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Abstract. Proper estimation of the magnitude of reference evapotranspiration (ET0) is an indispensable matter for agricultural 

water management for efficient water use. This study aims to estimate the amount of ET0 with machine and deep learning 

approaches by using minimum meteorological parameters in the Corum region, which has an arid and semi-arid climate and 

regardes as an important agricultural center of Turkey. In this context, monthly averages of meteorological variables i.e., 

maximum and minimum temperature, sunshine duration, wind speed, average, maximum, and minimum relative humidity are 25 

used as inputs. Two different kernel-based (Gaussian Process Regression (GPR) and Support Vector Regression (SVR)) 

methods, BFGS-ANN, and Long short-term memory (LSTM) models were used to estimate ET0 amounts in 10 different 

combinations. The results showed that all four methods predicted ET0 amounts with acceptable accuracy and error levels. 

BFGS-ANN model showed higher success (R2:0.9781) than the others. In kernel-based GPR and SVR methods, Pearson VII 

function-based universal kernel was the most successful (R2:0.9771). Besides, the scenario related to temperature in all 30 

scenarios used, including average temperature, maximum and minimum temperature, and sunshine duration, gave the best 

results. The second-best scenario was with only the sunshine duration as the input to the BFGS-ANN which estimated ET0 

having correlation coefficient of 0.971. Conclusively, this study shows the better efficacy of the BFGS in ANN for enhanced 

performance of the ANN model applied in ET0 estimation for arid and semi-arid drought-prone regions. 
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1 Introduction 35 

Accurate estimation of reference crop evapotranspiration (ET0) and crop water consumption (ET) is an essential process for 

managing water in the agricultural sector in arid and semi-arid climatic conditions where water is scarce and valuable. Although 

ET0 is a complex element of the hydrological cycle, it is also an important component of hydro-ecological applications and 

water management in the agricultural sector. The estimation of ET0 is critical in the forcible management of irrigation and 

hydro-meteorological studies on the basin and national scale (Pereira et al. 1999, Xu and Singh 2001, Anli 2014), since 40 

knowledge of ET0 would allow for reduced water wastage, increased irrigation efficiency, proper irrigation planning, and reuse 

of water. 

In general, the equations that calculate ET0 values are very complex, nonlinear, contains randomness and all in all has a number 

of underlying assumptions. The results obtained from these equations differ greatly with the measured values. ET0 is considered 

a complex and nonlinear phenomenon that interacts with water, agriculture, and climate sciences. It is difficult to emulate such 45 

a phenomenon by experimental and classical mathematical methods. There are about twenty well-known methods for 

estimating ET0 based on different meteorological variables and assumptions. The Penman-Monteith (FAO56PM) method 

proposed by FAO is recommended to estimate ET0, as it usually gives the usable results in different climatic conditions 

(Hargreaves and Samani 2013, Rana and Katerji 2000, Feng et al. 2016, Nema et al. 2017). Cobaner et al. (2016) modified the 

Hargreaves-Samani (HS) equation used in the determination of ET0. Solving the equations and finding the correct value of the 50 

parameters requires sophisticated programs for employment of differential equations, which require rigorous optimization 

methods together with broad range of spatio-temporal good quality and accurate input data with knowledge of initial conditions 

(Prasad et al. , 2017).  

On the other hand, the developments in artificial intelligence (AI) methods and the increase in the accuracy of the estimation 

results have increased the desire for these AI methods. The AI models offer a number of advantages including; their ease of 55 

development compared to physically based models; does not require underlying boundary conditions or other assumptions or 

initial forcings; and has the ability to operate at localized positions (Prasad et al. , 2020). Consequently, many studies have 

been reported to have applied AI approaches for ET0 estimations. Artificial intelligence techniques based on machine learning 

(ML) has been successfully utilized in predicting complex and nonlinear processes in natural sciences, especially hydrology 

(Koch et al. , 2019, Prasad, Deo, 2017, Solomatine, 2002, Solomatine and Dulal, 2003, Yaseen et al. , 2016, Young et al. , 60 

2017). Thus, methods such as ML, deep learning, and artificial intelligence have gained popularity in estimating and predicting 

ET0. 

The artificial neural networks (ANN) has been the widely used ML model till date. Sattari et al. (2013) used the 

backpropagation algorithm of ANN and tree-based M5 model to estimate the monthly ET0 amount by employing a climate 

dataset (air temperature, total sunshine duration, relative humidity, precipitation and wind speed) in the Ankara region and 65 

compared the estimated ET0 with FAO56PM computations. The results revealed that the ANN approach gives better results. 

In another study, Pandey et al. (2017) in their study, ML techniques for ET0 estimation using limited meteorological data; 
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evaluated evolutionary regression (ER), ANN, multiple nonlinear regression (MLNR), and SVM and found the ANN 

FAO56PM model performing better. In their study, Nema et al. (2017) studied the possibilities of using ANN to increase 

monthly evapotranspiration prediction performance in the humid area of Dehradun. They developed different ANN models, 70 

including combinations of various training functions and neuron numbers, and compared them with ET0 calculated with 

FAO56PM. They found that the ANN trained by the Levenberg-Marquardt algorithm with 9 neurons in a single hidden layer 

made the best estimation performance in their case. The ANN, with multiple linear regression (MLR), ELM and Hargreaves 

Samani models were tested by Reis et al. (2019) to predict ET0 in the presence of temperature data in the Verde Grande River 

basin, Brazil. The study revealed that AI methods have superior performance over other models. Abrishami et al. (2019) 75 

estimated the amount of daily ET0 for wheat and corn using ANN and found proper and acceptable performance of ANNs with 

two hidden layers. However, some studies showed slightly better performance of other models. Citakoglu et al. (2014) 

predicted monthly average ET0 using the ANN and adaptive network-based fuzzy inference system (ANFIS) techniques using 

combinations of long-term average monthly climate data such as wind speed, air temperature, relative humidity, and solar 

radiation as inputs. They found ANFIS to be slightly better than ANN, yet found that both methods can be successfully used 80 

in estimating the monthly mean ET0. Likewise, ANN and ANFIS models by employing the Cuckoo search algorithm (CSA) 

was applied by Shamshirband et al. (2016) using data from twelve meteorological stations in Serbia. The results showed that 

the hybrid ANFIS-CSA could be employed for high-reliability ET0 estimation.  

Despite ANNs being universal approximators having the ability to approximate any linear or nonlinear system without being 

constrained to a specific form, it has some inherent disadvantages. Slow learning speed, over-fitting and constrained in local 85 

minima with relatively tedious to determine key parameters, such as training algorithms, activation functions and hidden 

neurons. These inherent structural problems sometimes makes it difficulty in adopting for applications. However, despite all 

the disadvantages, it is still a preferred method in all branches of science and especially in hydrology. Having said that, in this 

study, the ANN is benchmarked with other comparative models. One such model is support vector machine (SVM) developed 

by Vapnik (2013). SVMs has good generalization ability since it utilizes the concept of structural risk minimization hypothesis 90 

in minimising both empirical risk and the confidence interval of the learning algorithm. Due to the fact that the solid 

mathematical foundation of statistical learning theory giving it an advantage, the SVMs have been preferred in a number of 

studies and produced highly competitive performances in real-world applications (Quej et al. , 2017). Subsequently, Wen et 

al. (2015) predicted daily ET0 via SVM, using a limited climate dataset in Ejina basin, China using the highest and lowest air 

temperatures, daily solar radiation and wind speed values as model inputs and FAO56PM results as model output. The SVM 95 

method's performance was compared to ANN and empirical techniques, including Hargreaves, Priestley-Taylor, and Ritchie, 

which revealed that the SVM recorded better performance. Zhang et al. (2019) examined SVM's success in ET0 estimation. 

The results were compared with Hargreaves, FAO-24, Priestley-Taylor, McCloud, and Makkink. SVM was determined to be 

the most successful model. However, SVM also has several drawbacks, such as high computational memory requirement as 

well being computational exhaustive as a large amount of computing time during learning process is necessary. 100 



4 
 

In order to overcome the disadvantages of these two widely accepted approaches (ANN and SVM), many new modeling 

techniques have been proposed in recent years. For instance, the two state-of-the-art machine learning techniques, namely 

Gauss Process Regression (GPR) and long short-term memory (LSTM) are also being recently trialled in the hydrologic time 

series modeling and forecasting applications. Following the newer developments, Shabani et al. (2020) used ML methods, 

including GPR, random forest (RF), and SVR, with meteorological inputs estimate evaporation (PE) in Iran and found that 105 

ML methods had high performance even with a small number of meteorological parameters. In a recent study, deep learning 

and ML techniques determine daily ET0 have been explored in Punjab's Hoshiarpur and Patiala regions, India (Saggi et al., 

2019). They found that supervised learning algorithms such as deep learning-multilayer sensors (DL) model offers high 

performance for daily ET0 modeling. However, to the best of author’s knowledge there have been very few attempts to test 

the practicability and ability of these two advanced approaches (LSTM and GPR) for ET0 modeling and prediction. In addition, 110 

many studies included solar radiation in the modelling process, yet did not include sunshine hours in the modelling and will 

be dealt with in this study. 

With recent developments in ML methods with the use of deep learning techniques such as LSTM in water engineering together 

with technical developments in computers and the emergence of relatively comfortable coding languages this study explores 

the application of different deep learning (LSTM) and other machine learning methods (ANN, SVM and GPR) in estimation 115 

of ET0 with the aim to shed light on future research and to determine effective modelling approaches relevant to this field. ET0 

is one of the essential elements in water, agriculture, hydrology, and meteorology studies, and its accurate estimation has been 

an open area of research due to ET0 being a complex and nonlinear phenomenon. Hence, robust deep learning and ML 

approaches including LSTM, ANN, SVM and GPR methods need to be aptly tested. As a result this study has three important 

goals; i) to estimate the amount of ET0 using deep learning and machine learning methods, i.e., GPR, SVR, ANN employing 120 

Broyden–Fletcher–Goldfarb–Shanno (BFGS-ANN) learning algorithm, and LSTM n Corum conditions with a total annual 

rainfall of 427 mm classed as arid and semi-arid climatic region; ii) to investigate the effect of different kernel functions of the 

SVR and GPR models on the performance of ET0 estimation and; iii) to determine the model that provides the highest 

performance with the least meteorological variable requirement for the study. A proper prediction of reference 

evapotranspiration would be vital in managing limited water resources for optimum agricultural production.  125 

2 Study area and dataset used  

Corum's encompasses an area of 1 278 381 ha, of which 553 011 ha, or 43%, is agricultural land (Figure 1). Its population is 

525 180 and 27% of it lives in rural areas. The city's water resource potential is 4 916 hm3/year and 84 988 ha of agricultural 

land is being irrigated. The main agricultural products are wheat, paddy, chickpeas, onions, walnuts, and green lentils. This 

study was conducted using monthly meteorological data including highest and lowest temperature, sunshine duration, wind 130 

speed, average, highest, and lowest relative humidity from January 1993 - December 2018 (Anonymous, 2017) as model inputs 

leading to 312 months. 200 months were used for training, and the remaining 112 were used for testing. Statistics of the data 
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used are given in Table 1. During the training period, the daily average, highest, and lowest temperature averages are 10.80, 

18.27, and 4.020C, respectively. The average sunshine duration in the region is 6.29 hours, wind speed is 1.72 m/s, and mean 

humidity is 70.41%. The lowest skewness coefficient was found in RHmax with -0.64 and the highest in RHmin parameter 135 

with 0.35. The lowest kurtosis coefficient has Tmean with -1.24 and the highest with 1.12 by RHmax parameter. The highest 

variation was observed in RHmin with 140.40 and the lowest in sunshine duration with 0.18. Similarly in the test period, the 

daily average, highest, and lowest temperature averages are 11.440C, 18.600C and 4.890C, respectively. The average sunshine 

duration in the region is 5.74 hours, wind speed is 1.64 m/s, and mean humidity is 68.08%. The lowest skewness coefficient 

was found in RHmax with -0.53 and the highest in RHmin parameter with 0.75. The lowest kurtosis coefficient has Tmean 140 

with -1.25 and the highest with -0.37 by RHmax and RHmin parameters. The highest variation was observed in RHmin with 

202.50 and the lowest in sunshine duration with 0.16. The skewness and kurtosis coefficients in the train and the test period 

are similar in all parameters except the maximum relative humidity. The frequency distributions of meteorological data of the 

study area are given in Figure 2 which conforms with the distribution statistics. As it is understood from the figure, the 

dependent variable ET0 values do not conform to the normal distribution. 145 
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Figure 1. Location of study area, Corum Province, Turkey (maps.google.com) 
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Table 1. Basic statistics of the data used in the study during the training and testing periods 

Period Statistic 

Tmean 

(0C) 

Tmax 

(0C) 

Tmin 

(0C) 

n  

(hr) 

U 

(m/s) 

RHmean 

(%) RHmax 

(%) 

RHmin 

(%) 

ET0  

(mm/mo

nth) 

Training 

data set 

Minimum -6.18 -1.27 -11.3 1 0.95 51.6 66.87 21.51 11.76 

Maximum 25.06 35.44 14.75 11.97 2.69 94.74 98.93 82.83 185.59 

Mean 10.80 18.27 4.02 6.29 1.72 70.41 87.76 47.48 79.15 

Stdev 8.00 9.32 6.34 2.96 0.42 8.02 5.39 11.88 52.64 

Skewness -0.09 -0.15 -0.13 0.06 0.13 0.16 -0.64 0.35 0.34 

Kurtosis -1.24 -1.21 -1.06 -1.25 -0.85 -0.37 1.12 -0.48 -1.29 

Coefficient of 

variation 

63.75 86.50 40.02 8.72 0.18 63.97 28.86 140.40 2756.72 

Number of records 200 200 200 200 200 200 200 200 200 

Testing 
data set Minimum -4.25 1.08 -9.21 0.83 0.7 45.8 72.06 19.03 13.99 

Maximum 25.06 34.85 15.63 10.87 2.45 94.07 99.83 80.12 180.53 

Mean 11.44 18.60 4.89 5.74 1.64 68.08 90.09 40.53 79.21 

Stdev 7.82 9.17 6.23 2.92 0.39 11.23 6.21 14.17 53.02 

Skewness -0.04 -0.15 -0.03 0.08 0.08 0.25 -0.53 0.75 0.36 

Kurtosis -1.25 -1.20 -1.12 -1.23 -0.65 -0.74 -0.37 -0.37 -1.27 

Coefficient of 
variation 

61.68 84.89 39.20 8.60 0.16 127.17 38.90 202.50 2836.65 

Number of records 112 112 112 112 112 112 112 112 112 

NB: T: Temperature, n: Sunshine duration, U: Wind speed, RH: Relative humidity 
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Figure 2. Frequency distributions of meteorological input data sets conforming with the distribution statistics. 

 175 

To determine the meteorological factors employed in the model and the formation of scenarios, the relationship between ET0 

and other variables were calculated as given in Figure 3. Input determination is an essential component of model development 

as irrelevant inputs are likely to worsen the model performances (Hejazi and Cai, 2009, Maier and Dandy, 2000, Maier et al. , 

2010), while a set of carefully selected inputs could ease the model training process and increase the physical representation 

whilst providing a better understanding of the system (Bowden et al. , 2005). The Sunshine duration in this study was very 180 

highly correlated with ET0 (R2 = 0.92) together with the variables Tmean, Tmax and Tmin were all highly correlated (R2 > 

0.8). The RH mean was the least correlated variable (R2 = 0.24) in this study. As can be understood visually, the meteorological 

variables associated with temperature and especially the sunshine duration have a high correlation with ET0. Considering these 

relationships, ten different input scenarios were created, and the effect of meteorological variables on ET0 estimation was 

evaluated. Table 2 gives the meteorological variables used in each scenario. While all parameters were taken into account in 185 

the first scenario, the ones that could affect ET0 more in the following scenarios were added in the respective scenarios. 

 



9 
 

 
 

Figure 3. Scatter plot showing the correlation between ET0 and the independent variable. Coefficient of determination has 190 

been added for clarity. 

 

 

Table 2. Illustrates the scenarios developed in this study with respective inputs in respective scenarios. 

Scenario Inputs 

1 (All Variables) TMean, TMax, TMin, n, U, RHMax, RHMin, RHMean 

2  TMean, n, U, RHMean 

3 TMax, n, RHMax 

4 TMax, n , U 

5 TMean, TMax, TMin, n 

6 n, U, RHMax 

7 n, RHMax 

8 (Highest R2) N 

9 TMin 

10 TMax 

 195 

3 Methods 

3.1 Calculation of ET0  

The United Nations, Food and Agriculture Organization (FAO) recommends Penman-Monteith (PM) equation (Eq.1) to 

calculate evapotranspiration of reference crop (Doorenbos and Pruitt, 1977). Although the PM equation is much more complex 

than the other equations, it has been formally explained by FAO. The equation has two main features: (1) It can be used in any 200 

weather conditions without local calibration, and (2) the performance of the equation is based on the lysimetric data in an 

approved spherical range (Allen et al. 1989). The requirement for many meteorological factors can be defined as the main 
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problem. However, there is still no equipment to record these parameters correctly in many countries, or data is not regularly 

recorded (Gavili et al., 2018).  

ET0 = 
 .      (    )                (     )   (   .    )   (Eq.1) 205 

 

Where 

ET0 refers to the reference evapotranspiration [mm day−1],  

G refers the soil heat flux density [MJ m−2 day−1], 

u2 refers to the wind speed at 2 m [m s−1], 210 

ea refers to the actual vapour pressure [kPa],  

es refers to the saturation vapour pressure [kPa], 

es-ea refers to the saturation vapour pressure deficit [kPa],  

T refers to the mean daily air temperature at 2 m [°C], 

Rn refers to the net radiation at the crop surface [MJ m−2 day−1], 215   refers to the psychrometric constant [kPa °C−1], 

Δ refers to the slope vapour pressure curve [kPa °C−1]. 

 

3.2 Broyden– Fletcher – Goldfarb – Shanno Artificial Neural Networks (BFGS-ANN) 

McCulloch and Pitts (1943) pioneered the original idea of neural networks. ANN is essentially a black-box modelling approach 220 

that does not identify the training algorithm explicitly, yet the modellers often trial several algorithms to attain an optimal 

model (Deo and Şahin, 2015). In this study, the Broyden – Fletcher – Goldfarb – Shanno (BFGS) training algorithm has been 

used to estimate ET0 amounts. In optimization studies BFGS method is a repetitious approach for solving unlimited nonlinear 

optimization problems (Fletcher, 1987). The hybrid BFGS-ANN technique trains a multilayer perceptron ANN with one 

hidden layer by reducing the given cost function plus a quadratic penalty using the BFGS technique. The BFGS approach 225 

includes Quasi-Newton methods. For such problems, the required condition for reaching an optimal level occurs when the 

gradient is zero. Newton and the BFGS methods cannot be guaranteed to converge unless the function has a quadratic Taylor 

expansion near an optimum. However, BFGS can have a high accuracy even for non-smooth optimization instances (Curtis et 

al. 2015). 

Quasi-Newton methods do not compute the Hessian matrix of second derivatives. Instead, the Hessian matrix is drawn by 230 

updates specified by gradient evaluations. Quasi-Newton methods are extensions of the secant method to reach the basis of the 

first derivative for multi-dimensional problems. The secant equation does not specify a specific solution in multi-dimensional 

problems, and Quasi-Newton methods differ in limiting the solution. The BFGS method is one of the frequently used members 



11 
 

of this class (Nocedal and Wright 2006). In the BFGS-ANN method application, all attributes, including the target attribute 

(meteorological variables and ET0) are standardized. In the output layer, the sigmoid function is employed for classification. 235 

In approximation, the sigmoidal function can be specified for both hidden and output layers. For regression, the activation 

function can be employed as the identity function in the output layer. This method was implemented on the basis of radial 

basis function networks trained in a fully supervised manner using WEKA's Optimization class by minimizing squared error 

with the BFGS method. İn this method, all attributes are normalized into the [0,1] scale (Frank 2014). 

3.3 Support Vector Machine (SVR) 240 

The statistical learning theory is the basis of the SVM. The optimum hyperplane theory and kernel functions and nonlinear 

classifiers were added as linear classifiers (Vapnik, 2013). Models of the SVM are separated into two main categories: (a) The 

classifier SVM and (b) the regression (SVR) model. An SVM is employed to classify data in various classes, and the SVR is 

employed for estimation problems. Regression is used to take a hyperplane suitable for the data used. The distance to any point 

in this hyperplane shows the error of that point. The best technique proposed for linear regression is the least-squares (LS) 245 

method. However, it may be entirely impossible to use LS estimator in the presence of outliers. In this case, a robust predictor 

has to be developed that will not be sensitive to minor changes, as the processor will perform poorly. Three kernel functions 

were used including Polynomial, Pearson VII function-based universal, and radial basis function with the level of Gaussian 

Noise Parameters added to the diagonal of the covariance matrix and the random number of seed to be used (equal to 1.0); the 

most suitable kernel function in each scenario was determined by trial and error (Frank, 2014) and the description is provided 250 

in Section 3.6. 

 

3.4 Gauss process regression (GPR) 

The GPR or GP is defined by Rasmussen and Williams (2005) as a complex set of random variables which have a joint 

Gaussian distribution. Kernel-based methods such as SVM and GPs can work together to solve flexible and applicable 255 

problems. The GP is generally explained by two functions: Average and covariance functions (Eq. 2). The average function is 

a vector; the covariance function is a matrix. The GP model is possibly a nonparametric black box technique. 

 

f ≈ GP (m, k)          (Eq. 2) 

 260 

Where f refers to Gauss distribution, m refers to a mean function and k refers to covariance function.  

The value of covariance expresses the correlation between the individual outputs concerning the inputs. The covariance value 

determines the correlation between individual outputs and inputs. The covariance function produces a matrix of two parts 

(Eq.3). 

 265 
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Cov (xp) =Cf (xp)+ Cn (xp)        (Eq. 3) 

Here, Cf represents the functional part, but defines the unknown part of the modeling system, while Cn represents the system's 

noise part. A Gaussian process (GP) is closely related to SVM, and both are part of the kernel machine area in ML models. 

Kernel methods are sample-based learners. Instead of learning a fixed parameter, the kernels memorize the training data sample 

and assign a certain weight to it. 270 

3.5 Long short-term memory (LSTM)  

LSTM is a high-quality evolution of Recurrent Neural Networks (RNN). This neural network is presented to address the 

problems that existed in RNN and is done by adding more interactions per cell. These systems are also a special one because 

it contains remembering information from an extended period. Moreover, it also includes four essential interacting layers, and 

all of them include different communication methods.  275 

The next thing is that its complete network consists of a memory block. These blocks are also called cells. The information is 

stored in one cell and then transferred into the next one with the help of gate controls. Through the help of these gates, it 

becomes straightforward to analyze the information accurately. All of these gates are extremely important, and they are called 

forget gates. This is explained in Eq. 4.  

 280    =     [ℎ   ,  ] +             (Eq. 4) 

 

LSTM units or blocks are part of the repetitive neural network structure. Repetitive neural networks are made to use some 

artificial memory processes that can help these AI programs mimic human thinking more effectively. 

3.6 Kernel functions 285 

Four different kernel functions are frequently used as depicted in literature including the polynomial, radial-based function, 

Pearson VII function (PUK), and normalized polynomial kernels used and their formulas and parameters are tabulated in Table 

3. As is clear from Table 3, some parameters must be determined by the user for each kernel function. While the number of 

parameters to be determined for PUK kernel is two, it requires determining a parameter in the model formation that will be the 

basis for classification for other functions. When kernel functions are compared, it is seen that polynomial and radial based 290 

kernels are more plain and understandable. Although it may seem mathematically simple, the increase in the degree of the 

polynomial makes the algorithm complex. This significantly increases processing time and decreases the classification 

accuracy after a point. In contrast, changes in the radial-based function parameter (γ), expressed as the kernel size, were less 

effective on classification performance (Hsu et al., 2010). The normalized polynomial function was proposed by Arnulf et al. 

(2001) in order to normalize the mathematical expression of the polynomial kernel instead of normalizing the data set. 295 
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The normalized polynomial kernel is a generalized version of the polynomial kernel. On the other hand, PUK kernel has a 

more complex mathematical structure than other kernel functions with its two parameters (σ, ω) known as Pearson width. 

These two parameters affect classification accuracy and these parameters are not known in advance. For this reason, 

determining the most suitable parameter pair in the use of PUK kernel is an important step. 

 300 

Table 3. Basic kernel functions in the study and parameters that needs to be determined 

Kernel functions Mathematical Expression Parameter 

Polynomial kernel  ( , ) =  ( . ) + 1    Polynomial degree (d) 

Radial Based 
Function Kernel 

 ( , ) =    |(    )|  
Kernel size (γ) 

PUK 

 ( , ) = 1
⎣⎢⎢⎢
⎡1 + ⎝⎛

2. ‖ −  ‖     2(  ⁄ ) − 1 ⎠⎞
  
⎦⎥⎥⎥
⎤  

Pearson width parameters 

(σ, ω) 

 

The user must determine the editing parameter C for all SVM during runtime. If values that are too small or too large for this 

parameter are selected, the optimum hyperplane cannot be determined correctly. Therefore there will be a serious decrease in 

classification accuracy. On the other hand, if C equal to infinity, the SVM model becomes suitable only for datasets that can 305 

be separated linearly. As can be seen from here, the selection of appropriate values for the parameters directly affects the 

accuracy of the SVM classifier. Although a trial and error strategy is generally used, the cross-validation approach enables 

successful results. The purpose of the cross-validation approach is to determine the performance of the classification model 

created. For this purpose, the data is separated into two categories where the first is used as training the model and, the second 

part is processed as test data to determine the model's performance. As a result of applying the model created with the training 310 

set to the test data set, the number of samples classified correctly indicates the classifier's performance. Therefore, by using 

the cross-validation method, the classification and determination of the best kernel parameters were obtained (Kavzoglu and 

Golkesen, 2010). 

In this study, during SVR and GPR modeling, the three kernel functions as in Table 3 were used and  the most suitable kernel 

function in each scenario was determined by trial and error (Frank, 2014). For the BFGS-ANN, SVR, and GPR methods in the 315 

Weka software were used, while python language was used for the LSTM method. 
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3.7 Model Evaluation 

The statistical parameters used in the selection and comparison of the models in the study included the root mean square error 

(RMSE), mean absolute error (MAE), and correlation fit (R) as shown in Eq. 5-7. Here, Xi and Yi are the observed and predicted 320 

values, and N is the number of data. 

 

    =   ∑ |  −   |                                             
 

(Eq. 5.) 

    =  1 Σ    (  −   )  
(Eq. 6.) 

 =  ∑    − (∑  ) (∑  )   ∑    − (∑  )    ∑    − (∑  )                                         (Eq. 7.) 

 

In addition, Taylor diagrams were developed to check the performance of the models, which illustrates the experimental and 

statistical parameters simultaneously.  325 

4 Results 

In this study, 10 different alternative scenarios were created by using combinations or input variables, i.e., monthly average, 

highest and lowest temperature, sunshine duration, wind speed, average, highest, and lowest relative humidity data. ET0 

amounts were estimated with the help of kernel-based GPR and SVR methods, BFGS-ANN, and one of the deep learning 

methods LSTM models. ET0 estimation results obtained from different scenarios according to the GPR method are summarized 330 

in Table 4. As can be seen from the table, the 5th scenario containing four meteorological variables including TMax, TMin, 

TMean and n with the GPR method PUK function gave the best result (Train period: R2 = 0.9667, MAE = 9.1279 mm/month, 

RMSE = 11.067 mm/month; Test period: R2 = 0.9643, MAE = 9.1947 mm/month, RMSE = 11.2109 mm/month). However, 

the 8th scenario with only one meteorological variable (sunshine duration) registered quite well results with training period: 

R2 = 0.9472, MAE = 10.1629 mm/month, RMSE = 13.2694 mm/month and testing period: R2 = 0.9392, MAE = 11.8473 335 

mm/month, RMSE = 15.8719 mm/month. Since the scenario with the least input parameters and with an acceptable level of 

accuracy is largely preferred, scenario 8 was chosen as the optimum scenario. 

The scatter plot and time series plots of the test phase for scenario 5 and 8 are given in Figures 4 and 5. As can be seen from 

the figure, a relative agreement has been achieved between the FAO56PM ET0 values and the ET0 values modeled. When the 

time series graphs are examined, minimum points in estimated ET0 values are more in harmony with FAO56PM values than 340 

maximum points. 
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Table 4. Outcomes of the GPR modelling approach from different kernel functions based on R2, MAE, and RMSE. (Bold 

represents the best results; Yellow highlighted represents the optimally selected model) 

Scenario No Kernel functions 
Train Test  

R2 MAE RMSE R2 MAE 
(mm/month) 

RMSE  
(mm/month) 

 

1 
Polynomial 0.9084 13.1238 16.0365 0.8451 17.8013 21.4952  

PUK 0.9732 6.8024 8.9055 0.9506 10.5906 13.4330  

Radial basis function  0.9357 22.3706 25.3578 0.9220 22.3353 25.4332  

2 
Polynomial 0.8825 15.0049 18.3607 0.8332 19.4655 23.9183  

PUK 0.9666 7.2041 9.4750 0.9639 8.9058 11.5185  

Radial basis function  0.9450 27.7700 31.2897 0.9366 27.5940 31.2150  

3 
Polynomial 0.8697 15.7587 19.2936 0.7807 21.2623 26.2083  

PUK 0.9436 9.5556 12.6058 0.9335 12.2152 15.0187  

Radial basis function  0.9251 31.3045 35.4426 0.9073 31.9344 36.1935  

4 
Polynomial 0.7002 37.824 43.417 0.7105 36.6604 41.2745  

PUK 0.9637 7.7384 10.153 0.9629 9.3003 12.4647  

Radial basis function  0.9374 29.1996 32.9582 0.9491 29.7864 33.6709  

5 
Polynomial 0.6312 35.1424 40.3818 0.6030 33.8278 38.3742  

PUK 0.9667 9.1279 11.067 0.9643 9.1947 11.2109  

Radial basis function  0.9239 25.6568 29.4976 0.9239 26.2766 30.0768  

6 
Polynomial 0.8703 15.6789 19.3039 0.7841 21.5210 27.2959  

PUK 0.9569 8.5950 11.1225 0.9401 12.1685 15.8165  

Radial basis function  0.9229 33.0011 36.9189 0.8991 33.4845 37.9140  

7 
Polynomial 0.8599 16.6129 20.0640 0.7852 21.7258 26.9480  

PUK 0.9349 10.3820 13.5482 0.9310 12.9590 16.5650  

Radial basis function  0.9086 36.4501 40.9667 0.8746 36.9353 41.6716  

8 
Polynomial 0.9203 41.2839 46.5019 0.9281 40.4306 45.9593  

PUK 0.9472 10.1629 13.2694 0.9392 11.8473 15.8719  

Radial basis function  0.9283 37.0877 41.8535 0.9281 37.6298 42.3803  

9 
Polynomial 0.8394 44.0191 49.2989 0.8380 43.9357 50.0790  

PUK 0.8759 15.0361 18.5984 0.8634 16.2747 20.1854  

Radial basis function  0.8398 39.0547 44.3349 0.8380 40.0566 44.8850  

10 
Polynomial 0.8677 43.1716 48.2151 0.8746 42.6604 48.7584  

PUK 0.9027 13.3821 16.4932 0.9130 13.0145 15.8309  

Radial basis function  0.8679 38.2998 43.4373 0.8748 39.1677 43.9253  
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 345 

 

   

Figure 4. Scatter plots comparing GPR estimated and FAO56PM estimated ET0 in scenarios 5 and 8 

 

  

Figure 5. Time series graphics of GPR estimated and FAO56PM estimated ET0 in scenarios 5 and 8 

 

For SVR model, again 3 different kernel functions were evaluated in scenarios under the same conditions, and the results 

displayed in Table 5. As can be seen here, scenarios 5 and 8 have yielded the best and most appropriate results according to 350 

the PUK function. According to the results, the 5th scenario including TMean, TMin, TMax and n meteorological variables 

gave the best result (Train period: R2 = 0.9838, MAE = 6.0500 mm/month, RMSE = 8.5733 mm/month; Test period: R2 = 

0.9771, MAE = 7.07 mm/month, RMSE = 9.3259 mm/month). However, scenario 8 gave the most appropriate result (Train 

period: R2 = 0.9398, MAE = 9.7984 mm/month, RMSE = 13.0830 mm/month; Test period: R2 = 0.9392, MAE = 11.2408 

mm/month, RMSE = 15.5611 mm/month) only with the meteorological variable of sunshine duration (n). Although the 355 

accuracy rate of the 8th scenario is somewhat lower than the 5th scenario, it provides convenience and is preferred in terms of 

application and calculation since it requires a single parameter. The sunshine duration can be measured easily and without the 

need for high cost equipment and personnel. Consequently, by using only one parameter, the amount of ET0 is estimated within 

acceptable accuracy limits. 
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 360 

Table 5. Outcomes of the SVR modelling approach from different kernel functions based on R2, MAE, and RMSE. (Bold 

represents the best results; Yellow highlighted represents the optimally selected model) 

Scenario No Kernel function 
Train Test  

R2 MAE RMSE  R2 MAE RMSE  

1 
Polynomial 0.9667 7.6671 9.6167 0.9655 11.0033 13.5740  

PUK 0.9790 1.3130 2.9310 0.9683 8.70480 11.1693  

Radial basis function  0.9446 10.3256 12.5561 0.9366 11.1203 13.4468  

2 
Polynomial 0.9587 9.8445 12.0674 0.9526 10.1138 11.6124  

PUK 0.9775 4.3655 8.0208 0.9742 8.88250 11.6469  

Radial basis function  0.9487 11.0557 12.8207 0.9456 11.4313 13.5386  

3 
Polynomial 0.9392 10.088 13.468 0.9160 13.5919 15.903  

PUK 0.9608 7.1018 7.1018 0.9249 12.0206 15.6733  

Radial basis function  0.9401 12.1973 14.4483 0.9107 15.1051 18.4364  

4 
Polynomial 0.9491 10.5076 12.7585 0.9485 11.8516 14.1386  

PUK 0.9732 5.5868 8.6784 0.9604 9.2452 12.5707  

Radial basis function  0.9593 12.7177 14.8832 0.9500 12.6226 16.1700  

5 
Polynomial 0.9743 8.9452 11.5497 0.9657 8.5349 10.2108  

PUK 0.9838 6.0500 8.5733 0.9771 7.0700 9.3259  

Radial basis function  0.9414 11.8017 15.1588 0.9318 11.8607 14.4412  

6 
Polynomial 0.9399 10.3413 12.9082 0.9281 14.5901 17.9626  

PUK 0.9698 6.1970 9.1435 0.9497 11.2859 14.7455  

Radial basis function  0.9299 13.9103 17.0013 0.9120 16.7198 22.2031  

7 
Polynomial 0.9214 11.9563 14.8277 0.9214 14.7185 17.6297  

PUK 0.9426 9.1560 12.6111 0.9407 12.0180 15.5924  

Radial basis function  0.9164 17.8134 21.4555 0.8951 19.4352 25.7907  

8 
Polynomial 0.9283 12.0330 14.9227 0.9281 13.7164 16.4672  

PUK 0.9398 9.7984 13.0830 0.9392 11.2408 15.5611  

Radial basis function  0.9283 18.6912 22.9160 0.9281 19.1426 25.6111  

9 
Polynomial 0.8394 17.2037 21.1520 0.8380 17.9619 22.8538  

PUK 0.8755 14.3397 18.8555 0.8623 16.2552 20.9296  

Radial basis function  0.8398 25.6982 31.0532 0.8380 26.4915 31.2574  

10 
Polynomial 0.8777 14.7758 19.8128 0.8746 15.2039 19.8289  

PUK 0.9087 12.2525 17.3738 0.9084 12.0109 16.8281  

Radial basis function  0.8779 23.2745 28.4086 0.8748 23.7460 28.7051  
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The scatter plot and time series graph drawn for the SVR model are given in Figures 6 and 7, which shows that all points are 

compatible with FAO56PM - ET0 values and ET0 values estimated from the model, except for the less frequent endpoints. The 365 

R2 values were also very high (R2 > 0.939). 

 

  

Figure 6. Scatter plots comparing SVR estimated and FAO56PM estimated ET0 in scenarios 5 and 8 

  

Figure 7. Time series graphics of SVR estimated and FAO56PM estimated ET0 in scenarios 5 and 8 

 

In this study, BFGS training algorithm was specifically used to train the ANN architecture and ET0 amounts were estimated 

for all scenarios and the results are given in Table 6. In implementing the BFGS-ANN method, all features, including target 370 

feature (meteorological variables and ET0) are standardized. In the hidden and output layer, the sigmoid function is f (x) = 1 / 

(1 + e-x ) used for classification.  

As can be seen here, scenarios 5 and 8 have given the best and most relevant results. According to the results, the 5th scenario 

including TMean, TMin, TMax and n meteorological variables again produced the best result (Train period: R2 = 0.9843, MAE 

= 8.0025 mm/month, RMSE = 9.9407 mm/month; Test period: R2 = 0.9781, MAE = 6.7885 mm/month RMSE = 8.8991 375 

mm/month). However, Scenario 8 gave the most appropriate result (Train period: R2 = 0.9474, MAE = 10.1139 mm/month, 

RMSE = 13.1608 mm/month; Test period: R2 = 0.9428, MAE = 11.4761 mm/month, RMSE = 15.6399 mm/month) with only 

the sunshine duration (n) meteorological variable, hence been the optimally selected BFGS-ANN model. Although the 8th 
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scenario's accuracy rate is marginally less than the 5th scenario, it is easy and practical in terms of application and calculation 

since it consists of only one parameter. The scatter plot and time series graph drawn for the BFGS-ANN model, given in 380 

Figures 8 and 9 concurs with the statistical metrics of Table 6. As can be seen, the BFGS-ANN method predicted ET0 amounts 

with a high success rate, and a high level of agreement was achieved between the estimates obtained from the model and 

FAO56PM- ET0 values. The R2 values were also very high (R2 > 0.942). 

 

Table 6. Outcomes of the BFGS-ANN modelling approach for different Scenarios based on R2, MAE, and RMSE. (Bold 385 

represents the best results; Yellow highlighted represents the optimally selected model) 

Scenario No 
Train Test 

R2 MAE RMSE  R2 MAE RMSE 

1 0.9778 6.7017 8.6972 0.9769 6.6346 8.6243 

2 0.9763 7.2683 9.6751 0.9700 7.5305 10.3722 

3 0.9450 9.2810 12.3463 0.9423 11.2870 14.3732 

4 0.9670 7.8325 10.4035 0.9659 9.1159 12.4740 

5 0.9843 8.0025 9.9407 0.9781 6.7885 8.8991 

6 0.9536 8.9027 11.3546 0.9522 11.5089 14.7687 

7 0.9466 10.2246 13.2535 0.9417 11.9444 15.7787 

8 0.9474 10.1139 13.1608 0.9428 11.4761 15.6399 

9 0.8768 14.8765 18.4766 0.8709 15.9139 19.8957 

10 0.9158 13.0161 16.2424 0.9149 12.4874 15.5428 

 

  

Figure 8. Scatter plots comparing BFGS-ANN estimated and FAO56PM estimated ET0 in scenarios 5 and 8 
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Figure 9. Time series graphics of BFGS-ANN estimated and FAO56PM estimated ET0 in scenarios 5 and 8 

 

Finally, the LSTM method, which is a deep learning technique was used to estimate the ET0 under the same 10 Scenarios. Two 

hidden layers with 200 and 150 neurons were utilized in LSTM with the rectified linear unit (ReLU) activation function, and 390 

Adam optimizations. The other parameters: Learning rate alternatives from 1e-1 to 1e-9, Decay as 1e-1 to 1e-9, and 500-750-

1000 as epoch have been tried. The best results obtained for 10 different scenarios at the modeling stage, according to the 

LSTM method, are given in Table 7. 

 

Table 7. Outcomes of the LSTM modelling approach for different Scenarios based on R2, MAE, and RMSE. (Bold 395 

represents the best results; Yellow highlighted represents the optimally selected model) 

Scenario No 

Train Test 

R2 MAE RMSE  R2 MAE RMSE 

1 0.9825 7.0178 9.3020 0.9769 8.6232 11.4663 
2 0.9618 9.0678 12.4321 0.9604 8.5703 11.7467 
3 0.9403 13.841 16.3260 0.9345 14.8644 17.1128 
4 0.9499 10.375 12.3748 0.9393 11.5043 13.7417 
5 0.9835 4.9405 6.8687 0.9759 6.2907 8.5897 
6 0.9694 11.532 15.7447 0.9602 8.1580 10.6059 
7 0.9382 10.962 14.8716 0.9366 10.1113 13.6070 
8 0.9461 12.461 15.7539 0.9384 11.6711 14.4864 
9 0.8807 14.479 18.2882 0.8664 15.2565 19.4120 
10 0.9231 14.195 17.1729 0.9220 13.7034 16.1857 

 

As in other methods, the 5th and 8th scenarios of the LSTM model registered the best and most appropriate results. In the 5th 

scenario TMean, TMin, TMax and n as the input variables gave the best result (Train period: R2 = 0.9835, MAE = 4.9405 
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mm/month, RMSE = 6.8687 mm/month; Test period: R2 = 0.9759, MAE = 6.2907 mm/month RMSE = 8.5897 mm/month). 400 

However, scenario 8 only gave the most appropriate result (Train period: R2 = 0.9461, MAE = 12.461 mm/month, RMSE = 

15.7539 mm/month; Test period: R2 = 0.9384, MAE = 11.6711 mm/month, RMSE = 14.4864 mm/month) with the sunshine 

duration (n) meteorological variable. 

Scatter plot and time series graphs of observed and LSTM predicted ET0 are given in Figures 10 and 11, where again a high 

success rate, and a high level of agreement was achieved between the estimates obtained from the model and FAO56PM- ET0 405 

values. 

 

  

Figure 10. Scatter plots comparing LSTM estimated and FAO56PM estimated ET0 in scenarios 5 and 8 

  

Figure 11. Time series graphics of LSTM estimated and FAO56PM estimated ET0 in scenarios 5 and 8 

 

In order to compare and evaluate the models used in this study, statistical values for the test phase are given in both FAO56PM- 

ET0 and from the respective models in Table 8. The lowest skewness coefficient was found in scenario 5 in both GPR and 410 

SVR methods with 0.39 and the highest in LSTM scenario 8 with 0.52. The lowest kurtosis coefficient has Tmean with -1.23 

and the highest with 0.36 by RHmean parameter. The highest variation was observed in RHmin with 174.19 and the lowest in 

U parameter with 0.17. 
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Table 8. Statistical values of the test phase for selected scenarios 415 

Statistic 

GPR SVR BFGS-ANN LSTM 

ET0PM 
Scenario 

5 
Scenario 

8 
Scenario 

5 
Scenario 

8 
Scenario 

5 
Scenario 

8 
Scenario 

5 
Scenario 

8 

Minimum 17.687 19.1090 15.1900 17.1520 12.2480 13.9060 14.2971 16.9787 13.99 

Maximum 163.440 158.557 180.530 167.527 176.765 164.100 175.613 172.767 180.53 

Mean 75.8818 71.3861 74.5771 71.2124 75.8644 70.7299 75.6023 72.3210 79.21 

Stdev 48.8941 47.6359 51.5342 48.9192 50.6812 48.2539 50.0143 50.2075 53.26 

Correlation 0.9820 0.9691 0.9885 0.9691 0.9890 0.9710 0.9879 0.9687 1 

Skewness 0.39 0.47 0.39 0.51 0.41 0.46 0.36 0.52 0.36 

Kurtosis -1.29 -1.27 -1.32 -1.16 -1.24 -1.21 -1.21 -1.16 -1.27 

Coefficient of 
variation 2344.09 2226.93 2655.77 2393.09 2568.59 2328.44 2501.43 2520.80 2836.65 

Number of 
records 112 112 112 112 112 112 112 112 112 

 

As can be seen from Table 8, the closest value to the FAO56PM-ET0 minimum value (13.99 mm/month) is 8th scenario in the 

BFGS-ANN method (13.906 mm/month). Furthermore, the FAO56PM-ET0 maximum value (180.53 mm/month) has been 

reached in the 5th scenario (180.53 mm/month) in the SVR method which is the closest and even the same value. The value 

closest to the mean value of FAO56PM-ET0 (79.21 mm/month) belongs to the 5th scenario (75.8818 mm/month) in the GPR 420 

method; the value closest to the FAO56PM-ET0 Stdev value (53.26 mm/month) is the value of the 5th scenario (51.5342 

mm/month) in the SVR method. As shown from Table 8, all methods have estimated the ET0 amounts within acceptable, yet 

disparate results are attained when comparing the statistics. Having said that, when models are ranked according to the 

correlation coefficient, the best results were BFGS-ANN, SVR, LSTM, and GPR in the 5th scenario and BFGS-ANN, GPR, 

SVR, and LSTM in the 8th scenario. 425 

Furthermore, to have a precise model comparative evaluations besides the tables, the Taylor diagram for the 5th and 8th 

scenarios were plotted as in Figure 12. The points on the polar Taylor graph are used to study the adaption between measured 

and predicted values in the Taylor diagram. The correlation coefficient and normalized standard deviation are also indicated 

by the azimuth angle, and radial distances from the base point, respectively (Taylor 2001). As displayed in the figure, all four 

performed quite well but BFGS-ANN seemed to achieve higher success than others. As stated earlier in Figure 1- histogram, 430 

it is seen that FAO56PM- ET0 values do not conform to normal distribution. This mismatch is considered to be the reason for 

poor performances of the GPR method over comparative models. 
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Figure 12. Taylor diagrams of scenarios 5 and 8 

 

The results of Figure 12 also show that models performances were higher in Scenario 5, however, using the least input 

parameters to develop the most parsimonious model was the key target of the study, and was achieved by the Scenario 8 435 

whereby ET0 values were estimated correctly at a relatively appropriate and acceptable levels. Therefore, these methods 

produced trustworthy results and has the potential to make correct estimations in climates similar to the study area. 

5 Conclusion 

The amount of ET0 can be calculated with many experimental equations. However, these equations can generally differ 

spatially and also contain many parameters. Since ET0 includes a complex and nonlinear structure, it cannot be easily estimated 440 

with the previously measured data without requiring numerous parameters. In this study, estimating the ET0 with different 

machine learning and deep learning methods was made using the least meteorological variable in Turkey's Corum region, with 

an arid and semi-arid climate as a strategic agricultural region. In this context, firstly, ET0 amounts were calculated with the 

Penman-Monteith method and taken into consideration as the output of the models. Then, 10 different scenarios were then 

created using different combinations of meteorological variables. Consequently, Kernel-based GPR and SVR methods, BFGS-445 

ANN, and LSTM models were developed for monthly ET0 amount estimations. The results revealed better performance of the 

BFGS-ANN model in comparison other models under study, although all four methods predicted ET0 amounts within 

acceptable accuracy and error levels. In kernel-based methods (GPR and SVR), PUK was the most successful kernel function. 

The 5th scenario, which is related to temperature and includes four meteorological variables (highest and lowest temperature 
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averages, and sunshine duration) gave the best results in all the scenarios used. Scenario 8, which included only the sunshine 450 

duration, was determined as the most suitable and parsimonious scenario. In this case, the ET0 amount was estimated using 

only sunshine duration without the need for other meteorological parameters for the study area. The Corum region is described 

as arid and semi-arid with low rainfalls and cloudiness and longer sunshine durations, hence sunshine hours is the key driving 

factor of ET0 in the region which is clearly highlighted by high model performances with sunshine hours as the only input. 

Continuous measurement of meteorological variables in large farmland is a costly process that requires expert personnel, time, 455 

or good equipment. Simultaneously, some equations used for ET0 calculations are not preferred by specialists because they 

contain many parameters. In this case, it is very advantageous for water resources managers to estimate ET0 amounts only with 

sunshine duration time, which is easy to measure and requires no extra cost. The follow-up study aims to evaluate the 

performance of GPR and LSTM models in a larger area on a daily time scale and with data to be obtained from more 

meteorology stations. 460 
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