
1 

 

Variability in epilimnion depth estimations in lakes 

Harriet L. Wilson
1
, Ana I. Ayala

2
, Ian D. Jones

3
, Alec Rolston

4
, Don Pierson

2
, Elvira de 

Eyto
5
, Hans-Peter Grossart

6
, Marie-Elodie Perga

7
, R. Iestyn Woolway

1
, Eleanor Jennings

1
  

 
1
Center for Freshwater and Environmental Studies, Dundalk Institute of Technology, Dundalk, Ireland 5 

2
Department of Ecology and Genetics, Limnology, Uppsala University, Uppsala, Sweden 

3
Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK 

4
An Fóram Uisce, National Water Forum, Ireland 

5
Marine Institute, Furnace, Newport, Co. Mayo, Ireland 

6
Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany 10 

7
University of Lausanne, Faculty of Geoscience and Environment, CH 1015 Lausanne, Switzerland 

 

Correspondence to: Harriet L. Wilson (wilsonh@dkit.ie) 

 

Abstract. The epilimnion is the surface layer of a lake typically characterised as well-mixed and is decoupled 15 

from the metalimnion due to a steep change in density. The concept of the epilimnion, and more widely, the 

three-layered structure of a stratified lake, is fundamental in limnology and calculating the depth of the 

epilimnion is essential to understanding many physical and ecological lake processes. Despite the ubiquity of the 

term, however, there is no objective or generic approach for defining the epilimnion and a diverse number of 

approaches prevail in the literature. Given the increasing availability of water temperature and density profile 20 

data from lakes with a high spatio-temporal resolution, automated calculations, using such data, are particularly 

common, and have vast potential for use with evolving long-term, globally measured and modelled datasets. 

However, multi-site and multi-year studies, including those related to future climate impacts, require robust and 

automated algorithms for epilimnion depth estimation. In this study, we undertook a comprehensive comparison 

of commonly used epilimnion depth estimation methods, using a combined 17 year dataset, with over 4700 25 

daily temperature profiles from two European lakes. Overall, we found a very large degree of variability in the 

estimated epilimnion depth across all methods and thresholds investigated and for both lakes. These differences, 

manifest over high-frequency data, led to fundamentally different understandings of the epilimnion depth. In 

addition, estimations of the epilimnion depth were highly sensitive to small changes in the threshold value, 

complex thermal water column structures and vertical data resolution. These results call into question the 30 

custom of arbitrary method selection, and the potential problems this may cause for studies interested in 

estimating the ecological processes occurring within the epilimnion, multi-lake comparisons or long-term time 

series analysis. We also identified important systematic differences between methods, which demonstrated how 

and why methods diverged. These results may provide rationale for future studies to select an appropriate 

epilimnion definition in light of their particular purpose and with awareness of the limitations of individual 35 

methods. While there is no prescribed rationale for selecting a particular method, the method which defined the 

epilimnion depth as the shallowest depth where the density was 0.1 kg m
-3

 more than the surface density, may 

be particularly useful as a generic method. 

1 Introduction 

The “epilimnion depth”, “mixed layer” or “top of the metalimnion” are common terms in limnology, typically 40 

referring to the deepest point of the surface layer of a stratified lake, characterised as quasi-uniform in terms of 

physical and biogeochemical properties, and overlying a layer of steep vertical gradients. Incoming heat to a 
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lake, received at the lake surface, expands water above 3.98 °C resulting in density stratification. Convective 

cooling at the surface and mechanical energy injected by the wind, drive vertical mixing (Wüest and Lorke, 

2003). These competing surface fluxes result in a warm, well mixed layer of water that interacts dynamically 45 

with the atmosphere (Monismith and MacIntyre, 2008). The vertical propagation of energy manifested at the 

lake surface is constrained by the steep density gradients in the metalimnion, which act to decouple the 

epilimnion from the deep hypolimnion. As such, it has become foundational in limnology to consider a stratified 

lake as consisting of three well-defined layers, a turbulent epilimnion (diffusivity typically 10
-5

 - 10
-2

 m
2
 s

-1
), the 

stable metalimnion (5 x 10
-8

 - 10
-6

 m
2
 s

-1
) and the quiescent hypolimnion (3 x 10

-6 
- 10

-4 
m

2 
s

-1
) (Wüest and 50 

Lorke, 2009). The discretisation of these layers, however, is understood to be essentially theoretical, since 

micro-profile studies show that the conditions within layers are not uniform and exact cut-offs between layers 

do not necessarily exist (Imberger, 1985, Jonas et al., 2003, Tedford 2014, Kraemer et al., 2020).The definition 

of the epilimnion depth is thus inherently subjective, but has profound importance in limnology. 

 55 

Quantifying the vertical extent of the epilimnion is crucial for understanding many of the physical, chemical and 

biological processes in lakes. Although the epilimnion is differentiated from the typically shallower layer that is 

actively mixing (Gray et al., 2020), the depth of the epilimnion indicates the volume and properties of the water 

that is influenced by air-water interactions. It is therefore essential for interpreting the physical response of lakes 

to long-term atmospheric changes (Lorbacher et al., 2006, Persson and Jones, 2008, Flaim et al., 2016), and 60 

extreme climatic events (Jennings et al., 2012, Calderó-Pascual et al., 2020) and is even required for predicting 

the local climate for very large lakes (Thiery et al., 2015). The epilimnion depth is also critical for the estimation 

of algal light availability, nutrient fluxes and epilimnetic water temperatures, which determine photosynthesis 

rates and establishes the basis of the food web in a lake (MacIntyre, 1993, Diehl et al., 2002, Berger et al., 2006, 

Bouffard and Wüest, 2018). The depth of the epilimnion is also used for estimating the transfer of oxygen, 65 

received at the lake surface, to deeper layers, sustaining aerobic life and preventing anoxia (Foley et al., 2012, 

Schwefel et al., 2016).  

 

The increasing availability of high-frequency measured and simulated data, coupled with collaborative networks 

of lake scientists, offers a huge potential for broadening our understanding of the epilimnion depth. Water 70 

temperature profile data collected at high frequency intervals on automatic monitoring buoys in lakes are 

becoming increasingly available (Jennings et al., 2012, de Eyto et al., 2016, Marcé et al., 2016). In addition, the 

collation of these datasets globally through collaborative initiatives such as GLEON (http://gleon.org/) and 

NETLAKE (https://www.dkit.ie/netlake) (Weathers et al., 2013, Jennings et al., 2017), and modelling initiatives 

such as ISIMIP2b (Ayala et al., 2020), broadens the potential for long-term and multi-lake studies. However, 75 

these datasets also introduce new challenges for estimating metrics such as the epilimnion depth. Such large 

quantities of big data can limit users’ capacity to examine individual profiles and therefore require robust, 

automated algorithms with low computational expense (Read et al., 2011, Pujoni et al., 2019).  

 

Despite the ubiquity of the epilimnion depth, there is no consistent method used in limnology. The epilimnion 80 

depth can be defined in terms of many variables (e.g. water temperature, water density, turbulence estimations, 

surface fluxes, biogeochemical properties), represent different temporal scales of variability (e.g. inter-annual to 

sub-daily), and be calculated using a range of numerical approaches (e.g. sigmoidal functions, threshold 

algorithms) (Brainard and Gregg, 1996, Thomson and Fine, 2003, Kara et al., 2003, De Boyer et al., 2004, 

https://scholar.google.co.uk/citations?user=ek0cFWMAAAAJ&hl=en&oi=sra
http://gleon.org/
https://www.dkit.ie/netlake
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Lorbacher et al., 2006, Gray et al., 2020). A particularly common approach in limnology, due to the availability 85 

of the required data, is to define the epilimnion using water temperature profile data. However, inconsistencies 

exist between studies which use water temperature (e.g. Zorzal-Almeida et al., 2017, Strock et al., 2017), or 

water density (e.g. Read et al., 2011, Obrador et al., 2014). Often the epilimnion depth is defined as the location 

where the change in water temperature or density exceeds a user-defined threshold. However, studies vary in the 

value selected which may be defined in absolute units (e.g. Andersen et al., 2017) or gradients between 90 

consecutive sensors (e.g. Lamont et al., 2004). A particularly prevalent method in recent studies is the 

‘meta.top’ function proposed in R package ‘rLakeAnalyzer’ (Read et al., 2011). In contrast, epilimnion depth 

definitions based on actual turbulence measurements are uncommon Compared with long-term water 

temperature datasets, there is relatively few turbulent eddy diffusivity measurements in lakes, typically using 

micro-profiling methods conducted over a small time period (e.g. Imberger, 1985, Tedford, 2014). Other 95 

methods of estimating vertical eddy diffusivity, from water temperature data, for example, the Jassby and 

Powell (1975) heat-flux method, are restricted to use below the epilimnion and photic zone. Vertical turbulence 

profiles, however, as well as water temperature profiles, are estimated by some hydrodynamic lake models 

(Goudsmit et al., 2002, Dong et al., 2019). Such modelled data, therefore, offers a tool for assessing commonly 

used water temperature/density based methods in comparison to turbulence based methods. 100 

 

The diversity of epilimnion depth definitions and arbitrary selection process, suggests that methods may be used 

interchangeably, and are relatively insensitive to the threshold value used. However, recent studies have begun 

to recognise large inconsistencies between different definitions and the potential problems this may cause, 

although so far, in limnology, analysis has been restricted to a small number of manual profiles (Gray et al., 105 

2020) and a limited number of methods (Pujoni et al., 2019). Although lower temporal resolution data is 

sufficient for investigating seasonal patterns, high-frequency data can be used to gain information on the level of 

day-to-day variability in epilimnion depth and demonstrates how methods perform over a continuum of water 

column conditions. In addition, through the vast number of measured profiles, high-frequency data offers a more 

robust comparison of methods, than previously demonstrated with manually collected datasets, and even when 110 

aggregated to the daily time-step is more representative of the sub-daily variability (Marcé et al., 2016). Given 

the potential of multi-lake comparison and longitudinal studies, methods are required to perform consistently 

across temporal and spatial ranges, rather than being tailored specifically to one lake or period of time. 

Therefore, the sensitivity of different methods to temporal and spatial characteristics, such as water column 

structure and vertical resolution of data measurements is essential for assessing which methods are most suitable 115 

for future analysis (Fee et al., 1996, Thomson and Fine, 2003, Lorbacher et al., 2006, Pujoni et al., 2019).  

 

In this study, we undertook an in-depth comparison of methods commonly used for the estimation of epilimnion 

depth using high frequency, multi-year data for water temperature profiles, collected with automated monitoring 

buoys from two European lakes, Lough Feeagh (Ireland) and Lake Erken (Sweden). In addition to estimates 120 

based on these measured data, we used simulated data output from a lake model to compare water temperature 

and turbulence based methods, and to assess the influence of vertical sensor resolution. The objectives of this 

study were to: 1) compare water temperature and water density based estimates of the epilimnion depth, 2) 

compare a range of common methods and threshold values, 3) assess the sensitivity of individual methods to the 

threshold value, the water column structure, and the vertical sensor resolution, and 4) to compare profile based 125 

methods to turbulence derived estimates using lake modelled data. 

https://scholar.google.com/citations?user=ek0cFWMAAAAJ&hl=en&oi=sra
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2 Methods 

2.1 Study sites 

We used data from two European temperate lakes, Lough Feeagh (53°56’N, 9°34’E) in Ireland and Lake Erken 

(59°51’N, 18°36’E) in Sweden (Fig.1.). The lakes differ in many characteristics, including depth, surface area 130 

and sensor deployment resolution, providing an opportunity to assess method performance in different lake 

specific conditions. Lough Feeagh is located on the west coast of Ireland and is a cold monomictic, oligotrophic 

and humic lake with a surface area of 3.9 km
2
, maximum depth of 45 m and mean depth of 14.5 m (de Eyto et 

al., 2016). Lake Erken is located in east central Sweden near the Baltic coast and is a dimictic, mesotrophic, 

clear lake with a surface area of 24 km
2
, maximum depth of 21 m and mean depth of 9 m (Yang et al., 2016). In 135 

addition, Lake Erken has a substantially greater mean summer top-bottom density gradient (0.056 kg m
-3

 m
-1

) 

compared to Lough Feeagh (0.016 kg m
-3

 m
-1

). 

2.2 Measured data  

In this study, we used a total of 4783 daily water temperature profiles from Lough Feeagh (n = 2778) and Lake 

Erken (n = 2005). Profiles were collected at high frequency intervals on moored automatic monitoring buoys, 140 

and from these the mean daily profiles were calculated. On Lough Feeagh, vertical water temperature 

measurements were collected every 2 minutes for the period 2004-2017 at depths 0.9, 2.5, 5, 8, 11, 14, 16, 18, 

20, 22, 27, 32, 42 m using submerged platinum resistance thermometers (PRTs) (PT100 1/10DIN, Lab Facility, 

Bognor Regis, United Kingdom) (de Eyto et al., 2016, 2020). On Lake Erken, temperature profile data were 

collected at 1 min intervals at depths 0.5 m to 15 m at 0.5 m intervals, using Type T thermocouple sensors using 145 

a Campbell scientific AM416 multiplexer and CR10 data logger (Pierson et al., 2011). The topmost sensor data 

was excluded to match the topmost sensor in Lough Feeagh. In Lake Erken, the monitoring buoy was manually 

deployed each year prior to or just after the onset of stratification to avoid damage from the seasonal ice cover, 

and therefore the number of observations varied annually. To ensure data were consistent for both lakes, data 

were subset from 1
st
 April to 31

st
 October. To address the issue of large data gaps, years where less than 70% of 150 

the data between April to October were available (>150 days) were excluded from the analysis. The remaining 

years were 2004, 2005, 2006, 2011, 2012, 2013, 2014, 2015, 2016, 2017 for Lough Feeagh and 2002, 2005, 

2008, 2009, 2014, 2015, 2017 for Lake Erken. Water density (kg m
-3

) was calculated from water temperature 

(°C) using rLakeAnalyzer (Read et al., 2011), with the Martin and McCutcheon (1999) equation, assuming 

negligible effects of soluble material. 155 

 

Meteorological data were required to drive a physical hydrodynamic model (GOTM; Global Ocean Turbulence 

Mode, Burchard et al,. 1999), including wind speed (m s
-1

), atmospheric pressure (hPa), air temperature (°C), 

relative humidity (%), cloud cover (dimensionless, 0-1), short-wave radiation (W m
-2

) and precipitation (mm 

day
-1

). For Lake Erken, air temperature, wind speed and short-wave radiation were collected from the Malma 160 

Island meteorological station on the lake, at 1 min intervals and averaged to 60 min intervals. Mean sea level 

pressure, relative humidity and precipitation were measured at the Svanberga meteorological station located 400 

m from the lake shore, at 60 min intervals. Cloud cover was recorded from Svenska Högarna Station, 69 km 

south-east of Lake Erken. In Lough Feeagh, wind speed, air temperature and short-wave radiation, mean sea 

level pressure, relative humidity and precipitation were measured in the meteorological station next to the lake 165 

(de Eyto et al., 2020). Cloud cover was recorded at Knock Airport, 50 km east from Lough Feeagh.   
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2.3 Simulated data 

The Global Ocean Turbulence Model (GOTM), adapted for use in lakes, simulates small-scale turbulence and 

vertical mixing (Burchard et al,. 1999, Sachse et al., 2014, Moras et al., 2019, Ayala et al., 2020) and was used 

to simulate daily profiles of water temperature (°C) and vertical eddy diffusivity (m
-2

 s
-1

) for Lake Erken and 170 

Lough Feeagh. GOTM was calibrated using 4 years of data (2006-2009 for Lake Erken and 2008-2011 for 

Lough Feeagh), including 1 year spin-up followed by 3 years of calibration. The calibrated model parameters 

were surface heat-flux factor (shf_factor), short-wave radiation factor (swr_factor), wind factor (wind_factor), 

minimum turbulent kinetic energy (k_min) and e-folding depth for visible fraction of light (g2) (see Table S1 in 

the Supplement for the calibrated values). During calibration, the model was run approximately 5000 times to 175 

obtain a stable solution. The validation period was 7 years for Lake Erken (2010-2016) and 4 years for Lough 

Feeagh (2012-2015). For both the calibration and validation, daily mean water temperatures were simulated 

when GOTM was forced using measured mean hourly data. Model simulated profiles of mean daily water 

temperature were then compared to measured mean daily water temperature profiles. Model performance was 

evaluated by comparing mean daily modelled and measured temperature profiles and the model efficiency 180 

coefficients used were percent relative error (PRE), root mean squared error (RMSE) and Nash-Sutcliffe 

efficiency (NSE) (Nash and Sutcliffe, 1970). Overall, there was a good model fit for both lakes (Table 1).  

2.4 Definitions for the epilimnion depth 

We selected four epilimnion depth definitions that are commonly used in limnology and that were 

computationally efficient for multi-year automated high frequency data. These methods we describe as profile 185 

based methods (M1 – M4) (Fig.2.). In addition, we calculated epilimnion depth using a method for modelled 

data only (M5). In our analysis, epilimnion depth was expressed relative to the water surface and is therefore 

always a negative value. The range of thresholds used for each method was selected based on the values found 

within the literature (see Table 1 in Gray et al., 2020). We made no assumption of the conditions below the 

deepest measured depth and therefore the deepest estimated epilimnion depth was limited to the maximum 190 

measured depth for each lake (42 m in Lough Feeagh and 15 m in Lake Erken).  

2.4.1 Absolute difference from the surface method (M1) 

In M1, the epilimnion depth was defined as the shallowest depth where the density was a given ‘threshold’ value 

more than the surface density (Fig. 2), with the surface density (𝜌1) approximated as the density at the topmost 

sensor deployment, 0.9 m in Lough Feeagh and at 1 m in Lake Erken. We used a linear interpolation method to 195 

estimate the epilimnion depth on a continuous depth scale for all methods (Read et al., 2011), which assumed a 

linear relationship of densities between the first measured depth which exceeded the threshold (𝑧𝑖+1) and the 

preceding measured depth (𝑧𝑖). The numerical scheme can be described as (using notation from Read et al., 

2011); 

𝑧𝑒 = 𝑧𝑖 + ((ρ1 + ∆ρ) − ρ𝑖)( 
𝑧𝑖+1−𝑧𝑖 

ρ𝑖+1−ρ𝑖
),  (1) 

where 𝑧 is depth (m), ρ is water density (kg m
-3

), and ∆ρ is the threshold value (kg m
-3

). The threshold values for 200 

the absolute method, M1 only, ranged from 0.025 kg m
-3

 to 0.2 kg m
-3

 at intervals of 0.025 kg m
-3

. For all 

methods excluding the rLakeAnalyzer method (M4), if the threshold value was not exceeded, the epilimnion 

depth was defaulted to the deepest value (Lorbacher et al., 2006). Epilimnion depth estimates calculated with 

water temperature used the same type of equation (Eq. 1) but with temperature rather than density and noting 

that temperature decreases with depth. The only threshold value used for temperature was 1 °C. 205 
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2.4.2 Gradient from the surface method (M2) 

In M2, the epilimnion depth was defined as the shallowest depth where the density gradient between 

consecutive measured depths exceeded the threshold value. M2 can be described as, 

𝑧𝑒 = 𝑧𝑖∆ + (∆ρ/∆z − 
∂ρ

∂𝑧𝑖∆
) (

𝑧𝑖∆+1− 𝑧𝑖∆ 
∂𝜌

∂𝑧𝑖∆+1
−

∂𝜌

∂𝑧𝑖∆

),  

 

 

(2) 

where 𝑧𝑖∆ is the midpoint between 𝑧𝑖 and 𝑧𝑖+1, and 
∂ρ

∂𝑧𝑖∆
 is the density gradient between 𝑧𝑖 and 𝑧𝑖+1 and ∆ρ/∆z is 

the threshold value (kg m
-3

 m
-1

). The threshold values for all gradient methods, (i.e. M2, M3 and M4), ranged 210 

from 0.025 kg m
-3

 m
-1

 to 0.2 kg m
-3

 m
-1

 at intervals of 0.025 kg m
-3

 m
-1

.   

2.4.3 Gradient from the pycnocline method (M3) 

In M3, the epilimnion depth was defined as the deepest depth where the density between consecutive measured 

depths exceeded the threshold value, starting from the depth of the maximum density gradient (hereafter the 

‘pycnocline’) as the reference depth, and moving to successively shallower measured depths. M3 can be 215 

described by, 

𝑧𝑒 = 𝑧𝑖∆ + (∆ρ/∆z − 
∂ρ

∂𝑧𝑖∆
) (

𝑧𝑖∆− 𝑧𝑖∆+1
∂𝜌

∂𝑧𝑖∆
−

∂𝜌

∂𝑧𝑖∆+1

).  
 

(3) 

2.4.3 rLakeAnlayzer (M4) 

In M4, the epilimnion depth was defined using the rLakeAnalylzer function ‘meta.depths’ (relating to output 

“meta.top”), which used the same numerical scheme as M3, Eq. (3), but differed in certain assumptions (Read et 

al., 2011). Firstly, in M4, the epilimnion depth was prohibited from extending below the depth of the 220 

pycnocline. Therefore, for profiles where the predefined threshold value was less than the maximum density 

gradient, the epilimnion depth defaulted to the maximum density gradient. This differed from the other methods 

where, for such profiles, the epilimnion depth was defaulted to the deepest measured depth. Secondly, a user 

defined filter (‘mixed.cutoff’ object) was used to remove profiles which were not sufficiently stratified to 

identify an epilimnion depth. We used the default filter value, which removed profiles where the overall water 225 

temperature range was less than 1°C. For the days which did not meet the filter value, and no epilimnion depth 

was identified, we set the epilimnion depth to the deepest measured depth (i.e. no epilimnion depth) to ensure 

each method had the same number of data points for comparison with other methods.  

2.4.5 Modelled turbulence method (M5) 

The modelled turbulence method (M5) used the GOTM lake model simulated profile estimates of vertical eddy 230 

diffusivity (m
2 

s
-1

). In M5, the epilimnion depth was defined as the first depth, from the lake surface, where the 

vertical eddy diffusivity fell below the predefined threshold value, and was described as; 

𝑧𝑒 = 𝑧𝑖 + (∆𝐾𝑧 − 𝐾𝑧𝑖
) (

𝑧𝑖+1−𝑧𝑖

𝐾𝑧𝑖+1−𝐾𝑧𝑖

),  
(4) 

where 𝐾𝑧 is vertical eddy diffusivity (m
2 

s
-1

) and ∆Kz is the threshold value (m
2
 s

-1
). The thresholds ranged from 

10
-5

 to 10
-4

 m
2
 s

-1
 at intervals of 10

-5
 m

2
 s

-1
, based on the values described in Wüest and Lorke (2009) and 

MacIntyre and Melack (2009).  235 
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2.5 Analysis methods  

2.5.1 Comparison between a water temperature and water density derived method 

To compare water temperature and water density based estimates of the epilimnion depth, we used M1 only and 

used a water temperature threshold of 1 °C with a density threshold of 0.1 kg m
-3

 for both sites. Firstly, we 

investigated the relationship between 1 °C and 0.1 kg m
-3

 throughout the year. To do this, we calculated the 240 

long-term mean water column temperature for each Julian day. For each day, we then calculated the change in 

density that would result from a 1 °C increase in the water temperature and then subtracted 0.1 kg m
-3

. Positive 

values, indicated that a 1 °C increase in the water temperature, resulted in a greater than 0.1 kg m
-3

 change in 

water density, while negative values, indicated a less than 0.1 kg m
-3

 change in water density. Secondly, we 

compared water temperature and water density based estimates of the epilimnion depth. To do this, we 245 

calculated the difference between the mean water density derived estimate and the water temperature derived 

estimate for each Julian day. Positive differences, indicated that the water density derived estimate was 

shallower than the water temperature derived estimate, while negative values, were deeper. For all analysis of 

measured data, the total number of observations were used for Lough Feeagh (n= 2778, years = 10) and Lake 

Erken (n = 2005, years = 7).  250 

 

2.5.2 Comparison between water density based methods (M1 – M4) 

Following this, we compared water density based epilimnion depth estimates, using all four methods: M1, M2, 

M3 and M4 and the range of thresholds described earlier. Using data from both sites, we considered overall 

variability (i.e. how much do estimates vary between all methods and all thresholds?), variability within each 255 

individual method using different threshold definitions (i.e. how sensitive are estimates to the threshold value 

selected?) and variability between methods (i.e. what systematic differences exist between pairs of methods?). 

Given that we had a total of 32 time series to compare, 4 methods each with 8 threshold values, it was necessary 

to compute summary statistics for each of them. Therefore, the following statistics were calculated for all 32 

time series, for the period from 1
st
 April to 31

st
 October each year and then averaged across all years. Firstly, we 260 

calculated the mean epilimnion depth and presented the values for all methods and all thresholds values. We 

also summarised these statistics for each method, showing the mean, standard error of mean, minimum 

(shallowest), maximum (deepest) and interquartile range for each method, to demonstrate differences between 

methods. A large interquartile range in epilimnion depth estimates indicated high sensitivity to the threshold 

value. Secondly, we calculated the percentage of days with available data, where the epilimnion depth was 265 

detected above the deepest measured depth. This demonstrated differences between methods in regards to the 

stratified period. Thirdly, we calculated the percentage of days with available data where the epilimnion depth 

was detected above the maximum density gradient or pycnocline. By definition the epilimnion should have 

relatively small density gradients and should not be equal or deeper than the pycnocline, however automated 

methods, have been found to regularly encroach on the metalimnion (Lorbacher et al., 2006). We therefore used 270 

this metric to investigate how frequently epilimnion depth estimates calculated by each method erroneously 

extended into the metalimnion.  

 

Pearson’s correlation coefficients were also calculated for all possible combinations between the 32 time series, 

to quantify the degree of association between them, without using any estimates of significance (Thomson and 275 

Fine, 2003, Rivetti et al., 2016). The full correlation matrices were calculated and then for clarity, we presented 
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only the mean Pearson’s correlation coefficient for each method, representing the mean correlation for all 

possible combinations between threshold values. This indicated the extent to which changing the threshold value 

influenced the temporal patterns. We also presented the mean Pearson’s correlation coefficients between each 

pair of methods (e.g. for all threshold combinations between M1 and M2 etc.) to demonstrate method 280 

agreement. 

 

2.5.3 Sensitivity of epilimnion depth to water column structure and vertical sensor resolution 

We also assessed the sensitivity of the profile based methods to changes in the water column structure and the 

vertical sensor resolution of measured data. For the water column structure sensitivity analysis, we calculated 285 

the long-term mean epilimnion depth estimate for each Julian day for all 32 method/threshold time series. For 

each method, using all thresholds, we calculated the range for each Julian day. The range in estimates was 

presented alongside the top-bottom density gradient for each Julian day, to investigate whether threshold 

sensitivity varied temporally and with water column structure. For the vertical sensor deployment resolution 

sensitivity analysis, we compared simulated water density profiles for both lakes at two different resolutions. 290 

High resolution data was resolved to 0.5 m for both lakes. Low resolution data were subset to a mean of 1 sensor 

per 3 m, using the measured depths for Lough Feeagh, and data from 1, 2.5, 5, 8 and 13 m for Lake Erken. We 

then calculated the difference between the Apr-Oct mean epilimnion depth for the high and low resolution data. 

Methods where the high and low resolution data produced very different estimates were regarded as having high 

sensitivity to the vertical resolution of the data, while methods with small differences indicated low sensitivity. 295 

For all analysis using simulated data, the total number of observations were used for Lough Feeagh (n = 1016, 

years = 5) and Lake Erken (n = 1449, years = 7). 

 

2.5.4 Comparison with modelled turbulence method (M5) 

Finally, we assessed how each profile based method compared against the turbulence based estimates. For this 300 

analysis, both water density and vertical eddy diffusivity profile data were derived using the GOTM lake model. 

Then, using the same procedures as the measured data, we calculated the mean Apr-Oct epilimnion depth for 

each method. We then calculated the difference between the turbulence method (M5) and each of the four 

profile based methods (M1- M4). We also presented the mean Pearson’s correlation coefficients between each 

method and M5 (e.g. for all threshold combinations between M5 and M1, etc.). These results indicated the 305 

extent to which profile based methods were able to characterise active mixing penetration, within a 

hydrodynamic model setting, rather than confirming which method was more reliable for predicting the ‘true’ 

mixing depth.  

3 Results 

3.1 Comparison between a water temperature and water density derived method 310 

There were large systematic differences between the epilimnion depth calculated using a water temperature 

based method compared to values calculated using a water density based method (Fig. 3). Due to the non-linear 

relationship between water density and water temperature, the difference in density induced by a water 

temperature increase of 1°C (water column mean) varied seasonally, with the pattern differing between sites 

(Fig. 3a). We found that on average, during the spring (April-May), when water column temperatures in both 315 

lakes were relatively low, a change of 1°C resulted in a water density change of less than 0.1 kg m
-3

, as shaded 
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in blue. As a result of this anomaly, estimates of the epilimnion depth that were based on water temperature data 

were shallower compared to those calculated using the water density method (Fig.3b). In contrast, in general 

from June to October for both sites, a change of 1°C in water temperature induced a change in water density of 

greater than 0.1 kg m
-3

, as shaded in red, which resulted in estimates of the epilimnion depth which were deeper 320 

when using water temperature compared to those estimated using water density. Based on the long-term daily 

means, the differences in the estimates of epilimnion depth between the two methods ranged from 3 to 5 m for 

Lough Feeagh, and 2 to 4 m for Lake Erken.  

3.2 Comparison between water density based methods (M1 – M4) 

Inspection of water column profiles highlighted key differences in the performance of methods M1, M2, M3 and 325 

M4 (Fig. 4). In a stratified profile, with a well-defined three-layered water column profile, there was often 

strong agreement on the epilimnion depth between all methods and thresholds (Fig. 4a). In contrast, when the 

measured temperature profile was more complex, i.e. at times when there was some stratification close to the 

surface or when a secondary pycnocline had developed close to the surface, there was less agreement on the 

estimates of the epilimnion depth between methods (Fig. 4b). For such profiles, estimates of the epilimnion 330 

depth calculated with the absolute difference from the surface method, M1, were typically staggered at linear 

intervals along the profile depending on the exact threshold value. In contrast, the estimated epilimnion depth 

calculated using the gradient methods (M2, M3 and M4) had a tendency to cluster at discrete locations on the 

profile. Therefore, a small change in the threshold value induced either no difference at all in the epilimnion 

depth or at other times a very large difference. For profiles with low water column stability, there was 335 

particularly large differences in the estimated epilimnion depth calculated using different methods, reflecting 

differing underlying assumptions (Fig.4c). For M3, for example, the epilimnion depth was defaulted to the 

deepest depth when the threshold value was not exceeded, as was also the case for methods M1 and M2. In 

contrast, however, in M4, near-isothermal profiles often met the ‘mixed.cutoff’ filter condition (i.e. water 

column range > 1°C), whilst still not having sufficient density gradients to meet the user threshold value. As a 340 

result, in M4, the epilimnion depth was defaulted to the pycnocline, which, given the small density gradients, 

was often found at a very shallow depth.  

 

Time series results demonstrated the extent of the variability in epilimnion depth estimates between all methods 

and thresholds (Fig. 5). Considering that all the time series estimates for Lough Feeagh (left-side) and Lake 345 

Erken (right-side) were presumed to estimate the same theoretical location, they would ideally all produce 

exactly the same temporal patterns. Instead, the differences were large enough to obscure the annual patterns 

and hinder the ability to compare between the two lakes. The overall mean epilimnion depth estimate using 

methods M1-M4 and all thresholds was -28.1 m (standard error = 0.6 m, IQR = 19.0 m) for Lough Feeagh and -

11.0 m (standard error = 0.1 m, IQR = 2.3 m) for Lake Erken. The overall variability between all estimates was 350 

particularly high for Lough Feeagh, where the Apr-Oct mean epilimnion depth ranged by 36.9 m (-4.6 m to -

41.5 m) while in Lake Erken, estimates ranged by 5.2 m (-7.8 m to -13.0 m) (Fig.6a). 

 

There were evident systematic differences between methods. In both lakes, the mean Apr-Oct epilimnion depth 

for each method was shallowest for M1 and was on average shallower by 17.0, 16.6 and 2.2 m compared with 355 

methods M2, M3 and M4 in Lough Feeagh, and 1.2, 1.7, 0.8 m in Lake Erken (Table 2.). The minimum 

(shallowest) estimates of the Apr-Oct mean, for gradient methods (M2, M3 and M4) were comparable in 

magnitude to the maximum (deepest) estimate for the absolute difference from the surface method, M1. The 
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mean Pearson’s correlation coefficient between each pair of methods also demonstrated that certain method 

pairs had greater temporal agreement than other pairs (Table 3). The full correlation matrices are available in the 360 

Supplement (Table S2). Method pairs, M3-M2 and M4-M1 had particularly high Pearson correlation 

coefficients for both lakes, suggesting these methods produced similar temporal trends. In Lake Erken all 

method pairs had higher Pearson’s correlation coefficients than Lough Feeagh.  

 

The selection of a threshold value proved to be very important in the estimation of the epilimnion depth. For all 365 

methods, smaller threshold values produced shallower estimates of the mean Apr-Oct epilimnion depth while 

larger threshold values produced deeper estimates (Fig.6a). Methods with a large range between the shallowest 

(minimum) and deepest (maximum) estimate demonstrated high sensitivity to the threshold value (Table 2). For 

both lakes, the interquartile range in the mean Apr-Oct epilimnion depth estimates for each method was very 

high for M2, M1 and M3, indicating high threshold sensitivity in these methods. Method M4 had a substantially 370 

lower interquartile range than all other methods and a very high mean Pearson’s correlation coefficient, 

indicating that both the mean value and the temporal pattern of the epilimnion depth were only weakly 

influenced by the threshold value. In both lakes, methods M2 and M1, where the epilimnion depth was defined 

from the surface downwards, had a higher interquartile range in estimates calculated with different threshold 

values, compared to methods M3 and M4, where the epilimnion was defined from the pycnocline upwards. M1, 375 

however, had higher mean Pearson’s correlation coefficient than M2 and M3, indicating that the temporal 

pattern of the epilimnion depth was less influenced by the threshold value. In general, the threshold sensitivity 

of each method reduced with increasing threshold size. That is, the changes in the epilimnion depth occurring 

between threshold values decreased with increasing threshold value (Fig.6a). For example, for M2, the 

difference in the Apr-Oct mean epilimnion depth between the first two thresholds (0.025 and 0.05 kg m
-3

 m
-1

) 380 

was much greater than the difference between the last two thresholds (0.175 and 0.2 kg m
-3

 m
-1

), in both lakes.  

 

The percentage of stratified days, defined as days where the epilimnion depth was identified as shallower than 

the deepest measured depth, demonstrated the extent to which different methods/thresholds influenced the 

stratified period (Fig.6b). For M4, the percentage of stratified days remained static regardless of the threshold 385 

value, because the epilimnion depth was detected for all profiles where the water column temperature range was 

more than 1 °C, regardless of the threshold used. For all other methods, the number of stratified days decreased 

with increasing threshold value. For M1 the difference in stratified days between threshold values was small, 

compared to both gradient methods M2 and M3, particularly in Lough Feeagh. For example, in Lough Feeagh, 

for M3, the number of stratified days calculated using a threshold value of 0.025 kg m
-3

 m
-1

 was 125, while for 390 

threshold values greater than 0.075 kg m
-3

 m
-1

, the mean number of stratified days per annum decreased to less 

than 38 days.  

 

The percentage of days where the epilimnion depth was located above the pycnocline, defined as days where the 

epilimnion depth was identified above the maximum density gradient, indicated that some methods may be less 395 

prone to erroneously estimating the epilimnion depth in the metalimnion, compared with others (Fig.6b). For 

both lakes, M1 had the highest number of days where the epilimnion depth was located above the pycnocline, 

suggesting that on average the method extended into the metalimnion less frequently than other methods. In 

Lough Feeagh, all gradient methods, M2, M3 and M4, had very high range occurring between the different 
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threshold values. In Lough Feeagh, gradient methods calculated with a threshold value greater than 0.15 kg m
-3

 400 

m
-1

, resulted in an average of zero days where the epilimnion depth was located above the pycnocline.  

3.3 Sensitivity of epilimnion depth to water column structure 

For all methods, threshold sensitivity fluctuated seasonally, although varied in pattern (Fig. 7). Threshold 

sensitivity was shown by the interquartile range between the epilimnion depth estimates calculated for all 

threshold values. In Lough Feeagh, M1 had a smaller interquartile range in epilimnion depth estimates during 405 

the peak summer months of June, July and August, compared with months when the onset and overturn of 

stratification commonly occurred. During periods of transient stratification, the stability of the water column 

was often low but frequent changes in the near-surface water density, induced large differences between 

estimates calculated using small thresholds compared with large threshold values. In contrast, methods M2 and 

M3 had the highest interquartile range in estimates occurring during the peak summer months. Even during peak 410 

summer in Lough Feeagh, gradients in the water column were relatively small (Fig. 7b), which resulted in a very 

large differences between the smallest threshold values which found a near-surface epilimnion depth, and the 

largest thresholds that often found no epilimnion depth at all, therefore defaulting to the deepest depth. In Lake 

Erken, the water density gradients were typically much larger, and methods M1, M2 and M3 all peaked during 

May and June, when gradients in the water column were typically increasing but prone to fluctuations. 415 

Compared with all other methods, M4 produced substantially lower interquartile range in the epilimnion depth 

throughout the year, since as long as the ‘mixed.cutoff’ filter was met, the epilimnion depth was defaulted to the 

pycnocline if the threshold was not exceeded, thus largely reducing the ability for large differences to occur. The 

interquartile range in epilimnion depth estimates for M4 was highest during the peak summer months, which 

was when the epilimnion depth was typically shallowest and more frequently defined by the threshold value 420 

rather than defaulting to the pycnocline. 

3.4 Sensitivity of epilimnion depth to vertical sensor resolution 

The vertical resolution of water density data was found to have a systematic influence on the estimation of the 

epilimnion depth for all methods (Table 4). Overall, the modelled higher vertical resolution data resulted in 

shallower estimates of the epilimnion depth, relative to the estimates made with the modelled low resolution 425 

data. For Lough Feeagh, the results showed that the annual mean Apr-Oct epilimnion depth estimate using high 

resolution data were on mean 0.1, 3.2, 3.2 and 0.5 m shallower than those using low resolution data for methods 

M1, M2, M3 and M4 respectively, while in Lake Erken they were 0.0, 1.2, 1.0, 0.2 m shallower. Methods M1 

and M4 had substantially smaller differences between high and low resolution estimates compared with M2 and 

M3. In particular, M1 had almost no difference between high and low resolution data, indicating that this 430 

method had very low sensitivity to the vertical sensor deployment.  

3.5 Comparison with modelled turbulence method (M5) 

In general, the modelled turbulence method had very low sensitivity to the threshold value, compared with the 

profile based methods also calculated using modelled data. A time series comparison of all modelled results is 

available in the Supplement (Fig. S1). For both lakes, we found that the modelled turbulence method produced 435 

shallower estimates than modelled profile based methods (Table 5). In Lough Feeagh, the mean Apr-Oct 

epilimnion depth estimate using the modelled turbulence method M5 was -20.8 m, which was 1.3 m, 11.0 m, 

11.2 m and 1.3 m shallower than methods M1, M2, M3, and M4 respectively, while in Lake Erken the M5 

estimate was -11.0 m, which was 0.0 m, 1.0 m, 1.1 m and 0.4 m shallower. In both lakes, M1 had the strongest 

agreement with M5, demonstrated by both the mean difference (1.3 m in Lough Feeagh and 0.0 m in Lake 440 
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Erken), and the highest Pearson’s correlation coefficient in Lough Feeagh (r = 0.90) and Lake Erken (r = 0.89). 

This was followed by M4, which also had strong agreement with M5. In contrast, M2 and M3 had much weaker 

agreement with M5, in terms of both the Apr-Oct epilimnion depth estimate and the Pearson’s correlation 

coefficients.  

4 Discussion 445 

The concept of the epilimnion, and more widely, the three-layered structure of a stratified lake, is fundamental 

in limnology. Yet, despite the ubiquity of the term, there is no objective or generic approach for defining the 

epilimnion and a diverse number of approaches prevail in the literature. In a comprehensive analysis of high-

frequency, multi-year data from two lakes, this study has highlighted the extent to which common water 

temperature profile based epilimnion depth estimates differ. The level of variability in epilimnion depth 450 

estimates calculated using common methods and threshold values, was exceedingly high. This result calls into 

question the practice of arbitrary method selection and comparing findings between studies which use different 

methods or even just different thresholds. The magnitude of variability also casts ambiguity on the calculation of 

key biogeochemical and ecological processes in a lake that rest on the assumption that the layers of a lake are 

well defined, including calculations of metabolic rates, and oxygen fluxes (e.g. Coloso et al., 2008, Foley et al., 455 

2012, Obrador et al., 2014, Winslow et al., 2016).  

 

In an idealised stratified profile, the epilimnion is portrayed as near-uniform in water temperature or density and 

clearly delineated from a well-defined metalimnion. However, many measured profiles, at least within this 

study, did not conform to this idealised three-layered structure. Instead the thermal water column structure was 460 

often more complex, including multiple pycnoclines, near-surface micro-stratification layers, and blurred 

boundaries between the epilimnion/metalimnion. One approach to this issue is to filter out appropriate water 

column profiles or apply functions that coerce the profile into the expected structure (Read et al., 2011, Pujoni et 

al., 2019, Gray et al., 2020). Our analysis of temporally high resolution time series data emphasised, however, 

that rather than jumping from states, such as stratified or isothermal, changes in the water column occurred over 465 

an evolving continuum and often fluctuated between states. Similarly, the distinction between additional layers, 

such as the primary or secondary pycnocline, is fraught with the same issues of arbitrariness as discussed (Read 

et al., 2011). This study demonstrates that when epilimnion depth estimation methods, which are theorised for a 

three-layered water column, are applied to non-conforming water columns, they diverge widely on the location 

of the epilimnion depth, and at times, may not even be underpinned by the same theoretical assumptions. Since 470 

none of these methods can be considered the ‘true’ definition of the epilimnion depth, it is necessary to 

understand the degree to which methods differ. Improved understanding of their systematic differences will 

facilitate the use of methods that appropriately capture different processes, such as air-water exchanges, 

thermocline entrainment or the suspension of materials. Due to the realised complexities of observed and 

aggregated profile data, we may benefit from new approaches to water column discretisation that consider the 475 

vast proportion of profiles which do not conform neatly to the three-layered paradigm. 

 

A large systematic difference was found between water temperature and water density. Due to the non-linear 

relationship between water density and temperature, the use of water temperature was equivalent to using 

different density threshold values throughout the year, resulting in a distinct shift in the stratification period. 480 
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Although water density gradients are driven by temperature changes in lakes and are also calculated from water 

temperature estimates, water density directly influences mixing processes and is therefore recommended for 

estimating the epilimnion depth (Read et al., 2011, Gray et al., 2020). The implications of using a water 

temperature based method may be particularly enhanced in Northern temperate lakes due to the large annual 

water temperature ranges (Maberly et al., 2020). Pronounced differences in the estimation of the epilimnion 485 

depth were also found within estimates derived using the same water density input data. Typically, for the range 

of common thresholds used in this study, the absolute difference from the surface method, M1, produced 

shallower estimates relative to gradient based methods. In addition, the difference between these methods was 

particularly large when the vertical resolution of the data was low. This suggests that studies using gradient 

based methods, particularly those using coarse vertical data, may have a deep bias relative to those using an 490 

absolute method, and consequently, were more prone to erroneously extending into the metalimnion. In 

addition, as may be expected, the use of larger threshold values also produced systematically deeper estimates of 

the epilimnion depth. Surprisingly, however, the magnitudes of these differences were on par with those 

occurring between methods. The implications of a shallow or deep bias may be far-reaching, particularly given 

that various biological and ecological metrics have already been found to be highly sensitive to changes in the 495 

epilimnion depth (Coloso et al., 2008, Gray et al., 2020). For example, a deeper estimate of the epilimnion depth 

would systematically lead to a larger ratio between the epilimnion and euphotic depth, compared with a 

shallower estimate, which if used to understand the development of a phytoplankton bloom, could lead to 

contradictory results (Huisman et al., 1999). Alternatively, water temperature-based estimates typically resulted 

in earlier stratification, which could indicate a longer duration of phytoplankton in a shallower epilimnion. The 500 

implications of a seasonal or deep/shallow biases may be even more important for computing fluxes (e.g. 

oxygen or nutrients) between the epilimnion and the metalimnion, since both terms are influenced by the 

epilimnion depth (Giling et al., 2017, Gray et al., 2020). 

An important difference was also found between methods detecting the layer that is isothermal relative to the 

surface and methods detecting the point that is isothermal relative to the steep gradients of the metalimnion, 505 

which has not been well considered in the literature. M1 and M2, defined from the surface downwards, were 

more prone to the detection of a shallow secondary pycnocline, compared with M3 and M4. Instead, M3 and 

M4, defined from the pycnocline upwards, prioritised the relative difference between the metalimnion and the 

surface. From a theoretical point of view, processes related to the air–water interface could be better suited to 

methods identifying the isothermal layer, while for processes related to the entrainment of deep water into the 510 

epilimnion are more suited to top of the metalimnion methods. 

The selection of an epilimnion method also had surprisingly large consequences for understanding the 

stratification period, which is widely used for quantifying the impact of climate change on lakes (Livingstone, 

2003, Butcher et al., 2015, Ayala et al., 2020). Notably, the mean epilimnion depth and number of stratified 

days calculated using M4, depended very little on the threshold value selected. Instead, the selection of the filter 515 

(defaulted to a water column range of > 1°C), which was unique to this method, determined the number of 

stratified days and largely influenced the other bulk statistics. This also resulted in the epilimnion being 

identified even when the threshold was not exceeded, which in some instances could have the effect of muting 

relative temporal changes in the epilimnion depth. In contrast, for the other methods, the threshold was used to 

determine whether the water column was considered to be stratified and therefore the stratification period was 520 

highly sensitive to the threshold value, similarly to the other bulk statistics. Ultimately, these results suggest that 
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the stratification period calculated in different studies or for different regions cannot be compared unless 

identical definitions are used. The method most appropriate for identifying the stratified period has been 

considered in other studies (Woolway et al., 2014, Engelhardt and Kirillin, 2014) however our results offer 

some additional insights. The results suggest that use of water density metrics, such as epilimnion depth 525 

estimates, in combination with traditional water temperature based definitions of stratification, are incompatible, 

given the non-linear relationship between temperature and density. In addition, estimations of the epilimnion 

depth, and the variability among definitions, may be particularly relevant for understanding the stratified period 

since it is often assumed that the onset of stratification marks the decoupling of the epilimnion from the deeper 

layers, thus determining the duration of nutrient limitations in the epilimnion and oxygen limitations in the 530 

hypolimnion (MacIntyre, 1993, Foley et al., 2012, Schwefel et al., 2016). 

Regardless of the method selected, however, all water temperature/density based methods are limited in their 

ability to indicate actual mixing processes. Our results using the lake modelled turbulence data demonstrated 

that even in a modelled environment, epilimnion depth estimates were inconsistent between the different 

methods and threshold values studied, and that turbulence based methods generally resulted in a shallower 535 

epilimnion depth estimate. These findings highlight the important but subtle difference between the layer 

detected by water density profiles (i.e. has been recently well-mixed and therefore has little resistance to further 

mixing due to the lack of density gradients), and the layer that is actively mixing, determined only through 

directly measured turbulence (Gray et al., 2020). Similarly, micro-profiling studies have shown that the actively 

mixing layer can be substantially shallower than the layer determined through water temperature profile data 540 

(McIntyre et al., 1993, Tedford et al., 2014). Micro-profile studies also demonstrate that within seemingly 

uniform layers there are micro-stratification layers, delineated by temperature differences as small as 0.02°C 

(Imberger, 1985, Shay and Gregg, 1986, MacIntyre, 1993; Jonas et al. 2003), which can be sufficient to isolate 

intermediate layers from atmospheric wind shear and cooling (Pernica et al., 2014). Although our results are not 

directly indicative of measured data, they demonstrate how even turbulence based methods are inherently 545 

arbitrary, as there is no objective threshold value (Monismith and Macintyre, 2009). Many of the ecological 

applications of the epilimnion depth have the underlying assumption that enough mixing is occurring in the 

epilimnion to keep the relevant organisms or particles suspended within the layer. Whether mixing is actually 

occurring, however, and to what extent, is not directly described by epilimnion depth estimations derived using 

water temperature or density profile data, and in fact, previous studies have found water density estimates of the 550 

epilimnion depth to be relatively poor indicators for the homogeneity of other ecological variables (Gray et al., 

2020). 

The selection of a suitable threshold value is far more important than previously attributed in limnology. In 

general, a suitable threshold is any value that can be reasonably considered as homogenous while also within the 

limit of sensor detection (De Boyer et al., 2004). However, all the threshold values used in this study met these 555 

criteria, yet produced fundamentally different epilimnion depth estimations and temporal patterns. Although, it 

may be unreasonable to suggest a ‘universal’ threshold value, a given study may find a threshold that is less 

problematic than other values. In general, we found that the sensitivity of the epilimnion depth to the threshold 

value decreased with the increasing size of the threshold. That is, for small thresholds the impact of changing 

the threshold value was greater than larger thresholds for the same incremental change. This may suggest that 560 

for studies using smaller threshold values, the results are more threshold dependent than those using large 

threshold values. However, larger threshold values had greater frequency of the epilimnion depth estimates 
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being below the maximum density gradient, suggesting that larger threshold values tend to extend into the stable 

depths of the metalimnion more regularly, and hence somewhat explaining the lower threshold sensitivity. The 

trade-off between threshold sensitivity and encroachment into the metalimnion points towards a mid-range 565 

threshold, such as 0.1 kg m
-3

 or 0.1 kg m
-3

 m
-1

, as potentially, being more reliable than large or small thresholds.  

One of the main goals behind the global collection of high-frequency data in lakes is to understand how physical 

processes vary between lakes, which indicate how different lakes may respond to changing climatic conditions 

(Weathers et al., 2013, Kraemer et al., 2015, Woolway et al., 2019). In order to understand this, we require 

methods that perform consistently between lakes and over longitudinal scales. The differences between the two 570 

lakes studied, in particular variability in water column structure, the strength of density gradients and the 

vertical resolution of sensor deployment, influenced the level of agreement between epilimnion depth methods. 

Overall, Lake Erken had much greater agreement among methods than Lough Feeagh. In particular, we found 

this to be related to the difference in vertical resolution of the measured data between sites. Of all the methods 

considered in this study, our results suggest that the absolute difference from the surface method, M1, might be 575 

more useful as a ‘generic’ method, due in particular to the very low sensitivity to the vertical sensor resolution 

compared with all other gradient based methods. This finding is in agreement with previous oceanography 

studies that have similarly found gradient methods to be highly sensitive to vertical resolution (e.g. Lorbacher et 

al., 2006, Thomson and Fine, 2003). In addition, however, the performance and threshold sensitivity of all 

methods also fluctuated temporally as influenced by changes in the water column structure. Assessment of the 580 

uncertainty associated with epilimnion depth estimates may be useful, particularly for studies comparing the 

epilimnion depth between periods of time that vary in stratification intensity.  

 

Although long-term epilimnion depth trends are only rarely reported directly (e.g. Hondzo and Stefan, 1993, Fee 

et al., 1996, Sahoo et al., 2013), they are embedded in our understanding of many climate related variables. For 585 

example, the epilimnion depth plays a key role in modulating the effects of eutrophication, browning and 

climate change on lake water surface and epilimnetic temperatures (Persson and Jones, 2008, Flaim et al., 2016, 

Strock et al., 2017, Bartosiewicz et al., 2019). As such, changes in the epilimnion depth may enhance or mute 

the effect of increasing incoming heat on water surface temperatures and therefore may be particularly important 

in explaining temporal and spatial anomalies in surface temperature trends. Given the results of this study it may 590 

be that long-term trends calculated using different metrics relate to fundamentally different parts of the water 

column that may be undergoing different changes due to climate change. Therefore, the strength, and even the 

direction, of long-term trends in the epilimnion may be highly dependent on the definition used (Yang and 

Wang, 2008, Somavilla et al., 2017). 

5 Conclusion 595 

This study has demonstrated the extent to which different definitions of the epilimnion depth lead to different 

locations of the epilimnion depth in the water column and produce very different and contradictory temporal 

patterns. These results have wide-reaching relevance in limnology, including for studies interested in 

metabolism, eutrophication, and hypolimnetic anoxia. The sensitivity of epilimnion depth methods to temporal 

and spatial characteristics, such as morphology, water column structure and vertical resolution of data 600 

measurements may also pose challenges for studies interested in long-term trends or global lake comparison 
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studies. While there is no prescribed rationale for selecting a particular method, the M1 method, defined as the 

shallowest depth where the density was 0.1 kg m
-3

 more than the surface density, was shown to be particularly 

insensitive to the vertical sensor resolution of water temperature data, while the temporal pattern was relatively 

robust to changes in the threshold value, and therefore may be particularly useful as a generic method. 605 

Code and data availability 

The analysis codes and output data are stored in HydroShare 

http://www.hydroshare.org/resource/26dbc260405b4bb9b3ac16ec55432684. Source code of the model GOTM 

is freely available online at https://gotm.net/. The data used in this study from Lough Feeagh is available 
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Tables 

Table 1. Lake model performance evaluation, showing the percentage relative error (%), root mean squared 890 
error (°C), and Nash Sutcliffe efficiency, for Lough Feeagh (profiles = 1016, years = 5) and Lake Erken 

(profiles = 1449, years = 7). 
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Table 2. Summary of statistics for each method, showing the mean (m) and standard error of mean in brackets, 900 
minimum (i.e. shallowest estimate) (m), maximum (i.e. deepest estimate) (m) and interquartile range (m) of the 

April-October epilimnion depth estimates (summarised from the results shown in Fig.6a), and the mean 

Pearson’s correlation coefficient (r) for each method, representing the mean correlation for all possible 

combinations between threshold values., for Lough Feeagh and Lake Erken.  

 905 

 
Lough Feeagh Lake Erken  

Method  Mean (m)  
Min 

(m) 
Max 

(m) 
IQR 

(m) 
r Mean (m)  

Min 

(m) 
Max 

(m) 
IQR 

(m) 
r  

M1 -19.0 (0.8) -4.6 -25.4 7.3 0.77 -10.0 (0.2) -7.8 -11.2 1.3 0.92 

M2 -35.9 (0.9) -19.7 -41.4 6.5 0.48 -11.3 (0.2) -8.4 -12.9 1.7 0.78 

M3 -36.5 (0.8) -22.4 -41.5 6.1 0.49 -11.8 (0.2) -10.0 -13.0 1.2 0.82 

M4 -21.1 (0.5) -19.7 -21.5 0.3 1.00 -11.9 (0.1) -10.1 -11.3 0.5 0.99 

 
Table 3.  Mean of all Pearson’s correlation coefficients calculated for each pair of methods (e.g. for all 

threshold combinations between M1 and M2 etc.), for Lough Feeagh and Lake Erken.  

 

 
Lough Feeagh  Lake Erken  

Method r r 

M2-M1 0.35 0.77 

M3-M1 0.33 0.74 

M3-M2 0.55 0.8 

M4-M1 0.68 0.81 

M4-M2 0.29 0.71 

M4-M3 0.3 0.75 
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Statistic Lough Feeagh Lake Erken  

 Calibration Validation Calibration Validation 

PRE (%) -0.48 0.47 -1.85 1.36 

RMSE (°C) 0.67 1.18 0.53 0.55 

NSE 0.97 0.92 0.98 0.97 

https://doi.org/10.1111/fwb.12966
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Table 4. Mean Apr-Oct epilimnion depth estimates (m) derived using high resolution and low resolution 

modelled water temperature data with standard error of the mean in brackets, and the difference calculated 

between the high resolution and low resolution estimate (m), for Lough Feeagh and Lake Erken.  920 
 

 
Lough Feeagh  Lake Erken 

 

 Method 
High 

resolution 

mean (m) 

Low 

resolution 

mean (m)  

Difference in 

mean 

epilimnion 

depth (m)  

High 

resolution 

mean (m) 

Low 

resolution 

mean (m)  

Difference in 

mean 

epilimnion 

depth (m)  

 

 
M1 -22.1 (0.7) -22.2 (0.7) 0.1 -10.9 (0.1) -10.9 (0.1) 0.0 

 
M2 -31.7 (1.1) -34.9 (1.2) 3.2 -11.9 (0.2) -13.1 (0.2) 1.2 

 
M3 -32.0 (1.1) -35.2 (1.1) 3.2 -12.1 (0.2) -13.1 (0.2) 1.0 

 
M4 -22.1 (0.6) -22.6 (0.6) 0.5 -11.3 (0.1) -11.5 (0.1) 0.2 

 
 

 

Table 5. Difference in mean Apr-Oct epilimnion depth estimates (m) between each profile based method (M1-

M4) calculated using lake modelled data and the modelled turbulence method (M5) and mean of all Pearson’s 925 
correlation coefficients (r) calculated for each profile-based method and M5 (e.g. for all threshold combinations 

between M5 and M1 etc.), for Lough Feeagh and Lake Erken. Positive differences indicate that the modelled 

turbulence method was shallower. 

 

Method 

Lough Feeagh  

 

Lake Erken   

Difference in 

mean epilimnion 

depth (m) 

r 

Difference in mean 

epilimnion depth 

(m) 

r 

M5-M1 1.3 0.90 0.0 0.89 

M5-M2 11.0 0.55 1.0 0.73 

M5-M3 11.2 0.54 1.1 0.72 

M5-M4 1.3 0.88 0.4 0.85 
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Figures 930 

 

 

 
 

 

 

 

 
 

Figure 1. Bathymetric map of Lough Feeagh in Ireland (a) and Lake Erken in Sweden (b), where the grey stars 

shows the locations of the automatic monitoring buoys used for measuring high-frequency water temperature 

profiles in both lakes, and long-term mean water temperature for each Julian day for all measured depths, for 

Lough Feeagh (profiles = 2778, years = 10) (c) and Lake Erken (profiles = 2005, years = 7) (d). 935 
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Figure 2. Schematic of epilimnion depth methods used in this study, including the range of threshold values for each method and the input data type (i.e. water 

temperature/density profile data or lake modelled data).  945 
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 950 

 

Figure 3. Long-term mean for each Julian day of the difference in water density (kg m
-3

) induced by an increase 

of 1 °C in water temperature, relative to 0.1 kg m
-3

 (black line with the red shaded area demonstrating when the 

change induced by an increase of 1 °C change was greater than 0.1 kg m
-3

 and the blue shaded area for when it 

was less than 0.1 kg m
-3

) (a), and the long-term mean for each Julian day of epilimnion depth calculated using a 955 
water temperature threshold of 1 °C (the black line), compared to a water density threshold of 0.1 kg m

-3
 

(shaded area, with the red shaded areas demonstrating when water density estimates were shallower and the blue 

shaded area for when they were deeper) (b), for Lough Feeagh and Lake Erken.  
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 985 
Figure 4. An example of water column profiles with the epilimnion depth estimates superimposed (horizontal 

lines) for all for all profile-based epilimnion depth methods calculated using the full range of thresholds for 

each. The water columns can be categorised as a three-layered water column structure (a), an intensely stratified 

profile (b), and a near-isothermal profile (c), all from Lake Erken only.  
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 1000 

Figure 5. Daily epilimnion depth estimates using measured data for 2017 from Lough Feeagh and Lake Erken, 

showing estimates from all profile-based epilimnion depth methods, including M1, the absolute difference from 

the surface method (a), M2, the gradient from the surface method (b), M3, the gradient from the pycnocline 

method (c) and M4, the rLakeAnalyzer method (d), calculated using the full range of thresholds, and for each 

lake.  1005 
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Figure 6. Mean Apr-Oct epilimnion depth (m) (a), percentage of stratified days, defined as days where the 1025 
epilimnion depth was identified as shallower than the lake maximum measured depth (% ) (where a larger 

percentage value indicated a higher occurrence of days identified as stratified) (b), and percentage of days where 

the epilimnion depth was above the pycnocline, defined as the number of days where the epilimnion was 

identified at a depth shallower than the maximum density gradient (where a larger percentage value indicated a 

lower occurrence of days erroneously extending into the metalimnion) (c), for Lough Feeagh and Lake Erken.  1030 
 

 

 

 

 1035 
 

 

 

 

 1040 
 

 

 

 

 1045 
 

 

 

(a) 

(b) 

(c) 



29 

 

 
Figure 7. Inter-quartile range between the shallowest and deepest estimate for each method calculated from 1050 
long-term daily mean epilimnion depth estimates for each Julian day, where a large range suggests high 

threshold sensitivity and a small range suggests low sensitivity (a), and long-term daily mean water density 

gradient, calculated based on the surface and maximum measured depths (b), for Lough Feeagh and Lake Erken.  
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