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Abstract. A deep learning rainfall-runoff model can take multiple meteorological forcing products as inputs and learn to

combine them in spatially and temporally dynamic ways. This is demonstrated using Long Short Term Memory networks

(LSTMs) trained over basins in the continental US using the CAMELS data set. Using meteorological inputs from different

data products (NLDAS, Maurer, DayMet) in a single LSTM significantly improved simulation accuracy relative to using only

individual meteorological products. A sensitivity analysis showed that the LSTM combines precipitation products in different5

ways depending on location and also in different ways for simulating different parts of the hydrograph.

1 Introduction

All meteorological forcing data available for hydrological modeling are subject to errors and uncertainty. While temperature

estimates between different data products are frequently similar, precipitation estimates are often subject to large disagreements

(e.g., Behnke et al., 2016; Timmermans et al., 2019). The most accurate precipitation data generally come from in situ gauges,10

which provide point-based measurements of rainfall events, which are complex spatial processes (although in certain cases,

especially related to snow, modeled products might be better - e.g., Lundquist et al., 2019). However, large-scale hydrological

models require spatial data (usually gridded), which are necessarily model-based products resulting from a combination of

spatial interpolation, and/or satellite retrieval algorithms, and sometimes process-based modeling. Every precipitation data

product is based on different sets of assumptions that each potentially introduce different types of error and information loss.15

It is difficult to predict a priori how methodological choices in precipitation modeling or interpolation algorithms might lead to

different types of disagreements in the resulting data products (e.g., Beck et al., 2017; Newman et al., 2019). As an example of

the consequences of this difficulty, Behnke et al. (2016) showed that no existing gridded meteorological product is uniformly

better than all others over the continental United States (CONUS).

The primary strategy for dealing with forcing uncertainty in hydrological modeling is to use ensembles of forcing products20

(e.g., Clark et al., 2016). These can be ensembles of opportunity or they can be drawn from probability distributions, and they

can be combined either before (e.g., as precipitation) or after (e.g., as streamflow) being used in one or more hydrological

models. In any case, it is generally not straightforward to predict how differences between different forcing products will

translate into differences between hydrological model simulations (e.g., Yilmaz et al., 2005; Henn et al., 2018; Parkes et al.,
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2019), and given that data quality among different products varies over space and time, it is difficult to design ensembling25

strategies that maximize the information or value of forcing ensembles.

However, unlike conceptual or process-based hydrological models, machine learning (ML) or deep learning (DL) can use

multiple precipitation (and other meteorological) data products simultaneously. This means that it is not necessary to design

a priori strategies for combining input forcing data or for combining the outputs of hydrological models forced with different

data products. In principle, such models could learn to exploit potential nonlinear synergies in different (imperfect) precipi-30

tation data sets, or any other type of model input. Particularly, deep learning models that are able to learn spatiotemporally

heterogeneous behaviors, such as those used by Kratzert et al. (2019b, a) should be able to learn spatiotemporally dynamic

‘effective mixing’ strategies in the way that they leverage multiple input products in different locations and under different

hydrological conditions. If successful, this could provide a simple and computationally efficient alternative to ensembling

strategies currently used for hydrological modeling.35

2 Methods

2.1 Data

This study uses the Catchment Attributes and Meteorological dataset for Large Sample Studies (CAMELS; Newman et al.,

2014; Addor et al., 2017b). CAMELS contains basin-averaged daily meteorological forcing inputs derived from three different

gridded data products for 671 basins across CONUS. The three forcing products are (i) DayMet (Thornton et al., 1997), (ii)40

Maurer (Maurer et al., 2002), and (iii) NLDAS (Xia et al., 2012), the former has 1 km x 1 km spatial resolution and the latter

two have one-eighth degree (approximately 12.5 km x 12.5 km) spatial resolution. Although CAMELS includes 671 basins, to

facilitate a direct comparison of results with previous studies we used only the subset of 531 basins that were originally chosen

for model benchmarking by Newman et al. (2017), who removed all basins with area greater than 2000 km2, and also all basins

where there was a discrepancy of more than 10% between different methods of calculating basin area.45

Behnke et al. (2016) conducted a detailed analysis of eight different precipitation and surface temperature (daily max/min)

data products, including the three used by CAMELS. Those authors compared gridded precipitation and temperature values to

station data using roughly 4000 weather stations across CONUS. Their findings were that “no data set was ‘best’ everywhere

and for all variables we analyzed” and “two products stood out in their overall tendency to be closest to (Maurer) and

farthest from (NLDAS2) observed measurements.” Furthermore, they did not find a “clear relationship between the resolution50

of gridded products and their agreement with observations, either for average conditions ... or extremes” and noted that the

“high-resolution DayMet ... data sets had the largest nationwide mean biases in precipitation.”

Figure 1 gives an example of disagreement between precipitation products in CAMELS that we hope to capitalize on by

training a model with multiple forcing inputs. This figure shows the noisy relationship between the three precipitation products

in a randomly-selected basin (USGS ID: 07359610). The idea is that DL should be able to mitigate the type of noise shown in55

the scatter plot in the right-hand panel of Fig. 1.
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Figure 1. Illustration of the relationship between three CAMELS precipitation products at a randomly-selected basin (USGS ID: 07359610).

The left-hand subplots show the first 100 days of precipitation data from all three products during the test period, and the right-hand subplot

shows scatter between the three products over the full test period. The scatter shown in the right-hand subplot is the data uncertainty that

we would like to mitigate. In this particular basin, there appears to be a 1-day shift between DayMet and Maurer, which is common in the

CAMELS data set (this shift is apparent in 325 of the 531 basins; see Figure 2)
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Figure 2. Spatial distributions of lagged vs. non-lagged correlations between DayMet and Maurer test-period precipitation. Positive values

indicate that the 1-day lagged correlation is higher.

The left-hand subplot of Fig. 1 shows a time-shift between DayMet and Maurer precipitation in the same basin. This type

of shift is common. Behnke et al. (2016), for example, reported that “[b]ecause gridded products differ in how they define

a calendar day (e.g., local time relative to Coordinated Universal Time), appropriate lag correlations were applied through

cross-correlation analysis to account for the several-hour offset in daily station data.” We performed a lag-correlation analysis60

on the precipitation products in CAMELS and found a higher correlation between DayMet and Mauer when Mauer was lagged

by one day in 325 (of 531) basins. Figure 2 shows the percent difference between lagged vs. non-lagged correlations between

DayMet and Maurer.

Each of the forcing products in CAMELS includes daily precipitation (mm/d) and maximum and minimum daily temperature

(◦C), vapor pressure (Pa), and surface radiation (W/m2). The original CAMELS data set hosted by the US National Center for65

Atmospheric Research (Newman et al., 2014) only contains daily mean temperatures for Maurer and NLDAS. CAMELS-

relevant Maurer and NLDAS products with daily minimum and maximum temperatures are available from our HydroShare
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DOI (see data availability section). We used all five meteorological variables from all three data products as inputs into the

models. In addition to the three daily forcing data sets from CAMELS, we used the same 27 catchment attributes as Kratzert

et al. (2019a, b), which consist of topography, climate, vegetation, and soil descriptors (Addor et al., 2017a). Prior to training70

any models, all input variables were normalized independently by subtracting the CONUS-wide mean and dividing by the

CONUS-wide standard deviation.

2.2 Models

Long Short-Term Memory networks (LSTMs) are a type of recurrent neural network (Hochreiter, 1991; Hochreiter and

Schmidhuber, 1997b; Gers et al., 1999). LSTMs have a state-space that evolve through a set of input-state-output relation-75

ships. Gates, which are activated linear functions, control information flows from inputs and previous states to current state

values (called an input gate), from current states to outputs (called an output gate), and also control the timescale of each ele-

ment of the state vector (called a forget gate). States (called cell states) accumulate and store information over time, much like

the states of a dynamical systems model. Technical details of the LSTM architecture have been described in several previous

publications in hydrology journals, and we refer the reader to Kratzert et al. (2018) for a detailed explanation geared towards80

hydrologists.

2.3 Benchmarks

Because all relevant benchmark models from previous studies (Kratzert et al., 2019b, see e.g.) were calibrated using only

Maurer forcings, we produced a benchmark using the SAC-SMA model with multiple meteorological forcings. Following

Newman et al. (2017), we calibrated SAC-SMA using the dynamically dimensioned search (DDS) algorithm (Tolson and85

Shoemaker, 2007) implemented in the Spotpy optimization library (Houska et al., 2019) using data from the training period in

each basin. SAC-SMA was calibrated separately n= 10 times with n= 10 different random seeds in each basin for each of

the three meteorological data products. This resulted in a total of 30 calibrated SAC-SMA models for each basin.

To check our SAC-SMA calibrations, we compared the performance of our Maurer calibrations against SAC-SMA model

from the benchmark data set calibrated by Newman et al. (2017). We used the (paired) Wilcoxon test to test for significance90

in any difference between the average per-basin performance scores from our n= 10 different SAC-SMA calibrations with

Maurer forcings vs. the SAC-SMA calibrations with Maurer forcings from Newman et al. (2017). The p-value of this test was

p≈ 0.9, meaning no significant difference.

Results reported in Section 3 used a simple average of these 30 SAC-SMA ensembles in each basin, which is what we

found to be the most accurate overall. We also tested (not reported) a Bayesian model averaging strategy with basin-specific95

likelihood weights chosen according to relative training-performance of the SAC-SMA ensemble members using Gaussian

likelihoods with a wide range of variance parameters. We were not able to achieve a overall higher performance in the test

period using an ensembling method more sophisticated than equal-weighted averaging. There are possibilities to potentially

improve on this benchmark (e.g., Duan et al., 2007; Madadgar and Moradkhani, 2014), however as will be shown in Section 3,
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the difference between ensemble averaging and the multi-input LSTMs is large and we would be surprised if any ensembling100

strategy could account for this difference.

2.4 Experimental Design

We trained n= 10 LSTMs using (1) all of the three forcing products together, (2) for each pairwise combination of forcing

products (DayMet & Maurer, DayMet & NLDAS, and Maurer & NLDAS), and (3) separately for all three forcing products

individually.105

For each of these seven input configurations, we trained an ensemble of n= 10 different LSTMs with different randomly

initialized weights. We report the statistics from averaging the simulated hydrographs from each of these 10-member ensembles

(single model results are provided in Appendix A). Ensembles are used to account for randomness inherent in the training

procedure. The importance of using ensembles for this purpose was demonstrated by Kratzert et al. (2019b). Notice that

ensembles are used here to mitigate a different type of uncertainty than when using ensembles for combining forcing products.110

In this case, the model learns how to (dynamically) combine forcing products, and ensembles are used for the same reason as

proposed by Newman et al. (2017): to account for randomness in the calibration/training.

The training period was from 1 October 1999 to 30 September 2008 (9 years of training data for each catchment) and the test

period was 1 October 1989 to 30 September 1999 (10 years of test data for each catchment). A single LSTM was trained on

the combined training period of all 531 basins. Similar to previous studies (Kratzert et al., 2019b, a), we used LSTMs with 256115

memory cells and a dropout rate of 0.4 (40%) in the fully connected layer that derives network predictions (streamflow) from

LSTM output. All models were trained with a mini-batch size of 256 for 30 epochs using the Adam optimizer (Kingma and

Ba, 2014) with an initial learning rate of 1e-3, reduced to 5e-4 after 20 epochs and further reduced to 1e-4 after 25 epochs. All

inputs were standardized to have zero mean and unit variance over all 531 catchments collectively. During model evaluation,

negative predictions in the original value space were clipped to zero, i.e. no negative discharges. The loss function was the120

basin-averaged Nash-Sutcliffe Efficiency (NSE), see Kratzert et al. (2019b).

2.5 Analysis

We examined the experiments described above with two types of analyses. The goal is to provide illustrations of how the LSTM

leverages multiple forcing products in spatiotemporally dynamic ways.

– Analysis 1 - Feature Ablation: An ablation study removes parts of the network to gain a better understanding of the125

model. We adopted this procedure by removing the different meteorological forcing products in a step-wise fashion and

subsequently comparing results using several performance metrics and hydrologic signatures (see Table 1). To provide

context, we also benchmarked the LSTMs against ensembles of SAC-SMA models (see Section 2.3).

– Analysis 2 - Sensitivity & Contribution: We performed an input attribution analysis of the trained LSTM models to

quantify how the trained LSTMs leverage different forcing products in different places and under different hydrologic130

conditions. We concentrated the sensitivity analysis to the precipitation inputs because i) precipitation is consistently
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found to be the most important variable for rainfall-runoff modelling, which is also true for LSTMs (see, Frame et al.,

2020) and ii) according to Behnke et al. (2016) there is little difference in other meteorological variables between these

data products.

In addition, we performed an analysis that correlates estimated uncertainty in different precipitation products with LSTM135

performance to help understand in what sense the LSTM is using different precipitation data to mitigate data uncertainty

directly. This analysis is presented in Appendix C.

2.5.1 Analysis 1: Feature Ablation

All LSTM ensembles were trained using a squared-error loss function (the average of the basin-specific NSE values), how-

ever we are interested to know how the models simulate different aspects of the hydrograph. As such, we report a collection140

of hydrologically-relevant performance metrics outlined in Table 1. These statistics include the standard time-average per-

formance metrics (e.g., NSE, KGE), as well as comparisons between observed and simulated hydrologic signatures. The

hydrologic signatures we report are the same ones used by Addor et al. (2018). For each hydrologic signature, we computed

the Pearson correlation between the signatures derived from observed discharge vs. from simulated discharge in each basin.

Correlation metrics were calculated on simulated vs. observed signatures in all basins.145

2.5.2 Analysis 2: Sensitivity & Contribution

All neural networks (like LSTMs) are differentiable almost everywhere by design. Therefore, a gradient-based input contribu-

tion analysis seems natural. However, as discussed by Sundararajan et al. (2017), the naive solution of using local gradients

does not provide reliable measures of sensitivity, since gradients might be flat even if the model response is heavily influenced

by a particular input data source (which is not by necessity a bad property, see for example Hochreiter and Schmidhuber,150

1997a). This is especially true in neural networks, where activation functions often include step-changes over portions of the

input space - e.g., the sigmoid and hyperbolic tangent activation functions used by LSTMs have close-to-zero gradients at both

extremes (see also: Shrikumar et al., 2016; Sundararajan et al., 2017).

Sundararajan et al. (2017) proposed a method of input attribution for neural networks which accounts for this lack of local

sensitivity: this method is called integrated gradients. Integrated gradients are a path integral of the gradients from some155

baseline input value x′, to the actual value of the input, x:

IntegratedGradsapproxi (x) :=
xi−x′i
m

m∑
k=1

∂F (x̃)

∂x̃i

∣∣∣∣
x̃=x′+ k

m (x−x′)

. (1)

We used a value of zero precipitation everywhere as the baseline for calculating integrated gradients with respect to the three

different precipitation forcings (DayMet, Maurer, NLDAS). We calculated the integrated gradients of each daily streamflow

estimate in each CAMELS basin during the 10-year test period with respect to precipitation inputs from the past 365 days (the160

look-back period of the LSTM). That is, on day t= T , we calculated 1095 = 3 ∗ 365 integrated gradient values related to the

three precipitation products. The relative integrated gradient values quantify how the LSTM combines precipitation products
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Table 1. Description of the performance metrics (top part) and signatures (bottom part) considered in this study. For each signature, we

derived a metric by computing the Pearson correlation between the signature of the observed flow and the signature of the simulated flow

over all basins. Description of the signatures taken from Addor et al. (2018)

Metric/Signature Description Reference

NSE Nash-Sutcliff efficiency Eq. 3 in Nash and Sutcliffe (1970)

KGE Kling-Gupta efficiency Eq. 9 in Gupta et al. (2009)

Pearson rt Pearson correlation between observed and simulated flow

α-NSE Ratio of standard deviations of observed and simulated flow From Eq. 4 in Gupta et al. (2009)

β-NSE Ratio of the means of observed and simulated flow From Eq. 10 in Gupta et al. (2009)

FHV Top 2% peak flow bias Eq. A3 in Yilmaz et al. (2008)

FLV Bottom 30% low flow bias Eq. A4 in Yilmaz et al. (2008)

FMS Bias of the slope of the flow duration curve between the 20% and 80% percentile Eq. A2 Yilmaz et al. (2008)

Peak-Timing Mean peak time lag (in days) between observed and simulated peaks See Appendix B

Baseflow index Ratio of mean daily baseflow to mean daily discharge Ladson et al. (2013)

HFD mean
Mean half-flow date (date on which the cumulative discharge since October first reaches

half of the annual discharge)
Court (1962)

High flow dur.
Average duration of high-flow events (number of consecutive days >9 times the

median daily flow)
Clausen and Biggs (2000), Table 2 in Westerberg and McMillan (2015)

High flow freq. Frequency of high-flow days (>9 times the median daily flow) Clausen and Biggs (2000), Table 2 in Westerberg and McMillan (2015)

Low flow dur.
Average duration of low-flow events (number of consecutive days <0.2 times the

mean daily flow)
Olden and Poff (2003), Table 2 in Westerberg and McMillan (2015)

Low flow freq. Frequency of low-flow days (<0.2 times the mean daily flow) Olden and Poff (2003), Table 2 in Westerberg and McMillan (2015)

Q5 5% Flow quantile (low flow)

Q95 95% Flow quantile (high flow)

Q mean Mean daily discharge

Runoff ratio Runoff ratio (ratio of mean daily discharge to mean daily precipitation, using DayMet precipitation) Eq. 2 in Sawicz et al. (2011)

Slope FDC Slope of the flow duration curve (between the log-transformed 33rd and 66th streamflow percentiles Eq. 3 in Sawicz et al. (2011)

Stream elasticity
Streamflow precipitation elasticity (sensitivity of streamflow to changes in precipitation at

the annual time scale, using DayMet precipitation)
Eq. 7 in Sankarasubramanian et al. (2001)

Zero flow freq. Frequency of days with zero discharge.

over time, over space, and also as a function of lag or lead-time into the current streamflow prediction. In theory, one has to

take into account the effect of “explaining away", when analysing the decision process in models (Pearl, 1988; Wellman and

Henrion, 1993). However, we assume that if evaluated over hundreds of basins and thousands of time steps, this effect is largely165

averaged out and therefore the analysis provides an indication of the actual information used by the model.

3 Results & Discussion

3.1 Results: Analysis 1 - Feature Ablation

The feature ablation analysis compared NSE values over 10-year test periods from the CAMELS basins for the seven distinct

input combinations. As shown in Fig. 3, the three-forcing LSTM ensemble had a median NSE value of 0.82 for the 531 basins.170

The three-forcing model outperformed all two-forcing models. Similarly, all two-forcing models outperformed all single-

7



NLD
AS

Mau
rer

Day
Met

Mau
rer

 + Day
Met

NLD
AS +

 Mau
rer

NLD
AS +

 Day
Met

All c
om

bin
ed

0.2

0.0

0.2

0.4

0.6

0.8

1.0

NS
E

LSTM performance using different forcing inputs

Figure 3. Test-period comparison between single-forcing and multiple-forcing LSTM ensembles (n= 10) over 531 CAMELS basins. All

differences were statistically significant (α= 0.001), with the exceptions of "DayMet" vs. "Maurer" (p≈ 0.08) and "NLDAS + Maurer" vs.

"Maurer + DayMet" (p≈ 0.4)

forcing models (all improvements were statistically significant at α= 0.05, using the Wilcoxon test). The best single-forcing

LSTM had a median NSE of 0.77. This indicates that the LSTM was able to leverage unique information in the precipitation

signals (this is not an unusual finding in the context of machine learning, see for example: Sutton, 2019). We also note that

the single-forcing LSTM with Maurer inputs outperformed the single-forcing NLDAS model, which agrees with the results of175

Behnke et al. (2016) who showed that Maurer precipitation was generally more accurate than NLDAS precipitation.

To put these results into context, Fig. 4 compares all LSTMs against benchmark hydrology models, which are all ensembles

of SAC-SMA models that were calibrated for each of the three different forcings. All LSTM models were better than all cor-

responding benchmark models through the entire CDF curve. The following points can be seen in Fig 4. First, the SAC-SMA

sees a large improvement from using two-forcing products ensembles - this improvement was larger than the corresponding180

improvement in the LSTMs. However, adding calibrated SAC-SMA models from a third data product did not increase perfor-

mance by much (see e.g. Fig. 4a, where the NLDAS + DayMet ensemble CDF overlaps most of the time with the three forcing

ensemble). In contrast, CDFs of the LSTM results show a constant improvement from one- to two-forcing models, and from

two- to three-forcing models.

Second, the difference between the worst single-forcing ensemble and the three-forcing ensemble is larger for the LSTM185

(∆NSE=0.074) than for the SAC-SMA (∆NSE = 0.068). This difference could arise from the fact that the LSTM is better able

to handle the data shift of the Maurer forcings that occurs in some of the basins (see. Section 3.2), while this is impossible for

the SAC-SMA ensemble.

Third, the worst-performing single-forcing LSTM ensemble (i.e., with NLDAS forcings) was significantly better (p < 1e−
13) than the whole n= 30 SAC-SMA ensemble, which uses all three forcing products (i.e., the best SAC-SMA result that we190
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Figure 4. Empirical cumulative density function of the NSE performance over the 531 basins of different SAC-SMA ensembles (a and c)

and different LSTM ensembles (b and d). Top row shows the entire range of the cumulative density function, while the bottom row shows

the lower range in more detail. The red indicator lines mark the median NSE difference between the worst single forcing ensemble and the

multi-forcing ensemble of the LSTM and SAC-SMA, respectively.

found). In fact, even the average single LSTM (not the full n= 10 ensemble) trained with NLDAS forcings is as good as the

n= 30 SAC-SMA ensemble (see Appendix A for non-ensemble LSTM performances), and the average single LSTM (not the

ensemble) trained with Maurer or DayMet forcings was significantly better (p < 1e−8) than the n= 30 SAC-SMA ensemble.

Fourth, the ranking of the forcing products is not as clear for the SAC-SMA ensembles as it was the LSTM ensembles (there

is more separation in the LSTM single-forcing CDFs than the SAC-SMA singel-forcing CDFs). However, qualitatively, the195

same ranking is visible, i.e., that DayMet models are better than NLDAS or Maurer, and that NLDAS + DayMet produce the

best two-forcing results.

Table 2 and Table 3 give benchmarking results from all metrics and signatures in Table 1. The three-forcing LSTM signifi-

cantly out-performed the three-forcing SAC-SMA ensemble in all metrics except β-NSE decomposition, where the SAC-SMA

ensemble was better, and FLV where the difference was not significant (see Tab. 2). The three-forcing LSTM also significantly200

out-performed the three forcing SAC-SMA ensemble in all signatures (see Tab. 3), except the HFD mean and the Q95, where

the difference was not significant. Note that the LSTM - while generally providing the best model overall - has approximation

difficulties towards the extreme lower-end of the runoff distribution (low flow duration, low flow frequency, and zero flow

frequency).

Figure 5 shows the spatial distribution of the performance differences between the best single-forcing model and the three-205

forcing model in all basins. The three-forcing LSTM outperformed the single forcing LSTMs almost everywhere. Individual
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Table 2. Values of the benchmarking metrics from Table 1. Bold indicates the best model (α < 0.05). Multiple bold numbers per row indicate

no significant difference.

LSTM all forcing SAC-SMA all forcing

ensemble (n=10) ensemble (n=30)

NSEi (median) 0.821 0.705

NSEi (mean) 0.783 0.673

KGEii 0.801 0.650

Pearson riii 0.915 0.861

α-NSEiv 0.861 0.742

β-NSEv -0.028 0.024

FHVvi -13.818 -23.863

FLVvii 41.277 49.641

FMSviii -8.087 -29.418

Peak-Timingix 0.370 0.552

i: Nash-Sutcliffe efficiency: (−∞,1], values closer to one are desirable.
ii: Kling-Gupta efficiency: (−∞,1], values closer to one are desirable.
iii: Pearson correlation: [−1,1], values closer to one are desirable.
vi: α-NSE decomposition: (0,∞), values close to one are desirable.
v : β-NSE decomposition: (−∞,∞), values close to zero are desirable.
vi: Top 2 % peak flow bias: (−∞,∞), values close to zero are desirable.
vii: 30 % low flow bias: (−∞,∞), values close to zero are desirable.
viii: Bias of FDC midsegment slope: (−∞,∞), values close to zero are

desirable.
ix: Lag of peak timing: (−∞,∞), values close to zero are desirable.

exceptions where “less is more" do, however, exist (e.g., Southern California). Concretely, if we compare the three-forcing

model to the best performing single-forcing LSTM per basins, the three-forcing LSTM had a higher NSE in 66% of the basins

(351 of 531). When compared to each single-forcing LSTM separately, the three-forcing LSTM had a higher NSE in 443 (83%;

DayMet), 456 (86%; Maurer), and 472 (89%; NLDAS) basins.210

3.2 Results: Analysis 2 - Sensitivity & Contribution

Figure 6 shows the time- and basin-averaged integrated gradient of one of the n= 10 multi-forcing LSTMs as a function of

lead time. To reiterate from above, the integrated gradient is a measure of input attribution, or sensitivity, such that inputs with

higher integrated gradients have a larger influence on model outputs. Integrated gradients shown in Fig. 6 were averaged over

all time steps in the test period, and also over all basins. This figure shows the sensitivity of streamflow at time t= T to each of215

the three precipitation inputs at times t= T −s where s is the lag value on the x-axis. The main takeaways from this high-level

illustration of input sensitivities are: (1) that the sensitivity of current streamflow to precipitation decays with lead time (i.e.,
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Table 3. Values of the correlation coefficients (over 531 basins) of the simulated vs. observed hydrological signatures from Table 1. Bold

indicates the best model (α < 0.05). Multiple bold numbers per row indicate no significant difference.

LSTM all forcing SAC-SMA all forcing

ensemble (n=10) ensemble (n=30)

Baseflow index 0.93 0.80

HFD mean 0.98 0.96

High flow dur. 0.84 0.72

High flow freq. 0.81 0.68

Low flow dur. 0.50 0.41

Low flow freq. 0.79 0.63

Q5 0.96 0.90

Q95 0.99 0.99

Q mean 1.00 0.99

Runoff ratio 0.99 0.97

Slope FDC 0.65 0.62

Stream elasticity 0.72 0.67

Zero flow freq. 0.03 NaN

Best Single-Forcing Model DayMet-Only Model

Maurer-Only Model NLDAS-Only Model
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Figure 5. Spatial distribution of the NSE differences between the three-forcing LSTM relative to the best single-forcing model in each basin

(top-left subplot), and relative to each single-forcing model (other three subplots). Positive (purple) values represent basins where the three-

forcing LSTM improved over the single-forcing LSTM. Negative (brown) values reflect basins where the single-forcing LSTM had a higher

NSE than the three-forcing LSTM. In total, the three-forcing LSTM was better than the best single-forcing model in 351 of 531 basins (66%)

and was better than each single-forcing model in: 443 (83%; DayMet), 456 (86%; Maurer), and 472 (89%; NLDAS) basins.
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Figure 6. Time- and basin-averaged integrated gradients of one of the n= 10 multi-forcing LSTMs as a function of lag time (days before

current streamflow prediction) of the three precipitation products. Because of the time shift shown in Fig. 2, the model learned to ignore the

Maurer input at the current time step.

time before present) and (2) that the multi-forcing model has learned to ignore the Maurer input at the present time step. The

reason for the latter is the time shift in the Maurer product illustrated in Fig. 2.

Figure 6 shows results from only one of n= 10 model repetitions, however we performed an integrated gradient analysis on220

all n= 10 multi-input LSTMs (not shown), and the results were qualitatively similar. It is difficult to show all results on the

same figure because the values are relative, so integrated gradients between two different models often have different absolute

scales - the results presented for a single model in Fig. 6 are representative.

The multi-forcing LSTMs learned to combine the different precipitation products in spatiotemporally variable ways. Fig. 6

demonstrates the overall behavior of the multi-forcing LSTM. It is, however a highly condensed aggregate of a highly non-225

linear system. As such, a lot of specific information is lost in that figure.

Figure 7 shows integrated gradients by basin, and up to a lead time of s= 3 days prior to present. The model largely ignores

Maurer precipitation at the current time step in most basins - as was apparent in Fig. 6, but the ratio of the contributions of each

product (averaged over the whole test-period hydrograph) varies between basins. Figure 7 shows relative contributions of each

precipitation product, but it is important to note that the overall importance of precipitation also varies between basin.230

Figure 8 shows the spatial distribution of the most sensitive precipitation contribution (averaged over the whole hydrograph

in each basin) in the left-subplot, and the overall sensitivity to all three precipitation products combined in the right-subplot. The

latter (total sensitivity to precipitation relative to all other inputs) is highly correlated with the total (or average) precipitation

in the basin.

It is possible to break the spatial relationship down even further. The spatial distribution of the highest-ranked product as235

a function of the lag time for rising and falling limits is shown in Fig. 9. This figure shows some of the nuance in how the
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Figure 7. Expansion of Fig. 6 by individual basins, truncated at a lag of s= 3. The relative importance of DayMet is shown in blue, Maurer

in orange, and NLDAS in blue. The multi-forcing LSTM combined the precipitation products in different ways in different basins. DayMet

is generally more important in high-number basins, located in the Pacific Northwest

multi-forcing LSTM learned to combine the different precipitation products - by distinguishing between different memory

timescales in different basins for different hydrological conditions (i.e., rising and falling limbs of the hydrograph).

4 Conclusions

The purpose of this paper is to show that LSTMs can leverage different precipitation products in spatiotemporally dynamic240

ways to improve streamflow simulations. These experiments show that there exist systematic and location- and time-specific

differences between different precipitation products that can be learned and leveraged by deep learning. As might be expected,

the LSTMs tested here tended to improve hydrological simulations more when there were larger disagreement between different

precipitation estimates in a given basin (see Appendix C).
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Figure 8. The forcing product with highest overall contribution (sensitivity) in each basin (left-hand subplot) - averaged over prediction time

step and lag. The alpha value (opacity) of each dot on this map is a relative measure of the fraction of the total integrated gradients of all

three precipitation products (summed over time, lag, and product) due to the highest-contributing product. The right-hand subplot shows that

the total integrated gradient summed over all three precipitation products is highly correlated with total precipitation in the basin.

It is worth comparing these findings with classical conceptual and process-based hydrological models that treat precipitation245

estimate as an unique input. Current best-practice for using multiple precipitation products is to run an ensemble of hydrological

models, such that each forcing data set is treated independently. Deep learning models have the ability to use a larger number

and variety of inputs than classical hydrology models, and in fact, DL models do not need inputs that represent any given

hydrological variable or process, and therefore have the potential to use less highly processed input data like remote sensing

brightness temperatures, etc. Future work might focus on building runoff models that take as inputs the raw measurements that250

were used to create standard precipitation data products.

Deep learning provides possibilities not only for improving the quality of regional (Kratzert et al., 2019b) and even ungauged

(Kratzert et al., 2019a) simulations, but also potentially for replacing large portions of ensemble-based strategies for uncertainty

quantification (e.g. Clark et al., 2016) with multi-input models. There are many ways to deal with the uncertainty in traditional

hydrological modeling workflows, but almost certainly, the most common approach is to use ensembles. Ensembles can be255

opportunistic - i.e., from a set of pre-existing models or data products - or constructed - i.e., sampled from a probability

distribution, but in either case the idea is to use variability to represent lack of perfect information. Clark et al. (2016) advocated

for using ensembles as ‘hydrologic storylines’, which would avoid the problem of sparsity of sampling any explicit or implied

probability distributions. No matter how ensembles are used, however, with conceptual and process-based hydrology models,

each model takes one precipitation estimate (time series) as input. Multi-input DL models have the potential to provide a260

fundamentally different alternative for modeling under this kind of uncertainty, since DL models can learn how to combine

different inputs in ways that leverage - in nonlinear ways - all data available to the full simulation task. Future work could focus

on producing predictive probabilities with multi-input deep learning models.
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Figure 9. Spatial distribution of highest-ranked precipitation products at specific lags (different rows) over the whole hydrograph (left-

hand column), and the rising- and falling-limbs of the hydrograph (center and right-hand columns, respectively), where blue circles denote

DayMet, orange circles denote Maurer and green circles denote NLDAS. The take-away from this figure is that the multi-forcing LSTM

learns to combine the different products in different ways for different memory timescales in different basins and under different hydrological

conditions. The alpha value (opacity) of each dot is a relative measure of the fraction of the total integrated gradients of all three precipitation

products due to the highest-contributing product.

5 Code availability

The code to reproduce all LSTM results and figures will be made available at https://github.com/kratzert/multiple_forcing.265

Code for running and optimizing SAC-SMA is available from the ’multi-inputs’ branch at the following repository: https:

//github.com/Upstream-Tech/SACSMA-SNOW17.git
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6 Data availability

The validation periods of all benchmark models used in this study are available at

https://doi.org/10.4211/hs.474ecc37e7db45baa425cdb4fc1b61e1. The extended Maurer forcings, including daily minimum270

and maximum temperature, are available at https://doi.org/10.4211/hs.17c896843cf940339c3c3496d0c1c077. The extended

NLDAS forcings, including daily minimum and maximum temperature, are available at https://doi.org/10.4211/hs.0a68bfd7ddf642a8be9041d60f40868c.

Finally, the weights of the pre-trained models are available at https://doi.org/10.5281/zenodo.4670268
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Table A1. Average single LSTM performance over a variety of metrics. The average single model performances is computed as the mean of

the metric of the the n= 10 model repetitions.

NLDAS Maurer DayMet Maurer + NLDAS + NLDAS + All combined

DayMet Maurer DayMet

NSEi (median) 0.72 0.73 0.74 0.77 0.77 0.79 0.80

±0.003 ±0.003 ±0.002 ±0.003 ±0.004 ±0.002 ±0.001

NSEi (mean) 0.68 0.70 0.70 0.73 0.74 0.75 0.76

±0.003 ±0.006 ±0.002 ±0.003 ±0.002 ±0.002 ±0.002

KGEii (median) 0.74 0.76 0.76 0.79 0.78 0.79 0.80

±0.006 ±0.005 ±0.003 ±0.005 ±0.008 ±0.005 ±0.004

Pearson riii (median) 0.86 0.87 0.88 0.89 0.89 0.90 0.90

±0.002 ±0.002 ±0.002 ±0.001 ± 0.001 ±0.001 ±0.001

α-NSEvi (median) 0.83 0.86 0.86 0.88 0.85 0.87 0.88

±0.010 ±0.011 ±0.008 ±0.007 ±0.007 ±0.005 ±0.008

β-NSEv (median) -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.02

±0.005 ±0.004 ±0.004 ± 0.004 ± 0.004 ±0.002 ±0.004

FHVvi (median) -17.28 -13.89 -15.00 -12.52 -14.20 -13.15 -11.91

±0.904 ±1.217 ±0.504 ± 0.791 ± 0.881 ±0.450 ±0.549

FLVvii (median) -0.88 2.83 0.05 -4.02 0.86 -1.54 2.57

± 7.637 ±5.403 ±6.056 ± 6.825 ±5.499 ±6.955 ±4.072

FMSviii (median) -9.44 -7.31 -5.96 -5.60 -7.55 -6.93 -6.69

±1.293 ±1.500 ± 1.234 ±1.241 ±1.358 ± 0.911 ± 1.678

Peak-Timingix (median) 0.46 0.49 0.46 0.44 0.42 0.41 0.41

± 0.010 ±0.009 ±0.008 ±0.007 ± 0.007 ± 0.009 ± 0.015

i: Nash-Sutcliffe efficiency: (−∞,1], values closer to one are desirable.
ii: Kling-Gupta efficiency: (−∞,1], values closer to one are desirable.
iii: Pearson correlation: [−1,1], values closer to one are desirable.
vi: α-NSE decomposition: (0,∞), values close to one are desirable.
v : β-NSE decomposition: (−∞,∞), values close to zero are desirable.
vi: Top 2 % peak flow bias: (−∞,∞), values close to zero are desirable.
vii: 30 % low flow bias: (−∞,∞), values close to zero are desirable.
viii: Bias of FDC midsegment slope: (−∞,∞), values close to zero are desirable.
ix: Lag of peak timing: (−∞,∞), values close to zero are desirable.

Appendix A: Average LSTM single model performance
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Table A2. Average single LSTM performance across a range of different hydrological signatures. The derived metric for each signature is

the Pearson correlation between the signature derived from the observed discharge vs. the signature derived from the simulated discharge.

The average single model performances is then reported as the mean value of the the n= 10 model repetitions.

NLDAS Maurer DayMet Maurer + NLDAS + NLDAS + All combined

DayMet Maurer DayMet

Baseflow index 0.93 0.92 0.93 0.94 0.93 0.93 0.92

±0.014 ±0.018 ±0.011 ±0.005 ±0.013 ±0.009 ±0.018

HFD mean 0.95 0.97 0.97 0.97 0.97 0.97 0.97

±0.004 ±0.003 ±0.002 ±0.002 ±0.003 ±0.003 ± 0.004

High flow dur. 0.82 0.85 0.83 0.86 0.85 0.85 0.85

±0.027 ±0.014 ±0.010 ±0.014 ±0.014 ±0.008 ± 0.014

High flow freq. 0.82 0.82 0.82 0.82 0.81 0.81 0.79

±0.013 ±0.014 ±0.016 ±0.016 ±0.040 ± 0.032 ±0.037

Low flow dur. 0.44 0.42 0.46 0.47 0.43 0.46 0.45

±0.033 ±0.027 ±0.025 ±0.035 ±0.018 ±0.015 ±0.039

Low flow freq. 0.83 0.82 0.84 0.86 0.82 0.84 0.83

±0.020 ±0.044 ±0.028 ±0.022 ±0.027 ±0.021 ±0.043

Q5 0.95 0.95 0.96 0.96 0.95 0.96 0.96

±0.005 ±0.006 ±0.003 ±0.003 ± 0.005 ±0.005 ±0.003

Q95 0.99 0.99 0.98 0.99 0.99 0.99 0.99

±0.001 ±0.001 ±0.001 ±0.001 ± 0.000 ±0.001 ±0.000

Q mean 0.99 1.00 0.99 0.99 1.00 0.99 1.00

±0.001 ±0.000 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000

Runoff ratio 0.98 0.98 0.98 0.98 0.98 0.98 0.99

±0.002 ± 0.001 ± 0.001 ± 0.001 ± 0.001 ±0.001 ± 0.001

Slope FDC 0.62 0.63 0.59 0.56 0.59 0.59 0.57

±0.095 ±0.053 ± 0.093 ± 0.053 ± 0.061 ±0.091 ±0.096

Stream elasticity 0.61 0.69 0.70 0.70 0.68 0.69 0.71

±0.015 ±0.024 ±0.017 ±0.018 ±0.025 ±0.032 ±0.021

Zero flow freq. 0.30 0.42 0.27 0.33 0.33 0.31 0.28

±0.101 ± 0.097 ± 0.088 ± 0.080 ±0.067 ± 0.086 ±0.085
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Appendix B: Peak flow timing275

To evaluate the model performance on the peak timing we used the following procedure: First, we determined peaks in the

observed runoff time series by locality search. That is, potential peaks are defined as local maxima. To reduce the number of

peaks and filter out noise, the next step was an iterative process where, by pairwise comparison, only the maximum peak is

kept until all peaks have at least a distance of 100 time steps to each other. The procedure is implemented in SciPy’s find_peak

function (Virtanen et al., 2020) and is used in the current work.280

Second, we iterated over all peaks and searched for the corresponding peak in the simulated discharge time series. The

simulated peak is defined as the highest discharge value inside of a window of ±3 days around the observed peak. And, the

peak timing error is the offset between the observed peak and the simulated peak. The resulting metric is the average offset

over all peaks.

Appendix C: Analysis of precipitation uncertainty285

The goal of this supplementary analysis was to understand the relationship between precipitation uncertainty and improvements

to streamflow simulations due to using multiple forcing data sets. Because we don’t have access to ’true’ precipitation values in

each catchment, we used triple collocation to estimate precipitation uncertainty. Triple collocation is a statistical technique to

estimate error variances of three or more noisy measurement sources without knowing the true values of the measured quantities

(Stoffelen, 1998; Scipal et al., 2010). Its major assumption is that the error models are linear and independent between sources;290

in particular, that all (three or more) measurement sources are each a combination of a scaled value of the ’true’ variable plus

additive random noise:

Mi,t = αiTt + εi,t, (C1)

where M∗ are measurement values (i.e. here the modeled precipitation values), subscript i represents the source (DayMet,

Maurer, NLDAS), and subscript t represents the time step in the test period (1 October 1989 to 30 September 1999); T∗ is295

the unobserved true value of total precipitation in a given catchment on a given day; ε∗ are i.i.d. measurement errors from any

distribution.

The linearity assumption is not appropriate for precipitation data, which are typically assumed to have multiplicative er-

ror. Following Alemohammad et al. (2015), we assumed a multiplicative error model for all three precipitation source, and

converted these to linear error models by working with the log-transformed precipitation data:300

Mi,t = αiTt
βi + eεi,t (C2)

ln(Mi,t) = αi +βiTt + εi,t. (C3)

Standard triple collocation is then applied, so that estimates of the error variances for each source are:

σi = Ci,i−
Ci,jCi,k
Cj,k

, (C4)
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Figure C1. Triple collocation error variances (σ – Eq. C4) and truth-correlations (ρ – Eq. C5) plotted against NSE scores of the single-

forcing LSTM models. ρ describes how much correlation there is between the given data product and the estimated truth and σ describes

the estimated disagreement between a given data product and the other two data products. DayMet typically produces lower NSE values in

basins where triple collocation reports that the precipitation error variances are high, whereas NLDAS produces lower NSE values in basins

where triple collocation reports that the error variances are low. There is no apparent pattern in the Maurer data.

for all i, j,k, where Ci,j is the covariance between the time series of source i and source j; σi is the variance of the distribution305

that each i.i.d. εi,t is drawn from.

Additionally, extended triple collocation (McColl et al., 2014) allows us to derive the correlation coefficients between mea-

surement sources and truth as:

ρi =
Ci,jCi,k
Ci,iCj,k

. (C5)

This triple collocation analysis was applied separately in each of the 531 CAMELS catchments to obtain basin-specific310

estimates of the error variances, σi, and truth-correlations, ρi, for each of the three precipitation products. Albeit, the assumption

that the forcing products have independent error structures (i.e. εi,t |= εj,t) is not met in our case we expect the results to be

robust enough for the purpose at hand.

DayMet typically produced lower NSE values in basins where triple collocation reported that the DayMet precipitation error

variances were high. This is what we would expect: low model skill in basins with high precipitation error. However, we did315

not see similar patterns with the other two precipitation products - see Fig. C1, where the triple collocation error variances and

truth-correlation are plotted against the NSE scores of the single-source models. In fact, the NLDAS LSTM tended to perform

worse in basins with lower precipitation error (as estimated by triple collocation).

One reason for this is shown in Figure C2, which is an adapted version of Fig. C1 that highlights a few high-skill, high-

triple-collocation-variance NLDAS basins in blue. These basins correspond to a cluster of basins in the Rocky Mountains320

(Fig. C3) where NLDAS has low correlation with the other two products but still yields high-skill LSTM simulations. What
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Figure C2. As in Fig. C1 the triple collocation error variances (σ – Eq. C4 and truth-correlations (ρ – Eq. C5) are plotted against NSE scores

of the single-forcing LSTM models. The coloring shows the anomalous NLDAS basins in blue and all others in red. For these basins NLDAS

has low correlation with the other two products but still yields high-skill simulations.
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Figure C3. Spatial distribution of anomalous NLDAS basins shown in Fig. C2 (left) compared with elevation of the CAMELS basins (right).

is happening here is that triple collocation measures (dis)agreement between measurement sources, rather than error variances

directly. Thus, the results in Figure C1 that appear to show NLDAS forcing models tending to perform well in basins with

high precipitation error is driven in part by the fact that there are a few basins in the Rockies where NLDAS disagrees with,

but is generally better than, the other two products. What Figure C1 is really showing is disagreement between precipitation325

estimates, and it is not necessarily the case that if one precipitation product disagrees with the others then this product contains

more error. The LSTM is able to learn and account for this type of situation - it is not simply learning to trust one product over

the others, and it is not simply learning to do something resembling a ’majority vote’ in each basin.

Figure C4 plots model performance against the individual variances of the precipitation products in each basin. This figure

shows that the single-forcing DayMet LSTM tended to perform better in catchments with higher total precipitation variance330
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Figure C4. Performance of single-input models relative to the total variance of log-precipitation in each basin. The DayMet model tends to

perform better in wetter basins (as the total DayMet variance increases), but the other two products have poor performing basins in catchments

with high precipitation variance.

(not triple collocation error variance). This is again not true for the other two models, where higher total variance was associated

with a higher variance in model skill, indicating higher proportion of the total variance is likely due to measurement error.

To analyse the synergy due to using all forcings in a single LSTM we transposed the NSE improvements in each basin (due

to using all three forcing products in the same LSTM) with the log-determinant of the covariance matrix of all three (stan-

dardized, log-transformed) precipitation products (Fig. C5). The log-determinant is a proxy for the joint entropy of the three335

(standardized, log-transformed) products, and increases when there is larger disagreement between the three data sets. Unlike

in Fig. C4, the variances in Fig. C5 were calculated after removing the mean and overall variance of each log-transformed

precipitation product so that the log-determinant of the covariance is not affected by the overall magnitude of precipitation

in each catchment (i.e., does not increase in wetter catchments). With the exception of the anomalous NLDAS basins, Fig.

C5 shows that the three-forcing model offered improvements with respect to the single-forcing models when there was larger340

disagreement between the three data sets. This indicates that there is value in diversity among precipitation data sets, and that

the LSTM can exploit this diversity.
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Figure C5. Fractional increase in NSE from the three-forcing model relative to the single-forcing models plotted against the log-determinant

of the covariance matrix of all three (standardized, log-transformed) precipitation products (|Σ|). |Σ| increases when there is a larger disagree-

ment between the three datasets, approximating the joint entropy of the three products. With the exception of the anomalous NLDAS basins

(blue markers), the three-forcing model offers improvements with respect to the single-forcing models when there is larger disagreement

between the three data sets. The three-forcing model learned to leverage synergy in these three precipitation products.
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