
Dear Philippe Ackerer, 

Thank you very much for your efforts in finding reviewers for this manuscript and the opportunity to 

revise it. Even though both reviewers certainly added interesting remarks on how to improve the paper, 

we are concerned that most of their suggestions are out of scope or would alter the paper to an extent 

that would significantly change the paper's character. 

With this, we would also like to respond to your direct suggestions of: 

(1) improve the discussion of some results (sometimes, it is too descriptive) 

We assume that this request is linked to the reviewer comments to explain more deeply how the 

parametrisation of the models is linked to the responses in groundwater recharge and that it 

should be compared to other modelling efforts. As explained below, this entails a very complex 

and extensive analysis of the models going well beyond what we have intended for this paper. 

However, we now state more clearly where the model setup parameters can be found and 

discuss issues related to estimations of ET. 

(2) provide an insight on model reliability 

In our manuscript model reliability, regarding the estimation of global-scale groundwater 

recharge, was evaluated by comparison to Mohan et al.. We agree that this can only be a first 

step into investigating the model reliability. However, providing insights on model reliability is 

challenging, which entails a better understanding of how uncertainties propagate through these 

complex models. As we discuss in more detail in the replies, we still lack the methods of, e.g., 

applying extensive sensitivity methods to GHMs to further investigate these issues. Some 

preceding work, e.g., Döll and Fiedler (2008), have been carried out to investigate simulated 

recharge reliability by using expert knowledge and some regional studies. This work is cited in 

our manuscript, but conducting additional experiments on this would go significantly beyond this 

paper's scope, which focusing on the differences among the models in the ISIMIP2 framework 

and the influence of CO2 changes on recharge. 

Also, investigating the reliability regarding future climate change-driven groundwater recharge 

changes cannot be investigated by comparison to observation data. We assume in our study, as 

it is usually done in multi-model climate change assessments, that all models are considered to 

be equally reliable. 

(3) provide some model parameters for some region. 

We now explain more clearly that our study has been conducted in the framework of an 

established protocol (ISIMIP) and where to find more information about the models' 

parameterisation. A regional discussion (also for only one region) of parameters would require a 

different study setup that would require the concerted work of multiple model development 

teams over an extended timeframe, delaying the publication by years. Due to the complexity of 

daily simulations with multiple complex hydrological models (and different climate scenarios), 

truly knowledge-based statements about sensitivities in specific regions go well beyond the 

paper's scope. 

 



We want to emphasise that our rebuttal does not originate from an unwillingness to accept the 

reviewers' well-founded concerns but from our conviction of what is possible and what we deemed to 

be the core messages of the manuscript: (1) the inclusion of vegetation processes can substantially 

change the projection of groundwater recharge changes, (2) the estimation of recharge varies largely in-

between models and requires further investigation, and that while (3) taking into account the model 

disagreements statistical significant changes of global groundwater recharge can be observed for 

specific regions under different global warming levels. 

The following lists all comments of the two reviewers and our rebuttal in italics. Attached is a markup 

document that highlights the changes compared to the last submitted revision. Line numbers refer to 

the revised version of the document. 

 

#1 

1.1 
3 reviewers have provided their insights in the first round. I strongly agree with reviewer 3 in the sense 

that the study is at its early stage and there are several things to be addressed. The reviewer raised 

some important and key points that the authors missed to address. I will advise the authors to address 

these issues (e.g. the use of groundwater recharge and the large uncertainties of their results). The 

authors would rather focus on fluxes and water storages which is what these models are actually 

simulating or clarify that they are showing an effective recharge, not the actual recharge, which is much 

more complex. 

We agree that our work shows that global groundwater recharge in GHMs is still uncertain and needs to 

be investigated further. This is one of the main contributions of the paper and clearly stated. 

Regarding the precise definition of the term "groundwater recharge", none of the models simulates the 

depth of the groundwater table beneath the land surface. Hoping to understand the reviewer correctly, 

we would agree that our models do not compute the actual timing of the groundwater recharges and in 

that sense not the "actual groundwater recharge", in particular, if the groundwater table is very deep. 

Therefore, the groundwater recharge response at the location of the groundwater table to climate 

change may be delayed in case of deep groundwater table occurring in particular in dry regions of the 

globe. We now explain this caveat in section 2.1: 

[132 ff]: “We do not consider focused recharge in this study as no model offers a reliable implementation 

of these processes until now. Also, none of the models simulate he depth of the groundwater table beneath 

the land surface which does not allow to correctly attribute delays in recharge due to water table depth.” 

Overall we are convinced that it is time to do a study that aims to understand the best information we 

have on potential impacts of climate change on groundwater at the global scale, which is provided by 

the multi-model ensemble output analysed in this study. Our study's merit is similar to many climate 

change studies done with global climate models used in combination to impact models (e.g. global 

hydrological models to study climate change impacts on streamflow or global crop models to study 

impact of climate change on yield). It is well known that uncertainty of groundwater recharge estimates 

are high, in particular at the global scale, and that different global climate models project very different 



future climatic changes in response to the same greenhouse gas emissions scenario; nevertheless, model-

based assessments including an understanding of their uncertainties are of interest to many and inform 

decision-making regarding climate change mitigation and adaptation. We explicitly wanted to focus on 

uncertainties and not (impossible) predictions, which is also reflected by our manuscripts' title: 

"Uncertainty of simulated groundwater recharge …". The manuscript is also very clear that the 

implementation of recharge varies greatly in-between the models and may or may not include different 

specific recharge processes. Our study goes well beyond the current state-of-the-art (e.g. Döll and 

Fiedler, Swenson et al. (2015) or Portmann et al. 2013). Unlike Portmann et al. (2013), where only one 

global hydrological model was applied, this study is the first to include the uncertainties stemming from 

different global hydrological models and how they simulate evapotranspiration and thus also 

groundwater recharge. 

 

1.2 
Reviewer 3 also suggested comparing GHMs against fully integrated hydrologic models that simulate 

recharge processes, but the authors failed to do so. It would be great to compare in some areas how 

their models performed compared to the integrated hydrologic models. These models are now run on a 

continental scale. The model outputs could also be compared to some global datasets to ensure that 

they are at least consistent with observations at this scale and resolution. 

Parallel to our last response, we agree that such a comparison would be tremendous and should be 

targeted in future studies. However, implementing such a comparison in the current manuscript would 

go greatly beyond the paper's scope because a comparative framework (in terms of input data and 

modelling protocol) would be required. It is also essential to distinguish the capability of models to 

computed groundwater recharge during a historical time span from their capability to estimate changes 

of groundwater recharge due to climate change. The latter would be required to "validate" our study and 

is much more challenging. A future study might combine historical observations of groundwater 

recharge, integrated models and GHMs as driven by observational input data. We have added this to the 

outlook. 

We have added the following text to the Discussion (after comparison to the independent global-scale 

estimate of Mohan et al.  

[522]: "It is also important to distinguish the capability of models to computed groundwater recharge 

during a historical period from their capability to estimate changes of groundwater recharge due to 

climate change. A model that simulates the current groundwater recharge pattern correctly may be 

incapable of computing future groundwater recharge if it cannot correctly simulate the impact of climate 

change and changing atmospheric CO2 concentrations on actual evapotranspiration correctly". 

 

1.3 
The topic of this paper is relevant to the community. The authors mostly presented a bunch of results 

without explaining in detail why we are observing the changes and what is driving these changes, the 

most expecting part of this kind of study. In addition, the authors miss the opportunity to discuss the 



setting up of their models (initial conditions, parameterisation, etc.), model validation is also an 

important step in modeling. 

Each of the presented models is very complex and describing the parameterisation, validation, initial 

conditions etc. of only one model is challenging. For example, see the most up to date descriptions of 

WaterGAP (https://gmd.copernicus.org/preprints/gmd-2020-225/ ) and PCR 

(https://gmd.copernicus.org/articles/11/2429/2018/). Summarising these descriptions of all models go 

well beyond the scope of this paper. We have cited all relevant publications that describe the models and 

their setup in the paper and summarised the implementation of the process we are focusing on 

(recharge). Everything beyond that is a review paper with a different focus. 

A paper that strives to summarise the model structure and parameterisation of all models that are 

considered in the study is now in review (Telteu et al., 2021). We have added this citation and clarified 

the parameterisation of the models. See also #1.7 for the altered text and #1.4 for an explanation 

regarding the drivers of change. 

 

1.4 
Understanding what is driving the processes and the observed changes should be the key output of this 

study, this will advance not only our knowledge on the uncertainties associated with the simulated 

groundwater responses to climate change but also how can we reduce these uncertainties. 

By assessing to what degree the projected groundwater changes depend on whether the global 

hydrological models take into account process related to an active vegetation (e.g. closing of stomata 

and/or at higher atmospheric CO2) is an attempt to understand the drivers of changed 

evapotranspiration and thus groundwater recharge. We agree that we need a more detailed 

understanding of the uncertainties and what processes contribute to them. A further attempt for a better 

understanding is the already mentioned model review of Telteu et al. (2021) that enables insights into 

the process representations of those models. Future work will need to extend the review of Telteu et al 

(2021) and the data analysis as shown here by applying extensive sensitivity methods even though this is 

a very challenging task and demands for new methods that currently do not exist for these complex 

models. This is now more clearly reflected in the conclusions: 

[Last line] "Simulation of groundwater recharge in global models and the connected uncertainties need 

to be analysed in greater detail by, e.g., the application of extensive sensitivity analysis." 

 

1.5 
The authors have done tremendous work to develop such a global modeling framework. I would 

recommend the authors to thoroughly revise their paper, discuss the use of groundwater recharge, 

provide some explanations in the uncertainties they are observing, and compare these uncertainties to 

the ones associated with evapotranspiration. 

Thank you for the encouraging comment. We need to state that the modeling framework is not 

specifically dedicated to compare simulated groundwater recharge but to assess the impact of climate 

change on a large number of hydrological variables such a total runoff or floods. This study is the first 

https://gmd.copernicus.org/preprints/gmd-2020-225/
https://gmd.copernicus.org/articles/11/2429/2018/


impact multi-model assessment of groundwater recharge from the "Inter-Sectoral Impact Model 

Intercomparison Project" (ISIMIP, www.isimip.org). The setup of the framework is discussed in described 

in Frieler et al. (2018): https://gmd.copernicus.org/articles/10/4321/2017/ as cited in the manuscript. 

Regarding the term groundwater recharge, please refer to our answer to 1.1.  Explanations of the 

uncertainties and their possible explanations are thoroughly laid out in the discussion section of the 

manuscript. To address this comment, we have further extended the discussion which now also 

compares the described uncertainties to the ones associated with evapotranspiration (see also 

Wartenburger et al (2018); https://iopscience.iop.org/article/10.1088/1748-9326/aac4bb for and 

extended discussion of evapotranspiration in ISIMIP). 

[517 now reads] "Further, important processes like evaporation, infiltration, percolation, or runoff and 

GWR separation are implemented with different equations and simplifications. For evapotranspiration, a 

standard deviation of 0.15 mm day-1 globally for 1989–2005 was found in the ISIMIP ensemble 

(Wartenburger et al., 2018)." 

 

1.6  
1. The table added in the revised manuscript is very helpful. Nonetheless, I will make the table clearer 

without text. The authors should also clearly discuss the differences in the processes resolved by these 

models. 

It is unclear what the referee refers to here. Would the table be clearer with or without text? And is that 

related to the text within the table or the text that describes the table? The differences in 

implementation of the processes (We assume the referee refers to vegetation and recharge processes) 

are presented in the discussion section of the manuscript. We, however, recognise that a more extensive 

investigation in the uncertainties is merited. We state that now more clearly in the conclusions. See also 

#1.4 and #1.1.  

 

1.7 
2. The authors should dedicate a section to discuss the types of data they use to build their models. Did 

they use the same datasets for all these models? How did they initialise their models? Before jumping 

into model comparisons, one needs to clearly understand the differences in the model parameters and 

initialisations. The authors discuss the climate simulations but since their paper is focused on 

groundwater recharge, it is the groundwater models and their uncertainties in computing the recharge 

that needs to be discussed. 

Again, we need to refer to the setup of the study clearly explained in the introduction of the paper that 

states that this assessment was conducted in the framework of the ISIMIP intercomparison protocol. It is 

likely that the referee assumes that this ensemble was only setup to compare groundwater recharge. See 

also our reply in #1.5. We further clearly stated that ensembles from this particular project have used for 

multiple other impact assessments "The ISIMIP2b ensemble has already been used in multiple climate 

change studies investigating, e.g., flood risk (Willner et al., 2018; Thober et al., 2017; Alfieri et al., 2017), 

low flows in Europe (Marx et al., 2018), evapotranspiration (Wartenburger et al., 2018), runoff and snow 

in Europe (Donnelly et al., 2017) or multi-sectoral impacts (Byers et al., 2018)." 

https://gmd.copernicus.org/articles/10/4321/2017/
https://iopscience.iop.org/article/10.1088/1748-9326/aac4bb


We have updated this with recent publications and it now reads [105]: 

“The ISIMIP2b ensemble has already been used in multiple climate change studies investigating, e.g., 

flood risk (Willner et al., 2018; Thober et al., 2017; Alfieri et al., 2017), low flows in Europe (Marx et al., 

2018), evapotranspiration (Wartenburger et al., 2018), runoff and snow in Europe (Donnelly et al., 

2017), drought severity (Pokhrel et al., 2021), heat uptake by inland waters (Vanderkelen et al., 2020)  or 

multi-sectoral impacts (Byers et al., 2018; Lange et al., 2020).” 

Please see also our responses to #1.3 and #2.2. 

We have clarified where information on the parameterisation can be found: 

[125 ff] "A comprehensive overview of GHMs and their properties can be found in Sood and Smakhtin 

(2014). Detailed model descriptions and evaluations of the models can be found in the primary 

publications referred to in the subsections below and Telteu et al. (2021) (for the model parameterisation 

see Sect. 2.2.)." 

 

1.8 
3. The outcome of the climate simulations should also be discussed in the paper to have an idea of how 

key forcing variables change over time and have a clear view of what should be expected in terms of 

groundwater changes. 

The primary variable driving the results is precipitation which was assessed for two RCPs in Fig 7. 

However, the GCMs from CMIP5 considered in the ISIMIP framework differ both in space and time and 

per variable. A proper assessment of the GCM output data is clearly out of the scope of this study and 

not necessarily connected with the groundwater recharge simulation in the hydrological model (as the 

GHMs differ in terms of input variable requirements). Such an assessment could only be determined with 

an extensive extra study. An extensive analysis of the sensitivity of groundwater recharge simulation to 

changes in climate input is of course very interesting but out of scope of this study but might be targeted 

in future research. See also #1.4. 

 

1.9 
4. The authors discuss the trends they observed in the figures but there is no explanation about the 

drivers of these trends. One can expect to know why a region sees a high increase in groundwater 

recharge and other regions not. The sensitivity of a region to these changes should be discussed in this 

paper. These sensitivities are linked to the physical parameters of the region, these parameters aren't 

presented to it is really hard to understand the response of the region. 

Based on our general experience with the quantification of climate change impacts on hydrological 

variables, we believe that a region sees a high increase in groundwater recharge because there is a very 

high increase in precipitation, while without a rather high increase in precipitation, a region will not see 

any increase. However, to understand how groundwater recharge in different regions would react to the 

same changes in climate would require a different study setup. Such an analysis would require the 

concerted work of the various model developers and a well thought through sensitivity analysis setup, 

due to the complexity of daily simulations with multiple complex hydrological models (and different 



climate scenarios). Truly knowledge-based statements about sensitivities go well beyond the scope of the 

paper (see also #1.4). This study is the first of its kind investigating the impacts of CO2 changes on 

recharge on a global scale, which is of interest to the research community (#1.1 the reviewer agrees) but 

has not been examined in other studies yet. It thus lays the groundwork for future studies that may 

include the research suggested by the reviewer. 

 

1.10 
5. Differences observed between different models should also be discussed and explained, these 

differences may be related to the processes that these models are reproducing among others. 

We agree that the differences in model output relate to the differences in model implementation as 

discussed in the discussion section of the manuscript together with the comparison to Mohan et al. 

Dataset. Indeed, future research needs to investigate these differences further; this manuscript however 

is a start of such an assessment. We have contributed to a better understanding on how a changing 

climate impacts recharge by extensively discussing the effects of CO2 on the simulation of this process on 

large scales. 

 

1.11 
6. Investigating the impact of CO2 on groundwater is a very important topic, and there is a lot of interest 

in the community to understand to what extent accounting for CO2 in hydrology impact the projected 

changes in groundwater. Nonetheless, as for the other results, the authors should provide an 

explanation about why a particular area sees a high impact and other areas not. 

We thank the referee for the agreement that investigating the CO2 effect is important. Nevertheless, we 

think that we have provided insights to the question raised by the referee. Figure 7 shows how particular 

regions differ in their response to modeled vegetation productivity. And the already existing paragraph 

below provides and explanation on why we see these differences: 

"Decreases in precipitation may lead to a decrease in vegetation productivity (if not counteracted by an 

increased water-use efficiency due to elevated CO2 concentrations (Singh et al., 2020)) and thus to a 

decrease in transpiration. GHMs assume shares for evapotranspiration (ET) in relation to potential ET 

and the available precipitation. In contrast, transpiration in CO2-driven models responds to active 

vegetation as well as the relations between different water flux components that simpler GHMs do not. 

This can explain why the dynamic vegetation models exhibit inter-model regional differences in the 

GWR response to P decrease. Further, some models (MATSIRO) may not calculate LAI (leave area index), 

which impacts transpiration. For models with active vegetation, the increase in water use efficiency due 

to stomatal conductance (also referred to as CO2 fertilisation) can compensate for the decrease in 

precipitation to some extent, making more water available for groundwater recharge as compared to 

the GHMs (Table 1).  Though in some regions, as seen in Figure 7 (and Fig. S10), this feedback is not 

enough to overcome the warmer and drier climate in terms of groundwater flux." 

Please also see our answer to #1.9 why a regional assessment of drivers is a challenging exercise that is 

not easily added. 



 

1.12 
7. Given the types of models (not fully integrated hydrologic models) that the authors used, the 

uncertainties they are observing are likely tied to the uncertainties in the estimation of 

evapotranspiration. It would be great to discuss evapotranspiration first then the impacts on recharge 

and analyse how these two uncertainties differ. 

We agree that an assessment of uncertainties of AET in the GHMs and how changes in AET relate to 

changes in GWR would undoubtedly be interesting to understand the differences in model behaviors 

better. However, we do not believe that such a quantification of AET changes and their uncertainties 

would be helpful to those who need to adapt to climate-driven groundwater changes which is the 

proposed main audience of our study. What we do in our study to account for this important discussion is 

that we investigate the differences between models with active vegetation and without to make the 

reader understand that future changes in groundwater recharge strongly depend on estimates of AET. 

We added the line [463]: "Overall, the capability of a model to simulate actual ET largely influences its 

capability to simulate groundwater recharge." 

 

#2 
The manuscript deals with an important issue: the uncertainty on future groundwater recharge (GWR) 

due to climate change. This uncertainty is estimated using eights different global hydrological models 

(GHMs) and the outputs of four global circulation models (GCMs). I will not go into the debate of using 

GHMs instead of fully integrated physically based hydrologic models (IPHMs), even if the uncertainty 

would have been better estimated by using models with significant differences in their philosophy and 

conceptions. GHMs are valuable tools and the provided results are a good estimate of uncertainty in 

GWR at a global scale under this framework. Therefore, the manuscript is of a very good scientific level 

and suitable for publication in HESS. 

Thank you for the encouraging comment and the overall positive evaluation. 

 

2.1 
1. The reliability of the GHMs is not convincingly described. A section should be dedicated to the 

description of the ability of GHMs to simulate real situations on different sites over the world. It should 

not be an exhaustive description of GHMs applications to real sites, but some examples found in the 

literature of different GHMs simulations of large scale watersheds under different climatic conditions. If 

GHMs are not able to estimate water balances including GWR properly at the time scale used in this 

work and over the last decades, the interest of this work appears to be limited. 

Model reliability regarding estimation on current global-scale groundwater recharge was evaluated by 

comparison to Mohan et al.. Other work has been investing the reliability of estimating groundwater 

recharge in GHMs as well e.g., for WaterGAP in Döll and Fiedler (2008) (also cited and discussed in this 

manuscript). 



Reliability regarding future climate change driven changes in groundwater recharge cannot be 

investigated by comparison to observation data, and we assume in our study, as it is usually done in 

multi-model climate change assessments, that all models are considered to be equally reliable.  Projected 

groundwater recharge changes certainly depend strongly on projected evapotranspiration changes, 

which is why we investigated the differences between GHMs that simulate the impact of active 

vegetation on evapotranspiration (thus responding to atmospheric CO2 changes) and those that do not. 

 

2.2 
2. I missed GHMs parameters. Please provide an insight on models parameterisation. 

We thank the referee for pointing out that parameterisation is important. We have revised this by now 

stating more clearly where the model inputs are coming from and where more information can be found 

(see also our answer to referee 1). 

Groundwater recharge depends on parameterisations of canopy, snow and soil water balances as well 

as, e.g., assumed equations for potential evapotranspiration, we cannot provide more details beyond 

what is provided in section 2.1 specifically for groundwater recharge. We did add a sentence as provided 

in our answer to comment 1.7. 

2.3 
The last sentence in the abstract is awkward and has to be more specific. You cannot write 'additional 

research on simulating groundwater processes in GHMs is necessary' and use GHMs to estimate 

recharge. 

The last sentence is now more specific and reads: 

"Overall large uncertainties in the model outcomes suggest that additional research on simulating 

groundwater processes in GHMs is necessary." 
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Abstract. Billions of people rely on groundwater as an accessible source for drinking water and irrigation, especially in times 25 

of drought. Its importance will likely increase with a changing climate. It is still unclear, however, how climate change will 

impact groundwater systems globally and thus the availability of this vital resource. Groundwater recharge is an important 

indicator for groundwater availability, but it is a water flux that is difficult to estimate as uncertainties in the water balance 

accumulate, leading to possibly large errors in particular in dry regions. This study investigates uncertainties in groundwater 

recharge projections using a multi-model ensemble of eight global hydrological models (GHMs) that are driven by the bias-30 

adjusted output of four global circulation models (GCMs). Pre-industrial and current groundwater recharge values are 

compared with recharge for different global warming (GW) levels as a result of three representative concentration pathways 

(RCPs). Results suggest that projected changes strongly vary among the different GHM-GCM combinations, and statistically 

significant changes are only computed for few regions of the world. Statistically significant GWR increases are projected for 

Northern Europe and some parts of the Arctic, East Africa and India. Statistically significant decreases are simulated in 35 

southern Chile, parts of Brazil, central USA, the Mediterranean, and southeast China. In some regions, reversals of 

groundwater recharge trends can be observed with global warming. Because most GHMs do not simulate the impact of 
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changing atmospheric CO2  and climate on vegetation and thus evapotranspiration, we investigate how estimated changes in 

GWR are affected by the inclusion of these processes. In some regions, inclusion leads to differences in groundwater recharge 

changes of up to 100 mm year-1. Most GHMs with active vegetation simulate less severe decreases of groundwater recharge 40 

than GHMs without active vegetation and in some regions even increases instead of decreases. However, in regions where 

GCMs predict decreases in precipitation and groundwater availability is most important, model agreement among GHMs with 

active vegetation is lowest. Overall large uncertainties in the model outcomes suggest that aAdditional research on simulating 

groundwater processes in GHMs is necessary. 

1 Introduction 45 

The critical role of groundwater as an accessible source for irrigation and drinking water in particular during dry periods, 

droughts, and floods will intensify with climate change because increased precipitation variability is expected to decrease the 

reliability of surface water supply (Taylor et al., 2013; Döll et al., 2018; Kundzewicz and Döll, 2009). While demand for 

groundwater is likely to increase in the future,  groundwater abstractions have already led to depleted aquifers in many regions 

around the globe (Thomas and Famiglietti, 2019; Cuthbert et al., 2019a; Wada et al., 2012; Konikow and Kendy, 2005; Döll 50 

et al., 2014b). They have also resulted in the reduction of groundwater discharge to rivers with negative impacts on water 

availability for humans and freshwater biota in particular during low-flow periods (Herbert and Döll, 2019). To what extent 

groundwater can serve for sustaining ecosystem health and for supporting human adaptation to climate variability and change 

strongly depends on future groundwater availability, which is strongly affected by climate change (Kundzewicz and Döll, 

2009; Döll, 2009; Taylor et al., 2013; Cuthbert et al., 2019b). 55 

Groundwater recharge (GWR) is a central indicator of potential groundwater availability (Herbert and Döll, 2019). 

GWR is the vertical water flux to the groundwater from the soil (diffuse GWR) and from surface water bodies (point or focused 

recharge) (Small, 2005). It is a function of the local climate, topography, soil, land cover, land use (urbanization, woodland 

establishment, crop rotation, and irrigation practices), atmospheric CO2 concentrations, and geology (Small, 2005). Changes 

in GWR alter groundwater levels and their temporal patterns, which affect vital ecosystem services (Kløve et al., 2014). 60 

Knowledge of the dynamics and process interactions determining GWR is a fundamental prerequisite to assess groundwater 

quality and quantity under climate change (Green et al., 2011). The simulation of GWR is possibly one of the most challenging 

components of the water budget as it accumulates the uncertainties of all other components of the budget. Especially in 

semiarid regions, uncertainties in precipitation and evapotranspiration (Wartenburger et al., 2018)  lead to considerable 

uncertainty in recharge. An additional factor in estimating groundwater recharge is the simulation of the groundwater table 65 

and thus capillary rise and focused recharge. This has not been achieved yet in GHMs, however, recently, global hydrological 

models (GHMs) started integrating gradient-based groundwater models to better estimate the flows between surface water and 

groundwater as well as the impact of humans and the changing climate on the groundwater system (de Graaf et al., 2019; 
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Reinecke et al., 2019). Neglecting capillary rise may lead to an overestimation of decreases and increases of GWR due to a 

changing climate. 70 

Assessing the response of GWR to climate change is difficult even at the local scale, one of the reasons being that 

groundwater recharge, different from streamflow, is rarely measured, and long time series of groundwater recharge are not 

available (Earman and Dettinger, 2011). In local groundwater modelling, groundwater recharge is often determined by 

calibration using hydraulic head observation, while integrated modelling relies on the partitioning of precipitation into 

evapotranspiration, storage change, and runoff (GWR plus surface and subsurface runoff). Moreover, projections of GWR 75 

often neglect the impact of changing climate and higher CO2 levels on plants and thus evapotranspiration and GWR (Taylor 

et al., 2013). With higher CO2 levels, terrestrial plants open their stomata less, which reduces evapotranspiration and increases 

runoff (physiological effect) while they might grow better, increasing evapotranspiration (structural effect) (Gerten et al., 

2014). Vegetation models that include these effects disagree about the balance of both effects (Gerten et al., 2014). However, 

based on a large ensemble of GCMs that include the impact of CO2 and changing climate on vegetation and evapotranspiration, 80 

rising CO2 can be expected to decrease transpiration and thus increase total runoff (Milly and Dunne, 2016). Therefore, GHMs 

that do not consider active vegetation may underestimate runoff, and thus GWR increases, or they may overestimate GWR 

decreases. 

While there have been review articles on the relation of groundwater and climate change (Smerdon, 2017; Jing et al., 

2020; Refsgaard et al., 2016), global-scale studies that quantify the impact of climate change on GWR are rare. They have 85 

evolved regarding the way climate scenarios were implemented and how many global climate models (GCMs) and GHMs 

were included in the study. While Döll (2009) could only use the delta change method to integrate information from two GCMs 

in the GHM WaterGAP (Alcamo et al., 2003; Müller Schmied et al., 2014), Portmann et al. (2013) could feed their simulations 

of future changes in GWR with WaterGAP directly by the bias-adjusted output with five GCMs. They found that changes in 

GWR increase with increasing greenhouse gas emissions. Acknowledging that not only GCMs but also GHMs contribute to 90 

the uncertain translation of emissions scenarios to changes in GWR (Moeck et al., 2016), the study of Döll et al. (2018) 

included two GHMs (WaterGAP and LPJmL, Rost et al. (2008), Schaphoff et al. (2013)) driven by the bias-adjusted of four 

GCMs. They evaluated relative changes of GWR with climate change, which can arguably serve as a better indicator of climate 

change hazard than absolute changes of GWR. On the other hand, the usage of relative change led to the result that change in 

GWR could not be reliably computed for 55% of the global land area due to very small GWR for the reference period simulated 95 

by LPJmL (Döll et al., 2018). While the LPJmL model considered, different from the WaterGAP model, the effect of rising 

CO2 on groundwater recharge, the impact of this on GWR projections were not analyzed in Döll et al. (2018). In general, 

studies investigating the difference between GHMs with and without dynamic vegetation are rare (Davie et al., 2013). 

This study assesses the impact of climate change on GWR based on the output of a multi-model ensemble 

encompassing eight GHMs, each forced by the bias-adjusted output of four GCMs under three different representative 100 

concentration pathways (RCPs). The ensemble was generated in the framework of the Inter-Sectoral Impact Model 

Intercomparison Project (ISIMIP) using simulation protocol ISIMIP2b (Frieler et al., 2017). The ISIMIP global water sector 
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incorporates global models, including water resources models, land surface models, and dynamic vegetation models that can 

compute water flows and storages on the continents of the Earth; in this study, all three model types are referred to as GHMs. 

The ISIMIP2b ensemble has already been used in multiple climate change studies investigating, e.g., flood risk (Willner et al., 105 

2018; Thober et al., 2017; Alfieri et al., 2017), low flows in Europe (Marx et al., 2018), evapotranspiration (Wartenburger et 

al., 2018), runoff and snow in Europe (Donnelly et al., 2017), drought severity (Pokhrel et al., 2021), heat uptake by inland 

waters (Vanderkelen et al., 2020)  or multi-sectoral impacts (Byers et al., 2018; Lange et al., 2020).  

We analyze how GWR is projected to change globally and regionally for multiple global warming (GW) levels, 

determine the contributions from GHMs and GCMs to the variance of simulated changes and discuss the implications for 110 

future assessments of global groundwater resources. Furthermore, we show the effect of including the physiological impacts 

of evolving CO2 on global estimates of GWR. To this end, the remainder of this paper is structured as follows. Section 2 

provides an overview of the used GHMs and the methods to calculate changes of GWR per GW level and sources of 

uncertainty. The results in section 3 show the significant changes in GWR per GW and the differences in between GHMs and 

GCMs. We then compare the influence of GCMs, GHMs, and RCPs on the variance of simulated GWR, assess the differences 115 

in GWR due to including dynamic vegetation in GHMs and compare the GHM simulations to interpolated measured GWR. 

The paper closes with a discussion of these findings (Sect. 4) and conclusions (Sect. 5). 

2 Methods 

2.1 Simulation of groundwater recharge  

This study encompasses eight GHMs that differ in their representation of various hydrological processes. Four of these models, 120 

described in more detail in the following, are able to simulate the impact of evolving CO2 concentrations on vegetation: CLM 

4.5, JULES-W1, LPJmL, MATSIRO (Table 1). In the following, we use the term active vegetation for models that consider 

the physiological effect of changes in CO2 on vegetation and the term dynamic vegetation for the models that allow for 

changing vegetation regarding LAI and/or vegetation type. A comprehensive overview of GHMs and their properties can be 

found in Sood and Smakhtin (2014) and. Detailed model descriptions and evaluations of the models can be found in the primary 125 

publications referred to in the subsections below and Telteu et al. (2021) (for the model parameterisation see Sect. 

2.2.).Detailed model descriptions and evaluations of the models can be found in the primary publications referred to in the 

subsections below and Telteu et al. (2021, in review) (for the model parameterization see Sect. 2.2..). The definition of GWR 

and groundwater varies in between GHMs (discussed in Sect. 4). The analysis in this study is based on monthly GWR (variable 

qr in ISIMIP) in 0.5° x 0.5° grid cells simulated by the eight GHMs taking part in the ISIMIP2b protocol (Frieler et al., 2017). 130 

Some GHMs contained small negative GWR values, e.g., due to capillary rise; these values were set to zero in the analysis. 

We do not consider focused recharge in this study as no model offers a reliable implementation of these processes until now. 

Also, none of the models simulate he depth of the groundwater table beneath the land surface which does not allow to correctly 

attribute delays in recharge due to water table depth. 
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Table 1 Overview which models are able to simulate the impact of evolving CO2 concentrations on vegetation and how it is implemented. 

GHM Considers 

CO2 

Summary of considered vegetation processes in ISIMIP2b Reference  

WaterGAP2 No - - 

CLM4.5 Yes Photosynthesis depends on root zone soil moisture availability. 

The description is similar to LPJmL listed below. The area a 

population of plant functional types (PFTs) takes up is prescribed 

and only changes if the input data changes. 

(Di Liu and Mishra, 

2017) 

H08 No - - 

JULES-W1 Yes Evapotranspiration is considered from five PFTs and four non-

vegetative surface types. Each grid cell is composed of different 

fractions of those nine surface types. Transpiration occurring from 

vegetation is based on photosynthetic process, which is subject to 

stomatal conductance regulated by the CO2 concentration. 

Furthermore, transpiration is also controlled by soil moisture 

availability in the root zone. 

(Best et al., 2011; 

Clark et al., 2011) 

LPJmL Yes Vegetation composition is determined by the fractional coverage of 

PFTs at the grid-scale. PFTs are defined to account for the variety 

of structure and function within a stand and are therefore simulated 

as average individuals competing for light and water according to 

their crown area, LAI, and rooting profiles. The vegetation 

dynamics component of LPJmL includes carbon allocation to 

different PFT tissue compartments, PFT interaction, and 

establishment and mortality processes. Photosynthesis and 

stomatal response are simulated following Farquhar et al. (1980) 

and the generalization by Collatz et al. (1991) for global 

modelling, based on the function of absorbed photosynthetically 

active radiation, temperature, day-length, and canopy conductance 

for each PFT present in a grid cell. 

(Schaphoff et al., 

2018) 

PCR-

GLOBWB 

No - - 

CWatM No - - 

MATSIRO Yes The consideration of CO2 effects is functionally similar to that in 

CLM, and there is no dynamic vegetation scheme. CO2 is 

prescribed in the model, which is used in the photosynthesis 

scheme to calculate stomatal conductance, among other 

parameters, following Farquhar et al. (1980). Soil moisture stress 

on photosynthesis is considered using moisture availability in the 

root zone with root distribution fraction in each soil layer. All of 

that is done for different vegetation or plant functional types. 

(Takata et al., 2003) 
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WaterGAP2 

The WaterGAP2 model (Alcamo et al., 2003) computes human water use in five sectors and the resulting net abstractions from 140 

groundwater and surface water for all land areas of the globe, excluding Antarctica. These net abstractions are then taken from 

the respective water storages in the WaterGAP Global Hydrology Model (WGHM) (Müller Schmied et al., 2014; Döll et al., 

2003; Döll et al., 2012; Döll et al., 2014b). With daily time steps, WGHM simulates flows among the water storage 

compartments canopy, snow, soil, groundwater, lakes, human-made reservoirs, wetlands, and rivers. GWR in WaterGAP2 is 

calculated as a fraction from runoff from land-based on soil texture, relief, aquifer type, and the existence of permafrost or 145 

glaciers, taking into account a soil texture dependent maximum daily groundwater recharge rate (Döll and Fiedler, 2008). If a 

grid cell is defined as semiarid/arid and has a medium or coarse soil texture, GWR will only occur if daily precipitation exceeds 

a critical value (Döll and Fiedler, 2008); otherwise, the water runs off. Runoff from land that does not contribute to GWR is 

transferred to surface water bodies as fast surface runoff. WaterGAP further computes focused recharge beneath surface water 

bodies in semiarid/arid grid cells, which is not considered in this study. 150 

CLM4.5 

The Community Land Model version 4.5 (CLM4.5) (Lawrence et al., 2011; Oleson et al., 2013; Swenson and Lawrence, 2015) 

is the land component of the Community Earth System Model (CESM), a fully-coupled, state-of-the-art earth system model 

(Hurrell et al., 2013). CLM is a land surface model representing the physical, chemical, and biological processes through which 

terrestrial ecosystems influence and are influenced by climate, including CO2, across a variety of spatial and temporal scales 155 

(Lawrence et al. 2011). Individual land grid points can be composed of multiple land units due to the nested tile approach, 

which enables the implementation of multiple soil columns and represents biomes as a combination of different plant functional 

types. Groundwater processes, including sub-surface runoff, recharge, and water table depth variations, are simulated based 

on the SIMTOP scheme (Niu et al., 2007; Oleson et al., 2013). 

H08 160 

H08 (Hanasaki et al., 2018) is a GHM including various components for water use and management. It consists of five major 

components, namely, a simple bucket-type land surface model, a river routing model, a crop growth model which is mainly 

used to estimate the timing of planting, harvesting, and irrigation in cropland, a reservoir operation model, and a water 

abstraction model. The abstraction model supplies water to meet the daily water demand of three sectors (irrigation, industry, 

municipality) from six available and accessible sources (river, local-reservoir, aqueduct, seawater desalination, renewable 165 

groundwater, and non-renewable groundwater) and one hypothetical one termed unspecified surface water. It has two soil 

layers; one is to represent the unsaturated root zone, and the other the saturated zone (groundwater). The scheme of GWR 

computation is identical to Döll and Fiedler (2008). 
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JULES-W1 

The Joint UK Land Environment Simulator (JULES) (Best et al., 2011) (W1 stands for water-related simulations in the ISMIP 170 

framework) is a land surface model initially developed by Met Office as the land surface component of Met Office Unified 

Model. JULES is a process-based model that simulates the carbon, water, energy, and momentum fluxes between land and 

atmosphere, including plant - carbon interactions (Clark et al., 2011). The rainfall that reaches the ground is partitioned into 

hortonian surface runoff and an infiltration component. Four soil layers represent the soil column with a total thickness of 3 

m, with a unit hydraulic head gradient lower boundary condition, and no groundwater component. The water that infiltrates 175 

the soil moves down the soil layers updated using a finite difference form of the Richards equation (Best et al., 2011). The 

saturation excess water from the bottom soil layer becomes subsurface runoff that can be considered to be GWR (Le Vine et 

al., 2016). 

LPJmL 

Lund Potsdam Jena managed Land (LPJmL) is a dynamic global vegetation model that simulates the growth and productivity 180 

of both natural and agricultural vegetation as coherently linked through their water, carbon, and energy fluxes  (Schaphoff et 

al., 2018). The soil column is divided into six active hydrological layers with a total thickness of 13 m depth. Percolation of 

infiltrated water through the soil column is calculated according to a storage routine technique that simulates free water in the 

soil bucket (Arnold et al., 1990). Excess water over the saturation levels produces lateral runoff in each layer (subsurface 

runoff). GWR is considered to be percolation (seepage) from the bottom soil layer. As there is no groundwater storage in 185 

LPJmL, for the ISIMIP2b protocol, seepage from the base soil layer is reported as both GWR and groundwater runoff, which 

is routed directly (no time delay) back into the river system. 

PCR-GLOBWB 

PCR-GLOBWB (PCRaster Global Water Balance; (Sutanudjaja et al., 2018) simulates the water storage in two vertically 

stacked soil layers and an underlying groundwater layer. Water exchanges are simulated in-between the layers (infiltration, 190 

percolation, and capillary rise) as well as the interaction of the top layer with the atmosphere (rainfall, evapotranspiration, and 

snowmelt). PCR-GLOBWB also calculates canopy interception and snow storage. Natural groundwater recharge is fed by net 

precipitation, and additional recharge from irrigation occurs as the net flux from the lowest soil layer to the groundwater layer, 

i.e., deep percolation minus capillary rise. The ARNO scheme (Todini, 1996) is used to separate direct runoff, interflow, and 

GWR. Groundwater recharge can be balanced by capillary rise if the top of the groundwater level is within 5 m of the 195 

topographical surface (calculated as the height of the groundwater storage over the storage coefficient on top of the streambed 

elevation and the sub-grid distribution of elevation). 
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CWatM 

The Community Water Model (CWatM) is a large-scale integrated hydrological model, which encompasses general surface 

and groundwater hydrological processes, including human hydrological activities such as water use and reservoir regulation 200 

(Burek et al., 2019). CWatM takes six land cover classes into account and applies the tile approach. This hydrological  

model has three soil layers and one groundwater storage. Depth of the first soil layer is 5 cm, and the depth of second and third 

layers vary over grids depending on the root zone depth of each land cover class, resulting in total soil depth of up to 1.5 m. 

Groundwater storage is designed as a linear reservoir. CWatM includes preferential bypass flow directly into groundwater 

storage and capillary rise from groundwater storage, as well as percolation from the third soil layer to groundwater storage. 205 

Hence, the groundwater recharge reported by CWatM in ISIMIP2b is the net recharge calculated from these three terms. 

MATSIRO 

The Minimal Advanced Treatments of Surface Interaction and RunOff (MATSIRO; Takata et al. (2003)) is a global land 

surface model initially developed for an Atmospheric Ocean General Circulation Model, the Model for Interdisciplinary 

Research On Climate (Hasumi, H., and S. Emori, 2004). This process-based model calculates water and energy flux and storage 210 

at and below the land surface, considering the stomatal response to CO2 increase as well in the photosynthesis process. The 

off-line version of MATSIRO used for ISIMIP2b simulation explicitly takes vertical groundwater dynamics into account, 

including groundwater pumping (Pokhrel et al., 2015; Pokhrel et al., 2012). Soil moisture flux between the 15 soil layers is 

expressed as a function of the vertical gradient of the hydraulic potential, which is the sum of the matric potential and the 

gravitational head, and soil moisture movement is calculated by Richards equation. MATSIRO calculates net groundwater 215 

recharge as a budget of gravitational drainage into and capillary rise from the layer where the groundwater table exists. A 

simplified TOPMODEL (Beven and Kirkby, 1979; Stieglitz et al., 1997) is used to represent surface runoff processes, and 

groundwater discharge is simulated by using an unconfined aquifer model (Koirala et al., 2014). 

2.2 Model simulations 

Each GHM is forced by bias-adjusted data from four GCMs: GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, and MIROC5. 220 

Further details on the selection of climate models and the bias correction can be found in Frieler et al. (2017), Lange (2016), 

Hempel et al. (2013), Lange (2018), and online at ISIMIP (2018). The bias adjustment method used for the GCMs in ISIMIP2b 

is using a trend preserving algorithm (Frieler et al., 2017) with EWEMBI (Lange 2018) as baseline (reference) climate 

condition. The simulations in this study span the period 1861 till 2099. All GHMs (except for PCR-GLOBWB, which misses 

the RCP 8.5 run) simulate the RCPs 2.6, 6.0, and 8.5. 225 

The pre-industrial period (PI) is defined in ISIMIP from 1661-1860, whereas the historical period is defined from 

1861-2005. Additionally, to the RCP and historical simulations, ISIMIP defines PI simulations that represent an extended state 

of emissions scenarios from the PI period till 2099 (and partially till 2300, not applicable in this study). In this study, we 
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always, if not stated otherwise, refer with PI to the simulation period 1960-2099 with the continued concentration levels of 

1661-1860.  Details on the simulation setup can be found on the ISIMIP webpage ISIMIP (2019) or in Frieler et al. (2017). 230 

Regarding the non-climatic drivers, all GHMs use, for the time before 2006, so-called historical socio-economic 

pathway assumptions, e.g., historical water use, except for CLM 4.5, which used the socio-economic state of 2005. All 

simulations for 2006-2099 are based on this assumed socio-economic state of 2005. For some models this affects the 

abstraction from groundwater, which is not stimulated by all models (JULES-W1), or GWR directly due to irrigation (H08, 

CLM, PCR-GLOBWB). Details on the pertinent scenario variables can be found in the ISMIP protocol (Frieler et al., 2017). 235 

Land-use change was not considered. 

2.3 Determining stabilized warming levels 

In order to derive policy-relevant information, we assed impacts framed in terms of GW levels (1°, 1.5°, 2°, and 3°C) with 

respect to the GW of 0°C in PI conditions (James et al., 2017). The time of passing a warming level is defined as the first time 

the 31-year running mean of the global averaged annual mean temperature gets above that level. Each GCM reaches different 240 

GW at different times (Table 2), depending on the RCPs (van Vuuren et al., 2014). For each GW level (1°, 1.5°, 2°, and 3°C), 

time slice of 31 years (15 before the level was reached, and 15 after) for each GCM and for each RCP, in which that GW is 

reached, are used. Using this time slice, a yearly mean GWR at 0.5° was calculated for the GHMs that were forced with the 

particular combination of GCM and RCP. (Fig. 1). Additionally, a PI reference was calculated for each GCM, RCP, and GHM 

combination for the same time-slice the GW level was reached in a particular RCP-GCM combination using the PI reference 245 

simulation (see section 2.2). Figure 1 illustrates the methodology by showing two unspecified RCPs and the PI comparison 

paths. 

Considering that not all RCP/GCM combinations reach higher warming levels (Table 21), not all ensembles have the 

same size. Theoretically, the maximum ensemble size is 96, a combination of 8 GHMs, 4 GCMs, and 3 RCPs (2.6, 6.0, and 

8.5). Because projections under RCP 8.5 were not available for PCR-GLOBWB, the maximum ensemble size is 84. The 250 

smallest ensemble (for 3°C) consists of 36 members. 

 

Table 2 Overview of the warming levels and in which year they are reached in the corresponding GCM (ISIMIP, 2019). 

Warming Level RCP GFDL-ESM2M HadGEM2-ES IPSL-CM5A-LR MIROC5 

1° 2.6 

6.0 

8.5 

2014 

2016 

2014 

2012 

2014 

2012 

1993 

1993 

1993 

2015 

2023 

2014 

1.5° 2.6 

6.0 

8.5 

- 

2056 

2036 

2026 

2032 

2025 

2009 

2010 

2009 

2048 

2052 

2033 
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2° 2.6 

6.0 

8.5 

- 

2076 

2053 

- 

2050 

2037 

2029 

2029 

2024 

- 

2071 

2048 

3° 2.6 

6.0 

8.5 

- 

- 

2082 

- 

2076 

2056 

- 

2068 

2046 

- 

- 

2071 

 

 255 

Figure 1 Conceptual representation of how GW levels are determined for different GCMs, RCPs, and the PI comparison period. 

2.4 Calculation of model variance 

To calculate whether the variance in absolute GWR change is mainly introduced through the GHMs or the GCMs, the 

following equation was applied per model grid cell and GW level. 

𝑅𝑣𝑎𝑟𝐺𝑊𝑅
𝑚𝑜𝑑𝑒𝑙 =

 𝜎𝐺𝑊𝑅
2 (𝐺𝐶𝑀𝑠)

( 𝜎𝐺𝑊𝑅
2 (𝐺𝐶𝑀𝑠) +   𝜎𝐺𝑊𝑅

2 (𝐺𝐻𝑀𝑠))
⁄      (1) 260 

where 𝑅𝑣𝑎𝑟𝐺𝑊𝑅
𝑚𝑜𝑑𝑒𝑙 is the variance ratio of GCMs to GHMs, 𝜎𝐺𝑊𝑅

2 (𝐺𝐻𝑀𝑠) is the average variance of GWR change of all GHMs 

per GCM per RCP, and  𝜎𝐺𝑊𝑅
2 (GCMs) is the average variance in GWR change of all GCMs per RCP per GHM. The variance 

relative to the choice in RCP 𝑅𝑣𝑎𝑟𝐺𝑊𝑅
𝑅𝐶𝑃  can be calculated similarly as 

𝑅𝑣𝑎𝑟𝐺𝑊𝑅
𝑅𝐶𝑃 =

 𝜎𝐺𝑊𝑅
2 (𝑅𝐶𝑃𝑠)

( 𝜎𝐺𝑊𝑅
2 (𝑅𝐶𝑃𝑠) +  𝜎𝐺𝑊𝑅

2 (𝐺𝐻𝑀𝑠))
⁄  ,     (2) 

where  𝜎𝐺𝑊𝑅
2 (RCPs) is the average variance in GWR of all RCPs per GCM per GHM. 265 
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2.5 Determining significant changes 

A model ensemble allows us to consider the uncertainty in modeling physical processes as different model use different 

algorithms and parameters for computing groundwater recharge. To determine whether changes in GWR due to GW computed 

by the model ensemble are statistically significant, we used the two-sample Kolmogorov–Smirnov (K-S) test to compare the 

GWR values computed by all GHM-GCM model combinations under e.g., PI conditions with the values at the various GW 270 

levels. The use of a two-tailed t-test is not advisable in this setting due to the small sample size (max. 84 in this study). Because 

the K-S test does not allow to check whether the ensemble agrees on the sign of change in GWR, we applied an additional 

criterion to determine a significant change similar to Döll et al. (2018). A change is only marked as statistically significant if 

the K-S test indicates a significant difference and at least 60% of the model realizations of the ensemble (RCP, GCM and 

GHM combinations) agree on the sign of change (i.e. a decrease or increase). In case of a low significance, all models may 275 

show large responses to climate change while their agreement on the amount or sign of change is low. 

3 Results 

3.1 Changes of groundwater recharge at different warming levels 

To assess the impact of GW on GWR, Fig. 2 shows the ensemble mean change of GWR between the current 1°C world and a 

potential 3°C GW. We chose to express changes as absolute change rather than relative change because zero, or close to zero, 280 

GWR in some regions of the world leads to not defined or extremely large percentage increases and decreases (Fig. S1 and 

S2). The model mean shows large decreases of over 100 mm year-1 in South America and in the Mississippi Basin and decreases 
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of up to 50 mm year-1 in the Mediterranean, East China, and West Africa. Increases of over 100 mm year-1 are prominent in 

Indonesia and East Afrika. Individual GHM-GCM model combinations compute much larger changes. 

 285 

Figure 2 Ensemble mean change in GWR [mm year-1] between conditions of present day warming of 1 °C GW and at 3 °C GW, averaged 

over the GWR changes of all GHM-GCM model combinations. 

Ensemble mean changes as shown in Fig.ure 2 may be low in some areas, but this could be due to large positive changes 

compute by some GHM-GCM model combinations being cancelled by large negative changes by other model combinations. 

To assess the changes which show a high statistical agreement in-between the model combinations, we determine where 290 

computed changes of GWR are statistically significant (Section 2.5). As a reference for the intensity of the changes, Figure 3a 

shows the mean GWR at PI averaged over all GHMs, RCPs, and GCMs from 1861-2099. The spatial pattern of GWR roughly 

agrees with the pattern of Mohan et al. (2018) derived by inferring it from more than 700 small-scale GWR estimates. The 

global mean GWR for the PI period is 140 mm year-1, which is very similar to the value of 134 mm yr-1 determined by Mohan 

et al. (2018) for the period 1981-2014 (see also Sect. 43.4). 295 

 Figure 3b-e show the (statistical) significant (bright colors, Sect. 2.5) mean absolute changes in GWR of the multi-

model ensemble under a GW of 1.0°C, 1.5°C, 2.0°C, and 3.0°C compared to PI, i.e., GWR of the PI runs for the corresponding 

time-slices (Sect. 2.3). For all GW levels compared to PI (Figure 3b-e), consistent patterns of decreasing GWR emerge for 

southern Chile, Brazil, central continental USA, the Mediterranean, and East China. Consistent and significant increases can 

be observed for northern Europe and in general northern latitudes and East Africa. Significant changes could only be derived 300 

for a small percentage of the total grid cells. Only about 15% of the cells, on average for all GW levels, show significant 

increases or decreases. However, the patterns of non-significant (light colors) mean changes are consistent with the significant 
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changes and show, e.g., for the Amazon larger areas of increases and decreases around the significant changes. The 

identification of non-significance in most areas is due to the K-S test. The sign criterion affects mainly the Sahara and Central 

Asia. 305 

At 1°C GW (Figure 3b), decreases of more than 100 mm year-1 are simulated in Southeast Asia, East China, Guyana, 

and southern Brazil. Decreases between 100 and 50 mm year-1 can be seen in central continental USA, southern Brazil, 

southern Chile, the Mediterranean, central Africa, and East China. Increases in GWR of 50 and over 100 mm year-1 are visible 

in the center of the Amazon while decreases show in the northeast and southern part that increase with GW. Overall, the 

significant global change is -17 mm year-1 at 1°C. 310 

A 1.5°C GW shows only a limited increase in the Amazon but similar increases in the rest of the world. Decreases in 

GWR over 100 mm year-1 are now visible in Central America, but decreases for Southeast Asia have vanished. Smaller 

decreases, for example, in Australia, have vanished as well in a 1.5°C world. These effects are not necessarily due to no 

changes in GWR but due to disagreements in the ensemble that do not allow to determine a reliable and significant change for 

this warming level. The global significant mean change is -12 mm year-1 at 1.5°C GW. 315 

At 2°C GW, increases in GWR over 100 mm year-1 are present in northern Java, Amazon, and East Africa. Decreases 

are similar to 1.5°C GW, except for southern Chile and the northern Andes, where decreases become more severe. However, 

on the significant global mean, these changes balance out to -1 mm year-1. 

In a 3°C world, large areas of decreases in GWR of over 100 mm year-1 in the Amazon Basin close to the Andes 

occur, also in Guyana, Venezuela, West Africa, and the Mississippi Basin. Increases in GWR of over 100 mm year-1, in 320 

contrast, are visible in East Africa, India, and North Java. Increases of 50 to 100 mm year-1 dominate in northern latitudes at 3 

°C warming compared to other GW levels. The global significant mean increases by +3 mm year-1. 

 We have already reached a GW of approximately 1°C (IPCC, 2018). Figure 3f shows the changes in GWR of a 3° 

GW compared to the present-day GW of already 1°C instead of the PI. Overall, the agreement among the models is smaller 

than when the 3°C world is compared to PI. Only 8% of the cells show significant changes. Decreases over 100 mm year-1 are 325 

present in the Amazon Basin close to the Andes and on the coast of Guyana. Decreases of 50 to 100 mm year-1 are visible in 

Chile, the Mississippi Basin, the Caribbean, and southern France. Increases in GWR are again to be expected in the northern 

Latitudes, southern Brazil, East Africa, and Southeast Asia, whereas the latter shows increases over 100 mm year-1 for 

Malaysia. The global significant mean change is +8 mm year-1. Figure S3 shows the mean and median changes of GWR per 

latitude for all four GW levels, together with the standard deviation without a significance test. A decrease in mean GWR can 330 

be observed for all GW levels at 40° S, around 20° S (Namibia, Australia), and 5° N (Guyana). Increases are visible at 60° N 

(North Europe) and southerly close to the Equator, presenting a large spread and sudden change in directions in the tropics. 

Increases at greater than 60° N are likely due to a combination of different rain and snow patterns as well as snowmelt timing. 
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 335 

Figure 3 Mean GWR [mm year-1] for pre-industrial greenhouse gas concentrations, averaged over the GWR of all GHMs and GCMs (a). 

Ensemble mean absolute change in GWR [mm year-1] at 1.0 °C (b), 1.5°C (c), 2.0°C (d), and 3.0°C (e) GW compared to PI. The ensemble 

mean absolute change in GWR [mm year-1] for 3.0°C GW compared to GWR at the current GW of 1°C (f). For (b) to (f) only those cells 

are displayed in solid colors where the Kolmogorov-Smirnov (K-S) test with a p of 5% indicated that the ensemble GWR distribution for PI 

(for (f) the GWR distribution at 1°C) and for the GW level differ, and at least 60% of the models agree on the sign of the change. The 340 
ensemble size is shown in brackets. Lighter colors (upper color bar) show (statistical) insignificant mean differences. 
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Large areas of insignificant changes of GWR (light colors) in Fig. 3 can be traced back to the uncertainty in GWR in between 

GHMs and GCMs. Figure 4 shows absolute GWR changes in a 1.5 °C world compared to PI (Fig. 3a,b) as well as PI GWR 

(Fig. 3c,d) for the SREX (Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change 

Adaptation, Murray and Ebi (2012)) region Amazon (left) and South Europe/Mediterranean (right). Corresponding plots for 345 

all other SREX regions are provided in the supplement. Similar to box plots, the letter-value plots in Fig. 4 show the distribution 

of values among the 0.5° grid cells belonging to the SREX region. Letter-value plots have the advantage of showing the 

distribution of values outside of the usual interquartile range (IQR, Q25 - Q75). For example, for Fig. 4b CLM 4.5 with GFDL-

ESM2-ES, the mean change in GWR is -19 mm year-1, the middlebox represents the IQR showing that 50% of changes are 

close to zero or smaller than zero, the smaller box towards the negative changes shows that 12.5% are smaller than -47 mm 350 

year-1, whereas the additional missing box in the positive direction hints that almost no values are larger than zero. The 

horizontal size of the boxes is automatically scaled and does not carry any additional information. 

Computed changes vary strongly among both GHMs and GCMs (Fig. 4a,b). In the Amazon, Jules-W1 shows a mean 

increase of 225 mm year-1. Compared to WaterGAP2, Jules-W1 estimates of GWR change are 147 mm year-1 higher for 

MIROC5 and 44 mm year-1 lower for HadGEM. These differences are even large relative to the higher mean PI GWR in the 355 

Amazon compared to other regions of the world (compare to MED in Fig. 4). Nevertheless, also the PI estimates differ by, 

e.g., 122 mm year-1 between Jules-W1 and WaterGAP2 on the mean for all GCMs and RCPs, and PI GWR is 625 mm year-1 

smaller for H08 than for MATSIRO in the Amazon. 

 In the Mediterranean, almost all GHMs show the largest decreases in GWR with IPSL-CM5a-LR, followed by GFDL 

input, while HadGEM results in almost no change. However, the changes computed with each GCM input vary strongly among 360 

the GHMs. In general, CLM 4.5 and PCR-GLOBWB project the most considerable changes. The decrease of GWR computed 

by CLM 4.5 with IPSL-CM5a-LR is 33% of the mean GWR calculated for PI with that model combination. 

Conversely, JULES-W1 simulates for most grid cells in this SREX region the smallest PI GWR values (but also very 

high outliers), and likely related, the smallest (mean) changes, together with MATSIRO and CWatM, which show altogether 

small GWR changes in all grid cells of the SREX regions. H08 and WaterGAP2, which apply similar approaches to modeling 365 

GWR as a function of total runoff, show somewhat similar GWR changes. 

The four GHMs that take into account the impact of increasing CO2 (Sect. 2.1) do not result in similar changes as 

compared to the other four models. It is to be expected from literature (Davie et al., 2013) that with the physiological effect, 

the decreases of GWR would be slighter in the case of the CO2-sensitive models, but that is not the case. This is likely due to 

the approach of analyzing GW levels instead of RCPs and periods because different GCMs reach a particular GW level at 370 

different times and CO2 levels. This is further investigated in Sect. 3.3. On the global mean and for 1.5°C GW LPJmL simulates 

the lowest PI GWR, whereas MATSIRO and CLM 4.5 produce the highest global mean GWR (Fig. S4). PCR-GLOBWB 

simulates the largest global mean decreases with HadGEM (Fig. S5). In contrast, JULES-W1 and MATSIRO simulate 

increases of GWR on the global mean for all GCMs except for HadGEM (Fig. S5). 
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 375 

Figure 4 Letter-value plot (Hofmann et al., 2017) of absolute changes in GWR in 0.5° grid cells [mm year-1] at 1.5°C GW compared to PI 

(a, b) and absolute PI GWR [mm year-1] (c, d) for the Amazon (a, c) and South Europe/Mediterranean (b, d) SREX region (for all other 

regions and GW levels [2°C, 3°C] see supplement). No statistical test is applied and all grid cells inside a region are included. Each box may 

include multiple simulations with different RCPs. 

To provide an overview of changes in GWR in each SREX region, Table 3 shows the median, mean and P25 and P75 380 

changes in GWR compared to PI for all regions (see Fig. S6 for a map of the SREX regions). Overall, North Europe shows 

the largest consistent increases in GWR, whereas the Amazon shows the largest consistent decreases, except for 2°C, where 

South Europe/Mediterranean shows the largest decreases of 18.6 mm year-1 as the median. For 3°C, the Amazon shows the 

highest decreases in GWR of -41.0 mm year-1 as median. Notably, Southeast Asia is first showing decreases of 13.1 mm year-

1 with 1.0°C GW and then no change with 1.5°C and 2°C and an increase in GWR of 13.5 mm year-1 with 3°. Relative to PI 385 

the changes of the 3°C GW in the Amazon only account for 10% of the GWR, compared to the 19% relative increase of GWR 

in North Europe with 3°C and the 40% decrease in GWR in South Europe/Mediterranean at 2°C GW. 

 

Table 3 Median (𝑿̃), mean (𝑿̅), P25, and P75 of absolute GWR change [mm year-1] for four warming levels for each SREX region compared 

to PI. 𝑿̃, 𝑿̅, P25, and P75 describe the distribution of changes of spatially averaged GWR in each SREX region among all 36-84 ensemble 390 
members (Sect. 2.3). P25/75 are the 25th and 75th percentile in the ensemble for a given region and a given GW level. The last column shows 

absolute GWR at PI. The following regions are not included due to the coarse spatial resolution of the models and low confidence in the 
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reliability of results: Artic, Canada/Greenland/Island, Antarctic, Pacific islands, Southern tropical pacific, Small Island Region Caribbean, 

West Indian Ocean. In bold maximum and minimum values per GW level. No statistical test is applied to filter the values. 

  1.0° 1.5° 2.0° 3.0° PI 

SREX Name 

𝑋̃, 𝑋̅  

P25, P75 

𝑋̃, 𝑋̅  

P25, P75 

𝑋̃, 𝑋̅  

P25, P75 

𝑋̃, 𝑋̅  

P25, P75 

𝑋̃, 𝑋̅  

P25, P75 

AMZ Amazon 
-10.7, -14.5 

-30.4, -6.8 

-19.1, -22.3 

-38.3, -9.7 

-14.6, -18.2 

-34.5, 3.4 

-41.0, -59.9 

-81.1, -39.2 

409.6, 550.4 

419.7, 614.6 

CAM 
Central 

America/Mexico 

-2.4, -17.1 

-23.1, -6.5 

-4.8, -21.0 

-26.8, -9.0 

-4.3, -12.9 

-18.9, -7.7 

-10.0, -36.0 

-45.8, -24.0 

79.8, 280.4 

222.3, 327.7 

CAS Central Asia 
0.0, -0.4 

-0.7, 0.3 

0.0 0.0 

-0.7, 1.0 

0.0, -0.8 

-1.4, -0.3 

0.0, -2.6 

-3.9, -1.4 

1.8, 25.9 

17.2, 37.2 

CEU Central Europe 
4.1, 6.8 

0.5, 13.3 

1.2, 3.1 

-5.5, 11.8 

-0.4, 0.1 

-9.7, 11.3 

0.1, 2.8 

-9.9, 22.3 

114.6, 135.4 

117.9, 155.8 

CAN 
Central North 

America 

-6.5, -16.7 

-20.2, -12.3 

-5.6, -18.3 

-20.2, -12.7 

-3.3, -16.6 

-20.0, -12.5 

-9.9, -30.5 

-32.8, -18.2 

98.1, 128.6 

76.4, 183.5 

EAF East Africa 
0.0, -0.8 

-2.7, 3.3 

0.0, 2.7 

-0.2, -7.8 

0.0, 8.1 

1.2, 13.9 

0.6, 23.3 

9.0, 32.4 

32.2, 95.0 

63.4, 134.1 

EAS East Asia 
-0.5, -15.7 

-20.0, -8.3 

0.0, -13.9 

-16.9, -6.8 

0.0, -10.3 

-10.7, -3.7 

0.0, -13.7 

-14.2, -4.5 

50.5, 147.3 

113.1, 154.3 

ENA East North America 
3.3, 4.8 

-2.0, 11.2 

9.9, 11.9 

-0.8, 19.8 

10.6, 15.9 

-1.5, 26.3 

1.4, 2.5 

-9.1, 20.5 

221.8, 257.8 

167.4, 338.1 

NAS North Asia 
0.4, 6.0 

3.0, 7.2 

0.5, 7.9 

5.1, 9.1 

3.1, 12.5 

9.0, 13.1 

4.6, 18.5 

13.0, 20.4 

24.2, 59.2 

46.2, 73.4 

NAU North Australia 
0.0, -4.5 

-6.9, -2.2 

0.0, -2.7 

-3.9, -0.8 

0.0, 1.1 

-0.8, 3.5 

-0.9, -3.0 

-7.1, 0.0 

5.9, 43.1 

28.5, 52.1 

NEU North Europe 
13.1, 24.9 

15.9, 35.7 

13.9, 27.7 

14.7, 41.3 

18.6, 34.9 

16.8, 53.0 

29.2, 51.6 

25.0, 78.2 

154.8, 226.4 

182.1, 280.4 

NEB North-East Brazil  
-8.9, -30.3 

-35.6, -21.2 

-10.5, -22.9 

-31.3, -13.2 

-6.2, -14.4 

-24.9, -2.1 

-6.0, -9.4 

-20.7, 2.1 

161.6, 227.4 

147.1, 315.0 

SAH Sahara 
0.0, -0.7 

-1.0, -0.3 

0.0, 0.3 

0.1, 0.4 

0.0, -0.2 

-0.2, 0.0 

0.0, -0.4 

-0.5, 0.0 

0.1, 4.2 

0.8, 4.4 

SAS South Asia 
-3.3, -13.4 

-15.9, -8.3 

0.0, -4.8 

-6.1, 0.1 

-2.3, -11.6 

-17.5, -5.3 

3.8, 26.9 

2.3, 45.5 

151.8, 274.9 

229.5, 319.2 

SAU 
South Australia/New 

Zealand 

-2.9, -8.6 

-11.1, -4.5 

-2.3, -10.3 

-12.4, -6.5 

-2.1, -15.3 

-17.8, -9.4 

-4.2, -20.0 

-22.2, -14.3 

18.1, 135.7 

111.4, 157.6 

MED 
South 

Europe/Mediterranean 

-3.9 -14.3 

-17.6, -9.3 

-6.3, -18.1 

-21.6, -12.8 

-16.8, -23.7 

-27.4, -16.8 

-12.5, -28.9 

-31.8, -19.1 

43.9 84.9 

72.1, 87.6 

SEA Southeast Asia 
-13.1, -36.1 

-55.7, -10.7 

-0.1, -5.2 

-18.0, 8.6 

-0.6, 23.1 

-1.7, 36.5 

13.5, 46.1 

3.0, 68.9 

547.9, 725.2 

528.0, 881.2 

SSA 
Southeastern South 

America 

0.0, -6.3 

-8.3, -5.1 

0.0, -5.2 

-8.9, -4.4 

0.0, -9.4 

-12.9, -4.5 

-1.4, -11.8 

-15.7, 0.3 

61.0, 129.5 

87.9, 164.6 
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SAF Southern Africa 
0.0, -8.1 

-13.0, -3.4 

-0.4, -10.3 

-15.9, -4.4 

0.0, -6.6 

-10.7, -0.5 

-0.1, -10.5 

-16.3, -2.0 

20.0, 95.9 

 77.9, 102.0 

TIB Tibetan Plateau 
0.0, -0.8 

-0.7, -0.3 

0.0, -0.3 

-0.4, 0.4 

0.0, 0.4 

-0.3, 1.1 

0.0, 1.1 

-0.2, 1.6 

0.0, 14.3 

9.3, 16.8 

WAF West Africa 
-4.5, -28.4 

-38.2, -20.4 

-2.5, -21.8 

-29.7, -11.0 

-5.6, -25.6 

-39.2, -10.3 

-8.4, -26.5 

-44.0, -6.1 

175.3, 282.3 

215.0, 392.1 

WAS West Asia 
0.0, -2.6 

-3.4, -1.4 

0.0, -3.9 

-4.7, -2.5 

0.0, -4.4 

-5.2, -2.8 

0.0, -6.7 

-8.1, -4.6 

0.4, 24.8 

18.3, 30.0 

WSA 
West Coast South 

America 

0.0, -8.6 

-11.5, -5.5 

0.0, -10.5 

-14.5, -5.5 

0.0, -13.9 

-17.7, -7.6 

0.0, -21.2 

-25.1, -15.2 

57.2, 271.1 

186.9, 346.3 

WNA West North America 
0.0, 3.4 

0.5, 5.6 

0.0, -3.5 

-0.1, 7.1 

0.0, 6.2 

1.1, 11.6 

0.0, 6.8 

1.7, 14.7 

23.5, 104.8 

81.9, 126.7 

 395 

3.2 Sources of ensemble variance 

To investigate whether the main variance in projected GWR changes is caused by GHMs, GCMs, or the different RCP 

scenarios, we apply the Eq. (1) and (2) (see Sect. 2.4) for 1.5°C and 3°C GW. Figure 5 shows the GCM to GHM variance ratio 

for 1.5°C (a) and 3°C (b) per grid cell; GHM RCP variance ratio is not shown here (see Fig. S7 in the supplement, mean of 

GHM RCP ratio: 22%) as the primary influence can be appropriated to the GCM and GHM selection (this is also the case 400 

when choosing only the CO2 sensitive models). For the simulated variance at PI see Fig. S1 and S4. 

 Overall, GHMs cause more significant variance in 1.5°C than in a 3°C world, which is plausible because of increased 

GCM trends with increased CO2 concentrations. Possibly this is also due to the missing RCP 8.5 simulations for PCR-

GLOBWB for all GCMs. A clear spatial pattern of GCM influence shows in the Amazon that relates to the region of Fig. 3 

where increases of GWR are calculated. On the other hand, the region in the Amazon where decreases are simulated (compare 405 

Fig. 3) shows mainly the GHMs as the source of variance. In the Mediterranean, the influence shifts as well from GCMs 

(1.5°C) to GHMs (3°C). This could be due to a high agreement in GCMs in this region and a considerable disagreement in 

GHMs. Similar patterns can be found when comparing absolute GWR, but the influence of GCMs is less pronounced, 

especially in the Amazon (Fig. S8). 
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 410 

Figure 5 GCM variance in percent of the total variance of GWR change from eight GHMs and four GCMs at 1.5°C (a) and a 3°C (b) GW 

(see also Sect. 2.4). Red depicts areas where the GCMs are responsible for the majority of the variance in GWR change. Blue areas indicate 

where the main variance is introduced through GHMs. 

3.3 Impacts of evolving carbon dioxide concentrations on groundwater recharge estimates 

Including vegetation dynamics in GHMs may alter the model response in future estimates of GWR as evolving CO2 415 

concentrations alters fluxes of energy and water (Davie et al., 2013). To investigate the influence of simulating the 

physiological impacts of evolving CO2 on GWR, we compared GWR changes computed by two CLM 4.5 runs, each of it 

driven by GFDL-ESM2M climate input: the standard run analyzed included in the ensemble analysis above, with CO2 

concentrations changing according to the RCP, and an additional run in which CO2 concentrations after 2005 were held 

constant at the 2005 level. Unfortunately, no other GHM-GCM combinations with these alternative CO2 concentration variants 420 

are available in the framework of ISIMIP2b. 
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Figure 6 GWR (dynamic CO2) – GWR (static CO2) [mm year-1] for 2.0°C (a) and 3.0°C (b) GW. GWR (dynamic CO2) – PI (dynamic CO2) 

[mm year-1] for 2.0°C (c) and 3.0°C (d) GW. The figure only includes the GHM CLM 4.5 and the GCM GFDL-ESM2M. Maps show changes 

in GWR at a certain GW (including all RCPs that lead to that GW with a certain CO2 concentration) with dynamically evolving CO2 compared 425 
to static CO2 concentrations from 2005. Green and blue means that GWR is higher when evolving CO2 concentrations are considered, red 

and purple less GWR. 

 Figure 6 shows differences in simulated GWR between a dynamic and a static CO2 simulation for 2°C (Fig. 6a) and 

3°C (Fig 6b). In most grid cells, GWR simulated with dynamic CO2 is larger than GWR simulated with static CO2 levels of 

2005 (Fig. 6a,b). In the tropics, GWR with dynamic CO2 can be higher than with constant CO2 by 10-50 mm year-1 for 2°C 430 

GW (Fig. 6a), while difference reaches 50-100 mm year-1 in the 3°C world (Fig. 6b). Decreases of GWR are spatially consistent 

(for example, Brazil, Central U.S., and India) at 2° and 3°C GW and rarely exceed 10 mm year-1.  

Compared to the absolute changes between PI and the GW levels for dynamic CO2 (Fig 6c,d) the decreases in GWR 

are rather small (e.g., up -10 mm year-1 in Brazil (Fig. 6a,b), while change compared to PI exceeds -100 mm year-1 (Fig 6c,d)). 

Also, increases in GWR due to dynamic CO2 are in regions with large (> 100 mm year-1, Fig 6c,d) increases in recharge. 435 
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Figure 7 Relation of changes in precipitation (P) (mean(1981-2010) – mean(2070-2099)) to changes in GWR (mean(1981-2010) – 

mean(2070-2099)) depending on the model type (with or without CO2; see also Table 1) per SREX (selection as in Table 3)  for RCP 2.6 

and RCP 8.5 for the GCM HadGEM2-ES. 

The preceding analysis focused on GW levels parallel to other studies of GHM ensembles. To investigate the difference in 440 

including active vegetation processes in GHM further, we compared the four GHMs that include these processes with the four 

models that do not (Table 1). Because different RCPs decide the concentration of CO2 in the atmosphere, we compare RCP 

2.6 and RCP 8.5 time slices instead of GW levels. 
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Figure 7 compares the precipitation and GWR changes between the period 1981-2010 and the period 2070-2099 for 

the two RCPs and the two different model types for the SREX regions investigated in Table 3. Changes in precipitation and 445 

GWR are only based on the GCM HadGEM2-ES (see Fig. S9 for average over all GCMs) as the relationship between GWR 

and precipitation is not linear and the plot is comparable to Davie et al. (2013), who investigated differences in runoff. 

Compared to the average precipitation of all GCMs where only two regions show a decrease larger than 100 mm year-1 (Fig. 

S9 (b)), HadGEM2-ES shows seven regions for RCP 8.5 with such a decrease in precipitation. 

GWR changes vary between RCPs and model type and in between GHMs (Fig. S10). The relation between 450 

precipitation and GWR and difference between model types becomes clearer with RCP 8.5 than with RCP 2.6. Models with 

active vegetation (Fig. 7, green markers) agree that with more precipitation GWR should increase, e.g., for SAS; however, 

they disagree in regions where decreases in precipitation are expected and risk for groundwater availability is highest, e.g., 

CAM and MED. GHMs without active vegetation (Fig 7, orange markers), on the other hand, show a more consistent decrease 

in GWR for regions with decreases in precipitation and only some agreement in regions with increased precipitation. 455 

Decreases in precipitation may lead to a decrease in vegetation productivity (if not counteracted by an increased 

water-use efficiency due to elevated CO2 concentrations (Singh et al., 2020)) and thus to a decrease in transpiration. GHMs 

assume shares for evapotranspiration (ET) in relation to potential ET and the available precipitation. In contrast, transpiration 

in CO2-driven models responds to active vegetation as well as the relations between different water flux components that 

simpler GHMs do not. This can explain why the dynamic vegetation models exhibit inter-model regional differences in the 460 

GWR response to P decrease. Further, some models (MATSIRO) may not calculate LAI (leave area index), which impacts 

transpiration. For models with active vegetation, the increase in water use efficiency due to stomatal conductance (also referred 

to as CO2 fertilization) can compensate for the decrease in precipitation to some extent, making more water available for 

groundwater recharge as compared to the GHMs (Table 1).  Though in some regions, as seen in Figure 7 (and Fig. S10), this 

feedback is not enough to overcome the warmer and drier climate in terms of groundwater flux. Overall, the capability of a 465 

model to simulate actual ET largely influences its capability to simulate groundwater recharge. 

CWatM often lies in the middle of simulated GWR changes at RCP 2.6. Davie et al. (2013) showed generally higher 

runoff values for JULES-W1 than for LPJmL, the reverse is true for GWR (Fig S.10). For RCP 8.5, CWatM always simulates 

the largest increases and lowest decreases in GWR of all models without active vegetation. 
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 470 

Figure 8 Significant absolute difference of GWR change between 1981-2010 and 2077-2099 for RCP 8.5 in between four GHMs with (dyn) 

and four GHMs without dynamic (or active) vegetation (no dyn). See also Table 1. Reddish (left side of the color bar) indicates that the 

mean change of GWR as computed by the models with dynamic vegetation is more negative or less positive than change computed by other 

models. White regions indicate no significance is based on the K-S test (Sect. 2.5). Solid colors indicate that the majority of the two model 

groups (3 out of 4 models for each group) do not have the same sign i.e. that including dynamic vegetation leads to different signs in GWR 475 
change. Lighter colors indicate where the majority agrees on the sign of change. 

A spatially more refined difference between the model types is shown in Fig. 8 for RCP 8.5 (For RCP 2.6, almost no significant 

changes were found). For each grid cell, the map shows the significant (K-S test, p=5%) absolute difference of simulated 

change in GWR between models that include dynamic vegetation processes and models that do not include them. In the 

northern latitudes, both models with and without dynamic vegetation agree on an increase in GWR but differ by up to 100 mm 480 

year-1. Similarly, in the Mediterranean and central Brazil, both model types simulate a decrease in GWR, but the magnitude is 

significantly different between the model groups. In the Amazon patches of significant differences between the models show 

increases of GWR computed by GHMs with dynamic vegetation, whereas GHMs without dynamic vegetation shows a 

decrease. A similar effect is visible in central Africa, India, and parts of Indonesia; however, also decreases are simulated 

instead of increases for the Congo and Zambesi catchment. Both in the Mediterranean and South America models with dynamic 485 

vegetation show up to 100 mm year-1 difference in change compared to models without, even though no physiological effect 

should be dominant. According to Fig. 6, this is likely due to CLM 4.5 because JULES-W1 and LPJmL show slighter GWR 
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decrease than the models without dynamic vegetation. It is likely that the shown differences are due to the implementation of 

dynamic vegetation in the GHMs (compare Fig. S.10), however it is possible that other model peculiarities and processes are 

relevant as well. 490 

4 Discussion 

Estimating GWR is challenging (Moeck et al., 2016). Our results show that even for the PI period, the estimates of GWR vary 

largely among different GHMs. This is likely caused by the very different treatment of the runoff partitioning, implementation 

of the soil layer(s), inclusion of dynamic vegetation processes, and simulation of capillary rise. Because GWR is hard to 

measure directly (Scanlon et al., 2002), it is also challenging to verify the accuracy of the estimates. 495 

To the best of our knowledge, the data-set of Mohan et al. (2018) is the only available gridded global GWR dataset 

that is not based on global hydrological modeling. This data set of mean 1981-2010 GWR in 0.5° grid cells was developed 

from a regression analysis that combined gridded datasets of mean precipitation and potential evapotranspiration as well as 

land use/land cover with local estimates of GWR at 715 locations worldwide. Figure 9 compares the GHMs under investigation 

for PI conditions to this dataset. The used data for comparison is one ensemble member of the analysis of Mohan et al. (2018) 500 

that was deemed best in their study. The global mean GWR in this member is slightly lower, 110 mm year-1, than the reported 

mean of 134 mm year-1. Overall, the GHMs best agree with Mohan et al. (2018) in arid regions like the Sahara, Australia, 

southern Africa, and the Andes. Underestimates are predominant in the northern Latitudes and Central Asia, whereas 

underestimates appear in Europe and the eastern USA for all models. All models, except for H08 and WaterGAP2, which 

show underestimates, result in overestimates in East Asia. In the Amazon, MATSIRO and CLM 4.5 overestimate by more 505 

than 100 mm year-1 compared to Mohan et al. (2018), whereas all other models show a mix of over and underestimate across 

continents. A similar pattern is visible in Central Africa where CLM, MATSIRO, and CWatM overestimate, and all other 

models show a mixture of over and underestimate of -100 – 100 mm year-1. H08 and WaterGAP2 have the best agreement 

according to the NSE (Nash-Sutcliff Efficiency (calculated spatially); (Nash and Sutcliffe, 1970)) of 0.4 and 0.2 while the 

mean bias (mean(GHM Mohan et al.-1)) is lowest for JULES-W1. All GHMs show much lower GWR in permafrost regions 510 

as they assume that there is no or little GWR in such regions. Possibly GWR of Mohan et al. (2018) is overestimated here as 

no measurements informed their results in these regions. 

The variance in modeled GWR is possibly caused by the different implementation of the hydrological processes in 

between the models. Even more, models differ in their definition of groundwater and GWR. Some include groundwater storage 

that is recharged by a fraction of precipitation others do not include a groundwater component at all but define the saturation 515 

excess water from the bottom soil layer as GWR. Models may include only some of the processes that affect GWR, for 

example, capillary rise, percolation from the soil, preferential flow bypassing the soil matrix, the interaction between surface 

water and the aquifer, changing land use over time (not considered here), changing vegetation (e.g., reducing infiltration 

capacity). Further, important processes like evaporation, infiltration, percolation, or runoff and GWR separation are 
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implemented with different equations and simplifications. For evapotranspiration, a standard deviation of 0.15 mm day-1 520 

globally for the period 1989–2005 was found in the ISIMIP ensemble (Wartenburger et al., 2018). Some models even use sub-

grid information or sub-daily time steps, e.g., for changes in unsaturated conductivity. Notably, models that include dynamic 

vegetation processes showed the largest spread in GWR in regions with decreasing precipitation.   

It is also important to distinguish the capability of models to computed groundwater recharge during a historical 

period from their capability to estimate changes of groundwater recharge due to climate change. A model that simulates the 525 

current groundwater recharge pattern correctly may be incapable of computing future groundwater recharge if it cannot 

correctly simulate the impact of climate change and changing atmospheric CO2 concentrations on actual evapotranspiration 

correctly. 

It is also important to distinguish the capability of models to computed groundwater recharge during a historic time 

span from their capability to estimate changes of groundwater recharge due to climate change. A model that simulates current 530 

pattern of groundwater recharge correctly may be incapable of computing future groundwater recharge if it cannot correctly 

simulate the impact of climate change and changing atmospheric CO2 concentrations on actual evapotranspiration correctly 

To illustrate the model differences further, the following describes the impact of changes in precipitation for 

WaterGAP and LPJmL representative for the different model types used in this study. In WaterGAP, a simulated percent 

change in total runoff translates to the same percentage change in GWR; unless, e.g., due to more extreme precipitation events, 535 

infiltration capacity is exceeded more often such that the relative increase in GWR is smaller than total runoff. Absolute 

changes in GWR are always smaller than changes in total runoff. In LPJmL, changes in total runoff do not translate to 

proportional changes in groundwater runoff and GWR. Any flux or storage that takes water before it is partitioned to the soil 

will impact the groundwater and GWR. Possible reasons for a reduction in GWR (percolation past the bottom hydrologically 

active layer (3 m deep); compare Sect. 2.1) can be changes in precipitation amount/intensity, transpiration due to vegetation 540 

productivity, transpiration due to changes in vegetation water use efficiency due to CO2 fertilization, or changes in 

anthropogenic water use demands. 

This difference in behavior is reflected in Fig. 7, where the response between precipitation and GWR of GHMs 

without any active/dynamic vegetation is relatively uniform. The non-uniform response of the models that include vegetation 

changes is likely due to the complicated process feedbacks between vegetation and water (transpiration changes due to 545 

available water together with vegetation productivity) and complex feedbacks in-between changes in CO2, temperature, and 

precipitation which affect vegetation.  

This study highlights that uncertainties and differences in GHMs need to be investigated further and that in order to 

estimate global groundwater vulnerability, improved estimates of global GWR are required. 
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 550 

Figure 9 PI GWR per GHM – 34 years (1981-2014) mean GWR [mm year-1] of Mohan et al. (2018). Bias: mean (GHM Mohan et al.-1). 

NSE (Nash-Sutcliff Efficiency; (Nash and Sutcliffe, 1970)) is calculated spatially over all cells instead of time. 

This study is limited not only by the uncertainty in correctly representing the process of GWR but also in the 

propagation and aggregation of uncertainties. Future greenhouse gas emission scenarios are created based on the input of 

integrated assessment models. They are translated into emission scenarios of atmospheric concentrations and forcings that are, 555 

in turn, used to evaluate their impacts on the climate simulated by GCMs. Outputs of the GCMs are then bias-adjusted and 
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spatially downscaled to be used in the assessment with impact models like GHMs (Döll et al., 2014a). Furthermore, the analysis 

is limited by the number of GCMs that were used, as discussed in McSweeney and Jones (2016). Although the GCMs are 

carefully selected to be most representative of the CMIP (Taylor et al., 2012) ensemble. 

The multi-model ensemble study presented here assesses GWR at GW of 1.5°C, 2°C, and 3°C compared to GWR 560 

simulated under pre-industrial climate conditions and 1°C of GW. Changes are assessed based on transient time slices of the 

30 years around the year that crosses the specific warming level. These slices are an approximation of the stabilized climate 

state of that warming level; it relies on the assumption that for a given warming level the impacts are the same regardless of 

the time it took to reach it or whether equilibrium has been reached at all (Boulange et al., 2018). However, this kind of analysis 

has limitations as the transient nature of climate is aggregated over a relatively short period (31 years). Components like the 565 

ocean might not equilibrate at these timescales (Donnelly et al., 2017). 

Additionally, different RCPs are combined, which limits the possibility to investigate processes that are sensitive to 

different CO2 concentrations. Investigations in this study based on RCPs show the difference between these model types. On 

the other hand, using GW levels reduces the uncertainties from GCM variability due to the use of different time slices, 

depending on when a GCM reaches a GW level. 570 

 The variance in GWR is caused by GCMs and GHMs alike depending on the region similar to a multi-model ensemble 

study on the climate change impacts on streamflow (Schewe et al., 2014). Again, the assessment is limited by the number of 

used GCMs. Furthermore, this study did not include changes in land-cover and land-use, and thus irrigation which can have a 

tremendous impact on GWR, especially as irrigation patterns and used crops, will change with a changing climate (Hauser et 

al., 2019; Hirsch et al., 2017; Hirsch et al., 2018; Thiery et al., 2017; Thiery et al., 2020).  575 

The only similar study on the global impacts of GW on GWR, to the knowledge of the authors, was conducted by 

Portmann et al. (2013). The study used five GCMs and one GHM, WaterGAP, which (a slightly different version) was also 

included in this study. Overall results are spatially consistent; however, Portmann et al. (2013) showed more consistent trends 

among GW levels (compare Table 3). Portmann et al. (2013) acknowledge that including impacts of evolving CO2 levels on 

vegetation will have an impact on the simulated GWR and that WaterGAP is likely overestimating the decreases in GWR. 580 

Similarly, Davie et al. (2013) found that simulation of runoff was not consistent across models depending on whether CO2 was 

considered. The results presented in this study show that this assumption is true for some regions, where differences of up to 

100 mm year-1 can be observed.  

Despite the uncertainties, this study provides further evidence that climate change will impact groundwater 

availability in many regions of the world. A notable decrease can be expected in the Mediterranean, Amazon, and Brazil, 585 

whereas increases can be expected in Northern Europe. It is nevertheless troublesome that, especially in regions that are known 

to be vulnerable to climate change, for example, South Africa, model agreement in between model types is that low. 
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5 Conclusions  

Potential GWR changes due to climate change require increased attention from the scientific community as well as from 

decision-makers because they affect future water availability in many regions and thus the wellbeing of billions of people. 590 

This study shows that simulated global-scale estimates of GWR vary strongly among GHMs, which contribute more strongly 

to the overall uncertainty of future GWR than the applied GCM output. However, statistically significant increases and 

decreases of GWR could be identified in specific regions per GW level. The presented inter-model ranges of GWR changes 

are an important input for processes aiming at developing strategies for climate change adaptation, as risk-averse decision-

makers may want to orient their strategies towards adapting to the worst-case GWR change and not to the projected ensemble 595 

mean change. 

This study shows that including vegetation processes in GHMs can change projected GWR changes substantially. 

However, consideration of these processes does not lead to a uniform increase of groundwater recharge, as might be expected 

from the physiological effect of increasing atmospheric CO2 concentration. In some regions with decreasing groundwater 

recharge, where groundwater availability is a major concern, models that include these processes show the largest differences 600 

among themselves. Further research is necessary to understand GWR on large scales, and how it is affected by climate. 

Simulation of groundwater recharge in global models and the connected uncertainties by global hydrological models needs to 

be analyzed in greatermore detail by, e.g, the application of extensive sensitivity analysis., Such an assessment should also 

extend to and the benefit of integrating gradient-based groundwater flow models in GHMs. 

 should be assessed. 605 
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We thank the three reviewers for the positive feedback on the work we have invested in this manuscript

and the detailed comments to further improve it. We certainly acknowledge the uncertainties involved

in the presented results and recognize that the submitted abstract might create false expectations. We

have  thus  rewritten  the  abstract  as  well  as  the  conclusions  and  are  now  more  precise  about  the

explanation  of  statistically  significant  changes.  Furthermore,  we  added  a  new  table  (Table  1)  that

provides an overview on which vegetation processes are implemented in which model, added a new

Figure 2 that shows the ensemble mean, and extensively revised Figure 7 (former Fig. 5). We are certain

that  the  presented  manuscript  is  an  important  study  of  the  capabilities  and  limitations  of  global

hydrological models.

The following lists all comments of all three reviewers and our rebuttal in italics. Attached is a markup

document that highlights the changes compared to the initially submitted document. Line numbers refer

to the revised version of the document.

Referee #1
1.1
Although the title of the paper and the results emphasize model uncertainties, I
think the primary result based on the analysis is that recharge is not very sensitive
to climate change as only 15% of cells show significant increases or decreases in
recharge based on pre-industrial baseline and only 8% of cells show
significant  change  in  recharge  from  current  1  degree  to  projected  3  degree
condition.

It is not correct to conclude from the fact the only 15% of cells show significant
changes that groundwater “recharge is not very sensitive to climate change”. This
misunderstanding by the  reviewer  is  caused by the  various  meanings  the  term
“significant” has. In our paper, with “significant” we do not mean that there are
“large”  changes.  We  mean  a  statistical  agreement  or  rather  non-agreement
between the two ensembles of simulated recharge, the one consisting of recharge
computed by the various models under e.g. pre-industrial conditions and the other
consisting of recharge computed by the various models at a certain global warming
level (as tested here by a Kolmogorov-Smirnov test). To avoid this confusion, we
have clarified this fact in Section 2.5 and for multiple references to the significance
of the changes. We have also added a new Figure 2 that shows the ensemble mean
difference between a 3° C warming and the present day without any statistical
tests. We have also strongly modified abstract and conclusions to clearly express
that significant refers to statistically significant (see response 3.1).

Section 2.5 now reads (Line 258 ff):
“A model ensemble allows us to consider the uncertainty in modeling physical processes as different

model use different algorithms and parameters for  computing groundwater recharge.  To determine

whether changes in GWR due to GW computed by the model ensemble are statistically significant, we

use the two-sample Kolmogorov–Smirnov (K-S) test to compare the GWR values computed by all GHM-

GCM model combinations under e.g., PI conditions with the values at the various GW levels. The use of a

two-tailed t-test is not advisable in this setting due to the small sample size (max. 84 in this study).

Because the K-S test does not allow to check whether the ensemble agrees on the sign of change in

GWR, we apply an additional criterion to determine a significant change similar to Döll et al. (2018). A

change is only marked as (statistically) “significant” if the K-S test indicates a significant difference and at



least 60% of the model realizations of the ensemble (RCP, GCM and GHM combinations) agree on the

sign of change (i.e.  a decrease or increase”. In case of a low significance, all models may show large

responses to climate change while their agreement on the amount or sign of change is low.”

The new Figure and its description (Line 270 ff):

“To assess the impact of GW on GWR, Fig. 2 shows the ensemble mean change of GWR between the

current 1°C world and a potential 3°C GW. We chose to express changes as absolute change rather than

relative change because zero, or close to zero, GWR in some regions of the world leads to not defined or

extremely large percentage increases and decreases (Fig.  S1 and S2).  The model  mean shows large

decreases of over 100 mm year-1 in South America and in the Mississippi Basin and decreases of up to

50 mm year-1 in the Mediterranean, East China, and West Africa. Increases of over 100 mm year-1 are

prominent in Indonesia and East Afrika. Individual GHM-GCM model combinations compute much larger

changes.

 

(new) Figure 2 Ensemble mean change in GWR [mm year-1] between conditions of present day warming

of 1 °C GW and at 3 °C GW, averaged over the GWR changes of all GHM-GCM model combinations.

Ensemble mean changes as shown in Figure 2 may be low in some areas, but this could be due to large

positive changes compute by some GHM-GCM model combinations being canceled by large negative

changes by other model combinations. To assess the changes which show a high statistical agreement

in-between the model combinations, we determine where computed changes of GWR are statistically

significant (Section 2.5).”

1.2
It  would  be  good  to  acknowledge  that  recharge  is  likely  the  most  difficult
component of the water budget to simulate because it is modeled as a residual,
accumulating uncertainties in other water budget components.



We agree and accordingly have changed the abstract and introduction. (Line 27 and
60):
“Groundwater recharge is an important indicator for groundwater availability, but it is a water flux that
is difficult to estimate as uncertainties in the water balance accumulate, leading to possibly large errors
in  particular  in  dry  regions.”  And  “The  simulation of  GWR is  possibly  one  of  the  most  challenging
components of the water budget as it accumulates the uncertainties of all other components of the
budget.  Especially  in  semiarid  regions,  uncertainties in  precipitation and evapotranspiration lead to
considerable uncertainty in recharge. An additional factor in estimating groundwater recharge is the
simulation of the groundwater table and thus capillary rise and focused recharge.”

1.3
In addition, it is extremely difficult to simulate in semiarid regions because small
uncertainties  in  precipitation  and  evapotranspiration  can  result  in  large
uncertainties in recharge.

Has been addressed together with 1.2.

1.4
Many studies suggest that climate change will result in increased climate extremes
(floods and droughts) that may result in increased recharge from focused rather
than diffuse recharge; however, it seems that few of the models consider focused
recharge.

We  agree,  however  none  of  the  models  includes  a  reliable  implementation  of
focused  recharge.  Current  developments  of  global  gradient-based  groundwater
models will improve the implementation of these processes further but currently we
focus on diffuse GWR in this study.

This is a limitation now stated more clearly (Line 125):
“We do not consider focused recharge in this study as no model offers a reliable implementation of
these processes until now.” 

1.5
The  authors  refer  to  groundwater  levels  throughout  the  paper  with  respect  to
temperature levels; however, this is confusing as groundwater levels are generally
considered  water  table  levels.  It  might  be  good  to  include  temperature  when
referring to these.

The submitted manuscript makes no assumptions about the effect of changes in
groundwater recharge on groundwater levels. We assume that the referee misread
parts of the manuscript as the abbreviation GW (Global Warming) can easily be
confused with GroundWater in GWR (Groundwater Recharge). While we realize this
is not a perfect choice for an abbreviation we chose to keep it.



1.6
I agree that it is good to focus on absolute changes in recharge rather than relative
changes. The authors suggest that underestimating runoff would result in increased
GWR; however, this would not
be the case if GWR is focused and derived from runoff as in semiarid regions (L. 74).

We are happy to hear that the reviewer agrees with our choice in using absolute
changes.  This  is  something  we  have  debated  extensively  when  writing  this
manuscript. We agree with the comment, however as stated in 1.4 this study mainly
focuses on defuse groundwater recharge.

1.7
The authors repeatedly use present tense to refer to work that was done for this
study. I think it would be more appropriate to use past tense. 

The manuscript was heavily revised in this regard at multiple places and should now
contain a more precise use of tenses. Please see the attached markup document.

1.8
The model CLM-5 has been upgraded substantially relative to CLM-4.5. It might be
good to consider CLM-5 rather than CLM-4.5.

It is true that CLM-5 is an improved version of the model, however our analysis is
based on the available ISIMIP 2.b outputs, where only the modeling team of CLM-4.5
has submitted groundwater recharge.  Running additional simulations with another
model  would  compromise  the  reproducibility  of  our  findings  and  clear  link  to
rigorous ISIMIP protocol. This study is not an investigation of a specific model but of
a consistent model ensemble.

1.9
Soil thickness varies substantially among the models (e.g. LPJ 13 m thick). It would
be good to comment on the impact of varying soil thickness on model results.

While we agree that such an analysis is of interest it is clearly out of scope for this
paper. It would require to modify and rerun all the complex models in a sensitivity
analysis. The corresponding author is not the developer of these models, which are
very complex to setup and run and even harder to compare, this is why we are
using the ISIMIP framework, which enables a baseline that allows for the complex
model  comparison  shown  in  this  manuscript.  To  allow  for  a  more  in-depth
comparison on how different processes are implemented in GHMs there is currently
a complex manuscript under development targeting the implementation differences
in these models. 

Referee #2
2.1
One of the main conclusions is that dynamic vegetation has a strong impact on the
estimated GWR, which is far from being as obvious based on the results presented.



While we agree that there is a significant uncertainty on how changes in CO2 levels
impact  the  water  balance  Figure  7  and  8  clearly  shows  substantial  differences
between  the  model  types.  Of  course,  this  does  not  necessarily  mean  that  this
difference can only  be explained through the simulation of  dynamic vegetation.
Nevertheless,  it  seems likely and supports  that  further research on this topic is
necessary.
We added a sentence to make this clearer in our conclusions (Line 579 ff):

“However,  consideration  of  these  processes  does  not  lead  to  a  uniform  increase  of  groundwater
recharge,  as  might  be  expected  from  the  physiological  effect  of  increasing  atmospheric  CO2

concentration. In some regions with decreasing groundwater recharge, where groundwater availability
is a major concern, models that include these processes show the largest differences among themselves.
Further research is necessary to understand GWR on large scales, and how it is affected by climate.
Simulation of groundwater recharge by global hydrological models needs to be analyzed in more detail,
and the benefit of integrating gradient-based groundwater flow models in GHMs should be assessed.”

2.2
In addition, some figures are difficult to read and seem to support only partially the
comments.

We have improved the font size in multiple figures. See also comment 2.6.

2.3
Introduction: The choice is made to estimate ground water recharge throughout the
continental part of the world. However, many areas have no extended groundwater.
Whymap.org provides map of the extension of the aquifer. What does it mean to
estimate GWR where there is no or local and shallows aquifer? Won’t it be more
interested to estimate the recharge on the aquifer domains?

Groundwater  recharge  is  also  of  interest  outside  of  the  major  global  aquifers
represented in WHYMAP in blue. In each 0.5° grid cell there are very likely local
aquifers  (e.g.  in  alluvial  valleys,  and  confined  aquifers  are  also  affected  by
groundwater recharge. There are other studies which use WHYMAP e.g. Gleeson et
al. 2012 Nature, or Taylor et al. 2013 NCC, however our analysis here firstly focuses
on  a  grid-based  analysis  (allowing  for  a  better  understanding  on  the  model
differences), which could be in a follow-up study be applied on an aquifer scale.

2.4
Line 200: It is necessary to provide information on the bias-adjusted method? What
is the assumption? What is the reference climate used?

A detailed explanation of the method is out of scope of the paper. We have added,
to the existing reference to additional information on the climate inputs, a reference
of the used method (line 213):

“The  bias  adjustment  method  used  for  the  GCMs  in  ISIMIP2b  is  using  a  trend
preserving algorithm (Frieler et al., 2017) with EWEMBI (Lange 2018) as baseline
(reference) climate condition.”



2.5
Section 2.1: I suggest to provide a table that summarizes if GHM includes or not in
the GWR another part that a partition of the precipitation, especially, which GHM
includes river to aquifer exchange, since this may be a very important difference in
alluvial regions. Moreover, this table should also summarize which GHM integrates
direct  effect  of  CO2,  explaining  clearly  if  they  account  for  stomatal  aperture
sensitivity to CO2 and/or for vegetation dynamic (LAI) (so far, this is not clear).

As explained in 1.4 we do not consider focused recharge or transmission losses in
this study (see 1.4). Also, it might be difficult to distinguish specific alluvial regions
on  this  coarse  resolution.   A  new  Table  1  has  been  added  to  summarize  the
implementation of CO2 related vegetation processes more clearly (Line 126 ff).

Table  1 Overview which models are able to simulate the impact of evolving CO 2  concentrations on vegetation and how it is
implemented.

GHM Conside
rs CO2

Summary  of  considered  vegetation
processes in ISIMIP2b

Reference 

WaterGAP2 No - -
CLM4.5 Yes Photosynthesis  depends  on  root  zone  soil  moisture

availability. The description is similar to LPJmL listed below.
The area a population of plant functional types (PFTs) takes
up is prescribed and only changes if the input data does.

(Di Liu and Mishra,
2017)

H08 No - -
JULES-W1 Yes Evapotransipration  is  considered  from  five  PFTs  and  four

non-vegetative surface types. Each grid cell is composed of
different  fractions  of  those  9  surface  types.  Transpiration
occurring  from  vegetation  is  based  on  photosynthetic
process, which is subject to stomatal conductance regulated
by the CO2 concentration. Furthermore, transpiration is also
controlled by the soil moisture availability in the root zone.

(Best  et  al.,  2011;
Clark et al., 2011)

LPJmL Yes Vegetation  composition  is  determined  by  the  fractional
coverage  of  PFTs  at  the  grid  scale.  PFTs  are  defined  to
account for the variety of  structure and function within a
stand  and  are  therefore  simulated  as  average  individuals
competing for light and water according to their crown area,
LAI,  and  rooting  profiles.  The  vegetation  dynamics
component of LPJmL includes carbon allocation to different
PFT  tissue  compartments,  PFT  interaction,  and
establishment and mortality processes. Photosynthesis and
stomatal  response are simulated following  Farquhar et  al.
(1980) and  the  generalization  by  Collatz  et  al. (1991) for
global  modelling,  based  on  the  function  of  absorbed
photosynthetically  active  radiation,  temperature,  day-
length, and canopy conductance for each PFT present in a
grid cell.

(Schaphoff  et  al.,
2018)

PCR-
GLOBWB

No - -

CWatM No - -
MATSIRO Yes The  consideration  of  CO2 effects  is  functionally  similar  to

that  in  CLM, and there is  no dynamic vegetation scheme.
CO2 is  prescribed  in  the  model,  which  is  used  in  the

(Takata  et  al.,
2003)



photosynthesis scheme to calculate stomatal conductance,
among other parameters, following Farquhar et al.  (1980).
Soil  moisture stress  on photosynthesis is  considered using
moisture availability in the root zone with root distribution
fraction in each soil  layer.  All  of that is done for different
vegetation or plant functional types.

2.6
Figure 2 is of bad quality: Is it necessary to have all the extremes? Is it reasonable to
have  a  range  over  2000mm/year?  most  aquifers  recharge  maps  stop  before
1000mm/year and often under 500. Are GWR values above 1500 in Figure 2 located
in capacitive aquifers or in very local and shallow aquifer as defined by Whymap
(see  comment  1)?  As  this  figure  is  difficult  to  read,  it  is  impossible  to  check
comments line 317-322

We think it is necessary to include all extremes even if it reduces the readability of
the figure. Only by showing the outliers we are able to openly discuss what the
models compute no matter if the values are reasonable or not. Again, the focus on
specific aquifers is not something we target in this manuscript (See also 2.3).

2.7
Nice to disentangle the impact of GCM and GHM, but, fig3a includes 76 cases while
fig b includes only 36 cases. How does this compare? In order to try to understand
what the impact of GHM is, and what the impact of the response of GHM to GW is, it
seems required to show the variance of the 8 GHMs on preindustrial case. Figure 7
shows that there are important change, but, variance will be helpful to compare
with fig3a.

As explained in 2.3 not all RCPs and GCM combinations may lead to a warming of
3°, thus the number of involved ensemble members changes. The simulation of PI
GWR per GHM is already shown in S1 and S4. We now also refer to these figures in
this paragraph: (Line 393) “For the simulated variance at PI see Fig. S1 and S4.”

2.8
Figure 4 includes only one realization of one GHM and one GCM. Why this GCM?
Why this GHM? Is this GCM includes dynamic vegetation? Is the dynamic vegetation
of the GCM consistent with the one of the GHM? In any case, it would be nice to
have some information on LAI changes;

This is stated at the end of the paragraph “Unfortunately, no other GHM-GCM combinations

with these alternative CO2 concentration variants are available in the framework of ISIMIP2b.” Yes, GFDL

includes dynamic vegetation as well. We agree that an assessment of the differences between the GHM

and GCM implementation of the dynamic vegetation would be of interest, however, it is clearly out of

scope of in this study.  It is also unclear to us how information on LAI changes would provide more

insights on the presented results.



2.9
Line 422 : Decrease of precipitation lead to a decrease of vegetation productivity) I
guess it is more complicated than that, you may correct

Agreed  it  very  much  depends.  We  rephrased  the  sentence  and  added  another
relevant reference in this matter.

Now reads (Line 458 ff): 
“Decreases in precipitation may lead to a decrease in vegetation productivity (if not counteracted by an
increased water-use efficiency due to elevated CO2 concentrations (Singh et al.; 2020))) and thus to a
decrease in transpiration.”

2.10
Figure 5: is this figure correct? a same GHM can appear twice for a subregion with
the same colors. A change of precipitation of 100mm/year can lead to an increase of
GWR of  the  same  amount.  Is  the  vegetation  dead?  It  would  be  nice  to  better
understand which process occurs in detail in one subregion?

Yes, the figure is correct. However, we realize that it might be difficult to distinguish
between the amounts of markers. To allow for a more comprehensive figure we
revised in heavily and summarized the models in a bar chart (see new Figure 7
below).  We  have  furthermore  improved  the  original  plot  and  added  it  to  the
supplement to allow the interested reader to still investigate the model differences.
Concerning the large increases of GWR linked to large increases of precipitation, it
is  unclear  which  process  is  mainly  responsible  for  this  feedback.  Possibly  the
increased water use efficiency of the vegetation allows for a large increase in GWR
linear to the increase in P. 



(heavily revised) Figure 1 Relation of changes in precipitation (P) (mean(1981-2010) – mean(2070-2099)) to changes in GWR
(mean(1981-2010)  –  mean(2070-2099))  depending  on  the  model  type  (with  or  without  CO 2;  see  also  Table  1)  per  SREX
(selection as in Table 3)  for RCP 2.6 and RCP 8.5 for the GCM HadGEM2-ES.



(new)  Figure  S10  Relation  of  changes  in  precipitation  (P)  (mean(1981-2010)  –  mean(2070-2099))  to  changes  in  GWR
(mean(1981-2010) – mean(2070-2099)) depending on the model type per SREX (selection as in Table 1) for RCP 2.6 and RCP
8.5 for the GCM HadGEM2-ES. Y-Achis is log-scaled. The dashed line is the 1:1 line.

2.11
Fig 6 compares 4 GHM with dynamic vegetation (change in LAI?) with the 4 others
who assumes constant vegetation (but do they account sensitivity of the stomatal
aperture to CO2?).  The difference on the physics  of  the GHMs is  large,  but the
impact seems reduced. How can we be sure that the difference is linked to the
dynamic vegetation? Similar difference may well exist between this different GHMs
without  change  in  vegetation  dynamic.  Moreover,  are  the  significant  changes
located where the aquifers are extended and capacitive, or where the aquifers are
very shallow and local?

No, the other 4 models with constant vegetation do not account for the stomatal
aperture. To clarify we now define the terminology much more clearly in 2.1 to
avoid  any confusion.  Additionally,  we added Table  1 to  provide an overview on
which model implements what kind of vegetation.

Now reads in S2.1:
“In the following, we use the term active vegetation for models that consider the physiological effect of
changes in CO2 on vegetation and the term dynamic vegetation for the models that allow for a changing
vegetation regarding LAI and/or vegetation type.”

We agree that we cannot be sure without a further extended sensitivity analysis,
which unfortunately is not possible at this point, that the differences we are seeing
are solely due to the inclusion of vegetation. However, the only analysis possible in
this  regard  with  the  available  data  shown  in  Figure  6  (based  on  new  version)
supports that assumption. We are now stating this more clearly:



Line 493: “It is likely that the shown differences are due to the implementation of dynamic vegetation
in the GHMs (compare Fig. 6), however it is possible that other model peculiarities and processes are
relevant as well.”

For your comment on specific aquifers see 2.3.

2.12
Assessment of the GHM should not appear in the discussion. It should be earlier, or
in supplement: GWR estimates by Mohan is only the GWR from precipitation (no river
inputs). How does this compare to the numerous GHM?

We don’t think that an earlier appearance is merited. The assessment of the models
themselves is not the focus of this paper, thus a discussion of the figure at the
beginning of the paper is not useful to convey our central messages. Moving them
to the supplement is also not helpful as Fig. 9 transports important messages to
understand the relevance of the presented results and conclusions correctly.  We
think that it is a helpful figure to discuss the limitations of the approach without
skewing the central message of the paper. The discussion is thus the right place
even though it might be unusual.
Concerning the question if the estimates are comparable see also our answer in 1.4.

2.13
Line  539:  “Despite  the  uncertainties,  this  study shows that  climate  change will
impact groundwater availability in many regions of the world”. this is naïve: it was
already shown by numerous regional studies.

Additional  evidence is  always  a good thing.  We further  provide three important
additional  messages  that  regional  studies  are  not  able  to  show:  1)  We provide
global patterns of change – also for regions that have not been studied yet and
consistent patterns on much larger scales. 2) We present a multi-model ensemble
approach,  which  is  also  not  common  in  regional  studies.  3)  The  used  models
operate  at  the  coarse  spatial  resolution  closer  to  climate  models  without  the
requirement to downscale uncertain climate input to specific regions.

We rephrased the conclusion and it now reads:
“Potential  GWR  changes  due  to  climate  change  require  increased  attention  from  the  scientific

community as well as from decision-makers because they affect future water availability in many regions

and thus the wellbeing of billions of people. This study shows that simulated global-scale estimates of

GWR vary strongly among GHMs, which contribute more strongly to the overall uncertainty of future

groundwater  recharge than the applied GCM output.  However,  statistically  significant increases and

decreases of GWR could be identified in specific regions per GW level. The presented inter-model ranges

of GWR changes are an important input for processes aiming at developing strategies for climate change

adaptation, as risk-averse decision-makers may want to orient their strategies towards adapting to the

worst-case GWR change and not to the projected ensemble mean change.

This  study shows that  including vegetation processes  in  GHMs can change projected GWR changes
substantially.  However,  consideration  of  these  processes  does  not  lead  to  a  uniform  increase  of
groundwater recharge, as might be expected from the physiological effect of increasing atmospheric CO 2



concentration. In some regions with decreasing groundwater recharge, where groundwater availability
is a major concern, models that include these processes show the largest differences among themselves.
Further research is necessary to understand GWR on large scales, and how it is affected by climate.
Simulation of groundwater recharge by global hydrological models needs to be analyzed in more detail,
and the benefit of integrating gradient-based groundwater flow models in GHMs should be assessed.”

2.14
Line 545: “Moreover, this study shows that including dynamic vegetation processes
in  GHMs can  change the results  substantially”:  this  is  not  that  clear  from your
results. I was expected more impact indeed.

This relates to 2.5, 2.8, 2.9, 2.11 and should be much clearer now.

2.15
A map of the extension of the subdomain is required

We assume that the referee is referring to the SREX regions, which are provided in
Fig S6.

2.16
Numbering of figures is wrong

Figure  1  existed  twice  in  the  manuscript.  We  apologize  for  any  caused
inconvenience. This was corrected. 

2.17
Line 287: Masson-Delmotte et al

This has been corrected.

2.18
Figure S3 should be in the text since it is discussed

We disagree. It is only shortly mentioned and not necessary to understand to message of the paper. It

would be possible to move it to the Appendix but we don’t think that it adds any valuable information

that is not already transported through the text.

Referee #3
3.1
I do appreciate the tremendous amount of work the authors put into the study and already apologize

for not being able to be more positive. The study has a flaw in that it assumes/postulates that GHMs are

able  to  simulate  groundwater  recharge processes  (line  61).  This  remains  to  be shown (see specific

comment below). The authors also compare to Mohan et al. (2018), a data set, which is also highly



uncertainty itself, and show that all models essentially have no skill. Thus, the study is hypothetical and

should  be  seen  as  a  model  sensitivity  study,  which  does  not  necessarily  reflect  reality.  The  large

uncertainty in the results supports that notion. The authors discuss the limitations in detail and come to

the conclusion (line 538) “Despite the uncertainties, this study shows that climate change will impact

groundwater availability in many regions of the world. “ Yes, that‘s probably true. But it’s sad that due to

the large uncertainty, no additional concrete conclusions can be drawn from the results.

Because the detailed analyses and numbers have very low confidence, I am not able to comment on the

simulation results. In summary, I find that GHMs have not been tested comprehensively especially with

regard to complex processes such as groundwater recharge. Thus, in my opinion, the study is too early

(first  testing,  then  analyses).  Looking  at  the  description  of  the  models,  I  would  not  even  call  the

estimated flux groundwater recharge. If GHMs are applied I suggest to study the major fluxes of the

water balance including their impact on the residuals of the balance equation in the models. In a way

that’s what the authors are doing, yet the presentation does not show these results.

We appreciate the recognition of the amount of work that went into this study and strongly disagree

with the conclusion of reviewer #3 that “the study is too early”. We think it is timely to do a study that

aims  at  understanding  the  best  information  we  have  on  potential  impacts  of  climate  change  on

groundwater at the global scale, which is provided by the multi-model ensemble output that is analyzed

in this study. The merit of our study is similar to that of many climate change studies done with global

climate models. It is well known that different global climate models project very different future climatic

changes in response to the same greenhouse gas emissions scenario; nevertheless, their results including

an  understanding  of  their  uncertainties  are  of  interest  to  many  and  impact  decision-making.  We

explicitly wanted to focus on uncertainties and not (impossible) predictions, which is also reflected by the

title of our manuscripts: ““Uncertainty of simulated groundwater recharge …”.

It  is  definitely  justified to criticize the ability  of  GHMs to simulate groundwater  recharge,  which we

openly  discuss  in  this  publication.  The  referee  himself/herself  admits  that  “The  authors  discuss  the

limitations in detail”. While the analysis has flaws the study discusses them openly and it provides new

information and understanding. That no precise and certain prediction of future groundwater recharge

are currently possible is certainly, using the word of the referee “sad”. However, the study does identify

statistically  significant  increases  and  decreases  in  recharge  in  multiple  regions  of  the  world.  And  it

provides a range of potential future recharge changes for each world region that persons in charge of

climate change adaptation should take into account for lack of better knowledge. 

The  statement  that  “that  GHMs  have  not  been  tested  comprehensively”  contradicts  a  substantial

number of studies that have been published in the recent years devoted to the evaluation of GHMs, for

example: (Scanlon et al., 2018; Müller Schmied et al., 2014; Döll and Fiedler, 2008; Döll and Flörke, 2005)

and many more. Still,  additional  testing  and improvement  is  still  necessary  and this  study  provides

important pointers for future research. In any case, we agree that groundwater recharge is a complex

process that needs to be developed further in GHMs. Our manuscript offers first insights on what these

improvements might be by presenting a novel comparison of a large ensemble of models in this regard.

The suggested approach of comparing other components of the water balance is something that has

been done in the framework of ISIMIP in multiple other publications (“e.g., flood risk (Willner et al., 2018;

Thober et al.,  2017; Alfieri  et al.,  2017), low flows in Europe  (Marx et al.,  2018), evapotranspiration



(Wartenburger et al., 2018), runoff and snow in Europe (Donnelly et al., 2017) or multi-sectoral impacts

(Byers et al., 2018).”) that are cited in the introduction of this manuscript.

In reaction to the reviewer comment, we made substantial changes to both abstract and conclusions to

focus less on specific numerical values than on explaining the potential benefits and applicability of the

study results.

The new abstract:

“Billions  of  people  rely  on  groundwater  as  an  accessible  source  for  drinking  water  and  irrigation,

especially  in  times of  drought.  Its  importance will  likely  increase with  a  changing climate.  It  is  still

unclear,  however,  how  climate  change  will  impact  groundwater  systems  globally  and  thus  the

availability  of  this  vital  resource.  Groundwater  recharge  is  an  important  indicator  for  groundwater

availability  but  it  is  a  water  flux  that  is  difficult  to  estimate  as  uncertainties  in  the  water  balance

accumulate,  leading  to  possibly  large  errors  in  particular  in  dry  regions.  This  study  investigates

uncertainties  in  groundwater  recharge  projections  using  a  multi-model  ensemble  of  eight  global

hydrological  models  (GHMs)  that  are  driven  by  the  bias-adjusted  output  of  four  global  circulation

models (GCMs). Preindustrial and current groundwater recharge values are compared with recharge for

different global warming (GW) levels as a result of three representative concentration pathways (RCPs).

Results suggest that projected changes strongly vary among the different GHM-GCM combinations, and

statistically significant changes are only computed for few regions of the world. Statistically significant

GWR increases are projected for Northern Europe and some parts of the Arctic, East Africa and India.

Statistically  significant  decreases  are  simulated  in  southern  Chile,  parts  of  Brazil,  central  USA,  the

Mediterranean, and southeast China. In some regions, reversals of groundwater recharge trends can be

observed  with  global  warming.  Because  most  GHMs  do  not  simulate  the  impact  of  changing

atmospheric CO2 and climate on vegetation and thus evapotranspiration, we investigate how estimated

changes in GWR are affected by the inclusion of these processes. In some regions, inclusion leads to

differences in groundwater recharge changes of up to 100 mm year -1. Most GHMs with active vegetation

simulate less severe decreases of groundwater recharge than GHMs without active vegetation and in

some regions even increases instead of decreases. However, in regions where GCMs predict decreases

in precipitation and groundwater availability is most important, model agreement among GHMs with

active  vegetation  is  lowest.  Additional  research  on  simulating  groundwater  processes  in  GHMs  is

necessary.”

The new conclusions:

“Potential  GWR  changes  due  to  climate  change  require  increased  attention  from  the  scientific

community as well as from decision-makers because they affect future water availability in many regions

and thus the wellbeing of billions of people. This study shows that simulated global-scale estimates of

GWR vary strongly among GHMs, which contribute more strongly to the overall uncertainty of future

groundwater  recharge than the applied GCM output.  However,  statistically  significant increases and

decreases of GWR could be identified in specific regions per GW level. The presented inter-model ranges

of GWR changes are an important input for processes aiming at developing strategies for climate change

adaptation, as risk-averse decision-makers may want to orient their strategies towards adapting to the

worst-case GWR change and not to the projected ensemble mean change.



This  study shows that  including vegetation processes  in  GHMs can change projected GWR changes

substantially.  However,  consideration  of  these  processes  does  not  lead  to  a  uniform  increase  of

groundwater recharge, as might be expected from the physiological effect of increasing atmospheric CO 2

concentration. In some regions with decreasing groundwater recharge, where groundwater availability

is a major concern, models that include these processes show the largest differences among themselves.

Further research is necessary to understand GWR on large scales, and how it is affected by climate.

Simulation of groundwater recharge by global hydrological models needs to be analyzed in more detail,

and the benefit of integrating gradient-based groundwater flow models in GHMs should be assessed.”

3.2
Only a couple specific comments Abstract: The reported percent increases/decreases of GWR suggest an

accuracy that is simply not there; especially given the huge uncertainty in the results. Thus, the abstract

sends the wrong message, especially to water managers and decision makers.

We agree that there should be no confusion on the main message of this manuscript and that the results

should be considered with care. To attract the reader’s attention on this matter and avoid any confusion

for readers that might misinterpret the results we have greatly adapted the abstract. See also 3.1..

3.3
54: One of the most important factors is missing: Depth and dynamics of the free water table.

This is now mentioned (Line 63 ff):

“An additional factor in estimating groundwater recharge is the simulation of the groundwater table and

thus capillary rise and focused recharge. This has not been achieved yet in GHMs, however, recently,

global  hydrological models (GHMs) started integrating gradient-based groundwater models to better

estimate the flows between surface water and groundwater as well as the impact of humans and the

changing climate on the groundwater system (de Graaf et al., 2019; Reinecke et al., 2019).  Neglecting

capillary rise may lead to an overestimation of  decreases and increases of  GWR due to a changing

climate.”

3.4
61: This is true, but has never been tested. I  suggest to compare the GHMs against fully integrated

hydrologic  models,  such as  Cathy,  Hydrogeosphere,  OpenGeosys,  ParFlow, etc.  in  order  to  test  the

ability of GHMs to simulate recharge processes. This is one of many tests that GHMs should undergo in

my opinion.

The models currently under development have been compared to these models (e.g. ParFlow in Reinecke

et al. 2019). We agree that this comparison needs to continue in the future.

We added a sentence to the conclusions to reflect that. See 3.1.



3.5
Section 2.2: Porbably I missed these details: what‘s the time step, the spatial resolution, etc?

The spatial resolution is 0.5° x 0.5° (described in section 2.1) and temporal resolution of the original GWR

data is monthly, which was averaged to yearly values in this study (also described in 2.1). Time step is a

term one might use in the context of numerical models, such as gradient-based groundwater models,

which are not part of this study. 
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Abstract. Billions of people rely on groundwater as an accessible source for drinking water and irrigation, especially in times 

of drought. Its importance will likely increase with a changing climate. It is still unclear, however, how climate change will 25 

impact groundwater systems globally and thus the availability of this vital resource. Groundwater recharge is an important 

indicator for groundwater availability, but it is a water flux that is difficult to estimate as uncertainties in the water balance 

accumulate, leading to possibly large errors in particular in dry regions. This study investigates uncertainties in groundwater 

recharge projections using a multi-model ensemble of eight global hydrological models (GHMs) that are driven by the bias-

adjusted output of four global circulation models (GCMs). Pre-industrial and current groundwater recharge values are 30 

compared with recharge for different global warming (GW) levels as a result of three representative concentration pathways 

(RCPs). Results suggest that projected changes strongly vary among the different GHM-GCM combinations, and statistically 

significant changes are only computed for few regions of the world. Statistically significant GWR increases are projected for 

Northern Europe and some parts of the Arctic, East Africa and India. Statistically significant decreases are simulated in 

southern Chile, parts of Brazil, central USA, the Mediterranean, and southeast China. In some regions, reversals of 35 

groundwater recharge trends can be observed with global warming. Because most GHMs do not simulate the impact of 

changing atmospheric CO2  and climate on vegetation and thus evapotranspiration, we investigate how estimated changes in 
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GWR are affected by the inclusion of these processes. In some regions, inclusion leads to differences in groundwater recharge 

changes of up to 100 mm year-1. Most GHMs with active vegetation simulate less severe decreases of groundwater recharge 

than GHMs without active vegetation and in some regions even increases instead of decreases. However, in regions where 40 

GCMs predict decreases in precipitation and groundwater availability is most important, model agreement among GHMs with 

active vegetation is lowest. Additional research on simulating groundwater processes in GHMs is necessary. 

Billions of people rely on groundwater as an accessible source for drinking water and irrigation, especially in times of 

The critical role of groundwater as an accessible source for irrigation and drinking water in particular during dry periods, 

droughts, and floods will intensify with climate change because increased precipitation variability is expected to decrease the 45 

reliability of surface water supply (Taylor et al., 2013; Döll et al., 2018; Kundzewicz and Döll, 2009). While demand for 

groundwater is likely to increase in the future,  groundwater abstractions have already led to depleted aquifers in many regions 

around the globe (Thomas and Famiglietti, 2019; Cuthbert et al., 2019a; Wada et al., 2012; Konikow and Kendy, 2005; Döll 

et al., 2014b). They have also resulted in the reduction of groundwater discharge to rivers with negative impacts on water 

availability for humans and freshwater biota in particular during low-flow periods (Herbert and Döll, 2019). To what extent 50 

groundwater can serve for sustaining ecosystem health and for supporting human adaptation to climate variability and change 

strongly depends on future groundwater availability, which is strongly affected by climate change (Kundzewicz and Döll, 

2009; Döll, 2009; Taylor et al., 2013; Cuthbert et al., 2019b). 

Groundwater recharge (GWR) is a central indicator of potential groundwater availability (Herbert and Döll, 2019). 

GWR is the vertical water flux to the groundwater from the soil (diffuse GWR) and from surface water bodies (point or focused 55 

recharge) (Small, 2005). It is a function of the local climate, topography, soil, land cover, land use (urbanization, woodland 

establishment, crop rotation, and irrigation practices), atmospheric CO2 concentrations, and geology (Small, 2005). Changes 

in GWR alter groundwater levels and their temporal patterns, which affect vital ecosystem services (Kløve et al., 2014). 

Knowledge of the dynamics and process interactions determining GWR is a fundamental prerequisite to assess groundwater 

quality and quantity under climate change (Green et al., 2011). The simulation of GWR is possibly one of the most 60 

difficultchallenging components of the water budget as it accumulates the uncertainties of all other components of the budget. 

Especially in semiarid regions, uncertainties in precipitation and evapotranspiration lead to a largconsiderable uncertainty in 

recharge., Knowledge of the dynamics and process interactions determining GWR is a fundamental prerequisite to assess 

groundwater quality and quantity under climate change (Green et al., 2011).An additional factor in estimating groundwater 

recharge is the simulation of the depth and dynamics of the groundwater tablethe groundwater table and thus capillary rise and 65 

focused recharge. This has not been achieved yet in GHMs, however,  rRecently, global hydrological models (GHMs) started 

integrating gradient-based groundwater models to better estimate the flows between surface water and groundwater as well as 

the impact of humans and the changing climate on the groundwater system (de Graaf et al., 2019; Reinecke et al., 2019). 

Neglecting capillary rise may lead to an overestimation of decreases and increases of GWR due to a changing climate.Those 
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models may allow taking into accountconsidering the impact of capillary rise on groundwater recharge and its climate-driven 70 

Assessing the response of GWR to climate change is difficult even at the local scale, one of the reasons being that 

groundwater recharge, different from streamflow, is rarely measured, and long time series of groundwater recharge is not 

available (Earman and Dettinger, 2011). In local groundwater modelling, groundwater recharge is often determined by 

calibration using hydraulic head observation, while integrated modelling relies on the partitioning of precipitation into 

evapotranspiration, storage change, and runoff (GWR plus surface and subsurface runoff). Moreover, projections of GWR 75 

often neglect the impact of changing climate and higher CO2 levels on plants and thus evapotranspiration and GWR (Taylor 

et al., 2013). With higher CO2 levels, terrestrial plants open their stomata less, which reduces evapotranspiration and increases 

runoff (physiological effect) while they might grow better, increasing evapotranspiration (structural effect) (Gerten et al., 

2014). Vegetation models that include these effects do not isagree about the balance of both effects (Gerten et al., 2014). 

However, based on a large ensemble of GCMs that include the impact of CO2 and changing climate on vegetation and 80 

evapotranspiration, rising CO2 can be expected to decrease transpiration and thus increase total runoff (Milly and Dunne, 

2016). Therefore, GHMs that do not take into accountconsider active vegetation may underestimate runoff, and thus GWR 

increases, or they may overestimate GWR decreases. 

While there have been review articles on the relation of groundwater and climate change (Smerdon, 2017; Jing et al., 

2020; Refsgaard et al., 2016), global-scale studies that quantify the impact of climate change on GWR are rare. They have 85 

evolved regarding the way climate scenarios were implemented and how many global climate models (GCMs) and GHMs 

were included in the study. While Döll (2009) could only use the delta change method to integrate information from two GCMs 

in the GHM WaterGAP (Alcamo et al., 2003; Müller Schmied et al., 2014), Portmann et al. (2013) could feed their simulations 

of future changes in GWR with WaterGAP directly by the bias-adjusted output with five GCMs. They found that changes in 

GWR increase with increasing greenhouse gas emissions. Acknowledging that not only GCMs but also GHMs contribute to 90 

the uncertain translation of emissions scenarios to changes in GWR (Moeck et al., 2016), the study of Döll et al. (2018) 

included two GHMs (WaterGAP and LPJmL, Rost et al. (2008), Schaphoff et al. (2013)) driven by the bias-adjusted of four 

GCMs. They evaluated relative changes of GWR with climate change, which can arguably serve as a better indicator of climate 

change hazard than absolute changes of GWR. On the other hand, the usage of relative change led to the result that change in 

GWR could not be reliably computed for 55% of the global land area due to very small GWR for the reference period simulated 95 

by LPJmL (Döll et al., 2018). While the LPJmL model considered, different from the WaterGAP model, the effect of rising 

CO2 on groundwater recharge, the impact of this on GWR projections were not analyzed in Döll et al. (2018). In general, 

studies investigating the difference between GHMs with and without dynamic vegetation are rare (Davie et al., 2013). 

This study assesses the impact of climate change on GWR based on the output of a multi-model ensemble 

encompassing eight GHMs, each forced by the bias-adjusted output of four GCMs under three different representative 100 

concentration pathways (RCPs). The ensemble was generated in the framework of the Inter-Sectoral Impact Model 

Intercomparison Project (ISIMIP) using simulation protocol ISIMIP2b (Frieler et al., 2017). The ISIMIP global water sector 

incorporates global models, including water resources models, land surface models, and dynamic vegetation models that can 
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compute water flows and storages on the continents of the Earth; in this study, all three model types are referred to as GHMs. 

The ISIMIP2b ensemble has already been used in multiple climate change studies investigating, e.g., flood risk (Willner et al., 105 

2018; Thober et al., 2017; Alfieri et al., 2017), low flows in Europe (Marx et al., 2018), evapotranspiration (Wartenburger et 

al., 2018), runoff and snow in Europe (Donnelly et al., 2017) or multi-sectoral impacts (Byers et al., 2018).  

We analyze how GWR is projected to change globally and regionally for multiple global warming (GW) levels, 

determine the contributions from GHMs and GCMs to the variance of simulated changes and discuss the implications for 

future assessments of global groundwater resources. Furthermore, we show the effect of including the physiological impacts 110 

of evolving CO2 on global estimates of GWR. To this end, the remainder of this paper is structured as follows. Section 2 

provides an overview of the used GHMs and the methods to calculate changes of GWR per GW level and sources of 

uncertainty. The results in section 3 show the significant changes in GWR per GW and the differences in between GHMs and 

GCMs. We then compare the influence of GCMs, GHMs, and RCPs on the variance of simulated GWR, assess the differences 

in GWR due to including dynamic vegetation in GHMs and compare the GHM simulations to interpolated measured GWR. 115 

The paper closes with a discussion of these findings (Sect. 4) and conclusions (Sect. 5). 

2 Methods 

2.1 Simulation of groundwater recharge  

This study encompasses eight GHMs that differ in their representation of various hydrological processes. Four of these models, 

described in more detail in the following, are able to simulate the impact of evolving CO2 concentrations on vegetation: CLM 120 

4.5, JULES-W1, LPJmL, MATSIRO (Table 1). In the following, we use the term active vegetation for models that consider 

the physiological effect of changes in CO2 on vegetation and the term dynamic vegetation for the models that allow for a 

a changing vegetation regarding LAI and/or vegetation type. A comprehensive overview of GHMs and their properties can be 

found in Sood and Smakhtin (2014) and the primary publications referred to in the subsections below. The definition of GWR 

and groundwater varies in between GHMs (discussed in Sect. 4). The analysis in this study is based on monthly GWR (variable 125 

qr in ISIMIP) in 0.5° x 0.5° grid cells simulated by the eight GHMs taking part in the ISIMIP2b protocol (Frieler et al., 2017). 

Some GHMs contained small negative GWR values, e.g., due to capillary rise; these values were set to zero in the analysis. 

We do not consider focused recharge in this study as no model offers a reliable implementation of these processes until now. 

 

Table 1 Overview which models are able to simulate the impact of evolving CO2 concentrations on vegetation and how it is implemented. 130 

GHM Considers 

CO2 

Summary of considered vegetation processes in ISIMIP2b Reference  

WaterGAP2 No - - 
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CLM4.5 Yes Photosynthesis depends on root zone soil moisture availability. 

The description is similar to LPJmL listed below. The area a 

population of plant functional types (PFTs) takes up is prescribed 

and only changes if the input data changesdoes. 

(Di Liu and Mishra, 

2017)TODO 

H08 No - - 

JULES-W1 Yes Evapotransippiration is considered from five PFTs and four non-

vegetative surface types. Each grid cell is composed of different 

fractions of those 9nine surface types. Transpiration occurring 

from vegetation is based on photosynthetic process, which is 

subject to stomatal conductance regulated by the CO2 

concentration. Furthermore, transpiration is also controlled by the 

soil moisture availability in the root zone. 

   

 

TODO(Best et al., 

2011; Clark et al., 

2011) 

LPJmL Yes Vegetation composition is determined by the fractional coverage of 

PFTs at the grid -scale. PFTs are defined to account for the variety 

of structure and function within a stand and are therefore simulated 

as average individuals competing for light and water according to 

their crown area, LAI, and rooting profiles. The vegetation 

dynamics component of LPJmL includes carbon allocation to 

different PFT tissue compartments, PFT interaction, and 

establishment and mortality processes. Photosynthesis and 

stomatal response are simulated following Farquhar et al. (1980)  

Farquhar et al. (1980) and the generalization by Collatz et al. 

(1991) Collatz et al. (1991) for global modelling, based on the 

function of absorbed photosynthetically active radiation, 

temperature, day-length, and canopy conductance for each PFT 

present in a grid cell. 

TODO(Schaphoff 

et al., 2018) 

PCR-

GLOBWB 

No - - 

CWatM No - - 

MATSIRO Yes The consideration of CO2 effects is functionally similar to that in 

CLM, and there is no dynamic vegetation scheme. CO2 is 

prescribed in the model, which is used in the photosynthesis 

scheme to calculate stomatal conductance, among other 

parameters, following Farquhar et al. (1980). Soil moisture stress 

on photosynthesis is considered using moisture availability in the 

root zone with root distribution fraction in each soil layer. All of 

that is done for different vegetation or plant functional types. 

TODO(Takata et 

al., 2003) 

 

WaterGAP2 

The WaterGAP2 model (Alcamo et al., 2003) computes human water use in five sectors and the resulting net abstractions from 

groundwater and surface water for all land areas of the globe, excluding Antarctica. These net abstractions are then taken from 
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the respective water storages in the WaterGAP Global Hydrology Model (WGHM) (Müller Schmied et al., 2014; Döll et al., 135 

2003; Döll et al., 2012; Döll et al., 2014b). With daily time steps, WGHM simulates flows among the water storage 

compartments canopy, snow, soil, groundwater, lakes, human-made reservoirs, wetlands, and rivers. GWR in WaterGAP2 is 

calculated as a fraction from runoff from land-based on soil texture, relief, aquifer type, and the existence of permafrost or 

glaciers, taking into account a soil texture dependent maximum daily groundwater recharge rate (Döll and Fiedler, 2008). If a 

grid cell is defined as semi-arid/arid and has a medium or coarse soil texture, GWR will only occur if daily precipitation 140 

exceeds a critical value (Döll and Fiedler, 2008); otherwise, the water runs off. Runoff from land that does not contribute to 

GWR is transferred to surface water bodies as fast surface runoff. WaterGAP further computes focused recharge beneath 

surface water bodies in semi-arid/arid grid cells, which is not considered in this study. 

CLM4.5 

The Community Land Model version 4.5 (CLM4.5) (Lawrence et al., 2011; Oleson et al., 2013) is the land component of the 145 

Community Earth System Model (CESM), a fully-coupled, state-of-the-art earth system model (Hurrell et al., 2013). CLM is 

a land surface model representing the physical, chemical, and biological processes through which terrestrial ecosystems 

influence and are influenced by climate, including CO2, across a variety of spatial and temporal scales (Lawrence et al. 2011). 

Individual land grid points can be composed of multiple land units due to the nested tile approach, which enables the 

implementation of multiple soil columns and represents biomes as a combination of different plant functional types. 150 

Groundwater processes, including sub-surface runoff, recharge, and water table depth variations, are simulated based on the 

SIMTOP scheme (Niu et al., 2007; Oleson et al., 2013). 

H08 

H08 (Hanasaki et al., 2018) is a GHM including various components for water use and management. It consists of five major 

components, namely, a simple bucket-type land surface model, a river routing model, a crop growth model which is mainly 155 

used to estimate the timing of planting, harvesting, and irrigation in cropland, a reservoir operation model, and a water 

abstraction model. The abstraction model supplies water to meet the daily water demand of three sectors (irrigation, industry, 

municipality) from six available and accessible sources (river, local-reservoir, aqueduct, seawater desalination, renewable 

groundwater, and non-renewable groundwater) and one hypothetical one termed unspecified surface water. It has two soil 

layers; one is to represent the unsaturated root zone, and the other the saturated zone (groundwater). The scheme of GWR 160 

computation is identical to Döll and Fiedler (2008). 

JULES-W1 

The Joint UK Land Environment Simulator (JULES) (Best et al., 2011) (W1 stands for water-related simulations in the ISMIP 

framework) is a land surface model initially developed by Met Office as the land surface component of Met Office Unified 

Model. JULES is a process-based model that simulates the carbon, water, energy, and momentum fluxes between land and 165 
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atmosphere, including plant - carbon interactions (Clark et al., 2011). The rainfall that reaches the ground is partitioned into 

hortonian surface runoff and an infiltration component. Four soil layers represent the soil column with a total thickness of 3 

m, with a unit hydraulic head gradient lower boundary condition, and no groundwater component. The water that infiltrates 

the soil moves down the soil layers updated using a finite difference form of the Richards equation (Best et al., 2011). The 

saturation excess water from the bottom soil layer becomes subsurface runoff that can be considered to be GWR (Le Vine et 170 

al., 2016). 

LPJmL 

Lund Potsdam Jena managed Land (LPJmL) is a dynamic global vegetation model that simulates the growth and productivity 

of both natural and agricultural vegetation as coherently linked through their water, carbon, and energy fluxes  (Schaphoff et 

al., 2018). The soil column is divided into six active hydrological layers with a total thickness of 13 m depth. Percolation of 175 

infiltrated water through the soil column is calculated according to a storage routine technique that simulates free water in the 

soil bucket (Arnold et al., 1990). Excess water over the saturation levels produces lateral runoff in each layer (subsurface 

runoff). GWR is considered to be percolation (seepage) from the bottom soil layer. As there is no groundwater storage in 

LPJmL, for the ISIMIP2b protocol, seepage from the base soil layer is reported as both GWR and groundwater runoff, which 

is routed directly (no time delay) back into the river system. 180 

PCR-GLOBWB 

PCR-GLOBWB (PCRaster Global Water Balance; (Sutanudjaja et al., 2018) simulates the water storage in two vertically 

stacked soil layers and an underlying groundwater layer. Water exchanges are simulated in-between the layers (infiltration, 

percolation, and capillary rise) as well as the interaction of the top layer with the atmosphere (rainfall, evapotranspiration, and 

snowmelt). PCR-GLOBWB also calculates canopy interception and snow storage. Natural groundwater recharge is fed by net 185 

precipitation, and additional recharge from irrigation occurs as the net flux from the lowest soil layer to the groundwater layer, 

i.e., deep percolation minus capillary rise. The ARNO scheme (Todini, 1996) is used to separate direct runoff, interflow, and 

GWR. Groundwater recharge can be balanced by capillary rise if the top of the groundwater level is within 5 m of the 

topographical surface (calculated as the height of the groundwater storage over the storage coefficient on top of the streambed 

elevation and the sub-grid distribution of elevation). 190 

CWatM 

The Community Water Model (CWatM) is a large-scale integrated hydrological model, which encompasses general surface 

and groundwater hydrological processes, including human hydrological activities such as water use and reservoir regulation 

(Burek et al., 2019). CWatM takes six land cover classes into account and applies the tile approach. This hydrological  

model has three soil layers and one groundwater storage. Depth of the first soil layer is 5 cm, and the depth of second and third 195 

layers vary over grids depending on the root zone depth of each land cover class, resulting in total soil depth of up to 1.5 m. 
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Groundwater storage is designed as a linear reservoir. CWatM includes preferential bypass flow directly into groundwater 

storage and capillary rise from groundwater storage, as well as percolation from the third soil layer to groundwater storage.  

Hence, the groundwater recharge reported by CWatM in ISIMIP2b is the net recharge calculated from these three terms. 

MATSIRO 200 

The Minimal Advanced Treatments of Surface Interaction and RunOff (MATSIRO; Takata et al. (2003)) is a global land 

surface model initially developed for an Atmospheric Ocean General Circulation Model, the Model for Interdisciplinary 

Research On Climate (Hasumi, H., and S. Emori, 2004). This process-based model calculates water and energy flux and storage 

at and below the land surface, considering the stomatal response to CO2 increase as well in the photosynthesis process. The 

off-line version of MATSIRO used for ISIMIP2b simulation explicitly takes vertical groundwater dynamics into account, 205 

including groundwater pumping (Pokhrel et al., 2015; Pokhrel et al., 2012). Soil moisture flux between the 15 soil layers is 

expressed as a function of the vertical gradient of the hydraulic potential, which is the sum of the matric potential and the 

gravitational head, and soil moisture movement is calculated by Richards equation. MATSIRO calculates net groundwater 

recharge as a budget of gravitational drainage into and capillary rise from the layer where the groundwater table exists. A 

simplified TOPMODEL (Beven and Kirkby, 1979; Stieglitz et al., 1997) is used to represent surface runoff processes, and 210 

groundwater discharge is simulated by using an unconfined aquifer model (Koirala et al., 2014). 

2.2 Model simulations 

Each GHM is forced by bias-adjusted data from four GCMs: GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, and MIROC5. 

Further details on the selection of climate models and the bias correction can be found in Frieler et al. (2017), Lange (2016), 

Hempel et al. (2013), Lange (2018), and online at ISIMIP (2018). The bias adjustment method used for the GCMs in ISIMIP2b 215 

is using a trend preserving algorithm (Frieler et al., 2017) with EWEMBI (Lange 2018) as baseline (reference) climate 

condition. The simulations in this study span the period 1861 till 2099. All GHMs (except for PCR-GLOBWB, which misses 

the RCP 8.5 run) simulate the RCPs 2.6, 6.0, and 8.5. 

The pre-industrial period (PI) is defined in ISIMIP from 1661-1860, whereas the historical period is defined from 

1861-2005. AdditionallyAdditionally, to the RCP and historical simulations, ISIMIP defines PI simulations that represent an 220 

extended state of emissions scenarios from the PI period till 2099 (and partially till 2300, not applicable in this study). In this 

study, we always, if not stated otherwise, refer with PI to the simulation period 1960-2099 with the continued concentration 

levels of 1661-1860.  Details on the simulation setup can be found on the ISIMIP webpage ISIMIP (2019) or in Frieler et al. 

(2017). 

Regarding the non-climatic drivers, all GHMs use, for the time before 2006, so-called historical socio-economic 225 

pathway assumptions, e.g., historical water use, except for CLM 4.5, which used the socio-economic state of 2005. All 

simulations for 2006-2099 are based on this assumed socio-economic state of 2005. For some models this affects the 

abstraction from groundwater, which is not stimulated by all models (JULES-W1), or GWR directly due to irrigation (H08, 
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CLM, PCR-GLOBWB). Details on the pertinent scenario variables can be found in the ISMIP protocol (Frieler et al., 2017). 

Land-use change was not considered. 230 

2.3 Determining stabilized warming levels 

In order to derive policy-relevant information, we assess impacts framed in terms of GW levels (1°, 1.5°, 2°, and 3°C) with 

respect to the GW of 0°C in PI conditions (James et al., 2017). The time of passing a warming level is defined as the first time 

the 31-year running mean of the global averaged annual mean temperature gets above that level. Each GCM reaches different 

GW at different times (Table 2Table 2Table 1), depending on the RCPs (van Vuuren et al., 2014). For each GW level (1°, 235 

time slice of 31 years (15 before the level was reached, and 15 after) for each GCM and for each RCP, in which that GW is 

reached, are used. Using this time slice, a yearly mean GWR at 0.5° is calculated for the GHMs that were forced with the 

particular combination of GCM and RCP. (Fig. 1). Additionally, a PI reference is calculated for each GCM, RCP, and GHM 

combination for the same time-slice the GW level was reached in a particular RCP + GCM combination using the PI reference 

simulation (see section 2.2). Figure 1 illustrates the methodology by showing two unspecified RCPs and the PI comparison 240 

Considering that not all RCP/GCM combinations reach higher warming levels (Table 1), not all ensembles have the 

same size. Theoretically, the maximum ensemble size is 96, a combination of 8 GHMs, 4 GCMs, and 3 RCPs (2.6, 6.0, and 

8.5). Because projections under RCP 8.5 are not available for PCR-GLOBWB, the maximum ensemble size is 84. The smallest 

ensemble (for 3°C) consists of 36 members. 

 245 

Table 221 Overview of the warming levels and in which year they are reached in the corresponding GCM (ISIMIP, 2019). 

Warming Level RCP GFDL-ESM2M HadGEM2-ES IPSL-CM5A-LR MIROC5 

1° 2.6 

6.0 

8.5 

2014 

2016 

2014 

2012 

2014 

2012 

1993 

1993 

1993 

2015 

2023 

2014 

1.5° 2.6 

6.0 

8.5 

- 

2056 

2036 

2026 

2032 

2025 

2009 

2010 

2009 

2048 

2052 

2033 

2° 2.6 

6.0 

8.5 

- 

2076 

2053 

- 

2050 

2037 

2029 

2029 

2024 

- 

2071 

2048 

3° 2.6 

6.0 

8.5 

- 

- 

2082 

- 

2076 

2056 

- 

2068 

2046 

- 

- 

2071 
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Figure 1 Conceptual representation of how GW levels are determined for different GCMs, RCPs, and the PI comparison period. 

2.4 Calculation of model variance 250 

To calculate whether the variance in absolute GWR change is mainly introduced through the GHMs or the GCMs, the 

following equation is applied per model grid cell and GW level. 

𝑅𝑣𝑎𝑟𝐺𝑊𝑅
𝑚𝑜𝑑𝑒𝑙 =

 𝜎𝐺𝑊𝑅
2 (𝐺𝐶𝑀𝑠)

( 𝜎𝐺𝑊𝑅
2 (𝐺𝐶𝑀𝑠) +   𝜎𝐺𝑊𝑅

2 (𝐺𝐻𝑀𝑠))
⁄  ,     (1) 

where 𝑅𝑣𝑎𝑟𝐺𝑊𝑅
𝑚𝑜𝑑𝑒𝑙 is the variance ratio of GCMs to GHMs, 𝜎𝐺𝑊𝑅

2 (𝐺𝐻𝑀𝑠) is the average variance of GWR change of all GHMs 

per GCM per RCP, and  𝜎𝐺𝑊𝑅
2 (GCMs) is the average variance in GWR change of all GCMs per RCP per GHM. The variance 255 

relative to the choice in RCP 𝑅𝑣𝑎𝑟𝐺𝑊𝑅
𝑅𝐶𝑃  can be calculated similarly as 

𝑅𝑣𝑎𝑟𝐺𝑊𝑅
𝑅𝐶𝑃 =

 𝜎𝐺𝑊𝑅
2 (𝑅𝐶𝑃𝑠)

( 𝜎𝐺𝑊𝑅
2 (𝑅𝐶𝑃𝑠) +  𝜎𝐺𝑊𝑅

2 (𝐺𝐻𝑀𝑠))
⁄  ,     (2) 

where  𝜎𝐺𝑊𝑅
2 (RCPs) is the average variance in GWR of all RCPs per GCM per GHM. 

2.5 Determining significant changes 

A model ensemble allows us to consider the uncertainty in modeling physical processes as different model use different 260 

algorithms and parameters for computing groundwater recharge. To determine whether changes in GWR due to GW computed 

by the model ensemble are statistically significant, we use the two-sample Kolmogorov–Smirnov (K-S) test to compare the 

GWR values computed by all GHM-GCM model combinations under e.g., PI conditions with the values at the various GW 

levels. The use of a two-tailed t-test is not advisable in this setting due to the small sample size (max. 84 in this study). Because 

the K-S test does not allow to check whether the ensemble agrees on the sign of change in GWR, we apply an additional 265 

criterion to determine a significant change similar to Döll et al. (2018). A change is only marked as (statistically) “significant” 
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if the K-S test indicates a significant difference and at least 60% of the model realizations of the ensemble (RCP, GCM and 

GHM combinations) agree on the sign of change (i.e. a decrease or increase”. In case of a low significance, all models may 

show large responses to climate change while their agreement on the amount or sign of change is low. 

A model ensemble allows us to consider the uncertainty in modeling physical processes and the consequences of 270 

modeling decisions that lead to different results. To determine whether computed changes in GWR due to global 

warming are significant, we use the two-sample Kolmogorov–Smirnov (K-S) test to compare two the ensemble 

distribution of GWR under PI conditions and under conditions of global warming. The use of a two-tailed t-test is not 

advisable in this setting due to the small sample size (max. 84 in this study). Because the K-S test does not allow to check 

whether the ensemble agrees on the sign of change in GWR, we apply an additional criterion to determine a significant 275 

3.1 Changes of groundwater recharge at different warming levels 

To assess the impact of GW on GWR, Fig. 2 shows the ensemble mean change of GWR between the current 1°C world and a 

potential 3°C GW. We chose to express changes as absolute change rather than relative change because zero, or close to zero, 

GWR in some regions of the world leads to not defined or extremely large percentage increases and decreases (Fig. S1 and 

S2). The model mean shows large decreases of over 100 mm year-1 in South America and in the Mississippi Basin and 280 

decreases of up to 50 mm year-1 in the Mediterranean, East China, and West Africa. Increases of over 100 mm year-1 are 

prominent in Indonesia and East Afrika. Individual GHM-GCM model combinations compute much larger changes.We chose 

to express changes as absolute change rather than relative change because zero, or close to zero, GWR in some regions of the 

world then leads to infinite increases and decreases (Fig. S1 and S2).

Figure 2 Ensemble mean change in GWR [mm year-1] between conditions of present day warming of 1 °C GW and at 3 °C GW, averaged 285 
over the GWR changes of all GHM-GCM model combinations. 
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Ensemble mean changes as shown in Figure 2 may be low in some areas, but this could be due to large positive changes 

compute by some GHM-GCM model combinations being canceled by large negative changes by other model combinations. 

To assess the changes which show a high statistical agreement in-between the model combinations, we determine where 

computed changes of GWR are statistically significant (Section 2.5).To assess the impact of GW on GWR, we calculate 290 

significant changes based on the model ensembles. We chose to express changes as absolute change rather than relative change 

because zero, or close to zero, GWR in some regions of the world then leads to infinite increases and decreases (Fig. S1 and 

S2). As a reference for the intensity of the changes, Figure 3Figure 3Figure 1a shows the mean GWR at PI averaged over all 

GCMs from 1861-2099. The spatial pattern of GWR roughly agrees with the pattern of Mohan et al. (2018) derived by inferring 

it from more than 700 small-scale GWR estimates. The global mean GWR for the PI period is 140 mm year-1, which is very 295 

similar to the value of 134 mm yr-1 determined by Mohan et al. (2018) for the period 1981-2014 (see also Sect. 3.4). 

 Figure 3Figure 3Figure 1b-e show the (statistical) significant (bright colors, Sect. 2.5) mean absolute changes in GWR 

model ensemble under a GW of 1.0°C, 1.5°C, 2.0°C, and 3.0°C compared to PI, i.e., GWR of the PI runs for the corresponding 

time-slices (Sect. 2.3). For all GW levels compared to PI (Figure 3Figure 3Figure 1b-e), consistent patterns of decreasing 

southern Chile, Brazil, central continental USA, the Mediterranean, and East China. Consistent and significant increases can 300 

be observed for northern Europe and in general northern latitudes and East Africa. Significant changes could only be derived 

for a small percentage of the total grid cells. Only about 15% of the cells, on average for all GW levels, show significant 

increases or decreases. However, the patterns of non-significant (light colors) mean changes are consistent with the significant 

changes and show, e.g., for the Amazon larger areas of increases and decreases around the significant changes. The 

identification of non-significance in most areas is due to the K-S test. The sign criterion affects mainly the Sahara and Central 305 

Asia. 

At 1°C GW (Figure 3Figure 3Figure 1b), decreases of more than 100 mm year-1 are simulated in Southeast Asia, East 

and southern Brazil. Decreases between 100 and 50 mm year-1 can be seen in central continental USA, southern Brazil, 

southern Chile, the Mediterranean, central Africa, and East China. Increases in GWR of 50 and over 100 mm year-1 are visible 

in the center of the Amazon while decreases show in the northeast and southern part that increase with GW. Overall the 310 

significant global change is -17 mm year-1 at 1°C. 

A 1.5°C GW shows only a limited increase in the Amazon but similar increases in the rest of the world. Decreases in 

GWR over 100 mm year-1 are now visible in Central America, but decreases for Southeast Asia have vanished. Smaller 

decreases, for example, in Australia, have vanished as well in a 1.5°C world. These effects are not necessarily due to no 

changes in GWR but due to disagreements in the ensemble that do not allow to determine a reliable and significant change for 315 

this warming level. The global significant mean change is -12 mm year-1 at 1.5°C GW. 

At 2°C GW, increases in GWR over 100 mm year-1 are present in northern Java, Amazon, and East Africa. Decreases 

are similar to 1.5°C GW, except for southern Chile and the northern Andes, where decreases become more severe. However, 

on the significant global mean, these changes balance out to -1 mm year-1. 
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In a 3°C world, large areas of decreases in GWR of over 100 mm year-1 in the Amazon Basin close to the Andes 320 

occur, also in Guyana, Venezuela, West Africa, and the Mississippi Basin. Increases in GWR of over 100 mm year-1, in 

contrast, are visible in East Africa, India, and North Java. Increases of 50 to 100 mm year-1 dominate in northern latitudes at 3 

°C warming compared to other GW levels. The global significant mean increases by +3 mm year-1. 

 We have already reached a GW of approximately 1°C (IPCC, 2018). Figure 3Figure 3Figure 1f shows the changes in 

GW compared to the present day GW of already 1°C instead of the PI. Overall the agreement among the models is smaller 325 

than when the 3°C world is compared to PI. Only 8% of the cells show significant changes. Decreases over 100 mm year-1 are 

present in the Amazon Basin close to the Andes and on the coast of Guyana. Decreases of 50 to 100 mm year -1 are visible in 

Chile, the Mississippi Basin, the Caribbean, and southern France. Increases in GWR are again to be expected in the northern 

Latitudes, southern Brazil, East Africa, and Southeast Asia, whereas the latter shows increases over 100 mm year-1 for 

Malaysia. The global significant mean change is +8 mm year-1. Figure S3 shows the mean and median changes of GWR per 330 

latitude for all four GW levels, together with the standard deviation without a significance test. A decrease in mean GWR can 

be observed for all GW levels at 40° S, around 20° S (Namibia, Australia), and 5° N (Guyana). Increases are visible at 60° N 

(North Europe) and southerly close to the Equator, presenting a large spread and sudden change in directions in the tropics. 

Increases at greater than 60° N are likely due to a combination of different rain and snow patterns as well as snowmelt timing. 

 335 
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Figure 331 Mean GWR [mm year-1] for pre-industrial greenhouse gas concentrations, averaged over the GWR of all GHMs and GCMs (a). 

Ensemble mean absolute change in GWR [mm year-1] at 1.0 °C (b), 1.5°C (c), 2.0°C (d), and 3.0°C (e) GW compared to PI. The ensemble 

mean absolute change in GWR [mm year-1] for 3.0°C GW compared to GWR at the current GW of 1°C (f). For (b) to (f) only those cells 

are displayed in solid colors where the Kolmogorov-Smirnov (K-S) test with a p of 5% indicated that the ensemble GWR distribution for PI 340 
(for (f) the GWR distribution at 1°C) and for the GW level differ, and at least 60% of the models agree on the sign of the change. The 

ensemble size is shown in brackets. Lighter colors (upper color bar) show (statistical) insignificant mean differences. 
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Large areas of insignificant changes of GWR (light colors) in Fig. 2 can be traced back to the uncertainty in GWR in between 

GHMs and GCMs. Figure 4Figure 4Figure 2 shows absolute GWR changes in a 1.5 °C world compared to PI (Fig. 3a,b) as 

(Fig. 3c,d) for the SREX (Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change 345 

Adaptation, Murray and Ebi (2012)) region Amazon (left) and South Europe/Mediterranean (right). Corresponding plots for 

all other SREX regions are provided in the supplement. Similar to box plots, the letter-value plots in Figure 3 show the 

distribution of values among the 0.5° grid cells belonging to the SREX region. Letter-value plots have the advantage of 

showing the distribution of values outside of the usual interquartile range (IQR, Q25 - Q75). For example, for Fig. 3b CLM 

4.5 with GFDL-ESM2-ES, the mean change in GWR is -19 mm year-1, the middlebox represents the IQR showing that 50% 350 

of changes are close to zero or smaller than zero, the smaller box towards the negative changes shows that 12.5% are smaller 

than -47 mm year-1, whereas the additional missing box in the positive direction hints that almost no values are larger than 

zero. The horizontal size of the boxes is automatically scaled and does not carry any additional information. 

Computed changes vary strongly among both GHMs and GCMs (Fig. 3a,b). In the Amazon, Jules-W1 shows a mean 

increase of 225 mm year-1. Compared to WaterGAP2, Jules-W1 estimates of GWR change are 147 mm year-1 higher for 355 

MIROC5 and 44 mm year-1 lower for HadGEM. These differences are even large relative to the higher mean PI GWR in the 

Amazon compared to other regions of the world (compare to MED in Fig. 3). Nevertheless, also the PI estimates differ by, 

e.g., 122 mm year-1 between Jules-W1 and WaterGAP2 on the mean for all GCMs and RCPs, and PI GWR is 625 mm year -1 

smaller for H08 than for MATSIRO in the Amazon. 

 In the Mediterranean, almost all GHMs show the largest decreases in GWR with IPSL-CM5a-LR, followed by GFDL 360 

input, while HadGEM results in almost no change. However, the changes computed with each GCM input vary strongly among 

the GHMs. In general, CLM 4.5 and PCR-GLOBWB project the most considerable changes. The decrease of GWR computed 

by CLM 4.5 with IPSL-CM5a-LR is 33% of the mean GWR calculated for PI with that model combination. 

Conversely, JULES-W1 simulates for most grid cells in this SREX region the smallest PI GWR values (but also very 

high outliers), and likely related, the smallest (mean) changes, together with MATSIRO and CWatM, which show altogether 365 

small GWR changes in all grid cells of the SREX regions. H08 and WaterGAP2, which apply similar approaches to modeling 

GWR as a function of total runoff, show somewhat similar GWR changes. 

The four GHMs that take into account the impact of increasing CO2 (Sect. 2.1) do not result in similar changes as 

compared to the other four models. It is to be expected from literature (Davie et al., 2013) that with the physiological effect, 

the decreases of GWR would be slighter in the case of the CO2-sensitive models, but that is not the case. This is likely due to 370 

the approach of analyzing GW levels instead of RCPs and periods because different GCMs reach a particular GW level at 

different times and CO2 levels. This is further investigated in Sect. 3.3. On the global mean and for 1.5°C GW LPJmL simulates 

the lowest PI GWR, whereas MATSIRO and CLM 4.5 produce the highest global mean GWR (Fig. S4). PCR-GLOBWB 

simulates the largest global mean decreases with HadGEM (Fig. S5). In contrast, JULES-W1 and MATSIRO simulate 

increases of GWR on the global mean for all GCMs except for HadGEM (Fig. S5). 375 
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Figure 442 Letter-value plot (Hofmann et al., 2017) of absolute changes in GWR in 0.5° grid cells [mm year-1] at 1.5°C GW compared to 

(a, b) and absolute PI GWR [mm year-1] (c, d) for the Amazon (a, c) and South Europe/Mediterranean (b, d) SREX region (for all other 

regions and GW levels [2°C, 3°C] see supplement). No statistical test is applied and all grid cells inside a region are included. Each box may 

include multiple simulations with different RCPs. 380 

To provide an overview of changes in GWR in each SREX region, Table 3Table 3Table 2 shows the median, mean 

changes in GWR compared to PI for all regions (see Fig. S6 for a map of the SREX regions). Overall, North Europe shows 

the largest consistent increases in GWR, whereas the Amazon shows the largest consistent decreases, except for 2°C, where 

South Europe/Mediterranean shows the largest decreases of 18.6 mm year-1 as the median. For 3°C, the Amazon shows the 

highest decreases in GWR of -41.0 mm year-1 as median. Notably, Southeast Asia is first showing decreases of 13.1 mm year-385 

1 with 1.0°C GW and then no change with 1.5°C and 2°C and an increase in GWR of 13.5 mm year -1 with 3°. Relative to PI 

the changes of the 3°C GW in the Amazon only account for 10% of the GWR, compared to the 19% relative increase of GWR 

in North Europe with 3°C and the 40% decrease in GWR in South Europe/Mediterranean at 2°C GW. 

 

Table 332 Median (𝑿̃), mean (𝑿̅), P25, and P75 of absolute GWR change [mm year-1] for four warming levels for each SREX region compared 390 

to PI. 𝑿̃, 𝑿̅, P25, and P75 describe the distribution of changes of spatially averaged GWR in each SREX region among all 36-84 ensemble 

members (Sect. 2.3). P25/75 are the 25th and 75th percentile in the ensemble for a given region and a given GW level. The last column shows 

absolute GWR at PI. The following regions are not included due to the coarse spatial resolution of the models and low confidence in the 
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reliability of results: Artic, Canada/Greenland/Island, Antarctic, Pacific islands, Southern tropical pacific, Small Island Region Caribbean, 

West Indian Ocean. In bold maximum and minimum values per GW level. No statistical test is applied to filter the values. 395 

  1.0° 1.5° 2.0° 3.0° PI 

SREX Name 

𝑋̃, 𝑋̅  

P25, P75 

𝑋̃, 𝑋̅  

P25, P75 

𝑋̃, 𝑋̅  

P25, P75 

𝑋̃, 𝑋̅  

P25, P75 

𝑋̃, 𝑋̅  

P25, P75 

AMZ Amazon 
-10.7, -14.5 

-30.4, -6.8 

-19.1, -22.3 

-38.3, -9.7 

-14.6, -18.2 

-34.5, 3.4 

-41.0, -59.9 

-81.1, -39.2 

409.6, 550.4 

419.7, 614.6 

CAM 
Central 

America/Mexico 

-2.4, -17.1 

-23.1, -6.5 

-4.8, -21.0 

-26.8, -9.0 

-4.3, -12.9 

-18.9, -7.7 

-10.0, -36.0 

-45.8, -24.0 

79.8, 280.4 

222.3, 327.7 

CAS Central Asia 
0.0, -0.4 

-0.7, 0.3 

0.0 0.0 

-0.7, 1.0 

0.0, -0.8 

-1.4, -0.3 

0.0, -2.6 

-3.9, -1.4 

1.8, 25.9 

17.2, 37.2 

CEU Central Europe 
4.1, 6.8 

0.5, 13.3 

1.2, 3.1 

-5.5, 11.8 

-0.4, 0.1 

-9.7, 11.3 

0.1, 2.8 

-9.9, 22.3 

114.6, 135.4 

117.9, 155.8 

CAN 
Central North 

America 

-6.5, -16.7 

-20.2, -12.3 

-5.6, -18.3 

-20.2, -12.7 

-3.3, -16.6 

-20.0, -12.5 

-9.9, -30.5 

-32.8, -18.2 

98.1, 128.6 

76.4, 183.5 

EAF East Africa 
0.0, -0.8 

-2.7, 3.3 

0.0, 2.7 

-0.2, -7.8 

0.0, 8.1 

1.2, 13.9 

0.6, 23.3 

9.0, 32.4 

32.2, 95.0 

63.4, 134.1 

EAS East Asia 
-0.5, -15.7 

-20.0, -8.3 

0.0, -13.9 

-16.9, -6.8 

0.0, -10.3 

-10.7, -3.7 

0.0, -13.7 

-14.2, -4.5 

50.5, 147.3 

113.1, 154.3 

ENA East North America 
3.3, 4.8 

-2.0, 11.2 

9.9, 11.9 

-0.8, 19.8 

10.6, 15.9 

-1.5, 26.3 

1.4, 2.5 

-9.1, 20.5 

221.8, 257.8 

167.4, 338.1 

NAS North Asia 
0.4, 6.0 

3.0, 7.2 

0.5, 7.9 

5.1, 9.1 

3.1, 12.5 

9.0, 13.1 

4.6, 18.5 

13.0, 20.4 

24.2, 59.2 

46.2, 73.4 

NAU North Australia 
0.0, -4.5 

-6.9, -2.2 

0.0, -2.7 

-3.9, -0.8 

0.0, 1.1 

-0.8, 3.5 

-0.9, -3.0 

-7.1, 0.0 

5.9, 43.1 

28.5, 52.1 

NEU North Europe 
13.1, 24.9 

15.9, 35.7 

13.9, 27.7 

14.7, 41.3 

18.6, 34.9 

16.8, 53.0 

29.2, 51.6 

25.0, 78.2 

154.8, 226.4 

182.1, 280.4 

NEB North-East Brazil  
-8.9, -30.3 

-35.6, -21.2 

-10.5, -22.9 

-31.3, -13.2 

-6.2, -14.4 

-24.9, -2.1 

-6.0, -9.4 

-20.7, 2.1 

161.6, 227.4 

147.1, 315.0 

SAH Sahara 
0.0, -0.7 

-1.0, -0.3 

0.0, 0.3 

0.1, 0.4 

0.0, -0.2 

-0.2, 0.0 

0.0, -0.4 

-0.5, 0.0 

0.1, 4.2 

0.8, 4.4 

SAS South Asia 
-3.3, -13.4 

-15.9, -8.3 

0.0, -4.8 

-6.1, 0.1 

-2.3, -11.6 

-17.5, -5.3 

3.8, 26.9 

2.3, 45.5 

151.8, 274.9 

229.5, 319.2 

SAU 
South Australia/New 

Zealand 

-2.9, -8.6 

-11.1, -4.5 

-2.3, -10.3 

-12.4, -6.5 

-2.1, -15.3 

-17.8, -9.4 

-4.2, -20.0 

-22.2, -14.3 

18.1, 135.7 

111.4, 157.6 

MED 
South 

Europe/Mediterranean 

-3.9 -14.3 

-17.6, -9.3 

-6.3, -18.1 

-21.6, -12.8 

-16.8, -23.7 

-27.4, -16.8 

-12.5, -28.9 

-31.8, -19.1 

43.9 84.9 

72.1, 87.6 

SEA Southeast Asia 
-13.1, -36.1 

-55.7, -10.7 

-0.1, -5.2 

-18.0, 8.6 

-0.6, 23.1 

-1.7, 36.5 

13.5, 46.1 

3.0, 68.9 

547.9, 725.2 

528.0, 881.2 

SSA 
Southeastern South 

America 

0.0, -6.3 

-8.3, -5.1 

0.0, -5.2 

-8.9, -4.4 

0.0, -9.4 

-12.9, -4.5 

-1.4, -11.8 

-15.7, 0.3 

61.0, 129.5 

87.9, 164.6 
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SAF Southern Africa 
0.0, -8.1 

-13.0, -3.4 

-0.4, -10.3 

-15.9, -4.4 

0.0, -6.6 

-10.7, -0.5 

-0.1, -10.5 

-16.3, -2.0 

20.0, 95.9 

 77.9, 102.0 

TIB Tibetan Plateau 
0.0, -0.8 

-0.7, -0.3 

0.0, -0.3 

-0.4, 0.4 

0.0, 0.4 

-0.3, 1.1 

0.0, 1.1 

-0.2, 1.6 

0.0, 14.3 

9.3, 16.8 

WAF West Africa 
-4.5, -28.4 

-38.2, -20.4 

-2.5, -21.8 

-29.7, -11.0 

-5.6, -25.6 

-39.2, -10.3 

-8.4, -26.5 

-44.0, -6.1 

175.3, 282.3 

215.0, 392.1 

WAS West Asia 
0.0, -2.6 

-3.4, -1.4 

0.0, -3.9 

-4.7, -2.5 

0.0, -4.4 

-5.2, -2.8 

0.0, -6.7 

-8.1, -4.6 

0.4, 24.8 

18.3, 30.0 

WSA 
West Coast South 

America 

0.0, -8.6 

-11.5, -5.5 

0.0, -10.5 

-14.5, -5.5 

0.0, -13.9 

-17.7, -7.6 

0.0, -21.2 

-25.1, -15.2 

57.2, 271.1 

186.9, 346.3 

WNA West North America 
0.0, 3.4 

0.5, 5.6 

0.0, -3.5 

-0.1, 7.1 

0.0, 6.2 

1.1, 11.6 

0.0, 6.8 

1.7, 14.7 

23.5, 104.8 

81.9, 126.7 

 

3.2 Sources of ensemble variance 

To investigate whether the main variance in projected GWR changes is caused by GHMs, GCMs, or the different RCP 

scenarios, we apply the Eq. (1) and (2) (see Sect. 2.4) for 1.5°C and 3°C GW. Figure 54 shows the GCM to GHM variance 

ratio for 1.5°C (a) and 3°C (b) per grid cell; GHM RCP variance ratio is not shown here (see Fig. S7 in the supplement, mean 400 

of GHM RCP ratio: 22%) as the primary influence can be appropriated to the GCM and GHM selection (this is also the case 

when choosing only the CO2 sensitive models). For the simulated variance at PI see Fig. S1 and S4. 

 Overall, GHMs cause more significant variance in 1.5°C than in a 3°C world, which is plausible because of increased 

GCM trends with increased CO2 concentrations. Possibly this is also due to the missing RCP 8.5 simulations for PCR-

GLOBWB for all GCMs. A clear spatial pattern of GCM influence shows in the Amazon that relates to the region of Fig. 2 405 

where increases of GWR are calculated. On the other hand, the region in the Amazon where decreases are simulated (compare 

Fig. 2) shows mainly the GHMs as the source of variance. In the Mediterranean, the influence shifts as well from GCMs 

(1.5°C) to GHMs (3°C). This could be due to a high agreement in GCMs in this region and a considerable disagreement in 

GHMs. Similar patterns can be found when comparing absolute GWR, but the influence of GCMs is less pronounced, 

especially in the Amazon (Fig. S8). 410 
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Figure 553 GCM variance in percent of the total variance of GWR change from eight GHMs and four GCMs at 1.5°C (a) and a 3°C (b) GW 

(see also Sect. 2.4). Red depicts areas where the GCMs are responsible for the majority of the variance in GWR change. Blue areas indicate 

where the main variance is introduced through GHMs. 

 415 

Including vegetation dynamics in GHMs may alter the model response in future estimates of GWR as evolving CO2 

concentrations alters fluxes of energy and water (Davie et al., 2013). To investigate the influence of simulating the 

physiological impacts of evolving CO2 on GWR, we compared GWR changes computed by two CLM 4.5 runs, each of it 

driven by GFDL-ESM2M climate input: the standard run analyzed included in the ensemble analysis above, with CO2 

concentrations changing according to the RCP, and an additional run in which CO2 concentrations after 2005 were held 420 

constant at the 2005 level. Unfortunately, no other GHM-GCM combinations with these alternative CO2 concentration variants 

are available in the framework of ISIMIP2b. 
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Figure 664 GWR (dynamic CO2) – GWR (static CO2) [mm year-1] for 2.0°C (a) and 3.0°C (b) GW. GWR (dynamic CO2) – PI (dynamic 

[mm year-1] for 2.0°C (c) and 3.0°C (d) GW. The figure only includes the GHM CLM 4.5 and the GCM GFDL-ESM2M. Maps show changes 425 
in GWR at a certain GW (including all RCPs that lead to that GW with a certain CO2 concentration) with dynamically evolving CO2 compared 

to static CO2 concentrations from 2005. Green and blue means that GWR is higher when evolving CO2 concentrations are considered, red 

and purple less GWR. 

 Figure 65 shows differences in simulated GWR between a dynamic and a static CO2 simulation for 2°C (Fig. 65a) 

and 3°C (Fig 65b). In most grid cells, GWR simulated with dynamic CO2 is larger than GWR simulated with static CO2 levels 430 

of 2005 (Fig. 65a,b). In the tropics, GWR with dynamic CO2 can be higher than with constant CO2 by 10-50 mm year-1 for 

2°C GW (Fig. 65a), while difference reaches 50-100 mm year-1 in the 3°C world (Fig. 65b). Decreases of GWR are spatially 

consistent (for example, Brazil, Central U.S., and India) at 2° and 3°C GW and rarely exceed 10 mm year-1.  

Compared to the absolute changes between PI and the GW levels for dynamic CO2 (Fig 65c,d) the decreases in GWR 

are rather small (e.g., up -10 mm year-1 in Brazil (Fig. 65a,b), while change compared to PI exceeds -100 mm year-1 (Fig 435 

Also, increases in GWR due to dynamic CO2 are in regions with large (> 100 mm year-1, Fig 65c,d) increases in recharge. 
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Figure 775 Relation of changes in precipitation (P) (mean(1981-2010) – mean(2070-2099)) to changes in GWR (mean(1981-2010) – 

mean(2070-2099)) depending on the model type (with or without CO2; see also Table 1) per SREX (selection as in Table 3) (selection as in 

and RCP 8.5 (b) for the GCM HadGEM2-ES. Models that account for impacts of evolving CO2 on vegetation are shown in blue. Both axis 440 

The preceding analysis has focused on GW levels parallel to other studies of GHM ensembles. To investigate the difference 

in including dynamic active vegetation processes in GHM further, we compared the four GHMs that include these processes 

with the four models that do not (Table 1Sect. 2.1). Because different RCPs decide the concentration of CO2 in the atmosphere, 

we compare RCP 2.6 and RCP 8.5 time slices instead of GW levels. 
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Figure 76 compares the precipitation and GWR changes between the period 1981-2010 and the period 2070-2099 for 445 

the two RCPs (Fig 6a,b) and the two different model types for the SREX regions investigated in Table 32. Changes in 

precipitation and GWR are only based on the GCM HadGEM2-ES (see Fig. S9 for average over all GCMs) as the relationship 

between GWR and precipitation is not linear and the plot is comparable to Davie et al. (2013), who investigated differences in 

runoff.., and the plot is comparable to Davie et al. (2013), who investigated differences in runoff. Compared to the average 

precipitation of all GCMs where only two regions show a decrease larger than 100 mm year-1 (Fig. S9 (b)), HadGEM2-ES 450 

shows seven regions for RCP 8.5 with such a decrease in precipitation. 

GWR changes vary between RCPs and model type and in between GHMs (Fig. S10). The relation between 

precipitation and GWR and difference between model types becomes clearer with RCP 8.5 than with RCP 2.6. Models with 

active vegetation (Fig. 76, greenblue markers) agree that with more precipitation GWR should increase, e.g., for SAASAS; 

however, they disagree in regions where decreases in precipitation are expected and risk for groundwater availability is highest, 455 

e.g., CAM and MED. GHMs without active vegetation (Fig 76, orange markers), on the other hand, shows a more consistent 

decrease in GWR for regions with decreases in precipitation and only some agreement in regions with increased precipitation. 

Decreases in precipitation may lead to a decrease in vegetation productivity (if not counteracted by an increased 

water-use efficiency due to elevated CO2 concentrations (Singh et al., 2020)) (Singh et al.; 2020)) and thus to a decrease in 

transpiration. GHMs assume shares for evapotranspiration in relation to potential ET and the available precipitation. In 460 

contrast, transpiration in dynamic vegetationCO2-driven models responds to active vegetation as well as the relations between 

components that simpler GHMs do not. This can explain why the dynamic vegetation models exhibit inter-model regional 

differences in the GWR response to P decrease. Further, some models (MATSIRO) may not calculate LAI (leave area index), 

which impacts transpiration. For models with active vegetation, the increase in water use efficiency due to stomatal 

conductance (also referred to as CO2 fertilization) can compensate for the decrease in precipitation to some extent, making 465 

more water available for groundwater recharge as compared to the GHMs (Table 1).  Though in some regions, as seen in 

Figure 7 (and Fig. S10)6, this feedback is not enough to overcome the warmer and drier climate in terms of groundwater flux. 

CWatM often lies in the middle of simulated GWR changes at RCP 2.6. Davie et al. (2013) showed generally higher 

runoff values for JULES-W1 than for LPJmL, the reverse is true for GWR (Fig S.10). For RCP 8.5, CWatM always simulates 

the largest increases and lowest decreases in GWR of all models without activedynamic vegetation. Opposite, H08 always 470 

shows the largest decreases in GWR. In regions with decreases over 100 mm year-1 for RCP 8.5, e.g., AMZ, CLM 4.5 always 

shows the largest decreases in GWR, whereas other models with dynamic vegetation lead to the lowest decreases or even 
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Figure 886 Significant absolute difference of GWR change between 1981-2010 and 2077-2099 for RCP 8.5 in between four GHMs with 

and four GHMs without dynamic (or active) vegetation (no dyn). See also Table 1. Reddish (left side of the color bar) indicates that the 475 
mean change of GWR as computed by the models with dynamic vegetation is more negative or less positive than change computed by other 

models. White regions indicate no significance is based on the K-S test (Sect. 2.5). Solid colors indicate that the majority of the two model 

groups (3 out of 4 models for each group) do not have the same sign i.e. that including dynamic vegetation leads to different signs in GWR 

change. Lighter colors indicate where the majority agrees on the sign of change. 

A spatially more refined difference between the model types is shown in Fig. 87 for RCP 8.5 (For RCP 2.6, almost no 480 

significant changes were found). For each grid cell, the map shows the significant (K-S test, p=5%) absolute difference of 

simulated change in GWR between models that include dynamic vegetation processes and models that do not include them. 

In the northern latitudes, both models with and without dynamic vegetation agree on an increase in GWR but differ by up to 

100 mm year-1. Similarly, in the Mediterranean and central Brazil, both model types simulate a decrease in GWR, but the 

magnitude is significantly different between the model groups. In the Amazon patches of significant differences between the 485 

models show increases of GWR computed by GHMs with dynamic vegetation, whereas GHMs without dynamic vegetation 

shows a decrease. A similar effect is visible in central Africa, India, and parts of Indonesia; however, also decreases are 

simulated instead of increases for the Congo and Zambesi catchment. Both in the Mediterranean and South America models 

with dynamic vegetation show up to 100 mm year-1 difference in change compared to models without, even though no 

physiological effect should be dominant. According to Fig. 6, this is likely due to CLM 4.5 because JULES-W1 and LPJmL 490 
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show slighter GWR decrease than the models without dynamic vegetation. It is likely that the shown differences are due to the 

implementation of dynamic vegetation in the GHMs (compare Fig. S.106), however it is possible that other model peculiarities 

and processes are relevant as well. 

4 Discussion 

Estimating GWR is challenging (Moeck et al., 2016). Our results show that even for the PI period, the estimates of GWR vary 495 

largely among different GHMs. This is likely caused by the very different treatment of the runoff partitioning, implementation 

of the soil layer(s), inclusion of dynamic vegetation processes, and simulation of capillary rise. Because GWR is hard to 

measure directly (Scanlon et al., 2002), it is also challenging to verify the accuracy of the estimates. 

To the best of our knowledge, the data-set of Mohan et al. (2018) is the only available gridded global GWR dataset 

that is not based on global hydrological modeling. This data set of mean 1981-2010 GWR in 0.5° grid cells was developed 500 

from a regression analysis that combined gridded datasets of mean precipitation and potential evapotranspiration as well as 

land use/land cover with local estimates of GWR at 715 locations worldwide. Figure 8 compares the GHMs under investigation 

for PI conditions to this dataset. The used data for comparison is one ensemble member of the analysis of Mohan et al. (2018) 

that was deemed best in their study. The global mean GWR in this member is slightly lower, 110 mm year-1, than the reported 

mean of 134 mm year-1. Overall, the GHMs best agree with Mohan et al. (2018) in arid regions like the Sahara, Australia, 505 

southern Africa, and the Andes. Underestimates are predominant in the northern Latitudes and Central Asia, whereas 

underestimates appear in Europe and the eastern USA for all models. All models, except for H08 and WaterGAP2, which 

show underestimates, result in overestimates in East Asia. In the Amazon, MATSIRO and CLM 4.5 overestimate by more 

than 100 mm year-1 compared to Mohan et al. (2018), whereas all other models show a mix of over and underestimate across 

continents. A similar pattern is visible in Central Africa where CLM, MATSIRO, and CWatM overestimate, and all other 510 

models show a mixture of over and underestimate of -100 – 100 mm year-1. H08 and WaterGAP2 have the best agreement 

according to the NSE (Nash-Sutcliff Efficiency (calculated spatially); (Nash and Sutcliffe, 1970)) of 0.4 and 0.2 while the 

mean bias (mean(GHM Mohan et al.-1)) is lowest for JULES-W1. All GHMs show much lower GWR in permafrost regions 

as they assume that there is no or little GWR in such regions. Possibly GWR of Mohan et al. (2018) is overestimated here as 

no measurements informed their results in these regions. 515 

The variance in modeled GWR is possibly caused by the different implementation of the hydrological processes in 

between the models. Even more, models differ in their definition of groundwater and GWR. Some include groundwater storage 

that is recharged by a fraction of precipitation others do not include a groundwater component at all but define the saturation 

excess water from the bottom soil layer as GWR. Models may include only some of the processes that affect GWR, for 

example, capillary rise, percolation from the soil, preferential flow bypassing the soil matrix, the interaction between surface 520 

water and the aquifer, changing land use over time (not considered here), changing vegetation (e.g., reducing infiltration 

capacity). Further, important processes like evaporation, infiltration, percolation, or runoff and GWR separation are 



 

25 

 

implemented with different equations and simplifications. Some models even use sub-grid information or sub-daily time steps, 

e.g., for changes in unsaturated conductivity. Notably, models that include dynamic vegetation processes showed the largest 

spread in GWR in regions with decreasing precipitation.  525 

To illustrate the model differences further, the following describes the impact of changes in precipitation for 

WaterGAP and LPJmL representative for the different model types used in this study. In WaterGAP, a simulated percent 

change in total runoff translates to the same percentage change in GWR; unless, e.g., due to more extreme precipitation events, 

infiltration capacity is exceeded more often such that the relative increase in GWR is smaller than total runoff. Absolute 

changes in GWR are always smaller than changes in total runoff. In LPJmL, changes in total runoff do not translate to 530 

proportional changes in groundwater runoff and GWR. Any flux or storage that takes water before it is partitioned to the soil 

will impact the groundwater and GWR. Possible reasons for a reduction in GWR (percolation past the bottom hydrologically 

active layer (3 m deep); compare Sect. 2.1) can be changes in precipitation amount/intensity, transpiration due to vegetation 

productivity, transpiration due to changes in vegetation water use efficiency due to CO2 fertilization, or changes in 

anthropogenic water use demands. 535 

This difference in behavior is reflected in Fig. 6, where the response between precipitation and GWR of GHMs 

without any dynamic vegetation is relatively uniform. The non-uniform response of the models that include vegetation changes 

is likely due to the complicated process feedbacks between vegetation and water (transpiration changes due to available water 

together with vegetation productivity) and complex feedbacks in-between changes in CO2, temperature, and precipitation 

which affect vegetation.  540 

This study highlights that uncertainties and differences in GHMs need to be investigated further and that in order to 

estimate global groundwater vulnerability, improved estimates of global GWR are required. 
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Figure 997 PI GWR per GHM – 34 years (1981-2014) mean GWR [mm year-1] of Mohan et al. (2018). Bias: mean (GHM Mohan et al.-1). 

NSE (Nash-Sutcliff Efficiency; (Nash and Sutcliffe, 1970)) is calculated spatially over all cells instead of time. 545 

This study is limited not only by the uncertainty in correctly representing the process of GWR but also in the 

propagation and aggregation of uncertainties. Future greenhouse gas emission scenarios are created based on the input of 

integrated assessment models. They are translated into emission scenarios of atmospheric concentrations and forcings that are, 

in turn, used to evaluate their impacts on the climate simulated by GCMs. Outputs of the GCMs are then bias-adjusted and 
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spatially downscaled to be used in the assessment with impact models like GHMs (Döll et al., 2014a). Furthermore, the analysis 550 

is limited by the number of GCMs that were used, as discussed in McSweeney and Jones (2016). Although the GCMs are 

carefully selected to be most representative of the CMIP (Taylor et al., 2012) ensemble. 

The multi-model ensemble study presented here assesses GWR at GW of 1.5°C, 2°C, and 3°C compared to GWR 

simulated under pre-industrial climate conditions and 1°C of GW. Changes are assessed based on transient time slices of the 

30 years around the year that crosses the specific warming level. These slices are an approximation of the stabilized climate 555 

state of that warming level; it relies on the assumption that for a given warming level the impacts are the same regardless of 

the time it took to reach it or whether equilibrium has been reached at all (Boulange et al., 2018). However, this kind of analysis 

has limitations as the transient nature of climate is aggregated over a relatively short period (31 years). Components like the 

ocean might not equilibrate at these timescales (Donnelly et al., 2017). 

Additionally, different RCPs are combined, which limits the possibility to investigate processes that are sensitive to 560 

different CO2 concentrations. Investigations in this study based on RCPs show the difference between these model types. On 

the other hand, using GW levels reduces the uncertainties from GCM variability due to the use of different time slices, 

depending on when a GCM reaches a GW level. 

 The variance in GWR is caused by GCMs and GHMs alike depending on the region similar to a multi-model ensemble 

study on the climate change impacts on streamflow (Schewe et al., 2014). Again the assessment is limited by the number of 565 

used GCMs. Furthermore, this study did not include changes in land-cover and land-use, and thus irrigation which can have a 

tremendous impact on GWR, especially as irrigation patterns and used crops, will change with a changing climate (Hauser et 

al., 2019; Hirsch et al., 2017; Hirsch et al., 2018; Thiery et al., 2017; Thiery et al., 2020).  

The only similar study on the global impacts of GW on GWR, to the knowledge of the authors, was conducted by 

Portmann et al. (2013). The study used five GCMs and one GHM, WaterGAP, which (a slightly different version) was also 570 

included in this study. Overall results are spatially consistent; however, Portmann et al. (2013) showed more consistent trends 

among GW levels (compare Table 2). Portmann et al. (2013) acknowledge that including impacts of evolving CO2 levels on 

vegetation will have an impact on the simulated GWR and that WaterGAP is likely overestimating the decreases in GWR. 

Similarly, Davie et al. (2013) found that simulation of runoff was not consistent across models depending on whether CO2 was 

considered. The results presented in this study show that this assumption is true for some regions, where differences of up to 575 

100 mm year-1 can be observed.  

Despite the uncertainties, this study provides further evidenceshows that climate change will impact groundwater 

availability in many regions of the world. A notable decrease can be expected in the Mediterranean, Amazon, and Brazil, 

whereas increases can be expected in Northern Europe. It is nevertheless troublesome that, especially in regions that are known 

to be vulnerable to climate change, for example, South Africa, model agreement in between model types is that low. 580 
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5 Conclusions  

Potential GWR changes due to climate change require increased attention from the scientific community as well as from 

decision-makers because they affect future water availability in many regions and thus the wellbeing of billions of people. 

This study shows that simulated global-scale estimates of GWR vary strongly among GHMs, which contribute more strongly 

to the overall uncertainty of future groundwater recharge than the applied GCM output. However, statistically significant 585 

increases and decreases of GWR could be identified in specific regions per GW level. The presented inter-model ranges of 

GWR changes are an important input for processes aiming at developing strategies for climate change adaptation, as risk-

averse decision-makers may want to orient their strategies towards adapting to the worst-case GWR change and not to the 

projected ensemble mean change. 

This study shows that including vegetation processes in GHMs can change projected GWR changes substantially. However, 590 

consideration of these processes does not lead to a uniform increase of groundwater recharge, as might be expected from the 

physiological effect of increasing atmospheric CO2 concentration. In some regions with decreasing groundwater recharge, 

where groundwater availability is a major concern, models that include these processes show the largest differences among 

themselves. Further research is necessary to understand GWR on large scales, and how it is affected by climate. Simulation of 

groundwater recharge by global hydrological models needs to be analyzed in more detail, and the benefit of integrating 595 

gradient-based groundwater flow models in GHMs should be assessed. 

Groundwater recharge (GWR) is an essential indicator of groundwater availability that is hard to measure directly but highly 

relevant in the face of global change. This study shows that simulated global estimates of GWR vary broadly between global 

hydrological models (GHMs) and show a higher uncertainty than the variance of the used climate model input. However, 

significant increases and decreases of GWR could be derived for specific regions and global warming levels. On average,  a 600 

consistent increase of GWR in Europe and a decrease in the Amazon are simulated. 

All simulations are available through the ISMIP project at https://www.isimip.org. 
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