runoff. WaterGAP further computes focused recharge beneath surface water 140 

bodies in semiarid/arid grid cells, which is not considered in this study. 

CLM4.5 

The Community Land Model version 4.5 (CLM4.5) (Lawrence et al., 2011; Oleson et al., 2013) is the land component of the 

Community Earth System Model (CESM), a fully-coupled, state-of-the-art earth system model (Hurrell et al., 2013). CLM is 

a land surface model representing the physical, chemical, and biological processes through which terrestrial ecosystems 145 

influence and are influenced by climate, including CO2, across a variety of spatial and temporal scales (Lawrence et al. 2011). 

Individual land grid points can be composed of multiple land units due to the nested tile approach, which enables the 

implementation of multiple soil columns and represents biomes as a combination of different plant functional types. 

Groundwater processes, including sub-surface runoff, recharge, and water table depth variations, are simulated based on the 

SIMTOP scheme (Niu et al., 2007; Oleson et al., 2013). 150 

H08 

H08 (Hanasaki et al., 2018) is a GHM including various components for water use and management. It consists of five major 

components, namely, a simple bucket-type land surface model, a river routing model, a crop growth model which is mainly 

used to estimate the timing of planting, harvesting, and irrigation in cropland, a reservoir operation model, and a water 

abstraction model. The abstraction model supplies water to meet the daily water demand of three sectors (irrigation, industry, 155 

municipality) from six available and accessible sources (river, local-reservoir, aqueduct, seawater desalination, renewable 

groundwater, and non-renewable groundwater) and one hypothetical one termed unspecified surface water. It has two soil 

layers; one is to represent the unsaturated root zone, and the other the saturated zone (groundwater). The scheme of GWR 

computation is identical to Döll and Fiedler (2008). 

JULES-W1 160 

The Joint UK Land Environment Simulator (JULES) (Best et al., 2011) (W1 stands for water-related simulations in the ISMIP 

framework) is a land surface model initially developed by Met Office as the land surface component of Met Office Unified 

Model. JULES is a process-based model that simulates the carbon, water, energy, and momentum fluxes between land and 

atmosphere, including plant - carbon interactions (Clark et al., 2011). The rainfall that reaches the ground is partitioned into 

hortonian surface runoff and an infiltration component. Four soil layers represent the soil column with a total thickness of 3 165 

m, with a unit hydraulic head gradient lower boundary condition, and no groundwater component. The water that infiltrates 

the soil moves down the soil layers updated using a finite difference form of the Richards equation (Best et al., 2011). The 
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saturation excess water from the bottom soil layer becomes subsurface runoff that can be considered to be GWR (Le Vine et 

al., 2016). 

LPJmL 170 

Lund Potsdam Jena managed Land (LPJmL) is a dynamic global vegetation model that simulates the growth and productivity 

of both natural and agricultural vegetation as coherently linked through their water, carbon, and energy fluxes  (Schaphoff et 

al., 2018). The soil column is divided into six active hydrological layers with a total thickness of 13 m depth. Percolation of 

infiltrated water through the soil column is calculated according to a storage routine technique that simulates free water in the 

soil bucket (Arnold et al., 1990). Excess water over the saturation levels produces lateral runoff in each layer (subsurface 175 

runoff). GWR is considered to be percolation (seepage) from the bottom soil layer. As there is no groundwater storage in 

LPJmL, for the ISIMIP2b protocol, seepage from the base soil layer is reported as both GWR and groundwater runoff, which 

is routed directly (no time delay) back into the river system. 

PCR-GLOBWB 

PCR-GLOBWB (PCRaster Global Water Balance; (Sutanudjaja et al., 2018) simulates the water storage in two vertically 180 

stacked soil layers and an underlying groundwater layer. Water exchanges are simulated in-between the layers (infiltration, 

percolation, and capillary rise) as well as the interaction of the top layer with the atmosphere (rainfall, evapotranspiration, and 

snowmelt). PCR-GLOBWB also calculates canopy interception and snow storage. Natural groundwater recharge is fed by net 

precipitation, and additional recharge from irrigation occurs as the net flux from the lowest soil layer to the groundwater layer, 

i.e., deep percolation minus capillary rise. The ARNO scheme (Todini, 1996) is used to separate direct runoff, interflow, and 185 

GWR. Groundwater recharge can be balanced by capillary rise if the top of the groundwater level is within 5 m of the 

topographical surface (calculated as the height of the groundwater storage over the storage coefficient on top of the streambed 

elevation and the sub-grid distribution of elevation). 

CWatM 

The Community Water Model (CWatM) is a large-scale integrated hydrological model, which encompasses general surface 190 

and groundwater hydrological processes, including human hydrological activities such as water use and reservoir regulation 

(Burek et al., 2019). CWatM takes six land cover classes into account and applies the tile approach. This hydrological  

model has three soil layers and one groundwater storage. Depth of the first soil layer is 5 cm, and the depth of second and third 

layers vary over grids depending on the root zone depth of each land cover class, resulting in total soil depth of up to 1.5 m. 

Groundwater storage is designed as a linear reservoir. CWatM includes preferential bypass flow directly into groundwater 195 

storage and capillary rise from groundwater storage, as well as percolation from the third soil layer to groundwater storage.  

Hence, the groundwater recharge reported by CWatM in ISIMIP2b is the net recharge calculated from these three terms. 



 

8 

 

MATSIRO 

The Minimal Advanced Treatments of Surface Interaction and RunOff (MATSIRO; Takata et al. (2003)) is a global land 

surface model initially developed for an Atmospheric Ocean General Circulation Model, the Model for Interdisciplinary 200 

Research On Climate (Hasumi, H., and S. Emori, 2004). This process-based model calculates water and energy flux and storage 

at and below the land surface, considering the stomatal response to CO2 increase as well in the photosynthesis process. The 

off-line version of MATSIRO used for ISIMIP2b simulation explicitly takes vertical groundwater dynamics into account, 

including groundwater pumping (Pokhrel et al., 2015; Pokhrel et al., 2012). Soil moisture flux between the 15 soil layers is 

expressed as a function of the vertical gradient of the hydraulic potential, which is the sum of the matric potential and the 205 

gravitational head, and soil moisture movement is calculated by Richards equation. MATSIRO calculates net groundwater 

recharge as a budget of gravitational drainage into and capillary rise from the layer where the groundwater table exists. A 

simplified TOPMODEL (Beven and Kirkby, 1979; Stieglitz et al., 1997) is used to represent surface runoff processes, and 

groundwater discharge is simulated by using an unconfined aquifer model (Koirala et al., 2014). 

2.2 Model simulations 210 

Each GHM is forced by bias-adjusted data from four GCMs: GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, and MIROC5. 

Further details on the selection of climate models and the bias correction can be found in Frieler et al. (2017), Lange (2016), 

Hempel et al. (2013), Lange (2018), and online at ISIMIP (2018). The bias adjustment method used for the GCMs in ISIMIP2b 

is using a trend preserving algorithm (Frieler et al., 2017) with EWEMBI (Lange 2018) as baseline (reference) climate 

condition. The simulations in this study span the period 1861 till 2099. All GHMs (except for PCR-GLOBWB, which misses 215 

the RCP 8.5 run) simulate the RCPs 2.6, 6.0, and 8.5. 

The pre-industrial period (PI) is defined in ISIMIP from 1661-1860, whereas the historical period is defined from 

1861-2005. Additionally, to the RCP and historical simulations, ISIMIP defines PI simulations that represent an extended state 

of emissions scenarios from the PI period till 2099 (and partially till 2300, not applicable in this study). In this study, we 

always, if not stated otherwise, refer with PI to the simulation period 1960-2099 with the continued concentration levels of 220 

1661-1860.  Details on the simulation setup can be found on the ISIMIP webpage ISIMIP (2019) or in Frieler et al. (2017). 

Regarding the non-climatic drivers, all GHMs use, for the time before 2006, so-called historical socio-economic 

pathway assumptions, e.g., historical water use, except for CLM 4.5, which used the socio-economic state of 2005. All 

simulations for 2006-2099 are based on this assumed socio-economic state of 2005. For some models this affects the 

abstraction from groundwater, which is not stimulated by all models (JULES-W1), or GWR directly due to irrigation (H08, 225 

CLM, PCR-GLOBWB). Details on the pertinent scenario variables can be found in the ISMIP protocol (Frieler et al., 2017). 

Land-use change was not considered. 
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2.3 Determining stabilized warming levels 

In order to derive policy-relevant information, we assed impacts framed in terms of GW levels (1°, 1.5°, 2°, and 3°C) with 

respect to the GW of 0°C in PI conditions (James et al., 2017). The time of passing a warming level is defined as the first time 230 

the 31-year running mean of the global averaged annual mean temperature gets above that level. Each GCM reaches different 

GW at different times (Table 2), depending on the RCPs (van Vuuren et al., 2014). For each GW level (1°, 1.5°, 2°, and 3°C), 

time slice of 31 years (15 before the level was reached, and 15 after) for each GCM and for each RCP, in which that GW is 

reached, are used. Using this time slice, a yearly mean GWR at 0.5° (spatially) was calculated for the GHMs that were forced 

with the particular combination of GCM and RCP. (Fig. 1). Additionally, a PI reference was calculated for each GCM, RCP, 235 

and GHM combination for the same time-slice the GW level was reached in a particular RCP-GCM combination using the PI 

reference simulation (see section 2.2)  illustrates the methodology by showing two unspecified RCPs and the PI comparison 

paths. 

Considering that not all RCP/GCM combinations reach higher warming levels (Table 1), not all ensembles have the 

same size. Theoretically, the maximum ensemble size is 96, a combination of 8 GHMs, 4 GCMs, and 3 RCPs (2.6, 6.0, and 240 

8.5). Because projections under RCP 8.5 were not available for PCR-GLOBWB, the maximum ensemble size is 84. The 

smallest ensemble (for 3°C) consists of 36 members. 

 

Table 2 Overview of the warming levels and in which year they are reached in the corresponding GCM (ISIMIP, 2019). 

Warming Level RCP GFDL-ESM2M HadGEM2-ES IPSL-CM5A-LR MIROC5 

1° 2.6 

6.0 

8.5 

2014 

2016 

2014 

2012 

2014 

2012 

1993 

1993 

1993 

2015 

2023 

2014 

1.5° 2.6 

6.0 

8.5 

- 

2056 

2036 

2026 

2032 

2025 

2009 

2010 

2009 

2048 

2052 

2033 

2° 2.6 

6.0 

8.5 

- 

2076 

2053 

- 

2050 

2037 

2029 

2029 

2024 

- 

2071 

2048 

3° 2.6 

6.0 

8.5 

- 

- 

2082 

- 

2076 

2056 

- 

2068 

2046 

- 

- 

2071 

 245 
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Figure 1 Conceptual representation of how GW levels are determined for different GCMs, RCPs, and the PI comparison period. 

2.4 Calculation of model variance 

To calculate whether the variance in absolute GWR change is mainly introduced through the GHMs or the GCMs, the 

following equation was applied per model grid cell and GW level. 250 

𝑅𝑣𝑎𝑟𝐺𝑊𝑅
𝑚𝑜𝑑𝑒𝑙 =

 𝜎𝐺𝑊𝑅
2 (𝐺𝐶𝑀𝑠)

( 𝜎𝐺𝑊𝑅
2 (𝐺𝐶𝑀𝑠) +   𝜎𝐺𝑊𝑅

2 (𝐺𝐻𝑀𝑠))
⁄      (1) 

where 𝑅𝑣𝑎𝑟𝐺𝑊𝑅
𝑚𝑜𝑑𝑒𝑙 is the variance ratio of GCMs to GHMs, 𝜎𝐺𝑊𝑅

2 (𝐺𝐻𝑀𝑠) is the average variance of GWR change of all GHMs 

per GCM per RCP, and  𝜎𝐺𝑊𝑅
2 (GCMs) is the average variance in GWR change of all GCMs per RCP per GHM. The variance 

relative to the choice in RCP 𝑅𝑣𝑎𝑟𝐺𝑊𝑅
𝑅𝐶𝑃  can be calculated similarly as 

𝑅𝑣𝑎𝑟𝐺𝑊𝑅
𝑅𝐶𝑃 =

 𝜎𝐺𝑊𝑅
2 (𝑅𝐶𝑃𝑠)

( 𝜎𝐺𝑊𝑅
2 (𝑅𝐶𝑃𝑠) +  𝜎𝐺𝑊𝑅

2 (𝐺𝐻𝑀𝑠))
⁄  ,     (2) 255 

where  𝜎𝐺𝑊𝑅
2 (RCPs) is the average variance in GWR of all RCPs per GCM per GHM. 

2.5 Determining significant changes 

A model ensemble allows us to consider the uncertainty in modeling physical processes as different model use different 

algorithms and parameters for computing groundwater recharge. To determine whether changes in GWR due to GW computed 

by the model ensemble are statistically significant, we used the two-sample Kolmogorov–Smirnov (K-S) test to compare the 260 

GWR values computed by all GHM-GCM model combinations under e.g., PI conditions with the values at the various GW 

levels. The use of a two-tailed t-test is not advisable in this setting due to the small sample size (max. 84 in this study). Because 

the K-S test does not allow to check whether the ensemble agrees on the sign of change in GWR, we applied an additional 

criterion to determine a significant change similar to Döll et al. (2018). A change is only marked as statistically significant if 
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the K-S test indicates a significant difference and at least 60% of the model realizations of the ensemble (RCP, GCM and 265 

GHM combinations) agree on the sign of change (i.e. a decrease or increase). In case of a low significance, all models may 

show large responses to climate change while their agreement on the amount or sign of change is low. 

3 Results 

3.1 Changes of groundwater recharge at different warming levels 

To assess the impact of GW on GWR, Fig. 2 shows the ensemble mean change of GWR between the current 1°C world and a 270 

potential 3°C GW. We chose to express changes as absolute change rather than relative change because zero, or close to zero, 

GWR in some regions of the world leads to not defined or extremely large percentage increases and decreases (Fig. S1 and 

S2). The model mean shows large decreases of over 100 mm year-1 in South America and in the Mississippi Basin and decreases 

of up to 50 mm year-1 in the Mediterranean, East China, and West Africa. Increases of over 100 mm year-1 are prominent in 

Indonesia and East Afrika. Individual GHM-GCM model combinations compute much larger changes. 275 

 

Figure 2 Ensemble mean change in GWR [mm year-1] between conditions of present day warming of 1 °C GW and at 3 °C GW, averaged 

over the GWR changes of all GHM-GCM model combinations. 

Ensemble mean changes as shown in Fig. 2 may be low in some areas, but this could be due to large positive changes compute 

by some GHM-GCM model combinations being cancelled by large negative changes by other model combinations. To assess 280 

the changes which show a high statistical agreement in-between the model combinations, we determine where computed 

changes of GWR are statistically significant (Section 2.5). As a reference for the intensity of the changes, Figure 3a shows the 
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mean GWR at PI averaged over all GHMs, RCPs, and GCMs from 1861-2099. The spatial pattern of GWR roughly agrees 

with the pattern of Mohan et al. (2018) derived by inferring it from more than 700 small-scale GWR estimates. The global 

mean GWR for the PI period is 140 mm year-1, which is very similar to the value of 134 mm yr-1 determined by Mohan et al. 285 

(2018) for the period 1981-2014 (see also Sect. 3.4). 

 Figure 3b-e show the (statistical) significant (bright colors, Sect. 2.5) mean absolute changes in GWR of the multi-

model ensemble under a GW of 1.0°C, 1.5°C, 2.0°C, and 3.0°C compared to PI, i.e., GWR of the PI runs for the corresponding 

time-slices (Sect. 2.3). For all GW levels compared to PI (Figure 3b-e), consistent patterns of decreasing GWR emerge for 

southern Chile, Brazil, central continental USA, the Mediterranean, and East China. Consistent and statistically significant 290 

increases can be observed for northern Europe and in general northern latitudes and East Africa. Statistically significant 

changes could only be derived for a small percentage of the total grid cells. Only about 15% of the cells, on average for all 

GW levels, show statistically significant increases or decreases. However, the patterns of non-significant (light colors) mean 

changes are consistent with the significant changes and show, e.g., for the Amazon larger areas of increases and decreases 

around the statistically significant changes. The identification of non-significance in most areas is due to the K-S test. The sign 295 

criterion affects mainly the Sahara and Central Asia. 

At 1°C GW (Figure 3b), decreases of more than 100 mm year-1 are simulated in Southeast Asia, East China, Guyana, 

and southern Brazil. Decreases between 100 and 50 mm year-1 can be seen in central continental USA, southern Brazil, 

southern Chile, the Mediterranean, central Africa, and East China. Increases in GWR of 50 and over 100 mm year-1 are visible 

in the center of the Amazon while decreases show in the northeast and southern part that increase with GW. Overall the 300 

statistically significant global change is -17 mm year-1 at 1°C. 

A 1.5°C GW shows only a limited increase in the Amazon but similar increases in the rest of the world. Decreases in 

GWR over 100 mm year-1 are now visible in Central America, but decreases for Southeast Asia have vanished. Smaller 

decreases, for example, in Australia, have vanished as well in a 1.5°C world. These effects are not necessarily due to no 

changes in GWR but due to disagreements in the ensemble that do not allow to determine a reliable and statistically significant 305 

change for this warming level. The global statistically significant mean change is -12 mm year-1 at 1.5°C GW. 

At 2°C GW, increases in GWR over 100 mm year-1 are present in northern Java, Amazon, and East Africa. Decreases 

are similar to 1.5°C GW, except for southern Chile and the northern Andes, where decreases become more severe. However, 

on the statistically significant global mean, these changes balance out to -1 mm year-1. 

In a 3°C world, large areas of decreases in GWR of over 100 mm year-1 in the Amazon Basin close to the Andes 310 

occur, also in Guyana, Venezuela, West Africa, and the Mississippi Basin. Increases in GWR of over 100 mm year-1, in 

contrast, are visible in East Africa, India, and North Java. Increases of 50 to 100 mm year-1 dominate in northern latitudes at 3 

°C warming compared to other GW levels. The global statistically significant mean increases by +3 mm year-1. 

 We have already reached a GW of approximately 1°C (IPCC, 2018). Figure 3f shows the changes in GWR of a 3° 

GW compared to the present-day GW of already 1°C instead of the PI. Overall the agreement among the models is smaller 315 

than when the 3°C world is compared to PI. Only 8% of the cells show statistically significant changes. Decreases over 100 
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mm year-1 are present in the Amazon Basin close to the Andes and on the coast of Guyana. Decreases of 50 to 100 mm year-1 

are visible in Chile, the Mississippi Basin, the Caribbean, and southern France. Increases in GWR are again to be expected in 

the northern Latitudes, southern Brazil, East Africa, and Southeast Asia, whereas the latter shows increases over 100 mm year-

1 for Malaysia. The global statistically significant mean change is +8 mm year-1. Figure S3 shows the mean and median changes 320 

of GWR per latitude for all four GW levels, together with the standard deviation without a significance test. A decrease in 

mean GWR can be observed for all GW levels at 40° S, around 20° S (Namibia, Australia), and 5° N (Guyana). Increases are 

visible at 60° N (North Europe) and southerly close to the Equator, presenting a large spread and sudden change in directions 

in the tropics. Increases at greater than 60° N are likely due to a combination of different rain and snow patterns as well as 

snowmelt timing. 325 
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Figure 3 Mean GWR [mm year-1] for pre-industrial greenhouse gas concentrations, averaged over the GWR of all GHMs and GCMs (a). 

Ensemble mean absolute change in GWR [mm year-1] at 1.0 °C (b), 1.5°C (c), 2.0°C (d), and 3.0°C (e) GW compared to PI. The ensemble 

mean absolute change in GWR [mm year-1] for 3.0°C GW compared to GWR at the current GW of 1°C (f). For (b) to (f) only those cells 330 
are displayed in solid colors where the Kolmogorov-Smirnov (K-S) test with a p of 5% indicated that the ensemble GWR distribution for PI 

(for (f) the GWR distribution at 1°C) and for the GW level differ, and at least 60% of the models agree on the sign of the change. The 

ensemble size is shown in brackets. Lighter colors (upper color bar) show (statistical) insignificant mean differences. 
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Large areas of statistically insignificant changes of GWR (light colors) in Fig. 3 can be traced back to the uncertainty in GWR 

in between GHMs and GCMs. Figure 4 shows absolute GWR changes in a 1.5 °C world compared to PI (Fig. 3a,b) as well as 335 

PI GWR (Fig. 3c,d) for the SREX (Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate 

Change Adaptation, Murray and Ebi (2012), Fig. S6) region Amazon (left) and South Europe/Mediterranean (right). 

Corresponding plots for all other SREX regions are provided in the supplement. Similar to box plots, the letter-value plots in 

Fig. 4 show the distribution of values among the 0.5° grid cells belonging to the SREX region. Letter-value plots have the 

advantage of showing the distribution of values outside of the usual interquartile range (IQR, Q25 - Q75). For example, for 340 

Fig. 4b CLM 4.5 with GFDL-ESM2-ES, the mean change in GWR is -19 mm year-1, the middlebox represents the IQR showing 

that 50% of changes are close to zero or smaller than zero, the smaller box towards the negative changes shows that 12.5% are 

smaller than -47 mm year-1, whereas the additional missing box in the positive direction hints that almost no values are larger 

than zero. The horizontal size of the boxes is automatically scaled and does not carry any additional information. 

Computed changes vary strongly among both GHMs and GCMs (Fig. 4a,b). In the Amazon, Jules-W1 shows a mean 345 

increase of 225 mm year-1. Compared to WaterGAP2, Jules-W1 estimates of GWR change are 147 mm year-1 higher for 

MIROC5 and 44 mm year-1 lower for HadGEM. These differences are even large relative to the higher mean PI GWR in the 

Amazon compared to other regions of the world (compare to MED in Fig. 4). Nevertheless, also the PI estimates differ by, 

e.g., 122 mm year-1 between Jules-W1 and WaterGAP2 on the mean for all GCMs and RCPs, and PI GWR is 625 mm year-1 

smaller for H08 than for MATSIRO in the Amazon. 350 

 In the Mediterranean, almost all GHMs show the largest decreases in GWR with IPSL-CM5a-LR, followed by GFDL 

input, while HadGEM results in almost no change. However, the changes computed with each GCM input vary strongly among 

the GHMs. In general, CLM 4.5 and PCR-GLOBWB project the most considerable changes. The decrease of GWR computed 

by CLM 4.5 with IPSL-CM5a-LR is 33% of the mean GWR calculated for PI with that model combination. 

Conversely, JULES-W1 simulates for most grid cells in this SREX region the smallest PI GWR values (but also very 355 

high outliers), and likely related, the smallest (mean) changes, together with MATSIRO and CWatM, which show altogether 

small GWR changes in all grid cells of the SREX regions. H08 and WaterGAP2, which apply similar approaches to modeling 

GWR as a function of total runoff, show somewhat similar GWR changes. 

The four GHMs that take into account the impact of increasing CO2 (Table 1) do not result in similar changes as 

compared to the other four models. It is to be expected from literature (Davie et al., 2013) that with the physiological effect, 360 

the decreases of GWR would be slighter in the case of the CO2-sensitive models, but that is not the case. This is likely due to 

the approach of analyzing GW levels instead of RCPs and periods because different GCMs reach a particular GW level at 

different times and CO2 levels. This is further investigated in Sect. 3.3. On the global mean and for 1.5°C GW LPJmL simulates 

the lowest PI GWR, whereas MATSIRO and CLM 4.5 produce the highest global mean GWR (Fig. S4). PCR-GLOBWB 

simulates the largest global mean decreases with HadGEM (Fig. S5). In contrast, JULES-W1 and MATSIRO simulate 365 

increases of GWR on the global mean for all GCMs except for HadGEM (Fig. S5). 
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Figure 4 Letter-value plot (Hofmann et al., 2017) of absolute changes in GWR in 0.5° grid cells [mm year-1] at 1.5°C GW compared to PI 

(a, b) and absolute PI GWR [mm year-1] (c, d) for the Amazon (a, c) and South Europe/Mediterranean (b, d) SREX region (for all other 

regions and GW levels [2°C, 3°C] see supplement). No statistical test is applied and all grid cells inside a region are included. Each box may 370 
include multiple simulations with different RCPs. 

To provide an overview of changes in GWR in each SREX region, Table 3 shows the median, mean and P25 and P75 

changes in GWR compared to PI for all regions (see Fig. S6 for a map of the SREX regions). Overall, North Europe shows 

the largest consistent increases in GWR, whereas the Amazon shows the largest consistent decreases, except for 2°C, where 

South Europe/Mediterranean shows the largest decreases of 18.6 mm year-1 as the median. For 3°C, the Amazon shows the 375 

highest decreases in GWR of -41.0 mm year-1 as median. Notably, Southeast Asia is first showing decreases of 13.1 mm year-

1 with 1.0°C GW and then no change with 1.5°C and 2°C and an increase in GWR of 13.5 mm year-1 with 3°. Relative to PI 

the changes of the 3°C GW in the Amazon only account for 10% of the GWR, compared to the 19% relative increase of GWR 

in North Europe with 3°C and the 40% decrease in GWR in South Europe/Mediterranean at 2°C GW. 

 380 

Table 3 Median (�̃�), mean (�̅�), P25, and P75 of absolute GWR change [mm year-1] for four warming levels for each SREX region compared 

to PI. �̃�, �̅�, P25, and P75 describe the distribution of changes of spatially averaged GWR in each SREX region among all 36-84 ensemble 

members (Sect. 2.3). P25/75 are the 25th and 75th percentile in the ensemble for a given region and a given GW level. The last column shows 

absolute GWR at PI. The following regions are not included due to the coarse spatial resolution of the models and low confidence in the 
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reliability of results: Artic, Canada/Greenland/Island, Antarctic, Pacific islands, Southern tropical pacific, Small Island Region Caribbean, 385 
West Indian Ocean. In bold maximum and minimum values per GW level. No statistical test is applied to filter the values. 

  1.0° 1.5° 2.0° 3.0° PI 

SREX Name 

�̃�, �̅�  

P25, P75 

�̃�, �̅�  

P25, P75 

�̃�, �̅�  

P25, P75 

�̃�, �̅�  

P25, P75 

�̃�, �̅�  

P25, P75 

AMZ Amazon 
-10.7, -14.5 

-30.4, -6.8 

-19.1, -22.3 

-38.3, -9.7 

-14.6, -18.2 

-34.5, 3.4 

-41.0, -59.9 

-81.1, -39.2 

409.6, 550.4 

419.7, 614.6 

CAM 
Central 

America/Mexico 

-2.4, -17.1 

-23.1, -6.5 

-4.8, -21.0 

-26.8, -9.0 

-4.3, -12.9 

-18.9, -7.7 

-10.0, -36.0 

-45.8, -24.0 

79.8, 280.4 

222.3, 327.7 

CAS Central Asia 
0.0, -0.4 

-0.7, 0.3 

0.0 0.0 

-0.7, 1.0 

0.0, -0.8 

-1.4, -0.3 

0.0, -2.6 

-3.9, -1.4 

1.8, 25.9 

17.2, 37.2 

CEU Central Europe 
4.1, 6.8 

0.5, 13.3 

1.2, 3.1 

-5.5, 11.8 

-0.4, 0.1 

-9.7, 11.3 

0.1, 2.8 

-9.9, 22.3 

114.6, 135.4 

117.9, 155.8 

CAN 
Central North 

America 

-6.5, -16.7 

-20.2, -12.3 

-5.6, -18.3 

-20.2, -12.7 

-3.3, -16.6 

-20.0, -12.5 

-9.9, -30.5 

-32.8, -18.2 

98.1, 128.6 

76.4, 183.5 

EAF East Africa 
0.0, -0.8 

-2.7, 3.3 

0.0, 2.7 

-0.2, -7.8 

0.0, 8.1 

1.2, 13.9 

0.6, 23.3 

9.0, 32.4 

32.2, 95.0 

63.4, 134.1 

EAS East Asia 
-0.5, -15.7 

-20.0, -8.3 

0.0, -13.9 

-16.9, -6.8 

0.0, -10.3 

-10.7, -3.7 

0.0, -13.7 

-14.2, -4.5 

50.5, 147.3 

113.1, 154.3 

ENA East North America 
3.3, 4.8 

-2.0, 11.2 

9.9, 11.9 

-0.8, 19.8 

10.6, 15.9 

-1.5, 26.3 

1.4, 2.5 

-9.1, 20.5 

221.8, 257.8 

167.4, 338.1 

NAS North Asia 
0.4, 6.0 

3.0, 7.2 

0.5, 7.9 

5.1, 9.1 

3.1, 12.5 

9.0, 13.1 

4.6, 18.5 

13.0, 20.4 

24.2, 59.2 

46.2, 73.4 

NAU North Australia 
0.0, -4.5 

-6.9, -2.2 

0.0, -2.7 

-3.9, -0.8 

0.0, 1.1 

-0.8, 3.5 

-0.9, -3.0 

-7.1, 0.0 

5.9, 43.1 

28.5, 52.1 

NEU North Europe 
13.1, 24.9 

15.9, 35.7 

13.9, 27.7 

14.7, 41.3 

18.6, 34.9 

16.8, 53.0 

29.2, 51.6 

25.0, 78.2 

154.8, 226.4 

182.1, 280.4 

NEB North-East Brazil  
-8.9, -30.3 

-35.6, -21.2 

-10.5, -22.9 

-31.3, -13.2 

-6.2, -14.4 

-24.9, -2.1 

-6.0, -9.4 

-20.7, 2.1 

161.6, 227.4 

147.1, 315.0 

SAH Sahara 
0.0, -0.7 

-1.0, -0.3 

0.0, 0.3 

0.1, 0.4 

0.0, -0.2 

-0.2, 0.0 

0.0, -0.4 

-0.5, 0.0 

0.1, 4.2 

0.8, 4.4 

SAS South Asia 
-3.3, -13.4 

-15.9, -8.3 

0.0, -4.8 

-6.1, 0.1 

-2.3, -11.6 

-17.5, -5.3 

3.8, 26.9 

2.3, 45.5 

151.8, 274.9 

229.5, 319.2 

SAU 
South Australia/New 

Zealand 

-2.9, -8.6 

-11.1, -4.5 

-2.3, -10.3 

-12.4, -6.5 

-2.1, -15.3 

-17.8, -9.4 

-4.2, -20.0 

-22.2, -14.3 

18.1, 135.7 

111.4, 157.6 

MED 
South 

Europe/Mediterranean 

-3.9 -14.3 

-17.6, -9.3 

-6.3, -18.1 

-21.6, -12.8 

-16.8, -23.7 

-27.4, -16.8 

-12.5, -28.9 

-31.8, -19.1 

43.9 84.9 

72.1, 87.6 

SEA Southeast Asia 
-13.1, -36.1 

-55.7, -10.7 

-0.1, -5.2 

-18.0, 8.6 

-0.6, 23.1 

-1.7, 36.5 

13.5, 46.1 

3.0, 68.9 

547.9, 725.2 

528.0, 881.2 

SSA 
Southeastern South 

America 

0.0, -6.3 

-8.3, -5.1 

0.0, -5.2 

-8.9, -4.4 

0.0, -9.4 

-12.9, -4.5 

-1.4, -11.8 

-15.7, 0.3 

61.0, 129.5 

87.9, 164.6 



 

18 

 

SAF Southern Africa 
0.0, -8.1 

-13.0, -3.4 

-0.4, -10.3 

-15.9, -4.4 

0.0, -6.6 

-10.7, -0.5 

-0.1, -10.5 

-16.3, -2.0 

20.0, 95.9 

 77.9, 102.0 

TIB Tibetan Plateau 
0.0, -0.8 

-0.7, -0.3 

0.0, -0.3 

-0.4, 0.4 

0.0, 0.4 

-0.3, 1.1 

0.0, 1.1 

-0.2, 1.6 

0.0, 14.3 

9.3, 16.8 

WAF West Africa 
-4.5, -28.4 

-38.2, -20.4 

-2.5, -21.8 

-29.7, -11.0 

-5.6, -25.6 

-39.2, -10.3 

-8.4, -26.5 

-44.0, -6.1 

175.3, 282.3 

215.0, 392.1 

WAS West Asia 
0.0, -2.6 

-3.4, -1.4 

0.0, -3.9 

-4.7, -2.5 

0.0, -4.4 

-5.2, -2.8 

0.0, -6.7 

-8.1, -4.6 

0.4, 24.8 

18.3, 30.0 

WSA 
West Coast South 

America 

0.0, -8.6 

-11.5, -5.5 

0.0, -10.5 

-14.5, -5.5 

0.0, -13.9 

-17.7, -7.6 

0.0, -21.2 

-25.1, -15.2 

57.2, 271.1 

186.9, 346.3 

WNA West North America 
0.0, 3.4 

0.5, 5.6 

0.0, -3.5 

-0.1, 7.1 

0.0, 6.2 

1.1, 11.6 

0.0, 6.8 

1.7, 14.7 

23.5, 104.8 

81.9, 126.7 

 

3.2 Sources of ensemble variance 

To investigate whether the main variance in projected GWR changes is caused by GHMs, GCMs, or the different RCP 

scenarios, we appled the Eq. (1) and (2) (see Sect. 2.4) for 1.5°C and 3°C GW. Figure 5 shows the GCM to GHM variance 390 

ratio for 1.5°C (a) and 3°C (b) per grid cell; GHM RCP variance ratio is not shown here (see Fig. S7 in the supplement, mean 

of GHM-RCP ratio: 22%) as the primary influence can be appropriated to the GCM and GHM selection (this is also the case 

when choosing only the CO2 sensitive models). For the simulated variance at PI see Fig. S1 and S4. 

 Overall, GHMs cause more significant variance in 1.5°C than in a 3°C world, which is plausible because of increased 

GCM trends with increased CO2 concentrations. Possibly this is also due to the missing RCP 8.5 simulations for PCR-395 

GLOBWB for all GCMs. A clear spatial pattern of GCM influence shows in the Amazon that relates to the region of Fig. 3 

where increases of GWR are calculated. On the other hand, the region in the Amazon where decreases are simulated (compare 

Fig. 3) shows mainly the GHMs as the source of variance. In the Mediterranean, the influence shifts as well from GCMs 

(1.5°C) to GHMs (3°C). This could be due to a high agreement in GCMs in this region and a considerable disagreement in 

GHMs. Similar patterns can be found when comparing absolute GWR, but the influence of GCMs is less pronounced, 400 

especially in the Amazon (Fig. S8). 
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Figure 5 GCM variance in percent of the total variance of GWR change from eight GHMs and four GCMs at 1.5°C (a) and a 3°C (b) GW 

(see also Sect. 2.4). Red depicts areas where the GCMs are responsible for the majority of the variance in GWR change. Blue areas indicate 

where the main variance is introduced through GHMs. 405 

3.3 Impacts of evolving carbon dioxide concentrations on groundwater recharge estimates 

Including vegetation dynamics in GHMs may alter the model response in future estimates of GWR as evolving CO2 

concentrations alters fluxes of energy and water (Davie et al., 2013). To investigate the influence of simulating the 

physiological impacts of evolving CO2 on GWR, we compared GWR changes computed by two CLM 4.5 runs, each of it 

driven by GFDL-ESM2M climate input: the standard run analyzed included in the ensemble analysis above, with CO2 410 

concentrations changing according to the RCP, and an additional run in which CO2 concentrations after 2005 were held 

constant at the 2005 level. Unfortunately, no other GHM-GCM combinations with these alternative CO2 concentration variants 

are available in the framework of ISIMIP2b. 
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Figure 6 GWR (dynamic CO2) – GWR (static CO2) [mm year-1] for 2.0°C (a) and 3.0°C (b) GW. GWR (dynamic CO2) – PI (dynamic CO2) 415 
[mm year-1] for 2.0°C (c) and 3.0°C (d) GW. The figure only includes the GHM CLM 4.5 and the GCM GFDL-ESM2M. Maps show changes 

in GWR at a certain GW (including all RCPs that lead to that GW with a certain CO2 concentration) with dynamically evolving CO2 compared 

to static CO2 concentrations from 2005. Green and blue means that GWR is higher when evolving CO2 concentrations are considered, red 

and purple less GWR. 

 Figure 6 shows differences in simulated GWR between a dynamic and a static CO2 simulation for 2°C (Fig. 6a) and 420 

3°C (Fig 6b). In most grid cells, GWR simulated with dynamic CO2 is larger than GWR simulated with static CO2 levels of 

2005 (Fig. 6a,b). In the tropics, GWR with dynamic CO2 can be higher than with constant CO2 by 10-50 mm year-1 for 2°C 

GW (Fig. 6a), while difference reaches 50-100 mm year-1 in the 3°C world (Fig. 6b). Decreases of GWR are spatially consistent 

(for example, Brazil, Central U.S., and India) at 2° and 3°C GW and rarely exceed 10 mm year-1.  

Compared to the absolute changes between PI and the GW levels for dynamic CO2 (Fig 6c,d) the decreases in GWR 425 

are rather small (e.g., up -10 mm year-1 in Brazil (Fig. 6a,b), while change compared to PI exceeds -100 mm year-1 (Fig 6c,d)). 

Also, increases in GWR due to dynamic CO2 are in regions with large (> 100 mm year-1, Fig 6c,d) increases in recharge. 
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Figure 7 Relation of changes in precipitation (P) (mean(1981-2010) – mean(2070-2099)) to changes in GWR (mean(1981-2010) – 

mean(2070-2099)) depending on the model type (with or without CO2; see also Table 1) per SREX (selection as in Table 3)  for RCP 2.6 430 
and RCP 8.5 for the GCM HadGEM2-ES. 

The preceding analysis focused on GW levels parallel to other studies of GHM ensembles. To investigate the difference in 

including active vegetation processes in GHM further, we compared the four GHMs that include these processes with the four 

models that do not (Table 1). Because different RCPs decide the concentration of CO2 in the atmosphere, we compare RCP 

2.6 and RCP 8.5 time slices instead of GW levels. 435 
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Figure 7 compares the precipitation and GWR changes between the period 1981-2010 and the period 2070-2099 for 

the two RCPs and the two different model types for the SREX regions investigated in Table 3. Changes in precipitation and 

GWR are only based on the GCM HadGEM2-ES (see Fig. S9 for average over all GCMs) as the relationship between GWR 

and precipitation is not linear and the plot is comparable to Davie et al. (2013), who investigated differences in runoff. 

Compared to the average precipitation of all GCMs where only two regions show a decrease larger than 100 mm year-1 (Fig. 440 

S9 (b)), HadGEM2-ES shows seven regions for RCP 8.5 with such a decrease in precipitation. 

GWR changes vary between RCPs and model type (Fig. 7) and in between GHMs (Fig. S10). The relation between 

precipitation and GWR and difference between model types becomes clearer with RCP 8.5 than with RCP 2.6. Models with 

active vegetation (Fig. 7, green markers) agree that with more precipitation GWR should increase, e.g., for SAS; however, 

they disagree in regions where decreases in precipitation are expected and risk for groundwater availability is highest, e.g., 445 

CAM. GHMs without active vegetation (Fig 7, orange markers), on the other hand, show a more consistent decrease in GWR 

for regions with decreases in precipitation and only some agreement in regions with increased precipitation. 

Decreases in precipitation may lead to a decrease in vegetation productivity (if not counteracted by an increased 

water-use efficiency due to elevated CO2 concentrations (Singh et al., 2020)) and thus to a decrease in transpiration. GHMs 

assume shares for evapotranspiration in relation to potential ET and the available precipitation. In contrast, transpiration in 450 

CO2-driven models respond to active vegetation as well as the relations between different water flux components that simpler 

GHMs do not. This can explain why the dynamic vegetation models exhibit inter-model regional differences in the GWR 

response to P decrease. Further, some models (MATSIRO) may not calculate LAI, which impacts transpiration. For models 

with active vegetation, the increase in water use efficiency due to stomatal conductance (also referred to as CO2 fertilization) 

can compensate for the decrease in precipitation to some extent, making more water available for groundwater recharge as 455 

compared to the GHMs (Table 1).  Though in some regions, as seen in Figure 7 (and Fig. S10), this feedback is not enough to 

overcome the warmer and drier climate in terms of groundwater flux. 

CWatM often lies in the middle of simulated GWR changes at RCP 2.6. Davie et al. (2013) showed generally higher 

runoff values for JULES-W1 than for LPJmL, the reverse is true for GWR (Fig S.10). For RCP 8.5, CWatM always simulates 

the largest increases and lowest decreases in GWR of all models without active vegetation. 460 
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Figure 8 Significant absolute difference of GWR change between 1981-2010 and 2077-2099 for RCP 8.5 in between four GHMs with (CO2) 

and four GHMs without active or dynamic vegetation (no CO2). See also Table 1. Reddish (left side of the color bar) indicates that the mean 

change of GWR as computed by the models with is more negative or less positive than change computed by the GHMs without active 

vegetation. White regions indicate no statistical significance based on the K-S test (Sect. 2.5). Solid colors indicate that the majority of the 465 
two model groups (3 out of 4 models for each group [with and without CO2]) do not have the same sign i.e. that including active vegetation 

leads to different signs in GWR change. Lighter colors indicate where the majority of models agrees on the sign of change. 

A spatially more refined difference between the model types is shown in Fig. 8 for RCP 8.5 (For RCP 2.6, almost no significant 

changes were found). For each grid cell, the map shows the significant (K-S test, p=5%) absolute difference of simulated 

change in GWR between models that include active vegetation processes (GHM(CO2)) and models that do not include them. 470 

In the northern latitudes, both models with and without active vegetation agree on an increase in GWR but differ by up to 100 

mm year-1. Similarly, in the Mediterranean and central Brazil, both model types simulate a decrease in GWR, but the magnitude 

is statistically significantly different between the model groups. In the Amazon patches of statistically significant differences 

between the models show increases of GWR computed by GHMs with active vegetation, whereas GHMs without active 

vegetation shows a decrease. A similar effect is visible in central Africa, India, and parts of Indonesia; however, also decreases 475 

are simulated instead of increases for the Congo and Zambesi catchment. Both in the Mediterranean and South America models 

with active vegetation shows up to 100 mm year-1 difference in change compared to models without, even though no 

physiological effect should be dominant. According to Fig. 6, this is likely due to CLM 4.5 because JULES-W1 and LPJmL 
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show slighter GWR decrease than the models without active vegetation. It is likely that the shown differences are due to the 

implementation of active vegetation in the GHMs (compare Fig. S.10), however it is possible that other model peculiarities 480 

and processes are relevant as well. 

4 Discussion 

Estimating GWR is challenging (Moeck et al., 2016). Our results show that even for the PI period, the estimates of GWR vary 

largely among different GHMs. This is likely caused by the very different treatment of the runoff partitioning, implementation 

of the soil layer(s), inclusion of active vegetation processes, and simulation of capillary rise. Because GWR is hard to measure 485 

directly (Scanlon et al., 2002), it is also challenging to verify the accuracy of the estimates. 

To the best of our knowledge, the data-set of Mohan et al. (2018) is the only available gridded global GWR dataset 

that is not based on global hydrological modeling. This data set of mean 1981-2010 GWR in 0.5° grid cells was developed 

from a regression analysis that combined gridded datasets of mean precipitation and potential evapotranspiration as well as 

land use/land cover with local estimates of GWR at 715 locations worldwide. Figure 9 compares the GHMs under investigation 490 

for PI conditions to this dataset. The used data for comparison is one ensemble member of the analysis of Mohan et al. (2018) 

that was deemed best in their study. The global mean GWR in this member is slightly lower, 110 mm year-1, than the reported 

mean of 134 mm year-1. Overall, the GHMs best agree with Mohan et al. (2018) in arid regions like the Sahara, Australia, 

southern Africa, and the Andes. Underestimates are predominant in the northern Latitudes and Central Asia, whereas 

underestimates appear in Europe and the eastern USA for all models. All models, except for H08 and WaterGAP2, which 495 

show underestimates, result in overestimates in East Asia. In the Amazon, MATSIRO and CLM 4.5 overestimate by more 

than 100 mm year-1 compared to Mohan et al. (2018), whereas all other models show a mix of over and underestimate across 

continents. A similar pattern is visible in Central Africa where CLM, MATSIRO, and CWatM overestimate, and all other 

models show a mixture of over and underestimate of -100 – 100 mm year-1. H08 and WaterGAP2 have the best agreement 

according to the NSE (Nash-Sutcliff Efficiency (calculated spatially); (Nash and Sutcliffe, 1970)) of 0.4 and 0.2 while the 500 

mean bias (mean(GHM Mohan et al.-1)) is lowest for JULES-W1. All GHMs show much lower GWR in permafrost regions 

as they assume that there is no or little GWR in such regions. Possibly GWR of Mohan et al. (2018) is overestimated here as 

no measurements informed their results in these regions. 

The variance in modeled GWR is possibly caused by the different implementation of the hydrological processes in 

between the models. Even more, models differ in their definition of groundwater and GWR. Some include groundwater storage 505 

that is recharged by a fraction of precipitation others do not include a groundwater component at all but define the saturation 

excess water from the bottom soil layer as GWR. Models may include only some of the processes that affect GWR, for 

example, capillary rise, percolation from the soil, preferential flow bypassing the soil matrix, the interaction between surface 

water and the aquifer, changing land use over time (not considered here), changing vegetation (e.g., reducing infiltration 

capacity). Further, important processes like evaporation, infiltration, percolation, or runoff and GWR separation are 510 
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implemented with different equations and simplifications. Some models even use sub-grid information or sub-daily time steps, 

e.g., for changes in unsaturated conductivity. Notably, models that include active vegetation processes showed the largest 

spread in GWR in regions with decreasing precipitation. 

To illustrate the model differences further, the following describes the impact of changes in precipitation for 

WaterGAP and LPJmL representative for the different model types used in this study. In WaterGAP, a simulated percent 515 

change in total runoff translates to the same percentage change in GWR; unless, e.g., due to more extreme precipitation events, 

infiltration capacity is exceeded more often such that the relative increase in GWR is smaller than total runoff. Absolute 

changes in GWR are always smaller than changes in total runoff. In LPJmL, changes in total runoff do not translate to 

proportional changes in groundwater runoff and GWR. Any flux or storage that takes water before it is partitioned to the soil 

will impact the groundwater and GWR. Possible reasons for a reduction in GWR (percolation past the bottom hydrologically 520 

active layer (3 m deep); compare Sect. 2.1) can be changes in precipitation amount/intensity, transpiration due to vegetation 

productivity, transpiration due to changes in vegetation water use efficiency due to CO2 fertilization, or changes in 

anthropogenic water use demands. 

This difference in behavior is reflected in Fig. 7, where the response between precipitation and GWR of GHMs 

without any active/dynamic vegetation is relatively uniform. The non-uniform response of the models that include vegetation 525 

changes is likely due to the complicated process feedbacks between vegetation and water (transpiration changes due to 

available water together with vegetation productivity) and complex feedbacks in-between changes in CO2, temperature, and 

precipitation which affect vegetation.  

This study highlights that uncertainties and differences in GHMs need to be investigated further and that in order to 

estimate global groundwater vulnerability, improved estimates of global GWR are required. 530 
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Figure 9 PI GWR per GHM – 34 years (1981-2014) mean GWR [mm year-1] of Mohan et al. (2018). Bias: mean (GHM Mohan et al.-1). 

NSE (Nash-Sutcliff Efficiency; (Nash and Sutcliffe, 1970)) is calculated spatially over all cells instead of time. 

This study is limited not only by the uncertainty in correctly representing the process of GWR but also in the 

propagation and aggregation of uncertainties. Future greenhouse gas emission scenarios are created based on the input of 535 

integrated assessment models. They are translated into emission scenarios of atmospheric concentrations and forcings that are, 

in turn, used to evaluate their impacts on the climate simulated by GCMs. Outputs of the GCMs are then bias-adjusted and 
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spatially downscaled to be used in the assessment with impact models like GHMs (Döll et al., 2014a). Furthermore, the analysis 

is limited by the number of GCMs that were used, as discussed in McSweeney and Jones (2016). Although the GCMs are 

carefully selected to be most representative of the CMIP (Taylor et al., 2012) ensemble. 540 

The multi-model ensemble study presented here assesses GWR at GW of 1.5°C, 2°C, and 3°C compared to GWR 

simulated under pre-industrial climate conditions and 1°C of GW. Changes are assessed based on transient time slices of the 

30 years around the year that crosses the specific warming level. These slices are an approximation of the stabilized climate 

state of that warming level; it relies on the assumption that for a given warming level the impacts are the same regardless of 

the time it took to reach it or whether equilibrium has been reached at all (Boulange et al., 2018). However, this kind of analysis 545 

has limitations as the transient nature of climate is aggregated over a relatively short period (31 years). Components like the 

ocean might not equilibrate at these timescales (Donnelly et al., 2017). 

Additionally, different RCPs are combined, which limits the possibility to investigate processes that are sensitive to 

different CO2 concentrations. Investigations in this study based on RCPs show the difference between these model types. On 

the other hand, using GW levels reduces the uncertainties from GCM variability due to the use of different time slices, 550 

depending on when a GCM reaches a GW level. 

 The variance in GWR is caused by GCMs and GHMs alike depending on the region similar to a multi-model ensemble 

study on the climate change impacts on streamflow (Schewe et al., 2014). Again, the assessment is limited by the number of 

used GCMs. Furthermore, this study did not include changes in land-cover and land-use, and thus irrigation which can have a 

tremendous impact on GWR, especially as irrigation patterns and used crops, will change with a changing climate (Hauser et 555 

al., 2019; Hirsch et al., 2017; Hirsch et al., 2018; Thiery et al., 2017; Thiery et al., 2020).  

The only similar study on the global impacts of GW on GWR, to the knowledge of the authors, was conducted by 

Portmann et al. (2013). The study used five GCMs and one GHM, WaterGAP, which (a slightly different version) was also 

included in this study. Overall results are spatially consistent; however, Portmann et al. (2013) showed more consistent trends 

among GW levels (compare Table 3). Portmann et al. (2013) acknowledge that including impacts of evolving CO2 levels on 560 

vegetation will have an impact on the simulated GWR and that WaterGAP is likely overestimating the decreases in GWR. 

Similarly, Davie et al. (2013) found that simulation of runoff was not consistent across models depending on whether CO2 was 

considered. The results presented in this study show that this assumption is true for some regions, where differences of up to 

100 mm year-1 can be observed.  

Despite the uncertainties, this study provides further evidence that climate change will impact groundwater 565 

availability in many regions of the world. A notable decrease can be expected in the Mediterranean, Amazon, and Brazil, 

whereas increases can be expected in Northern Europe. It is nevertheless troublesome that, especially in regions that are known 

to be vulnerable to climate change, for example, South Africa, model agreement in between model types is that low. 
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5 Conclusions  

Potential GWR changes due to climate change require increased attention from the scientific community as well as from 570 

decision-makers because they affect future water availability in many regions and thus the wellbeing of billions of people. 

This study shows that simulated global-scale estimates of GWR vary strongly among GHMs, which contribute more strongly 

to the overall uncertainty of future GWR than the applied GCM output. However, statistically significant increases and 

decreases of GWR could be identified in specific regions per GW level. The presented inter-model ranges of GWR changes 

are an important input for processes aiming at developing strategies for climate change adaptation, as risk-averse decision-575 

makers may want to orient their strategies towards adapting to the worst-case GWR change and not to the projected ensemble 

mean change. 

This study shows that including vegetation processes in GHMs can change projected GWR changes substantially. 

However, consideration of these processes does not lead to a uniform increase of groundwater recharge, as might be expected 

from the physiological effect of increasing atmospheric CO2 concentration. In some regions with decreasing groundwater 580 

recharge, where groundwater availability is a major concern, models that include these processes show the largest differences 

among themselves. Further research is necessary to understand GWR on large scales, and how it is affected by climate. 

Simulation of groundwater recharge by global hydrological models needs to be analyzed in more detail, and the benefit of 

integrating gradient-based groundwater flow models in GHMs should be assessed. 

Data availability 585 

All simulations are available through the ISMIP project at https://www.isimip.org. 
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