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Abstract. Timely and accurate estimation of reference evapotranspiration (ET0) is indispensable for agricultural water 

management for efficient water use. This study aims to estimate the amount of ET0 with machine learning approaches by using 

minimum meteorological parameters in the Corum region, which has an arid and semi-arid climate and is regarded as an 

important agricultural center of Turkey. In this context, monthly averages of meteorological variables i.e., maximum and 

minimum temperature, sunshine duration, wind speed, average, maximum, and minimum relative humidity are used as inputs. 25 

Two different kernel-based methods i.e., Gaussian Process Regression (GPR) and Support Vector Regression (SVR)), together 

with BFGS-ANN, and Long short-term memory (LSTM) models were used to estimate ET0 amounts in 10 different 

combinations. The results showed that all four methods predicted ET0 amounts with acceptable accuracy and error levels. 

BFGS-ANN model showed higher success (R2 = 0.9781) than the others. In kernel-based GPR and SVR methods, Pearson VII 

function-based universal kernel was the most successful (R2 = 0.9771). Scenario 5 having temperatures including average 30 

temperature, maximum and minimum temperature, and sunshine duration as inputs gave the best results. The second-best 

scenario was with only the sunshine duration as the input to the BFGS-ANN which estimated ET0 having a correlation 

coefficient of 0.971 (Scenario 8). Conclusively, this study shows the better efficacy of the BFGS in ANN for enhanced 

performance of the ANN model in ET0 estimation for arid and semi-arid drought-prone regions. 
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1 Introduction 35 

Accurate estimation of reference crop evapotranspiration (ET0) and crop water consumption (ET) is essential in managing 

water in the agricultural sector particularly for arid and semi-arid climatic conditions where water is scarce and valuable. 

Although ET0 is a complex element of the hydrological cycle, it is also an important component of hydro-ecological 

applications and water management in the agricultural sector. The estimation of ET0 is critical in the forcible management of 

irrigation and hydro-meteorological studies on respective basins and on national scales (Pereira et al., 1999; Xu and Singh, 40 

2001; Anli 2014) since knowledge of ET0 would allow for reduced water wastage, increased irrigation efficiency, proper 

irrigation planning, and reuse of water. 

In general, the equations that calculate ET0 values are very complex, nonlinear, contain randomness, and all in all, have several 

underlying assumptions. The results obtained from these equations differ greatly from the measured values. ET0 is considered 

a complex and nonlinear phenomenon that interacts with water, agriculture, and climate sciences. It is difficult to emulate such 45 

a phenomenon by experimental and classical mathematical methods. About twenty well-known methods for estimating ET0 

based on different meteorological variables and assumptions are available in the literature. The Penman-Monteith (FAO56PM) 

method proposed by FAO is recommended to estimate ET0, as it usually gives usable results in different climatic conditions 

(Hargreaves and Samani, 2013; Rana and Katerji, 2000; Feng et al., 2016; Nema et al., 2017). Cobaner et al. (2016) modified 

the Hargreaves-Samani (HS) equation used in the determination of ET0. Solving the equations and finding the correct 50 

parameter values requires sophisticated programs for the employment of differential equations, which require rigorous 

optimization methods together with a broad range of Spatio-temporal good quality and accurate input data with the knowledge 

of initial conditions (Prasad et al., 2017).   

On the other hand, the developments in artificial intelligence (AI) methods and the increase in the accuracy of the estimation 

results have increased the desire for these AI methods. The AI models offer a number of advantages including; their ease of 55 

development compared to physically-based models; not requiring underlying boundary conditions or other assumptions or 

initial forcings; and has the ability to operate at localized positions (Prasad et al., 2020). Consequently, many studies have been 

reported to have applied AI approaches for ET0 estimations. Artificial intelligence techniques based on machine learning (ML) 

has been successfully utilized in predicting complex and nonlinear processes in natural sciences, especially hydrology (Koch 

et al., 2019, Prasad and Deo, 2017; Solomatine, 2002; Solomatine and Dulal, 2003; Yaseen et al., 2016; Young et al. , 2017). 60 

Thus, methods such as ML and deep learning have gained popularity in estimating and predicting ET0. 

The artificial neural network (ANN) has been the widely used ML model to date. Sattari et al. (2013) used the backpropagation 

algorithm of ANN and tree-based M5 model to estimate the monthly ET0 amount by employing a climate dataset (air 

temperature, total sunshine duration, relative humidity, precipitation, and wind speed) in the Ankara region and compared the 

estimated ET0 with FAO56PM computations. The results revealed that the ANN approach gives better results. In another study, 65 

Pandey et al. (2017) in their study, ML techniques for ET0 estimation using limited meteorological data; evaluated evolutionary 

regression (ER), ANN, multiple nonlinear regression (MLNR), and SVM and found the ANN FAO56PM model performing 
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better. In their study, Nema et al. (2017) studied the possibilities of using ANN to increase monthly evapotranspiration 

prediction performance in the humid area of Dehradun. They developed different ANN models, including combinations of 

various training functions and neuron numbers, and compared them with ET0 calculated with FAO56PM. They found that the 70 

ANN trained by the Levenberg-Marquardt algorithm with 9 neurons in a single hidden layer made the best estimation 

performance in their case. The ANN, with multiple linear regression (MLR), ELM, and Hargreaves Samani models were tested 

by Reis et al. (2019) to predict ET0 in the presence of temperature data in the Verde Grande River basin, Brazil. The study 

revealed that AI methods have superior performance over other models. Abrishami et al. (2019) estimated the amount of daily 

ET0 for wheat and corn using ANN and found the proper and acceptable performance of ANNs with two hidden layers. 75 

However, some studies showed a slightly better performance of other models. Citakoglu et al. (2014) predicted monthly 

average ET0 using the ANN and adaptive network-based fuzzy inference system (ANFIS) techniques using combinations of 

long-term average monthly climate data such as wind speed, air temperature, relative humidity, and solar radiation as inputs 

and found ANFIS to be slightly better than ANN. Yet recommended both methods to be successfully used in estimating the 

monthly mean ET0. Likewise, ANN and ANFIS models by employing the Cuckoo search algorithm (CSA) were applied by 80 

Shamshirband et al. (2016) using data from twelve meteorological stations in Serbia. The results showed that the hybrid 

ANFIS-CSA could be employed for high-reliability ET0 estimation.  

Despite ANNs being universal approximators having the ability to approximate any linear or nonlinear system without being 

constrained to a specific form, it has some inherent disadvantages. Slow learning speed, over-fitting, and constrained in local 

minima with relatively tedious to determine key parameters, such as training algorithms, activation functions, and hidden 85 

neurons. These inherent structural problems sometimes make it difficult in adopting for applications. However, despite all the 

disadvantages, it is still a preferred method in all branches of science and especially in hydrology. Having said that, in this 

study, the ANN is benchmarked with other comparative models. One such model is support vector machine (SVM) developed 

by Vapnik (2013). SVMs have good generalization ability since it utilizes the concept of structural risk minimization 

hypothesis in minimizing both empirical risk and the confidence interval of the learning algorithm. Due to the underlying solid 90 

mathematical foundation of statistical learning theory giving it an advantage, the SVMs have been preferred in a number of 

studies and produced highly competitive performances in real-world applications (Quej et al., 2017). Subsequently, Wen et al. 

(2015) predicted daily ET0 via SVM, using a limited climate dataset in the Ejina Basin, China using the highest and lowest air 

temperatures, daily solar radiation and wind speed values as model inputs and FAO56PM results as model output. The SVM 

method's performance was compared to ANN and empirical techniques, including Hargreaves, Priestley-Taylor, and Ritchie, 95 

which revealed that the SVM recorded better performance. Zhang et al. (2019) examined SVM's success in ET0 estimation 

and compared the outcomes with Hargreaves, FAO-24, Priestley-Taylor, McCloud, and Makkink. SVM was determined to be 

the most successful model. However, SVM also has several drawbacks, such as high computational memory requirement as 

well as being computational exhaustive as a large amount of computing time during the learning process is necessary. 

In order to overcome the disadvantages of these two widely accepted approaches (ANN and SVM), many new modelling 100 

techniques have been proposed in recent years. For instance, the two state-of-the-art machine learning techniques, namely 
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Gauss Process Regression (GPR) and long short-term memory (LSTM) are also being recently trialled in the hydrologic time 

series modelling and forecasting applications. Following the newer developments, Shabani et al. (2020) used ML methods, 

including GPR, random forest (RF), and SVR, with meteorological inputs to estimate evaporation (PE) in Iran and found that 

ML methods have high performances even with a small number of meteorological parameters. In a recent study, deep learning 105 

and ML techniques to determine daily ET0 have been explored in Punjab's Hoshiarpur and Patiala regions, India (Saggi et al., 

2019). They found that supervised learning algorithms such as the deep learning-multilayer sensors (DL) model offers high 

performance for daily ET0 modelling. However, to the best of the author’s knowledge, there have been very few attempts to 

test the practicability and ability of these two advanced approaches (LSTM and GPR) for ET0 modelling and prediction. In 

addition, many studies included solar radiation in the modelling process, yet did not include sunshine hours in the modelling, 110 

which will be dealt with in this study. 

With recent developments in ML methods with the use of deep learning techniques such as LSTM in water engineering together 

with technical developments in computers and the emergence of relatively comfortable coding languages, this study explores 

the application of different deep learning (LSTM) and other machine learning methods (ANN, SVM and GPR) in the estimation 

of ET0 to shed light on future research and to determine effective modelling approaches relevant to this field. ET0 is one of the 115 

essential elements in water, agriculture, hydrology, and meteorology studies, and its accurate estimation has been an open area 

of research due to ET0 being a complex and nonlinear phenomenon. Hence, robust deep learning and ML approaches including 

LSTM, ANN, SVM and GPR methods need to be aptly tested. As a result, this study has three important goals; i) to estimate 

the amount of ET0 using deep learning and machine learning methods, i.e., GPR, SVR, ANN employing Broyden–Fletcher–

Goldfarb–Shanno (BFGS-ANN) learning algorithm, and LSTM in Corum conditions with a total annual rainfall of 427 mm 120 

classed as an arid and semi-arid climatic region; ii) to investigate the effect of different kernel functions of the SVR and GPR 

models on the performance of ET0 estimation and; iii) to determine the model that provides the highest performance with the 

least meteorological variable requirement for the study. A proper prediction of reference evapotranspiration would be vital in 

managing limited water resources for optimum agricultural production.  

2 Study area and dataset used  125 

Corum's encompasses an area of 1 278 381 ha, of which 553 011 ha, or 43%, is agricultural land (Figure 1). Its population is 

525 180 and 27% of it lives in rural areas. The city's water resource potential is 4 916 hm3/year and 84 988 ha of agricultural 

land is being irrigated. The main agricultural products are wheat, paddy, chickpeas, onions, walnuts, and green lentils. This 

study was conducted using monthly meteorological data including highest and lowest temperature, sunshine duration, wind 

speed, average, highest, and lowest relative humidity from January 1993 - December 2018 (Anonymous, 2017) as model inputs 130 

leading to 312 months. 200 months were used for training, and the remaining 112 were used for testing. Statistics of the data 

used are given in Table 1. During the training period, the daily average, highest, and lowest temperature averages are 10.80, 

18.27, and 4.020C, respectively. The average sunshine duration in the region is 6.29 hours, wind speed is 1.72 m/s, and the 
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mean humidity is 70.41%. The lowest skewness coefficient was found in RHmax with -0.64 and the highest in RHmin 

parameter with 0.35. The lowest kurtosis coefficient has Tmean with -1.24 and the highest with 1.12 by RHmax parameter. 135 

The highest variation was observed in RHmin with 140.40 and the lowest in sunshine duration with 0.18. Similarly in the test 

period, the daily average, highest, and lowest temperature averages are 11.440C, 18.600C, and 4.890C, respectively. The 

average sunshine duration in the region is 5.74 hours, wind speed is 1.64 m/s, and the mean humidity is 68.08%. The lowest 

skewness coefficient was found in RHmax with -0.53 and the highest in RHmin parameter with 0.75. The lowest kurtosis 

coefficient has Tmean with -1.25 and the highest with -0.37 by RHmax and RHmin parameters. The highest variation was 140 

observed in RHmin with 202.50 and the lowest in sunshine duration with 0.16. The skewness and kurtosis coefficients in the 

train and the test period are similar in all parameters except the maximum relative humidity. The frequency distributions of 

meteorological data of the study area are given in Figure 2 which conforms to the distribution statistics. As it is understood 

from the figure, the dependent variable ET0 values do not conform to the normal distribution. 

 145 
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Figure 1. Location of the study area, Corum Province, Turkey (© Google Maps.) 
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Table 1. Basic statistics of the data used in the study during the training and testing periods 

Period Statistic 

Tmean 

(0C) 

Tmax 

(0C) 

Tmin 

(0C) 

n  

(hr) 

U 

(m/s) 

RHmean 

(%) RHmax 

(%) 

RHmin 

(%) 

ET0  

(mm/mo

nth) 

Training 

data set 

Minimum -6.18 -1.27 -11.3 1 0.95 51.6 66.87 21.51 11.76 

Maximum 25.06 35.44 14.75 11.97 2.69 94.74 98.93 82.83 185.59 

Mean 10.80 18.27 4.02 6.29 1.72 70.41 87.76 47.48 79.15 

Stdev 8.00 9.32 6.34 2.96 0.42 8.02 5.39 11.88 52.64 

Skewness -0.09 -0.15 -0.13 0.06 0.13 0.16 -0.64 0.35 0.34 

Kurtosis -1.24 -1.21 -1.06 -1.25 -0.85 -0.37 1.12 -0.48 -1.29 

Coefficient of 

variation 

63.75 86.50 40.02 8.72 0.18 63.97 28.86 140.40 2756.72 

Number of records 200 200 200 200 200 200 200 200 200 

Testing 
data set Minimum -4.25 1.08 -9.21 0.83 0.7 45.8 72.06 19.03 13.99 

Maximum 25.06 34.85 15.63 10.87 2.45 94.07 99.83 80.12 180.53 

Mean 11.44 18.60 4.89 5.74 1.64 68.08 90.09 40.53 79.21 

Stdev 7.82 9.17 6.23 2.92 0.39 11.23 6.21 14.17 53.02 

Skewness -0.04 -0.15 -0.03 0.08 0.08 0.25 -0.53 0.75 0.36 

Kurtosis -1.25 -1.20 -1.12 -1.23 -0.65 -0.74 -0.37 -0.37 -1.27 

Coefficient of 
variation 

61.68 84.89 39.20 8.60 0.16 127.17 38.90 202.50 2836.65 

Number of records 112 112 112 112 112 112 112 112 112 

NB: T: Temperature, n: Sunshine duration, U: Wind speed, RH: Relative humidity 
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Figure 2. Frequency distributions of meteorological input data set conforming to the distribution statistics. 

 175 

To determine the meteorological factors employed in the model and the formation of scenarios, the relationship between ET0 

and other variables were calculated as given in Figure 3. Input determination is an essential component of model development 

as irrelevant inputs are likely to worsen the model performances (Hejazi and Cai, 2009; Maier and Dandy, 2000; Maier et al., 

2010), while a set of carefully selected inputs could ease the model training process and increase the physical representation 

whilst providing a better understanding of the system (Bowden et al., 2005). The Sunshine duration in this study was very 180 

highly correlated with ET0 (R2 = 0.92) together with the variables Tmean, Tmax and Tmin were all highly correlated (R2 > 

0.8). The RH mean was the least correlated variable (R2 = 0.24) in this study. As can be understood visually, the meteorological 

variables associated with temperature and especially the sunshine duration has a high correlation with ET0. Considering these 

relationships, ten different input scenarios were created, and the effect of meteorological variables on ET0 estimation was 

evaluated. Table 2 gives the meteorological variables used in each scenario. While all parameters were taken into account in 185 

the first scenario, the ones that could affect ET0 more in the following scenarios were added in the respective scenarios. 
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Figure 3. Scatter plot showing the correlation between ET0 and the independent variable. The coefficient of determination 

has been added for clarity. 190 

 

 

Table 2. Illustrates the scenarios developed in this study with respective inputs in respective scenarios. 

Scenario Inputs 

1 (All Variables) TMean, TMax, TMin, n, U, RHMax, RHMin, RHMean 

2  TMean, n, U, RHMean 

3 TMax, n, RHMax 

4 TMax, n , U 

5 TMean, TMax, TMin, n 

6 n, U, RHMax 

7 n, RHMax 

8 (Highest R2) n 

9 TMin 

10 TMax 

 

3 Methods 195 

3.1 Calculation of ET0  

The United Nations, Food and Agriculture Organization (FAO) recommend Penman-Monteith (PM) equation (Eq.1) to 

calculate the evapotranspiration of reference crops (Doorenbos and Pruitt, 1977). Although the PM equation is much more 

complex than the other equations, it has been formally explained by FAO. The equation has two main features: (1) It can be 

used in any weather conditions without local calibration, and (2) the performance of the equation is based on the lysimetric 200 

data in an approved spherical range (Allen et al., 1989). The requirement for many meteorological factors can be defined as 

the main problem. However, there is still no equipment to record these parameters correctly in many countries, or data is not 

regularly recorded (Gavili et al., 2018).  
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ET0 = 
 .      (    )                (     )   (   .    )   (Eq.1) 

 205 

Where 

ET0 refers to the reference evapotranspiration [mm day−1],  

G refers to the soil heat flux density [MJ m−2 day−1], 

u2 refers to the wind speed at 2 m [m s−1], 

ea refers to the actual vapour pressure [kPa],  210 

es refers to the saturation vapour pressure [kPa], 

es-ea refers to the saturation vapour pressure deficit [kPa],  

T refers to the mean daily air temperature at 2 m [°C], 

Rn refers to the net radiation at the crop surface [MJ m−2 day−1],   refers to the psychrometric constant [kPa °C−1], 215 

Δ refers to the slope vapour pressure curve [kPa °C−1]. 

 

3.2 Broyden– Fletcher – Goldfarb – Shanno Artificial Neural Networks (BFGS-ANN) 

McCulloch and Pitts (1943) pioneered the original idea of neural networks. ANN is essentially a black-box modelling approach 

that does not identify the training algorithm explicitly, yet the modellers often trial several algorithms to attain an optimal 220 

model (Deo and Şahin, 2015). In this study, the Broyden – Fletcher – Goldfarb – Shanno (BFGS) training algorithm has been 

used to estimate ET0 amounts. In optimization studies, the BFGS method is a repetitious approach for solving unlimited 

nonlinear optimization problems (Fletcher, 1987). The BFGS-ANN technique trains a multilayer perceptron ANN with one 

hidden layer by reducing the given cost function plus a quadratic penalty using the BFGS technique. The BFGS approach 

includes Quasi-Newton methods. For such problems, the required condition for reaching an optimal level occurs when the 225 

gradient is zero. Newton and the BFGS methods cannot be guaranteed to converge unless the function has a quadratic Taylor 

expansion near an optimum. However, BFGS can have a high accuracy even for non-smooth optimization instances (Curtis et 

al., 2015). 

Quasi-Newton methods do not compute the Hessian matrix of second derivatives. Instead, the Hessian matrix is drawn by 

updates specified by gradient evaluations. Quasi-Newton methods are extensions of the secant method to reach the basis of the 230 

first derivative for multi-dimensional problems. The secant equation does not specify a specific solution in multi-dimensional 

problems, and Quasi-Newton methods differ in limiting the solution. The BFGS method is one of the frequently used members 

of this class (Nocedal and Wright, 2006). In the BFGS-ANN method application, all attributes, including the target attribute 

(meteorological variables and ET0) are standardized. In the output layer, the sigmoid function is employed for classification. 
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In approximation, the sigmoidal function can be specified for both hidden and output layers. For regression, the activation 235 

function can be employed as the identity function in the output layer. This method was implemented on the basis of radial 

basis function networks trained in a fully supervised manner using WEKA's Optimization class by minimizing squared error 

with the BFGS method. In this method, all attributes are normalized into the [0,1] scale (Frank, 2014). 

3.3 Support Vector Machine (SVR) 

The statistical learning theory is the basis of the SVM. The optimum hyperplane theory and kernel functions and nonlinear 240 

classifiers were added as linear classifiers (Vapnik, 2013). Models of the SVM are separated into two main categories: (a) The 

classifier SVM and (b) the regression (SVR) model. An SVM is employed to classify data in various classes, and the SVR is 

employed for estimation problems. Regression is used to take a hyperplane suitable for the data used. The distance to any point 

in this hyperplane shows the error of that point. The best technique proposed for linear regression is the least-squares (LS) 

method. However, it may be entirely impossible to use the LS estimator in the presence of outliers. In this case, a robust 245 

predictor has to be developed that will not be sensitive to minor changes, as the processor will perform poorly. Three kernel 

functions were used including Polynomial, Pearson VII function-based universal, and radial basis function with the level of 

Gaussian Noise Parameters added to the diagonal of the covariance matrix and the random number of seed to be used (equal 

to 1.0); the most suitable kernel function in each scenario was determined by trial and error (Frank, 2014) and the description 

is provided in Section 3.6. 250 

 

3.4 Gauss process regression (GPR) 

The GPR or GP is defined by Rasmussen and Williams (2005) as a complex set of random variables, which have a joint 

Gaussian distribution. Kernel-based methods such as SVM and GPs can work together to solve flexible and applicable 

problems. The GP is generally explained by two functions: Average and covariance functions (Eq. 2). The average function is 255 

a vector; the covariance function is a matrix. The GP model is possibly a nonparametric black box technique. 

 

f ≈ GP (m, k)          (Eq. 2) 

 

Where f refers to Gauss distribution, m refers to a mean function and k refers to covariance function.  260 

The value of covariance expresses the correlation between the individual outputs concerning the inputs. The covariance value 

determines the correlation between individual outputs and inputs. The covariance function produces a matrix of two parts 

(Eq.3). 

 

Cov (xp) =Cf (xp)+ Cn (xp)        (Eq. 3) 265 
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Here, Cf represents the functional part, but defines the unknown part of the modelling system, while Cn represents the system's 

noise part. A Gaussian process (GP) is closely related to SVM, and both are part of the kernel machine area in ML models. 

Kernel methods are sample-based learners. Instead of learning a fixed parameter, the kernels memorize the training data sample 

and assign a certain weight to it. 

3.5 Long short-term memory (LSTM)  270 

LSTM is a high-quality evolution of Recurrent Neural Networks (RNN). This neural network is presented to address the 

problems that existed in RNN and are done by adding more interactions per cell. These systems are also special since it 

remembers information for an extended period. Moreover, it also includes four essential interacting layers, and all of them 

include different communication methods.  

The next thing is that its complete network consists of a memory block. These blocks are also called cells. The information is 275 

stored in one cell and then transferred into the next one with the help of gate controls. Through the help of these gates, it 

becomes straightforward to analyze the information accurately. All of these gates are extremely important, and they are called 

forget gates as explained in Eq. 4.  

    =     [ℎ   ,  ] +             (Eq. 4) 280 

 

LSTM units or blocks are part of the repetitive neural network structure. Repetitive neural networks are made to use some 

artificial memory processes that can help these AI algorithms to mimic human thinking. 

3.6 Kernel functions 

Four different kernel functions are frequently used as depicted in literature including the polynomial, radial-based function, 285 

Pearson VII function (PUK), and normalized polynomial kernels used and their formulas and parameters are tabulated in Table 

3. As is clear from Table 3, some parameters must be determined by the user for each kernel function. While the number of 

parameters to be determined for PUK kernel is two, it requires determining a parameter in the model formation that will be the 

basis for classification for other functions. When kernel functions are compared, it is seen that polynomial and radial based 

kernels are more plain and understandable. Although it may seem mathematically simple, the increase in the degree of the 290 

polynomial makes the algorithm complex. This significantly increases processing time and decreases the classification 

accuracy after a point. In contrast, changes in the radial-based function parameter (γ), expressed as the kernel size were less 

effective on classification performance (Hsu et al., 2010). The normalized polynomial function was proposed by Arnulf et al. 

(2001) in order to normalize the mathematical expression of the polynomial kernel instead of normalizing the data set. 

The normalized polynomial kernel is a generalized version of the polynomial kernel. On the other hand, the PUK kernel has a 295 

more complex mathematical structure than other kernel functions with its two parameters (σ, ω) known as Pearson width. 
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These two parameters affect classification accuracy and these parameters are not known in advance. For this reason, 

determining the most suitable parameter pair in the use of the PUK kernel is an important step. 

 

Table 3. Basic kernel functions used in the study with parameters that needed to be determined. 300 

Kernel functions Mathematical Expression Parameter 

Polynomial kernel  ( , ) =  ( . ) + 1    Polynomial degree (d) 

Radial Based 
Function Kernel 

 ( , ) =    |(    )|  
Kernel size (γ) 

PUK 

 ( , ) = 1
⎣⎢⎢⎢
⎡1 + ⎝⎛

2. ‖ −  ‖     2(  ⁄ ) − 1 ⎠⎞
  
⎦⎥⎥⎥
⎤  

Pearson width parameters 

(σ, ω) 

 

The user must determine the editing parameter C for all SVM during runtime. If values that are too small or too large for this 

parameter are selected, the optimum hyperplane cannot be determined correctly. Therefore there will be a serious decrease in 

classification accuracy. On the other hand, if C equal to infinity, the SVM model becomes suitable only for datasets that can 

be separated linearly. As can be seen from here, the selection of appropriate values for the parameters directly affects the 305 

accuracy of the SVM classifier. Although a trial and error strategy is generally used, the cross-validation approach enables 

successful results. The purpose of the cross-validation approach is to determine the performance of the classification model 

created. For this purpose, the data is separated into two categories where the first is used as training the model and, the second 

part is processed as test data to determine the model's performance. As a result of applying the model created with the training 

set to the test data set, the number of samples classified correctly indicates the classifier's performance. Therefore, by using 310 

the cross-validation method, the classification and determination of the best kernel parameters were obtained (Kavzoglu and 

Golkesen, 2010). 

In this study, during SVR and GPR modelling, the three kernel functions as in Table 3 were used and the most suitable kernel 

function in each scenario was determined by trial and error (Frank, 2014). For the BFGS-ANN, SVR, and GPR methods in the 

Weka software were used, while python language was used for the LSTM method. 315 
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3.7 Model Evaluation 

The statistical parameters used in the selection and comparison of the models in the study included the root mean square error 

(RMSE), mean absolute error (MAE), and correlation fit (R) as shown in Eq. 5-7. Here, Xi and Yi are the observed and predicted 

values, and N is the number of data. 320 

 

    =   ∑ |  −   |                                             
 

(Eq. 5.) 

    =  1 Σ    (  −   )  
(Eq. 6.) 

 =  ∑    − (∑  ) (∑  )   ∑    − (∑  )    ∑    − (∑  )                                         (Eq. 7.) 

 

In addition, Taylor diagrams were prepared to check the performance of the models, which illustrates the experimental and 

statistical parameters simultaneously.  

4 Results 325 

In this study, 10 different scenarios were created by using combinations of input variables, i.e., monthly average, highest and 

lowest temperature, sunshine duration, wind speed, average, highest, and lowest relative humidity data. ET0 amounts were 

estimated with the help of kernel-based GPR and SVR methods, BFGS-ANN, and one of the deep learning methods LSTM 

models. ET0 estimation results obtained from different scenarios according to the GPR method are summarized in Table 4. As 

can be seen from the table, the 5th scenario containing four meteorological variables including TMax, TMin, TMean and n 330 

with the GPR method PUK function gave the best result (Train period: R2 = 0.9667, MAE = 9.1279 mm/month, RMSE = 

11.067 mm/month; Test period: R2 = 0.9643, MAE = 9.1947 mm/month, RMSE = 11.2109 mm/month). However, the 8th 

scenario with only one meteorological variable (sunshine duration) registered quite well results with training period: R2 = 

0.9472, MAE = 10.1629 mm/month, RMSE = 13.2694 mm/month and testing period: R2 = 0.9392, MAE = 11.8473 mm/month, 

RMSE = 15.8719 mm/month. Since the scenario with the least input parameters and with an acceptable level of accuracy is 335 

largely preferred, scenario 8 was chosen as the optimum scenario. 

The scatter plot and time series plots of the test phase for scenario 5 and 8 are given in Figures 4 and 5. As can be seen from 

these Figures, a relative agreement has been achieved between the FAO56PM ET0 values and the ET0 values modelled. When 

the time series graphs are examined, minimum points in estimated ET0 values are more in harmony with FAO56PM values 

than maximum points. 340 
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Table 4. Outcomes of the GPR modelling approach from different kernel functions based on R2, MAE, and RMSE (Italics 

represents the best results; Bold represents the optimally selected model). 

Scenario No Kernel functions 
Train Test  

R2 MAE RMSE R2 MAE 
(mm/month) 

RMSE  
(mm/month) 

 

1 
Polynomial 0.9084 13.1238 16.0365 0.8451 17.8013 21.4952  

PUK 0.9732 6.8024 8.9055 0.9506 10.5906 13.4330  

Radial basis function  0.9357 22.3706 25.3578 0.9220 22.3353 25.4332  

2 
Polynomial 0.8825 15.0049 18.3607 0.8332 19.4655 23.9183  

PUK 0.9666 7.2041 9.4750 0.9639 8.9058 11.5185  

Radial basis function  0.9450 27.7700 31.2897 0.9366 27.5940 31.2150  

3 
Polynomial 0.8697 15.7587 19.2936 0.7807 21.2623 26.2083  

PUK 0.9436 9.5556 12.6058 0.9335 12.2152 15.0187  

Radial basis function  0.9251 31.3045 35.4426 0.9073 31.9344 36.1935  

4 
Polynomial 0.7002 37.824 43.417 0.7105 36.6604 41.2745  

PUK 0.9637 7.7384 10.153 0.9629 9.3003 12.4647  

Radial basis function  0.9374 29.1996 32.9582 0.9491 29.7864 33.6709  

5 
Polynomial 0.6312 35.1424 40.3818 0.6030 33.8278 38.3742  

PUK 0.9667 9.1279 11.067 0.9643 9.1947 11.2109  

Radial basis function  0.9239 25.6568 29.4976 0.9239 26.2766 30.0768  

6 
Polynomial 0.8703 15.6789 19.3039 0.7841 21.5210 27.2959  

PUK 0.9569 8.5950 11.1225 0.9401 12.1685 15.8165  

Radial basis function  0.9229 33.0011 36.9189 0.8991 33.4845 37.9140  

7 
Polynomial 0.8599 16.6129 20.0640 0.7852 21.7258 26.9480  

PUK 0.9349 10.3820 13.5482 0.9310 12.9590 16.5650  

Radial basis function  0.9086 36.4501 40.9667 0.8746 36.9353 41.6716  

8 
Polynomial 0.9203 41.2839 46.5019 0.9281 40.4306 45.9593  

PUK 0.9472 10.1629 13.2694 0.9392 11.8473 15.8719  

Radial basis function  0.9283 37.0877 41.8535 0.9281 37.6298 42.3803  

9 
Polynomial 0.8394 44.0191 49.2989 0.8380 43.9357 50.0790  

PUK 0.8759 15.0361 18.5984 0.8634 16.2747 20.1854  

Radial basis function  0.8398 39.0547 44.3349 0.8380 40.0566 44.8850  

10 
Polynomial 0.8677 43.1716 48.2151 0.8746 42.6604 48.7584  

PUK 0.9027 13.3821 16.4932 0.9130 13.0145 15.8309  

Radial basis function  0.8679 38.2998 43.4373 0.8748 39.1677 43.9253  
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Figure 4. Scatter plots comparing GPR estimated and FAO56PM estimated ET0 in scenarios 5 and 8 

 

  

Figure 5. Time series graphics of GPR estimated and FAO56PM estimated ET0 in scenarios 5 and 8 

 

For the SVR model, again 3 different kernel functions were evaluated in respective scenarios under the same conditions, and 

the results are displayed in Table 5. As can be seen here, scenarios 5 and 8 have yielded the best and most appropriate results 

according to the PUK function. The results of the 5th scenario with TMean, TMin, TMax and n as input variables gave the 350 

best result (Train period: R2 = 0.9838, MAE = 6.0500 mm/month, RMSE = 8.5733 mm/month; Test period: R2 = 0.9771, MAE 

= 7.07 mm/month, RMSE = 9.3259 mm/month). However, scenario 8 gave the most appropriate result (Train period: R2 = 

0.9398, MAE = 9.7984 mm/month, RMSE = 13.0830 mm/month; Test period: R2 = 0.9392, MAE = 11.2408 mm/month, 

RMSE = 15.5611 mm/month) only with one meteorological input variable, i.e., the sunshine duration (n). Although the 

accuracy rate of the 8th scenario is somewhat lower than the 5th scenario, it provides convenience and is preferred in terms of 355 

application and calculation since it requires a single input. The sunshine duration can be measured easily and without the need 

for high-cost equipment and personnel. Consequently, by using only one parameter, the amount of ET0 is estimated within 

acceptable accuracy limits. 
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Table 5. Outcomes of the SVR modelling approach from different kernel functions based on R2, MAE, and RMSE (Italics 360 

represents the best results; Bold represents the optimally selected model). 

Scenario No Kernel function 
Train Test  

R2 MAE RMSE  R2 MAE RMSE  

1 
Polynomial 0.9667 7.6671 9.6167 0.9655 11.0033 13.5740  

PUK 0.9790 1.3130 2.9310 0.9683 8.70480 11.1693  

Radial basis function  0.9446 10.3256 12.5561 0.9366 11.1203 13.4468  

2 
Polynomial 0.9587 9.8445 12.0674 0.9526 10.1138 11.6124  

PUK 0.9775 4.3655 8.0208 0.9742 8.88250 11.6469  

Radial basis function  0.9487 11.0557 12.8207 0.9456 11.4313 13.5386  

3 
Polynomial 0.9392 10.088 13.468 0.9160 13.5919 15.903  

PUK 0.9608 7.1018 7.1018 0.9249 12.0206 15.6733  

Radial basis function  0.9401 12.1973 14.4483 0.9107 15.1051 18.4364  

4 
Polynomial 0.9491 10.5076 12.7585 0.9485 11.8516 14.1386  

PUK 0.9732 5.5868 8.6784 0.9604 9.2452 12.5707  

Radial basis function  0.9593 12.7177 14.8832 0.9500 12.6226 16.1700  

5 
Polynomial 0.9743 8.9452 11.5497 0.9657 8.5349 10.2108  

PUK 0.9838 6.0500 8.5733 0.9771 7.0700 9.3259  

Radial basis function  0.9414 11.8017 15.1588 0.9318 11.8607 14.4412  

6 
Polynomial 0.9399 10.3413 12.9082 0.9281 14.5901 17.9626  

PUK 0.9698 6.1970 9.1435 0.9497 11.2859 14.7455  

Radial basis function  0.9299 13.9103 17.0013 0.9120 16.7198 22.2031  

7 
Polynomial 0.9214 11.9563 14.8277 0.9214 14.7185 17.6297  

PUK 0.9426 9.1560 12.6111 0.9407 12.0180 15.5924  

Radial basis function  0.9164 17.8134 21.4555 0.8951 19.4352 25.7907  

8 
Polynomial 0.9283 12.0330 14.9227 0.9281 13.7164 16.4672  

PUK 0.9398 9.7984 13.0830 0.9392 11.2408 15.5611  

Radial basis function  0.9283 18.6912 22.9160 0.9281 19.1426 25.6111  

9 
Polynomial 0.8394 17.2037 21.1520 0.8380 17.9619 22.8538  

PUK 0.8755 14.3397 18.8555 0.8623 16.2552 20.9296  

Radial basis function  0.8398 25.6982 31.0532 0.8380 26.4915 31.2574  

10 
Polynomial 0.8777 14.7758 19.8128 0.8746 15.2039 19.8289  

PUK 0.9087 12.2525 17.3738 0.9084 12.0109 16.8281  

Radial basis function  0.8779 23.2745 28.4086 0.8748 23.7460 28.7051  
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The scatter plot and time series graph drawn for the SVR model are given in Figures 6 and 7, which shows that all points are 

compatible with FAO56PM - ET0 values and ET0 values estimated from the model, except for the less frequent endpoints. The 

R2 values were also very high (R2 > 0.939). 365 

 

  

Figure 6. Scatter plots comparing SVR estimated and FAO56PM estimated ET0 in scenarios 5 and 8 

  

Figure 7. Time series graphics of SVR estimated and FAO56PM estimated ET0 in scenarios 5 and 8 

 

In this study, the BFGS training algorithm was specifically used to train the ANN architecture and ET0 amounts were estimated 

for all scenarios. The results are given in Table 6. In implementing the BFGS-ANN method, all features, including the target 

feature (meteorological variables and ET0) are standardized. In the hidden and output layer, the sigmoid function is f (x) = 1 / 370 

(1 + e-x ) used for classification.  

As can be seen here, scenarios 5 and 8 gave the best and most relevant results. According to the results, the 5th scenario 

including TMean, TMin, TMax and n meteorological variables again produced the best result (Train period: R2 = 0.9843, MAE 

= 8.0025 mm/month, RMSE = 9.9407 mm/month; Test period: R2 = 0.9781, MAE = 6.7885 mm/month RMSE = 8.8991 

mm/month). However, Scenario 8 gave the most appropriate result (Train period: R2 = 0.9474, MAE = 10.1139 mm/month, 375 

RMSE = 13.1608 mm/month; Test period: R2 = 0.9428, MAE = 11.4761 mm/month, RMSE = 15.6399 mm/month) with only 

the sunshine duration (n) meteorological input variable, hence been the optimally selected BFGS-ANN model. Although the 
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8th scenario's accuracy rate is marginally less than the 5th scenario, it is easy and practical in terms of application and 

calculation since it consists of only one parameter. The scatter plot and time series graph drawn for the BFGS-ANN model, 

given in Figures 8 and 9 concurs with the statistical metrics of Table 6. As can be seen, the BFGS-ANN method predicted ET0 380 

amounts with a high success rate, and a high level of agreement was achieved between the estimates obtained from the model 

and FAO56PM- ET0 values. The R2 values were also very high (R2 > 0.942). 

 

Table 6. Outcomes of the BFGS-ANN modelling approach for different Scenarios based on R2, MAE, and RMSE (Italics 

represents the best results; Bold represents the optimally selected model). 385 

Scenario No 
Train Test 

R2 MAE RMSE  R2 MAE RMSE 

1 0.9778 6.7017 8.6972 0.9769 6.6346 8.6243 

2 0.9763 7.2683 9.6751 0.9700 7.5305 10.3722 

3 0.9450 9.2810 12.3463 0.9423 11.2870 14.3732 

4 0.9670 7.8325 10.4035 0.9659 9.1159 12.4740 

5 0.9843 8.0025 9.9407 0.9781 6.7885 8.8991 

6 0.9536 8.9027 11.3546 0.9522 11.5089 14.7687 

7 0.9466 10.2246 13.2535 0.9417 11.9444 15.7787 

8 0.9474 10.1139 13.1608 0.9428 11.4761 15.6399 

9 0.8768 14.8765 18.4766 0.8709 15.9139 19.8957 

10 0.9158 13.0161 16.2424 0.9149 12.4874 15.5428 

 

  

Figure 8. Scatter plots comparing BFGS-ANN estimated and FAO56PM estimated ET0 in scenarios 5 and 8 
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Figure 9. Time series graphics of BFGS-ANN estimated and FAO56PM estimated ET0 in scenarios 5 and 8 

 

Finally, the LSTM method, which is a deep learning technique, was used to estimate the ET0 under the same 10 scenarios. 

Two hidden layers with 200 and 150 neurons were utilized in LSTM with the rectified linear unit (ReLU) activation function 

and Adam optimizations. The other parameters: Learning rate alternatives from 1e-1 to 1e-9, Decay as 1e-1 to 1e-9, and 500-750-390 

1000 as epochs have been tried. The best results obtained for 10 different scenarios at the modelling stage, according to the 

LSTM method, are given in Table 7. 

 

Table 7. Outcomes of the LSTM modelling approach for different Scenarios based on R2, MAE, and RMSE (Italics 

represents the best results; Bold represents the optimally selected model). 395 

Scenario No 

Train Test 

R2 MAE RMSE  R2 MAE RMSE 

1 0.9825 7.0178 9.3020 0.9769 8.6232 11.4663 
2 0.9618 9.0678 12.4321 0.9604 8.5703 11.7467 
3 0.9403 13.841 16.3260 0.9345 14.8644 17.1128 
4 0.9499 10.375 12.3748 0.9393 11.5043 13.7417 
5 0.9835 4.9405 6.8687 0.9759 6.2907 8.5897 
6 0.9694 11.532 15.7447 0.9602 8.1580 10.6059 
7 0.9382 10.962 14.8716 0.9366 10.1113 13.6070 
8 0.9461 12.461 15.7539 0.9384 11.6711 14.4864 
9 0.8807 14.479 18.2882 0.8664 15.2565 19.4120 
10 0.9231 14.195 17.1729 0.9220 13.7034 16.1857 

 

As in other methods, the 5th and 8th scenarios of the LSTM model registered the best and most appropriate results. In the 5th 

scenario TMean, TMin, TMax and n as the input variables gave the best result (Train period: R2 = 0.9835, MAE = 4.9405 
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mm/month, RMSE = 6.8687 mm/month; Test period: R2 = 0.9759, MAE = 6.2907 mm/month RMSE = 8.5897 mm/month). 

However, scenario 8 gave the most appropriate result (Train period: R2 = 0.9461, MAE = 12.461 mm/month, RMSE = 15.7539 400 

mm/month; Test period: R2 = 0.9384, MAE = 11.6711 mm/month, RMSE = 14.4864 mm/month) with the sunshine duration 

(n) meteorological variable as the input to the model. 

Scatter plot and time-series graphs of observed and LSTM predicted ET0 are given in Figures 10 and 11, where again a high 

success rate, and a high level of agreement was achieved between the estimates obtained from the model and FAO56PM- ET0 

values. 405 

 

  

Figure 10. Scatter plots comparing LSTM estimated and FAO56PM estimated ET0 in scenarios 5 and 8 

  

Figure 11. Time series graphics of LSTM estimated and FAO56PM estimated ET0 in scenarios 5 and 8 

 

In order to compare and evaluate the models used in this study, statistical values for the test phase are given in both FAO56PM- 

ET0 and from the respective models in Table 8. The lowest skewness coefficient was found in scenario 5 in both GPR and 

SVR methods with 0.39 and the highest in LSTM scenario 8 with 0.52. The lowest kurtosis coefficient has Tmean with -1.23 410 

and the highest with 0.36 by RHmean parameter. The highest variation was observed in RHmin with 174.19 and the lowest in 

U parameter with 0.17. 

 



22 
 

Table 8. Statistical values of the test phase for selected scenarios (Bold ones are the best/closest results). 

Statistic 

GPR SVR BFGS-ANN LSTM 

ET0PM 
Scenario 

5 
Scenario 

8 
Scenario 

5 
Scenario 

8 
Scenario 

5 
Scenario 

8 
Scenario 

5 
Scenario 

8 

Minimum 17.687 19.1090 15.1900 17.1520 12.2480 13.9060 14.2971 16.9787 13.99 

Maximum 163.440 158.557 180.530 167.527 176.765 164.100 175.613 172.767 180.53 

Mean 75.8818 71.3861 74.5771 71.2124 75.8644 70.7299 75.6023 72.3210 79.21 

Stdev 48.8941 47.6359 51.5342 48.9192 50.6812 48.2539 50.0143 50.2075 53.26 

Correlation 0.9820 0.9691 0.9885 0.9691 0.9890 0.9710 0.9879 0.9687 1 

Skewness 0.39 0.47 0.39 0.51 0.41 0.46 0.36 0.52 0.36 

Kurtosis -1.29 -1.27 -1.32 -1.16 -1.24 -1.21 -1.21 -1.16 -1.27 

Coefficient of 
variation 2344.09 2226.93 2655.77 2393.09 2568.59 2328.44 2501.43 2520.80 2836.65 

Number of 
records 112 112 112 112 112 112 112 112 112 

 415 

As can be seen from Table 8, the closest value to the FAO56PM-ET0 minimum value (13.99 mm/month) is the 8th scenario in 

the BFGS-ANN method (13.906 mm/month). Furthermore, the FAO56PM-ET0 maximum value (180.53 mm/month) has been 

reached in the 5th scenario (180.53 mm/month) in the SVR method which is the closest and even the same value. The value 

closest to the mean value of FAO56PM-ET0 (79.21 mm/month) corresponds to the 5th scenario (75.8818 mm/month) in the 

GPR method; the value closest to the FAO56PM-ET0 Stdev value (53.26 mm/month) is the value of the 5th scenario (51.5342 420 

mm/month) in the SVR method. As shown in Table 8, all methods have estimated the ET0 amounts within acceptable, yet 

disparate results are attained when comparing the statistics. Having said that, when models are ranked according to the 

correlation coefficient, the best results were BFGS-ANN, SVR, LSTM, and GPR in the 5th scenario and BFGS-ANN, GPR, 

SVR, and LSTM in the 8th scenario. 

Furthermore, to have precise model comparative evaluations besides the tables, the Taylor diagram for the 5th and 8th scenarios 425 

were plotted as in Figure 12. The points on the polar Taylor graph are used to study the adaption between measured and 

predicted values in the Taylor diagram. The correlation coefficient and normalized standard deviation are also indicated by the 

azimuth angle, and radial distances from the base point, respectively (Taylor, 2001). As displayed in the figure, all four models 

performed quite well but BFGS-ANN seemed to achieve higher success than others. As stated earlier in Figure 1- histogram, 

it is seen that FAO56PM- ET0 values do not conform to normal distribution. This mismatch is considered to be the reason for 430 

the poor performances of the GPR method over comparative models. 
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Figure 12. Taylor diagrams of scenarios 5 and 8 

 

The results of Figure 12 also show that models performances were higher in Scenario 5, however, using the least input 

parameters to develop the most parsimonious model was the key target of the study and was achieved by Scenario 8 whereby 

ET0 values were estimated correctly at relatively appropriate and acceptable levels. Therefore, these methods produced 435 

trustworthy results and have the potential to make correct estimations in climates similar to the study area. 

5 Conclusion 

The amount of ET0 can be calculated with many empirical equations. However, these equations can generally differ spatially 

and require the knowledge of many parameters. Since ET0 includes a complex and nonlinear structure, it cannot be easily 

estimated with the previously measured data without requiring numerous parameters. In this study, estimating the ET0 with 440 

different machine learning and deep learning methods was made using the least meteorological variable in Turkey's Corum 

region, with an arid and semi-arid climate regarded as a strategic agricultural region. In this context, firstly, ET0 amounts were 

calculated with the Penman-Monteith method and taken as the output of the models. Then, 10 different scenarios were created 

using different combinations of meteorological variables. Consequently, Kernel-based GPR and SVR methods, BFGS-ANN, 

and LSTM models were developed for monthly ET0 amount estimations. The results revealed better performance of the BFGS-445 

ANN model in comparison to other models under this study, although all four methods predicted ET0 amounts within 

acceptable accuracy and error levels. In kernel-based methods (GPR and SVR), PUK was the most successful kernel function. 

The 5th scenario, which is related to temperature and includes four meteorological variables (mean temperature, highest and 
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lowest temperature averages, and sunshine duration) gave the best results in all the scenarios used. Scenario 8, which included 

only the sunshine duration, was determined as the most suitable and parsimonious scenario. In this case, the ET0 amount was 450 

estimated using only sunshine duration without the need for other meteorological parameters for the study area. The Corum 

region is described as arid and semi-arid with low rainfalls and cloudiness and longer sunshine durations, hence sunshine hours 

is the key driving factor of ET0 in the region which is clearly highlighted by high model performances with sunshine hours as 

the only input. Continuous measurement of meteorological variables in large farmland is a costly process that requires expert 

personnel, time, or good equipment. Simultaneously, some equations used for ET0 calculations are not preferred by specialists 455 

because they contain many parameters. In this case, it is very advantageous for water resources managers to estimate ET0 

amounts only with sunshine duration time, which is easy to measure and requires no extra cost. The follow-up study aims to 

evaluate the performance of GPR and LSTM models in a larger area on a daily time scale and with data to be obtained from 

more meteorology stations. 

Funding: 460 

This work was supported by Fellowships for Visiting Scientists and Scientists on the Sabbatical Leave Programme (2221) of 

The Scientific and Technological Research Council of Turkey (TUBITAK). 

 

Acknowledgement: 

Authors acknowledge the ‘Open Access Funding by the Publication Fund of the TU Dresden’.   465 
 

Author Contributions: Conceptualization, MTS, and HA; Data curation, MTS, HA; Formal analysis, SS; Funding acquisition, 
HA, MTS; Investigation, MTS, HA and SS; Methodology, MTS, HA and SS; Project administration, HA; Resources, MTS and 
HA; Software, MTS, AM and HA; Supervision, MTS, HA.; Validation, AM and SS; Visualization, MTS, HA, SS and RP; 
Writing—original draft, MTS, HA and SS; Writing—review and editing, RP, MTS, AM and SS. All authors have read and agreed 470 
to the published version of the manuscript. 
 

Conflicts of Interest: The authors declare no conflict of interest. 

Code/Data availability: Data are available on request due to privacy or other restrictions.  

References 475 

Abrishami, N., Sepaskhah, A. R. and Shahrokhnia, M. H.: Estimating wheat and maize daily evapotranspiration using artificial 

neural network, Theor. Appl. Climatol., 135(3–4), 945–958, doi:10.1007/s00704-018-2418-4, 2019. 

Allen, R. G., Jensen, M. E., Wright, J. L. and Burman, R. D.: Operational Estimates of Reference Evapotranspiration, Agron. 

J., 81(4), 650–662, doi:10.2134/agronj1989.00021962008100040019x, 1989. 



25 
 

Anonymous: Agricultural data of Corum province (In Turkish). Corum province Food Agriculture Livestock Directorate, 2017 480 

Anli, A. S.: Temporal Variation of Reference Evapotranspiration (ET0) in Southeastern Anatolia Region and Meteorological 

Drought Analysis through RDI (Reconnaissance Drought Index) Method, J. Agric. Sci. Tarim Bilim. Derg., 20(3), 248, 

doi:10.15832/tbd.82527, 2014. 

Arnulf B.A., Graf, and S. Borer:  Normalization in Support Vector Machines, Lecture Notes in Computer Science, 2191: 277-

282,2001. 485 

Banda, P., Cemek, B. and Küçüktopcu, E.: Estimation of daily reference evapotranspiration by neurocomputing techniques 

using limited data in a semi-arid environment, Arch. Agron. Soil Sci., 64(7), 916–929, 

doi:10.1080/03650340.2017.1414196, 2018. 

Bowden, G. J., Dandy, G. C. and Maier, H. R.: Input determination for neural network models in water resources applications. 

Part 1—background and methodology, J. Hydrol., 301(1–4), 75–92, doi:10.1016/j.jhydrol.2004.06.021, 2005. 490 

Brownlee, J: How to Develop LSTM Models for Time Series Forecasting. Retrieved from 

https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting, 2020. 

Chauhan, S. and Shrivastava, R. K.: Performance Evaluation of Reference Evapotranspiration Estimation Using Climate Based 

Methods and Artificial Neural Networks, Water Resour. Manag., 23(5), 825–837, doi:10.1007/s11269-008-9301-5, 

2009. 495 

Citakoglu, H., Cobaner, M., Haktanir, T. and Kisi, O.: Estimation of Monthly Mean Reference Evapotranspiration in Turkey, 

Water Resour. Manag., 28(1), 99–113, doi:10.1007/s11269-013-0474-1, 2014. 

Cobaner, M., Citakoğlu, H., Haktanir, T. and Kisi, O.: Modifying Hargreaves–Samani equation with meteorological variables 

for estimation of reference evapotranspiration in Turkey, Hydrol. Res., 48(2), 480–497, doi:10.2166/nh.2016.217, 2017. 

Curtis, F. E. and Que, X.: A quasi-Newton algorithm for nonconvex, nonsmooth optimization with global convergence 500 

guarantees, Math. Program. Comput., 7(4), 399–428, doi:10.1007/s12532-015-0086-2, 2015. 

Deo, R. C. and Şahin, M.: Application of the Artificial Neural Network model for prediction of monthly Standardized 

Precipitation and Evapotranspiration Index using hydrometeorological parameters and climate indices in eastern 

Australia, Atmos. Res., 161–162, 65–81, doi:10.1016/j.atmosres.2015.03.018, 2015. 

Doorenbos, J. and Pruitt, W.O: Crop Water Requirements. FAO Irrigation and Drainage Paper 24, FAO, Rome, 144 p., 1977. 505 

Fan, J., Yue, W., Wu, L., Zhang, F., Cai, H., Wang, X., Lu, X. and Xiang, Y.: Evaluation of SVM, ELM and four tree-based 

ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates 

of China, Agric. For. Meteorol., 263, 225–241, doi:10.1016/j.agrformet.2018.08.019, 2018. 

Feng, Y., Cui, N., Zhao, L., Hu, X. and Gong, D.: Comparison of ELM, GANN, WNN and empirical models for estimating 

reference evapotranspiration in humid region of Southwest China, J. Hydrol., 536, 376–383, 510 

doi:10.1016/j.jhydrol.2016.02.053, 2016. 

https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting


26 
 

Feng, Y., Peng, Y., Cui, N., Gong, D. and Zhang, K.: Modeling reference evapotranspiration using extreme learning machine 

and generalized regression neural network only with temperature data, Comput. Electron. Agric., 136, 71–78, 

doi:10.1016/j.compag.2017.01.027, 2017. 

Fletcher R.: Practical methods of optimization (2nd ed.), New York: John Wiley & Sons, ISBN 978-0-471-91547-8, Wiley, 515 

1987. 

Rasmussen, CE. and Williams, CKI. 2005. Gaussian Processes for Machine Learning (Adaptive Computation and Machine 

Learning series). 

Gavili, S., Sanikhani, H., Kisi, O. and Mahmoudi, M. H.: Evaluation of several soft computing methods in monthly 

evapotranspiration modelling, Meteorol. Appl., 25(1), 128–138, doi:10.1002/met.1676, 2018. 520 

Gocić, M., Motamedi, S., Shamshirband, S., Petković, D., Ch, S., Hashim, R. and Arif, M.: Soft computing approaches for 

forecasting reference evapotranspiration, Comput. Electron. Agric., 113, 164–173, doi:10.1016/j.compag.2015.02.010, 

2015. 

Hargreaves G.H. and Zohrab A. Samani: Reference Crop Evapotranspiration from Temperature, Appl. Eng. Agric., 1(2), 96–

99, doi:10.13031/2013.26773, 1985. 525 

Hejazi, M. I. and Cai, X.: Input variable selection for water resources systems using a modified minimum redundancy 

maximum relevance (mMRMR) algorithm, Adv. Water Resour., 32(4), 582–593, doi:10.1016/j.advwatres.2009.01.009, 

2009. 

Hsu, C.W., Chang, C.C., and Lin, C.J.: A Practical Guide to Support Vector Classification, http://www.csie.ntu.edu.tw/~cjli 

n/papers/guide/guide.pdf 2010. 530 

Kavzoglu, T. and Colkesen, I.: Investigation of the Effects of Kernel Functions in Satellite Image Classification Using Support 

Vector Machines. Harita Dergisi Temmuz 2010 Sayi 144, 2010. 

Koch, J., Berger, H., Henriksen, H. J. and Sonnenborg, T. O.: Modelling of the shallow water table at high spatial resolution 

using random forests, Hydrol. Earth Syst. Sci., 23(11), 4603–4619, doi:10.5194/hess-23-4603-2019, 2019. 

Kumar, M., Raghuwanshi, N. S., Singh, R., Wallender, W. W. and Pruitt, W. O.: Estimating Evapotranspiration using Artificial 535 

Neural Network, J. Irrig. Drain. Eng., 128(4), 224–233, doi:10.1061/(ASCE)0733-9437(2002)128:4(224), 2002. 

Le, Ho, Lee and Jung: Application of Long Short-Term Memory (LSTM) Neural Network for Flood Forecasting, Water, 11(7), 

1387, doi:10.3390/w11071387, 2019. 

Nema, M. K., Khare, D. and Chandniha, S. K.: Application of artificial intelligence to estimate the reference evapotranspiration 

in sub-humid Doon valley, Appl. Water Sci., 7(7), 3903–3910, doi:10.1007/s13201-017-0543-3, 2017. 540 

Nocedal, J. & Wright, S.: Numerical Optimization, Springer New York., 2006. 

Maier, H. R. and Dandy, G. C.: Neural networks for the prediction and forecasting of water resources variables: a review of 

modelling issues and applications, Environ. Model. Softw., 15(1), 101–124, doi:10.1016/S1364-8152(99)00007-9, 2000. 

http://www.csie.ntu.edu.tw/~cjli


27 
 

Maier, H. R., Jain, A., Dandy, G. C. and Sudheer, K. P.: Methods used for the development of neural networks for the prediction 

of water resource variables in river systems: Current status and future directions, Environ. Model. Softw., 25(8), 891–545 

909, doi:10.1016/j.envsoft.2010.02.003, 2010. 

McCulloch, W. S. and Pitts, W.: A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys., 5(4), 115–

133, doi:10.1007/BF02478259, 1943. 

Pandey, P. K., Nyori, T. and Pandey, V.: Estimation of reference evapotranspiration using data driven techniques under limited 

data conditions, Model. Earth Syst. Environ., 3(4), 1449–1461, doi:10.1007/s40808-017-0367-z, 2017. 550 

Pereira, L. S., Perrier, A., Allen, R. G. and Alves, I.: Evapotranspiration: Concepts and Future Trends, J. Irrig. Drain. Eng., 

125(2), 45–51, doi:10.1061/(ASCE)0733-9437(1999)125:2(45), 1999. 

Prasad, R., Deo, R. C., Li, Y. and Maraseni, T.: Input selection and performance optimization of ANN-based streamflow 

forecasts in the drought-prone Murray Darling Basin region using IIS and MODWT algorithm, Atmos. Res., 197, 42–

63, doi:10.1016/j.atmosres.2017.06.014, 2017. 555 

Prasad R., Joseph L., and Deo R.C.: Modeling and Forecasting Renewable Energy Resources for Sustainable Power 

Generation: Basic Concepts and Predictive Model Results. Translating the Paris Agreement into Action in the Pacific, 

59-79. Springer, 2020 

Rana, G. and Katerji, N.: Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: 

a review, Eur. J. Agron., 13(2–3), 125–153, doi:10.1016/S1161-0301(00)00070-8, 2000. 560 

Reis, M. M., da Silva, A. J., Zullo Junior, J., Tuffi Santos, L. D., Azevedo, A. M. and Lopes, É. M. G.: Empirical and learning 

machine approaches to estimating reference evapotranspiration based on temperature data, Comput. Electron. Agric., 

165, 104937, doi:10.1016/j.compag.2019.104937, 2019. 

Quej, V. H., Almorox, J., Arnaldo, J. A. and Saito, L.: ANFIS, SVM and ANN soft-computing techniques to estimate daily 

global solar radiation in a warm sub-humid environment, J. Atmos. Solar-Terrestrial Phys., 155, 62–70, 565 

doi:10.1016/j.jastp.2017.02.002, 2017. 

Saggi, M. K. and Jain, S.: Reference evapotranspiration estimation and modelling of the Punjab Northern India using deep 

learning, Comput. Electron. Agric., 156, 387–398, doi:10.1016/j.compag.2018.11.031, 2019. 

Sattari, M. T., Pal, M., Yürekli, K. and Ünlükara, A.: M5 model trees and neural network based modelling of ET0 in Ankara, 

Turkey, Turkish J. Eng. Environ. Sci., 37(2), 211–219, doi:10.3906/muh-1212-5, 2013. 570 

Shabani, S., Samadianfard, S., Sattari, M. T., Mosavi, A., Shamshirband, S., Kmet, T. and Várkonyi-Kóczy, A. R.: Modeling 

Pan Evaporation Using Gaussian Process Regression K-Nearest Neighbors Random Forest and Support Vector 

Machines; Comparative Analysis, Atmosphere (Basel)., 11(1), 66, doi:10.3390/atmos11010066, 2020. 

Shamshirband, S., Amirmojahedi, M., Gocić, M., Akib, S., Petković, D., Piri, J. and Trajkovic, S.: Estimation of Reference 

Evapotranspiration Using Neural Networks and Cuckoo Search Algorithm, J. Irrig. Drain. Eng., 142(2), 04015044, 575 

doi:10.1061/(ASCE)IR.1943-4774.0000949, 2016. 



28 
 

Solomatine DP. Applications of data-driven modelling and machine learning in control of water resources. In: Mohammadian 

M, Sarker RA, Yao X, editors. Computational intelligence in Control: Idea Group Publishing; 2002. p. 197–217. 

Solomatine, D. P. and Dulal, K. N.: Model trees as an alternative to neural networks in rainfall—runoff modelling, Hydrol. 

Sci. J., 48(3), 399–411, doi:10.1623/hysj.48.3.399.45291, 2003. 580 

Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res. Atmos., 106(D7), 

7183–7192, doi:10.1029/2000JD900719, 2001. 

Vapnik, V.: The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin, Germany, 2013. 

Yaseen, Z. M., Jaafar, O., Deo, R. C., Kisi, O., Adamowski, J., Quilty, J. and El-Shafie, A.: Stream-flow forecasting using 

extreme learning machines: A case study in a semi-arid region in Iraq, J. Hydrol., 542, 603–614, 585 

doi:10.1016/j.jhydrol.2016.09.035, 2016. 

Young, C.-C., Liu, W.-C. and Wu, M.-C.: A physically based and machine learning hybrid approach for accurate rainfall-

runoff modelling during extreme typhoon events, Appl. Soft Comput., 53, 205–216, doi:10.1016/j.asoc.2016.12.052, 

2017. 

Xu, C.-Y. and Singh, V. P.: Evaluation and generalization of temperature-based methods for calculating evaporation, Hydrol. 590 

Process., 15(2), 305–319, doi:10.1002/hyp.119, 2001. 

Wang, P., Liu, C. and Li, Y.: Estimation method for ET0 with PSO-LSSVM based on the HHT in cold and arid data-sparse 

area, Cluster Comput., 22(S4), 8207–8216, doi:10.1007/s10586-018-1726-x, 2019. 

Wen, X., Si, J., He, Z., Wu, J., Shao, H. and Yu, H.: Support-Vector-Machine-Based Models for Modeling Daily Reference 

Evapotranspiration With Limited Climatic Data in Extreme Arid Regions, Water Resour. Manag., 29(9), 3195–3209, 595 

doi:10.1007/s11269-015-0990-2, 2015. 

Wu, L., Peng, Y., Fan, J. and Wang, Y.: Machine learning models for the estimation of monthly mean daily reference 

evapotranspiration based on cross-station and synthetic data, Hydrol. Res., 50(6), 1730–1750, doi:10.2166/nh.2019.060, 

2019. 

Zhang, Y., Wei, Z., Zhang, L. and Du, J.: Applicability evaluation of different algorithms for daily reference evapotranspiration 600 

model in KBE system, Int. J. Comput. Sci. Eng., 18(4), 361, doi:10.1504/IJCSE.2019.099074, 2019. 

 

 

 


