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Abstract 

Several research studies have addressed the effects of future climate changes on the 

hydrological regime of Mahanadi river basin located in eastern part of India. However, studies 

investigating the effects of future land cover changes on hydrology are limited owing to the 10 

lack of availability of projected land cover scenarios. Our study investigates how the hydrology 

of Mahanadi river basin would respond to the current and future land cover scenarios under 

a large-scale hydrological modelling framework. Both historical and future land cover 

scenarios from the recently released, Land use Harmonisation (LUH2) project for CMIP6, 

indicates cropland and forest are the major land cover types in the basin with a noticeable 15 

increase in the cropland (23.3%) at the expense of forest (22.65%) by the end of year 2100 

compared to the baseline year, 2005. A physically semi-distributed model, the Variable 

Infiltration Capacity has been set up and implemented over the Mahanadi river basin system 

for the time period 1990-2010. The uncertain model parameters were subjected to Sensitivity 

Analysis and calibrated within a Monte Carlo framework. The best set of calibrated models 20 

obtained is used in conjunction with the harmonized set of present and future land use 

scenarios from LUH2 at 25 km by 25 km resolution to generate an ensemble of model 

simulations that captures a range of plausible impacts of land cover changes on discharge and 

other hydrological components of the basin. Overall, model simulation results indicate an 

increase in the extreme flows (i.e., 95th percentile or higher) in the range of 0.12 to 21 % at 25 

multiple subcatchments within the basin. This increase can be attributed to the direct 

conversion of forested areas to agriculture (on the order of 30,000 km2) that has reduced the 

Leaf Area Index and subsequently reduces the Evapotranspiration (ET). These changes 

ultimately affect other water balance components at the land surface, resulting in an increase 

in surface runoff and baseflow, respectively.  30 
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1. Context and Background 

Land use and land cover change (LULC) induced by the rapid anthropogenic activities, is one 35 

of the major causes of change in hydrological and watershed processes (Rogger et al., 2016). 

Alterations of existing land cover types and  land management practices in a catchment can 

thereby, significantly modify the rainfall path into runoff by changing the hydrological 

dynamics such as surface runoff, baseflow, Evapotranspiration (ET), water holding capacity of 

the soil, interception and groundwater recharge , thus reflecting a change in the water 40 

demand (Berihun et al., 2019; Bosch and Hewlett, 1982; Costa et al., 2003; Foley et al., 2005; 

Garg et al., 2017; Hamman et al., 2018; Mao and Cherkauer, 2009; Zhang et al., 2014). Rapid 

growth in population in the developing countries has prominent effects on LULC dynamics 

through deforestation at the expense of increased agricultural production. Deforestation 

among all other land use changes is the major cause of modifying various hydrological 45 

processes such as ET, surface runoff, baseflow and snowmelt processes (Dwarakish and 

Ganasri, 2015; Gao et al., 2009). The complex relationships between the human induced land 

cover change and the hydrological processes have gained widespread attention among 

various scientific communities across the world. In this regard, several studies have been 

carried out that links the LULC changes and the hydrological dynamics within a river basin 50 

(Abe et al., 2018; Behera et al., 2018; Berihun et al., 2019; Chu et al., 2010; Costa et al., 2003; 

Rogger et al., 2016; Thomson et al., 2018; Wang et al., 2008; Wilk and Hughes, 2002). 

However, the exact role of LULC changes in modifying river discharge is still elusive (Rogger 

et al., 2016) and therefore, remains a challenge to isolate the sole impacts of land use changes 

on hydrology of a river basin (Tsarouchi and Buytaert, 2018). The challenge also lies in solving 55 

these complex processes in a heterogenous catchment coupled with limited hydro-

climatological data (Gebremicael et al., 2019; Li and Sivapalan, 2011).  

Changes in land use and cropping patterns are modifying the hydrological cycle in many river 

basins of India. In 1980’s, Central, North-Eastern and Peninsular India was bestowed with 

woody savannas which is mostly forest lands (Paul et al., 2016). Since then, rapid urbanization 60 

and agricultural intensification are the constant reasons behind the depletion of natural 
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vegetations and conversion of woody savannas to the cropland. As per the Land Use and Land 

Cover (LULC) map of 2005, cropland is the dominant land cover type in India. The analysis 

report of  world “greening” from MODIS (2000-2017) showed a significant increase of 82% in 

the greening over India, which is found to be entirely associated with cropland (Chen et al., 65 

2019; IPCC, 2019). Several researchers (Babar and Ramesh, 2015; Bosch and Hewlett, 1982; 

Gebremicael et al., 2019; Wilk and Hughes, 2002) agree that the expansion in agricultural land 

at the expense of vegetative cover results in an increase in surface runoff and decreases river 

discharge in a given watershed. Wilk and Hughes, (2002)  found a maximum increase of 19% 

in the runoff from a tropical catchment in South India due to the expansion in agriculture at 70 

the expense of forest and savannas. Babar and Ramesh, (2015) estimated an increase in 

runoff (0.9%) and decrease in ET (4.5%) due to the conversion of forest to agriculture and 

built up areas in Ganga basin in India. The population of India is expected to increase by an 

average of 36% in the 2050’s and by 108% at 2090’s thereby rendering changes to agriculture 

and water demand (Jin et al., 2018). Many river basins of India that have undergone drastic 75 

land cover transformation over the years have been facing extreme hydrological events like 

floods and droughts in recent times. Long-term changes in climate and land use are reported 

as the main reasons causing these hydrological extremes (IPCC, 2019).  

Climate and LULC governs the hydrological cycle in a basin through an intricate relationship 

involving a wide range of interactions among the land surface variables at different spatial 80 

and temporal scales. These interactions can be best solved through the implementation of 

process-based and physically based distributed or semi-distributed hydrological models, 

representing the land surface characteristics of a heterogeneous catchment, and simulating 

the multi-layered hydrological processes. Therefore, the selection of an appropriate 

hydrological model is quite essential. The Variable Infiltration Capacity (VIC) model is a large 85 

scale physically semi-distributed land surface model developed by Liang et al., (1994). The 

ability of the model to simulate the impacts of LULC changes on hydrology are well 

documented in various research articles (Garg et al., 2017, 2019; Hurkmans et al., 2009; Mao 

and Cherkauer, 2009; Patidar and Behera, 2019; Zhang et al., 2014). 

Eastern part of India is amongst the most rapidly changing landscape over the country, 90 

specifically, Mahanadi river basin in Eastern India have undergone drastic land cover changes 

in the last decades (Behera et al., 2018; Dadhwal et al., 2010). To the best of our knowledge, 

only one study, Das et al., (2018) predicted the land cover change impacts on the future (year 
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2025) water balance components of Eastern Indian river basins. Dadhwal et al., (2010) 

simulated the effects of deforestation and agricultural expansion on the annual streamflow 95 

of Mahanadi river basin from 1972-2003. Nonetheless, these studies are based on manually 

calibrated singular model experiment and therefore lacked the influence of model parameter 

uncertainties on the outcome. Single prediction obtained from a calibrated model can be 

biased whereas an analysis based on ensemble of calibrated models provides a range of 

possible hydrological changes which is more robust and reliable, hence, effective in aiding 100 

decision in context of water resources management. Several recent studies  ensured the need 

of considering model parameter uncertainties while modelling the changes in hydrology 

which shall have implications on water resource management, allocation and supply. Chaney 

et al., (2015)  used an ensemble of behavioural parameter sets while monitoring global flood 

and drought to provide predictions along with the uncertainty estimates. Singh et al., (2014) 105 

identified the impact of combined climate and land use projections on hydrology while also 

considering different model parameter sets and uncertainties associated with it in the 

analysis. Zhang et al., (2019) used best performing model parameter sets and found variability 

in the projected hydrological variables owing to the parameter uncertainties involved. 

Furthermore, the LULC studies carried out in Eastern India or Mahanadi river basin have used 110 

aggregated (monthly) time steps in modelling the change, that miss the dynamics of daily flow 

variability.  

In this study, we address the overall science question: What is the isolated role of LULC change 

on the water balance of a large river basin? To understand this, two specific research 

questions arises are: (1) Can we identify changes in surface water balance due to changes in 115 

land cover while using a regional hydrological model? and (2) What are the uncertainties 

associated with model parameters obtained for the regional consequences and how they 

affect simulated water balance components? This paper specifically focusses on the 

Mahanadi river basin in India. We identify best ensembles of daily model simulations 

calibrated within a Monte Carlo Framework, which accounts for the model parameter 120 

uncertainties, to evaluate the LULC changes impacts on the hydrology of the basin. The land 

cover scenarios used in this study represents future changes in the LULC under changing 

climate (RCP’s) and socio-economic conditions (SSP’s). This is the first study that uses 

applications of VIC model in conjunction with gridded land cover forcing’s under combined 

SSP and RCP scenarios in Mahanadi river basin. The outcome of this study is a range of 125 
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hydrologic predictions associated with the model parameter uncertainties owing to the land 

cover changes occurring in the Mahanadi river basin, allowing better understanding and 

implementation of the adaptation and mitigation strategies in the future.  

 

2. Research Area 130 

Geographical Overview 
 
The Mahanadi river basin is located in the eastern part of India (Figure 1) and drains an area 

of 141,589 km2, which nearly accounts for 4.3% of the total geographical area of India. The 

basin has a varying topography with its lowest elevated area (-17 m) lying in the coastal 135 

reaches and the highest elevated area (1323 m) in the northern hills. The basin is 

characterized by tropical climate zone and receives rainfall from southwest monsoons which 

commences in June and lasts till September. The average annual rainfall is 1572 mm, with ~ 

78% of the total annual rainfall occurring during the monsoon months. The basin is also 

subjected to spatial variability in terms of receiving rainfall which has resulted in floods in 140 

some parts of the basin and drought in others. The mean annual discharge is 1895 m3/s. 

Hirakud dam with a gross storage capacity of 8.136 km3 is the major hydro project in the river 

basin constructed in the year 1957 to alleviate the flood problems and to serve multiple other 

purposes such as irrigation, hydropower generation and supplying drinking water. About 65% 

of the basin is placed upstream of the dam. Despite its significant storage capacity, the large 145 

flows from the catchment upstream as well as from the middle reaches (i.e. between Hirakud 

dam and Mundali weir) causes devastating floods during the monsoon in the deltaic region of 

the basin.  

About 48% of the total area is under agriculture (Figure 2a), out of which 30% is cropped 

during the kharif season (monsoon season) and 15% is under double or triple irrigation. The 150 

remaining 3% of the area is either cropped during Rabi season (Spring) or Zaid (summer) 

season. Deciduous Broadleaved Forest (DBF) being dominant among other forest types, 

covers 25% of the basin area (Figure 2a). Built up, plantation, grassland, scrubland, water 

bodies and other forest types constitute the rest 22 % of the basin area. Comparison of the 

LULC maps of 2005-2006 and 2014-2015 derived from National Remote Sensing Centre 155 

(NRSC) shows a substantial increase in the agricultural land from about 42.5 to 48% at the 

expense of fallow land, built up areas and water bodies. Forest cover almost remained same 
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with a minimal increase of only 0.3% (NRSC, 2014). In addition, loamy and clayey are the major 

soil types covering 53.33% and 41.5% respectively of the total basin area (NBBSS-LUP, India). 

Approximately 90% of the basin has moderately shallow to deep soil having depth greater 160 

than 50 cm. 

 

3. Materials and Methods 
 
3.1 Model structure and Implementation 165 
 

The VIC-3L model is a semi-distributed macroscale hydrological model which solves either 

only water balance or full water and energy balance at each grid cell for three soil layers 

(Cherkauer and Lettenmaier, 1999). The model in water balance mode assumes air 

temperature to be same as the surface temperature. The most distinguishable features of this 170 

model includes, maintaining sub-grid heterogeneity for the vegetation covers and sub-grid 

variability in soil moisture storage capacity (Liang et al., 1994), causing surface flow 

considering both infiltration excess and saturation excess (Bao et al., 2011) and occurrence of 

baseflow from the third soil moisture layer as a non-recession flow (Zhao et al., 1980). 

In VIC-3L, direct runoff occurs from the top thin layer. The Middle soil layer allows for diffusion 175 

of water to the uppermost soil layer provided the middle soil layer is wetter. Evaporation 

occurs from all the soil layers and baseflow occurs from the third layer. Sub grid spatial 

variability in soil moisture storage is represented by a variable infiltration curve where the 

model assumes that the infiltration capacity is the non-linear function of the soil moisture 

storage within the grid cell (Liang et al., 1994). More details regarding the structure and 180 

formulations of the model can be found in the literature (Gao et al., 2010; Liang et al., 1994). 

To obtain the discharge at the outlets of multiple subcatchments, the VIC-3L model is coupled 

to a stand-alone routing model (Lohmann et al., 1996). Lohmann’s routing model follows a 

simple river routing scheme where runoff and baseflow are first routed to the edge of the 

grid cells using an instantaneous unit hydrograph and finally transported to the river/channel 185 

network using a linearized St. Venant’s equation. 

The VIC model has been widely applied at multiple scales ranging from global to continental 

to large scale basins under various land use/climate scenarios (Dadhwal et al., 2010; 

Hurkmans et al., 2009; Mao and Cherkauer, 2009; Matheussen et al., 2002; Mishra et al., 

2010; Yang et al., 2014). Also the model has been used successfully in simulating  hydrological 190 
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processes in many Indian river basins under different environmental conditions (Garg et al., 

2017, 2019; Mishra et al., 2008, 2010; Naha et al., 2016; Patidar and Behera, 2019). Patidar & 

Behera, (2019) examined the effects of conversion of natural vegetation to urban areas and 

agriculture on the VIC simulated hydrological fluxes in the Ganga river basin in India. Garg et 

al., (2019) successfully implemented the VIC model to simulate the fluxes in Pennar river basin 195 

in India under changing land cover conditions. 

In this study, the VIC-3L model has been implemented over multiple subcatchments of the 

Mahanadi river basin system using 3 root zones to evaluate the hydrological responses to the 

future LULC changes at a grid size of approximately 5 km. The model has been run in water 

balance mode. The subcatchments analysed are Basantpur (Ba), Kantamal (Ka), Kesinga (Ke), 200 

Salebhata (Sa) and Sundergarh (Su) (Figure 1). The input data required to drive the model and 

its sources are described in the subsequent section. 

 

3.2 Model setup 

A wide range of temporal and spatially distributed datasets such as meteorological forcing, 205 

soil and land cover information and topographic features are required to drive a physically 

distributed hydrological model. Topographical features are determined using the 30-meter 

CARTO-DEM (Cartosat-1 Digital Elevation Model), a national DEM developed by ISRO (Indian 

Space Research Organization) (Sivasena Reddy and Janga Reddy, 2015). The delineated river 

basin is converted into grid format of resolution 0.05 degrees constituting of 4807 grids within 210 

the basin area. Soil textures are derived from the digitized soil map as provided by National 

Bureau of Soil Survey and Land Use Planning (NBBSSLUP) (Scale 1:250000). Specific soil 

properties (See Table 1) such as initial soil moisture content, Fractional soil moisture content 

at critical point, Wcr_frac and Fractional soil moisture content at wilting point, Wp_frac are 

calculated based on average hydraulic properties of USDA soil textural classes (Cosby et al., 215 

1984; Rawls et al., 1998; Reynolds et al., 2000). The LULC map which is used in the model runs 

while performing sensitivity analysis, model calibration and validation is derived from NRSC 

of year 2005 (scale 1:250000; resolution 56 meters) which was reformatted and reclassified 

into USGC LULC types as required by the VIC model (Figure 2a). The root zone depth of each 

LULC  types and the fraction of vegetation roots in each root zone is obtained from the 220 

literatures of (Nijssen et al., 1997; Raje et al., 2014; Zeng, 2002). Other vegetation properties 

in the vegetation library file such as LAI, roughness length, albedo, architectural resistance, 
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stomatal resistance and displacement height are assembled based on Global Land Data 

Assimilation System (GLDAS). LAI is known to exert strong influence on runoff and ET 

simulated by the VIC model (Gao et al., 2010; Matheussen et al., 2002). Hence, we derived 225 

the daily LAI product (2000-2015) from MODIS AQUA/TERRA and compared with the LAI 

values from GLDAS database for the river basin. Monthly mean LAI of all the LULC types from 

MODIS captures the phenological characteristics better than the GLDAS LAI (Fig 2b) which 

shall have further implications on water balance. The range of MODIS LAI for each LULC type 

are well in agreement with the LAI values obtained by Patidar and Behera, (2019) for Ganga 230 

river basin in India. The primary meteorological inputs required to drive the VIC-3L model are 

precipitation, max. temperature, min. temperature and wind speed. Daily gridded 

precipitation (0.25deg by 0.25deg) and daily gridded maximum and minimum temperature 

(1deg by 1deg) for the time period (1988-2010) are obtained from India Meteorological 

Department (IMD) (Pai et al., 2014). The observed discharge data for calibration and 235 

validation at multiple gauges (Figure 1) are available from Central Water Commission (CWC), 

India from the same time period. 

 

3.3 Model calibration and validation 

VIC-3L model parameters are at first subjected to Sensitivity Analysis (SA) in priory to define 240 

the key parameters needed to be calibrated. Table 1 lists all the important VIC-3L model 

parameters that are either estimated or subjected to SA and model calibration. The uncertain 

parameters to be included in the SA process and their ranges (Table 1) are set according to 

various published literatures both in global and Indian context as shown in Table 1 (Demaria 

et al., 2007; Matheussen et al., 2002; Mishra et al., 2008; Park and Markus, 2014; Shwetha 245 

and Varija, 2015; Troy et al., 2008; Xie et al., 2007) and some initial model experiments. The 

soil parameters Exp and Ksat were assumed to be the same for all three soil layers.  

Sensitivity Analysis is performed explicitly for all subcatchments of Mahanadi river basin 

(Figure 1) using a Global Sensitivity Analysis (GSA) technique, Elementary Effect Test (EET) 

(Morris, 1991) and three objective functions: Nash-Sutcliffe Efficiency (NSE), Log 250 

transformation of NSE (lnNSE) and Klein-Gupta Efficiency (KGE) were included in the analysis. 

NSE focuses on high flows (Nash and Sutcliffe, 1970) whereas lnNSE focuses on low flows. KGE 

is the improved version of NSE, gives equal weight to the high and low flows (Gupta et al., 
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2009). Ranking of the uncertain model parameters have been generated according to their 

relative contribution to the output variability by analyzing the sensitivity indices (Pianosi et 255 

al., 2016). Parameters which showed poor performance when tested across all the 

subcatchments and objective functions were discarded. 

The VIC model calibration is performed semi-automatically using a sequence of Monte-Carlo 

simulation where 10000 near-random parameter sets (influential parameters) were 

generated from within the specified range using LHSM with uniform distribution. We 260 

abstained from calibrating and validating the model for the entire Mahanadi river basin due 

to the presence of a major water management structure, Hirakud dam at the middle reach of 

the basin. Instead the model was run, calibrated, and validated daily for each parameter set 

for the time period (1990-2000) at all the subcatchments Basantpur, Kantamal, Kesinga, 

Salebhata and Sundergarh following 2 years of warm-up period (1988-1989). Hence, 265 

calibrated model parameters vary from one subcatchment to another. Next, a pareto set of 

solutions (parameters) (Bastidas et al., 1999; Efstratiadis and Koutsoyiannis, 2010) are 

generated for all the subcatchments according to the various trade-offs among different 

catchment characteristics through the maximization of NSE. Therefore, to obtain a single 

parameter set for the entire basin, a pareto rank has been assigned to each of the 10,000 270 

model parameters in the pareto solution. Model simulations which have obtained ‘Rank 1’ in 

the Pareto Ranking analysis are considered as the ‘best’ performing simulations, which are 

further used to generate the streamflow series in the validation period (2001-2010) for all the 

subcatchments. The ensemble of calibrated models is then used to assess the impacts of land 

cover changes on the hydrology of Mahanadi river basin.  275 

3.4 Historical and Future Land use land cover scenarios 

All the model simulations in the calibration and validation period (Section 3.3) are obtained 

using a static local LULC map of year 2005 derived from NRSC. Simulations using this land use 

map shall be termed as NRSC2005 henceforth. 

Next, we used a harmonized set of land use scenarios which is a  combination of the Socio-280 

economic Pathways (SSPs) and Representative Concentration Pathways (RCPs) from the 

recently released , Land Use Harmonization Project (LUH2) (release “LUH2v2h” and LUH2v2f) 

for the time period of (850–2005) and (2015-2100) respectively (Hurtt et al., 2018)  (Table S1 

https://doi.org/10.5194/hess-2020-220
Preprint. Discussion started: 6 July 2020
c© Author(s) 2020. CC BY 4.0 License.



 

10 
 

UOB Open 

in the Supplementary section). The LUH2 approach estimates the gridded land use fractions, 

annually at a resolution of 0.25 deg.  285 

The LULC of year 2005 from LUH2 is processed and converted to a LULC map of Mahanadi 

river basin extent showing a single vegetation coverage at each grid size of 0.25 deg. It is then 

converted to the VIC model grid size of 0.05 deg. The land use classes are reduced in order to 

simplify our model application, and consequently remapped to the VIC land use classes by 

assuming all primary (Forested or Non-forested) and secondary (Forested and Non-forested) 290 

land to Deciduous Broadleaf Forest (DBF), Managed pasture and Rangeland are considered as 

Grassland and all crops are merged into a single Cropland class. Urban land and water bodies 

are retained (Table S2 in the Supplementary section). It is worth mentioning that the 

‘potentially non-forested secondary land’ class in the LUH2 datasets matched to the forested 

areas in the LULC map from NRSC and hence they are both mapped into (Deciduous Broadleaf 295 

Forest) DBF which is the dominant forest type in the basin (Fig S1 in the Supplementary 

section). Simulations using this land use map shall be termed as LUH2005 henceforth. 

Spatial LULC maps, NRSC2005 and LUH2005 have been compared (Figure 3) prior to the model 

simulations to have more confidence in the future scenario and to be able to use LUH2005 as 

the baseline scenario. Spatial patterns of Cropland (CL) and Forest (F) which are the most 300 

dominant land-use classes in the area shows a similar spatial trend when inspected visually 

(Figure 3). Also, the percentage of area covered by each land use classes are shown in Table 

2. The only notable difference is the lack of Barren ground (BG) in LUH2005 compared to 

about 12% coverage in the NRSC2005 database. However, the areal coverage of the two most 

important classes in the river basin (DBF and CL) show highly comparable percent values 305 

between the two products. Note that we will refer to DBF as Forest (F) henceforth. Finally, 

the VIC model is run for the validation period (2001-2010) using both land use maps from 

LUH2005 and NRSC2005 and the model set up with LUH2005 was used as a baseline scenario 

for analysing impacts of land cover changes in the future. 

The fraction of basin area occupied by land use classes were computed for all the scenarios 310 

of the LUH2 dataset. However, due to the large computational demand of our simulations, 

we only considered the ‘worst’ case scenario, RCP3.4 SSP4, which resulted in maximum 

change in the fractional area of the land use types in the future years (Figure 4). Land cover 

changes and fractional area covered in other scenarios are shown in Fig S2 in supplementary 

section. Four distinct years have been chosen for this study: 2005 (Historic), 2015 (Present), 315 
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2050 (Near Future) and 2100 (Far Future) to study the impacts of LULC change in the 

Mahanadi river basin. A sharp decrease in the forest cover is observed at the expense of 

agriculture in the years 2050 and 2100 (Figure 4).  

The ensemble of calibrated models have been run thrice using the LUH datasets: (1) with land 

use map ‘LUH2015’ as an input which is termed as the ‘present’ (P) scenario (2) with land use 320 

map ‘LUH2050’ as an input which is termed as the ‘Near Future’ (NF) scenario (3) with land 

use map ‘LUH2100’ as an input which is termed as the ‘Far Future’ (FF) scenario. To account 

for the extreme hydrological effects that these changes could cause, three hypothetical 

scenarios are framed and the models are also run for (1) ‘All Cropland’ (CL) scenario where all 

the grassland and forest areas are transformed into cropland (2) ‘All Forest’ (F) scenario where 325 

all the cropland and grassland areas are transformed into forest (3) ‘All Grassland’ (GL) 

scenarios where all the cropland and forest areas are transformed into grassland. The urban 

and water bodies in these hypothetical scenarios are retained as per the baseline scenario. In 

all the six cases of model run, meteorological forcing is held constant i.e. the daily 

precipitation, maximum and minimum temperatures and wind speed are to be kept same for 330 

all the scenarios. Therefore, any changes to be observed in the hydrological components in 

the above-mentioned scenarios will be due to the sole effects of land cover change. The 

percent areas covered by each land use classes within the entire basin in year 2005, 2015, 

2050 ,2100 and the hypothetical scenarios are shown in Table 3. The percent areas covered 

by each land use classes in all the subcatchments are shown in Table S3 in the supplementary 335 

section. 

4. RESULTS 
 
4.1 Model Calibration and Validation 

Sensitivity Indices, computed as mean and standard deviation, of the Elementary Effect Test 340 

(EET) are computed at the parameter identification stage of model calibration to identify the 

influential and non-influential parameters. Figure 5 shows the sensitivity of VIC model 

parameters on river flows represented by the Sensitivity Indices (normalised Mean) of EET 

method across all the subcatchments and objective functions. Parameters such as 

unsaturated hydraulic conductivity, Exp, and maximum velocity of baseflow, Dsmax, are the 345 

most important parameters across all the subcatchments and objective functions (NSE, KGE 

and lnNSE) which indicates that these parameters are sensitive to both high and low flows. 
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However, sensitivity of these parameters varies among the subcatchments and also within a 

subcatchment depending on the objective functions used. For example, the most influential 

parameters for Basantpur (largest subcatchment) based on objective function, NSE, are the 350 

depth of second and third layer of soil, d2 and d3, and in case of Sundergarh (smallest 

catchment) are Exp and infiltration parameter, binf. Furthermore, the most influential 

parameters for Basantpur based on NSE, which focusses on high flows are d3 and d2 whereas 

based on lnNSE, which focusses on low flows, are Exp and Dsmax. in overall, the parameters 

sensitive to lnNSE are mainly the baseflow   parameters (Exp, Dsmax, ds, Ws and d3) and are 355 

slightly different from NSE and KGE (d2, exp, Dsmax, binf, vel). The depth of first soil layer, d1, 

saturated hydraulic conductivity, ksat and routing parameter, diff are non-influential for all 

the subcatchments based on all the objective functions. Thus, these three parameters are 

eliminated from the calibration experiments and set to specific values based on literatures 

and some model experiments. 360 

After eliminating three non-influential parameters, eight (out of eleven) model parameters 

are subjected to model calibration for the time period (1990-2000). Figure 6(a) shows the 

range of NSE values computed on a daily scale for 10,000 simulations, calibrated simulations 

(around 100 simulations obtained with ‘rank 1’ in the Pareto ranking analysis) and validated 

simulations for all the subcatchments in the highest order of their catchment size. The 365 

uncertainties and the outliers in the flow values in both calibration and validation period is 

considerably less compared to that of 10,000 simulations with an improved NSE range at all 

the subcatchments. The average NSE values in the calibration period at Basantpur, Kantamal, 

Kesinga, Salebhata and Sundergarh are 0.73, 0.80, 0.70, 0.62, 0.5 respectively and in the 

validation period are 0.68, 0.76, 0.69, 0.55 and 0.55 respectively. The performance of the 370 

ensemble models in simulating daily flows at Basantpur (Ba), Kantamal (Ka) and Kesinga (Ke) 

are mostly within the “good” and “very good” range of NSE in both calibration and validation 

period according to Moriasi et al., (2007) with the model performing slightly better in the 

calibration period. The NSE values lying within the “satisfactory” range for Salebhata is the 

poorest performing station among all subcatchments. The range of NSE’S for the daily 375 

calibration and validation at all subcatchments are listed in Table S4 in Supplementary 

section. The models were able to simulate the daily flows consistently when compared to the 

observed flows and reproduce the peak flows at different subcatchments in both calibration 
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and validation period (Fig S3 in Supplementary section). The grey lines in the parallel 

coordinate plot in Figure 6b shows the distribution of input parameters within their variability 380 

range and the lines highlighted in black are the parameter sets that have resulted in overall 

good model performance across the entire Mahanadi river basin obtained through Pareto 

ranking.  

4.2 Control case scenario performance 

We use the calibrated VIC models with LULC maps from two distinct sources, global LUH2005 385 

and regional NRSC2005, which are configured to the model grid resolution. Model 

performance of LUH2005 in comparison to NRSC2005 helps to evaluate the robustness of the 

future LUH scenarios prior performing the model simulations using future LUH projections. 

The Boxplot in Figure 7 shows the range of NSE for daily simulations, LUH2005 and NRSC2005 

for all the subcatchments arranged in decreasing order of their performance with regard to 390 

NRSC2005. For NRSC2005, the median NSE values computed for the sub basins Ba, Ka, Ke, Su 

and Sa are 0.68, 0.76, 0.69, 0.55 and 0.55 respectively and for LUH2005 are 0.63,0.68, 0.61, 

0.56 and 0.52 respectively, showing good overall agreement. The median NSE in LUH2005 

suggests that the best performance is at Kantamal followed by Basantpur and Kesinga and 

relatively poorer performance at Salebhata and Sundergarh respectively. These trends in the 395 

NSE values are well in agreement with NRSC2005 where the best median NSE is obtained for 

Kantamal followed by Kesinga and Basantpur and relatively poor performance at Salebhata 

and Sundergarh. There is a systematic reduction in NSE values using LUH2005 at all the 

subcatchments barring the smallest subcatchment, Salebhata which has shown a consistent 

performance using both the local and global LULC maps. The slight performance drop in the 400 

baseline scenario using LUH2005 against NRSC2005 is due to the average tendency of the 

model to underestimate the simulated flows. (see percent bias Fig S4 in Supplementary 

section). Land cover class, Barren Ground is non-existent in LUH2005 unlike NRSC2005 and 

has been replaced by CL (4%), F (5.02%), GL (4.57). The increase in flows due to the increase 

in cropland might have been compensated by the decrease in flows due to the increase in 405 

forest. Therefore, the underestimation in the simulated flows using LUH2005 may result from 

the increasing grasslands which increased LAI, thus resulting in an increase in ET and decrease 

in surface runoff respectively. The difference in resolution between land cover maps, 

LUH2005 and NRSC2005 has led to these differences in the aerial coverage of the land cover 
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types. However, in overall, objective function, NSE suggests both distinct land cover maps for 410 

the baseline scenario from NRSC and LUH show comparable model performance in the 

historical period with the model being able to capture the seasonality and Land Use/ Land 

Cover dynamics while simulating the daily flows. 

4.3 Impact of land use changes 

Figure 8 shows percent change in annual average of extreme flows (i.e., 95th percentile or 415 

higher) in the Near Future (NF), Far Future (FF), and 3 hypothetical scenarios with respect to 

baseline scenario LUH2005 for the ensemble of calibrated models. The subcatchments in the 

boxplots are arranged in the highest order of their performance in the baseline scenario. 

Percent change in mean annual flows in the future and hypothetical scenarios are also 

analysed and shown in Fig S5 in supplementary section. 420 

Projected streamflow for the time period (1990-2010) indicates almost no change to 1% 

change in extreme flows in the present (P) scenario i.e. model simulations using land use map 

LUH2015, hence not shown Figure 8. The marginal increase in cropland by 1.4% in the P 

scenario that would have led to an increase in the flows, however, have been compensated 

by increase in forest by 1.5%. Increase in forested areas tends to increase ET with the help of 425 

increased LAI, thereby reducing the flows. Also, the comparison of regional land use map of 

2005 and 2014 from NRSC (not shown here) shows a negligible change in the forested area. 

But there is an increase in the agricultural area (7%) at the cost of fallow land (7%). However, 

this change is not observed in LUH2015 because of the inexistence of the class ‘fallow land’ 

which has been replaced by the cropland, forest, and grassland. 430 

The effect of LULC change on the hydrological fluxes are prominent in the ‘Mid Future’, ‘Far 

Future’ and the hypothetical scenarios. An overall increase in the annual average of extreme 

flows of (2-16) % for NF and (2-20) % in FF scenario are observed across the Mahanadi river 

basin and the entire set of models. The median percent change in the NF and FF scenarios at 

all the subcatchments lies within the range of (2-5) %. Percent change of slightly higher 435 

magnitudes are noticed in the mean annual flows in the NF (1.6-17.4) % and FF (1.5-21.7) % 

scenarios (Table S5 in Supplementary section). The increase in the annual average of extreme 

flows in NF and FF scenarios can be attributed to the overall reduction in forest cover by 

15.55% and 22.65% and an increment of cropland 13.65% and 23.3% respectively. However, 

changes in land use area varies from one subcatchment to another (Table S3). Maximum 440 
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increment in cropland (37%) at the expense of forest (38%) is observed at Basantpur and the 

minimum increment in cropland (16%) at the expense of forest (14%) is observed at Salebhata 

in the FF scenario.  

Percent increase of (0-32) % is observed in ‘All Cropland’ (CL) scenario and percent change in 

the ‘All Forest’ (F) scenario ranges from an increase of 0.5% to a decrease of 40%. Percent 445 

change in the Grassland (GL) scenario ranges from an increase of 12% to a decrease of 3%. 

The median percent change in CL scenario are slightly higher than that of FF scenario whereas 

the median values suggest negligible change in the GL scenario. The median percent change 

in F varies from -3% to -12% across the subcatchments. Maximum increase and decrease in 

percent change are observed in CL and F scenario respectively. In GL scenario, percent 450 

decrease in the flows are less than the F scenario whereas percent increase is less than the 

CL scenario. A maximum increase in the annual extreme flows of 830 cumecs is noticed in CL 

scenario followed by an increase of 532 cumecs in the FF scenario at Basantpur (Table S5 in 

Supplementary section).  

Because the changes in the extreme and mean flows are of almost similar magnitudes at all 455 

the subcatchments, other water balance components are analysed with respect to the entire 

basin to understand the factors causing changes in the streamflow in overall. Figure 9 shows 

the percent differences in the water balance components in the NF, FF and the hypothetical 

scenarios, CL, F and GL. Percent change in the P scenario is negligible, hence not shown in the 

boxplot. NF scenario depicts an increase in the surface runoff, baseflow and soil moisture 460 

content within a range of (1.5 to 9) %, (3 to 26) % and (2 to 7) % respectively followed by 

decrease in ET within a range of – (1.6 to 3.3) %. FF scenario depicts an increase in the surface 

runoff, baseflow and soil moisture within a range of (1.5 to 12) %, (4.9 to 32) % and (2.2 to 

10) % respectively followed by decrease in ET within a range of -(1.8 to 3.5) %. The median 

percent change in runoff, ET, baseflow and soil moisture content in the FF scenario are 4%, -465 

2.2%, 13% and -4% respectively. Percent change in the CL scenario depicts an increase in the 

surface runoff, baseflow and soil moisture content within a range of (1 to 20) %, (2 to 50) %  

and (2.2 to 16) % respectively followed by decrease in ET within a range of (0.5 to7) %. 

Reduction in percent change in the F scenario is observed with a decrease in the surface 

runoff, baseflow and soil moisture content within a range of (1.5 to 12) % , (4.9 to 32) % and 470 

(-2.5 to 21) respectively followed by increase in ET within a range of -(1.8 to 3.5) %. The 

increase in the percent change in the GL scenario for all the components are lesser than the 
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CL scenario and the decrease in the percent change is lesser than the F scenario.  Soil moisture 

content for all the scenarios shown in the boxplot below are obtained by summing up the soil 

water content for three defined soil layers. But an inspection for each layer (Not shown in 475 

Figure 8) shows that the soil moisture content in the top thin layer decreases in the NF, FF 

and  CL scenarios and increases in the F scenario whereas the soil moisture content in the 

second and third layer increases in the NF, FF and CL scenarios and decreases in the all F 

scenario.  

Table 4 shows annual water balance components averaged over 20 years (1990-2010) for all 480 

scenarios. M6, M20 and M67 in the table indicates 3 models lying within 25th to 75th percentile 

among the ensemble of calibrated models. Models lying within 25th percentile and 75th 

percentile varies from one catchment to another i.e. NSE value varies. Therefore 25th and 

75th percentile of NSE values have been computed for each catchment in the calibration 

period and 3 models have been chosen where NSE of all the subcatchments lie within 25th 485 

and 75th percentile to analyse the annual water balance averaged over 20 years. VIC model 

solves the water balance within the catchment using the Eq. (1) (Gao et al., 2010). 

∆s/∆t = P − E − R − B ,                                        (1) 

where P, E, R and ∆s/∆t are the precipitation, evapotranspiration, runoff, baseflow and change 

of water storage respectively. Table 4 indicates that the model is able to estimate all the water 490 

budget components and maintain proper closure of the water balance in all the scenarios. 

Note that the average annual precipitation is 1318 mm, which is kept constant for all the 

scenarios. 

4.4 Model parameter uncertainties  

An ensemble of model parameter sets is derived for the entire basin based on pareto ranking 495 

to account for the uncertainties in the hydrological components owing to the land use change. 

The differences between the minimum and maximum percent changes in annual extreme 

flows and other water balance components in all the scenarios represents uncertainty in the 

simulated land cover change impacts by the selection of model parameters. Next, we seek to 

understand the interactions (Figure 10) among the model parameters in relation to the 500 

obtained annual water budget components (Runoff, ET, Baseflow and Soil moisture content) 

averaged over 20 years for the far future scenario at Kantamal. We choose Kantamal as it is 
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the best performing subcatchment among all with the highest NSE. Figure 10 shows the 

behaviour of these model parameters within their respective ranges which results in 

predictive uncertainties through the change in hydrological processes occuring within the 505 

basin. Higher values of second layer of soil, (d2), i.e thicker depths, retaining more soil water, 

produced more ET, hence resulting in less runoff and vice versa. There is also a trend of 

thinner d2 generating more baseflow, however not as clearly identifiable as in case of runoff. 

Higher values of parameter, binf, decreases the infiltration capacity of the soil and increases 

the runoff, thereby reducing the subsurface drainage, soil moisture content and water 510 

available for ET. Exponent of the unsaturated hydraulic conductivity parameter, Exp controls 

the vertical drainage between the soil layers. Higher values of Exp decreases the drainage 

between the soil layers for the same soil moisture content consequently decreasing the 

baseflow generation and eventually resulting in more evaporation. Parameters, Ds and Ws 

seem to have opposite influence over obtaining high soil moisture content, ET and baseflow 515 

i.e either higher values of Ds interacting with lower values of Ws or lower values of Ds 

interacting with higher values of Ws to increase the soil moisture content and producing more 

ET and baseflow. However, baseflow related parameters, Ds, Ws and Dsmax are not clearly 

identifiable in case of producing runoff. There is a clear pattern of lower values of velocity 

producing more runoff and baseflow, and vice versa. 520 

5. Discussion 

We carried out sensitivity analysis with 3 objective functions to account for all parameters 

sensitive to all the flow processes occuring within the basin. However, the objective function 

used for calibration is based on the application of the model as also followed by Muleta and 

Nicklow, (2005). Muleta and Nicklow,(2005) also implemented a calibration strategy guided 525 

by global sensitivity analysis which reduced the uncertainties in streamflow. In overall, 

parameter sensitivity results are in accordance with the findings of Demaria et al., (2007) 

where the parameters Exp and binf were sensitive to the objective function RMSE (focusses 

on high flows) and parameters, d1 and ksat were slightly sensitive to the streamflow.  

Owing to very high computational costs, we abstained from modelling the land cover change 530 

impacts at each subcatchments individually. Given that the subcatchments are of conflicting 

catchment characteristics, there is no feasible point that optimizes all five parameter sets 

obtained from different subcatchments. Therefore, the idea of pareto ranking which has been 
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applied in many studies (Gupta et al., 2003; Shi et al., 2008) serves the purpose of generating 

a common set of models by looking for an acceptable trade-off among the calibrated models 535 

of all the subcatchments. Our calibration results suggest that the models tend to perform 

better at the bigger catchments and yielded lower NSE values at the smaller catchments, 

Salebhata and Sundergarh. These findings are in agreement with some literatures (Kneis et 

al., 2014; Mishra et al., 2008; Nayak, Venkatesh, Thomas, & Rao, 2010) wherein the calibrated 

hydrological models yielded low NSE values at Salebhata or Sundergarh. This is possibly 540 

because errors in the input data, observed data or the errors resulting from uncertain 

parameters counter-balanced each other at the bigger catchments unlike the smaller 

catchments.  

LUH2 is a new dataset, not yet extensively used in basin-scale hydrology. The major changes 

occuring within the basin in the future scenarios as predicted by LUH2 are expansion of 545 

cropland at the expense of forest, particularly DBF which also agrees with a recent study 

carried out in the Mahanadi river basin by Behera et al., (2018). A recent study by Krause et 

al., (2019) predicted  worldwide increment in runoff (67%) and a variable responses of ET 

across different scenarios under the effects of land use and climate changes using LUH2 

dataset.  550 

Due to some unknown reasons, slight differences in extreme flows are observed between 

Near Future and Far Future despite a substantial increment in cropland occuring at all the 

subcatchments in the Far Future relative to the Near Future.  Despite a significant change in 

land cover occuring within the basin in the future, it should be noted that these changes are 

not consistent at all the subbasins (See Table S3 in Supplementary section). Basantpur is the 555 

biggest subcatchment which is projected to undergo a maximum expansion in cropland areas 

(37%) among all the subcatchments. Therefore, future scenarios should reflect more percent 

change in extreme flows at Basantpur. This is to some extent, supported by our result (Figure 

8) as the maximum percent  increase in extreme flows from within the range of best ensemble 

models are observed at Basantpur (21%) followed by Kantamal (13%), Kesinga (12%), 560 

Salebhata (10%), Sundergarh (14%). However, the median values at all the subcatchments 

suggest a percent increase in extreme flows of almost same order (2- 5) %. This can be 

attributed to the fact that the  effects of LULC change on streamflows in a large catchment 

are masked out by other factors, such as the spatial variability in precipitation, heterogeneous 

soils etc. (O’Connell et al., 2007). This result agrees with the findings of Wilk and Hughes, 565 
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(2002) wherein removal of large forests led to little or no changes in annual runoff in large 

heterogeneous catchments in South India. LULC effects on floods although vary with the 

catchments scales, however, identifying any hydrological changes becomes difficult as the 

catchment size increases (Hurkmans et al., 2009; Rogger et al., 2016; Viglione et al., 2016).  

Removal of forests at the expense of cropland decreases the LAI of the natural vegetation and 570 

hence decreases ET. Moreover, removal of forest cover reduces the root water uptake by 

plants which increases the water content of the second and third layer of the soil. The top 

thin soil layer in VIC model helps in partitioning the rainfall amount into direct runoff and the 

amount entering the soil. Therefore, the increase in the cropland results in more direct runoff 

thus reducing the soil moisture content in the first soil layer. Since surface runoff in VIC  model 575 

is caused by saturation, increases in the surface runoff is correlated with the increase in soil 

moisture (Hurkmans et al., 2009). This agrees well with our result (Figure 9) where the 

increase in the runoff is in correlation with total soil moisture content. The expansion in the 

cropland results in more impervious area thereby augmenting the surface runoff. The 

increase in surface runoff and decease in ET resulting from the agricultural expansion at the 580 

expense of forest, are in line with the findings of other studies in the Mahanadi river basin in 

India, neighbouring basins and elsewhere (Abe et al., 2018; Berihun et al., 2019; Cornelissen 

et al., 2013; Costa et al., 2003; Dadhwal et al., 2010; Das et al., 2018; Kundu et al., 2017). 

Kundu et al., (2017) found an increase in runoff and decrease in ET due to the expansion in 

projected agricultural land in Narmada river basin in India. Das et al., (2018) predicted that 585 

deforestation, urbanization and cropland expansion in eastern river basins of India, in the 

future would increase runoff and baseflow and decrease ET.  

The impacts on the annual water balance of the entire basin is, however, small in terms of 

magnitude. Research elsewhere (Ashagrie et al., 2006; Fohrer et al., 2001; Kumar et al., 2018; 

Patidar and Behera, 2019; Rogger et al., 2016; Wagner et al., 2013; Wilk and Hughes, 2002) 590 

have also reported that the impacts of land cover change on water balance components in a 

large scale river basin are too small to be detected due to the compensation effects. Patidar 

and Behera, (2019) in a recent study in a large river basin in India, showed  that the impacts 

of land cover change on ET and runoff cancels out at the basin scale and reported that the 

conversion of forest to agriculture may not alter the water balance significantly.  Our result 595 

shows that a major portion of precipitation is contributing to ET in all scenarios (Table 4) which 

is consistent with Das et al., (2018), Garg et al., (2019) and the impact of land cover change 
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on ET is more than other water balance components which agrees with the findings of Kundu 

et al., (2017) in a river basin in India. Moreover, (Garg  et al., 2019) found that croplands 

contributes more to ET than streamflow in a river basin of a similar climate zone in India. 600 

The changes in extreme flows and the water balance components are more pronounced in 

the hypothetical scenarios. All cropland (CL) scenario showed the maximum increase in flows 

whereas All Forest (F) scenario resulted in the maximum reduction in flows which is in line 

with previous studies (Ma et al., 2010; Mishra et al., 2010; Wilk and Hughes, 2002). Wilk and 

Hughes, (2002) reported that the largest increase in runoff resulted from total conversion of 605 

the basin to agriculture in in South India. Maximum reduction and increment in baseflow are 

observed in F and  CL scenario respectively which is consistent with the observations  in other 

studies in terms of direction of change (Mishra et al., 2010, Vano et al., 2006). However, unlike 

our study, most of these studies reported that an increase in runoff in Grassland (GL) scenario 

is more than the cropland scenario. These differences can be attributed to the process of 610 

generating the hypothetical scenarios. For instance, the forest scenario in Ma et al., (2010) is 

represented by converting all grassland, barren lands and Croplands only above a certain 

elevation whereas Mishra et al., (2010) framed the hypothetical scenarios by converting a 

single grid cell to 100% Cropland, Forest and Grassland. However, more emphasis should be 

given to the CL scenario as this relates to the major changes occurring in the basin as per the 615 

future projected LUH scenarios.  

Multiple parameter sets can yield equally good or acceptable model outputs due to the 

complex interactions among the parameters , known as equifinality, considered as one of the 

main sources of uncertainty in hydrological modelling (Her et al., 2019). Taking this into 

consideration, the methodological approach in our study involves Monte Carlo based model 620 

calibration guided by parameter sensitivity analysis to generate an ensemble of best 

performing models rather than one behavioural model. Despite, the median percent change 

in the annual extreme flows indicate no significant change at the subcatchments (on the order 

of +3%), we show that the maximum increase in extreme flows within the uncertainty bound 

in the FF scenario at Basantpur is 20.5%. This indicates that even a small set of calibrated 625 

models can predict a wide range of flows through different hydrological processes occurring 

within the basin. For instance, the reverse interactions among Ds and Ws, lead to the varying 

hydrological processes occuring within the basin, thereby affecting the partition of water in 

the soil column. Similar results are found in Eum et al., (2016) wherein the VIC model 
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simulations using different calibrated parameter sets had led to higher uncertainties in the 630 

annual peak flows. Her et al., (2019) demonstrated that the model parameter uncertainties 

are significant for some hydrological components. Furthermore, the range of these 

hydrological estimates provides more straightforward and explicit quantification of 

uncertainty than other statistical measures such as variance, interquartile ranges (Her et al., 

2019). Perhaps, the most important implication of this study is that the changes that are likely 635 

to occur can have negligible to significant impacts on hydrology of Mahanadi river basin. 

6. Conclusion 

India is a fast developing and second most populated country in the world. To cater a huge 

population, there has been a substantial change in the land cover types (e.g. Agricultural 

intensification, industrial expansion etc.) in the last decades, playing a significant role in 640 

altering the basin’s hydrology. The purpose of this study is to quantify the hydrologic response 

of the subcatchments of Mahanadi river basin to the land cover changes in the present and 

the future through the implementation of a well calibrated physically distributed hydrological 

model. Considering the changing environment across the globe, the usage of a physically 

distributed hydrological model is more appropriate than the traditional empirical approach 645 

(Garg et al., 2019). The VIC model has been set up and run for the Mahanadi river basin on a 

regional scale of 5 kms and the modelled discharge are well in agreement with the measured 

discharge at all the subcatchments considered. The methodological approach used in this 

study helps to comprehend the possible impacts of changing land cover scenarios within a 

modelling framework of detailed calibration and sensitivity analysis. The calibration of 650 

sensitive model parameters has resulted in more realistic ensemble model simulations as it 

accounts for the model parameter uncertainties in quantifying the impacts of land cover 

changes. Deforestation at the expense of cropland dominated the land cover change 

processes in the study area which have implications on the hydrological processes.  

Some major findings from this study are: 655 

 

1. Most influential model parameters across all the subcatchments and objective 

functions are unsaturated hydraulic conductivity parameter, Exp and baseflow 

parameter, Dsmax. Non-influential parameters that are exempted from calibration 
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are the first depth of soil layer, d1, saturated hydraulic conductivity, ksat and routing 660 

parameter, diff  

2. Future LULC scenario, RCP3.4 SSP4 from LUH indicates cropland and forest remains 

the major land cover types in the basin with a noticeable increase in the cropland 

(23.3%) at the expense of forest (22.65%) by the end of year 2100 compared to the 

baseline year, 2005.  665 

3. In overall, results from the best ensemble models indicate, conversion of forested 

areas (32072 km2) to agriculture (32759 km2) has led to reduced LAI which in turn 

reduces the ET and increase runoff and baseflow in the future.  

4. LULC changes that are likely to occur in the future can have negligible (2%) to 

significant impacts (20%) on the extreme flows of Mahanadi river basin. 670 

5. The hypothetical conversion of all the forest and grassland areas to the cropland 

results in maximum increase in the annual extreme flows. 

 

The ensemble models obtained, thus, account for the parameter uncertainties while 

predicting a wide range of plausible hydrological changes resulting in a more robust and 675 

reliable analysis, which shall make the land cover change mitigation strategies and water 

resources management plans more effective. From this analysis, it can be understood that 

the recurrent flood events occurring in the Mahanadi river basin might be influenced by the 

changes in LULC at the catchment scale. This study also provides valuable insights about the 

sensitivity of the model parameters to the model output and the interactions among the 680 

model parameters in producing the changes in hydrological behaviour for same land cover 

change. The present study focusses on the altered hydrological responses only owing to the 

changes observed in the land cover assuming the climatic variables constant for all the LULC 

scenarios. Climate also changes with time and hence this assumption does not consider the 

actual condition on the ground. It is noteworthy to mention that previous studies in this basin 685 

led by Asokan and Dutta, (2008) and  Ghosh et al., (2010) had predicted an increase in the 

peak flows in the monsoon months at the 2100’s which if combined with the impacts resulting 

from land cover changes might result in adverse flooding in the basin. Therefore, future 

studies shall focus on modelling the combined impacts of climate and land cover changes on 

hydrology of Mahanadi river basin, considering model parameter uncertainty, which is 690 

currently lacking in many studies.  
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Data availability. 
Dem is freely available from https://bhuvan-app3.nrsc.gov.in/data/download/index.php. Unit 

Hydrograph is adopted from https://vic.readthedocs.io/en/vic.4.2.d/Documentation/Routing/UH/. 

Daily gridded rainfall, maximum and minimum temperature are freely available from 695 

http://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html.  Wind speed data 

is freely available from 

https://psl.noaa.gov/cgibin/db_search/DBSearch.pl?Dataset=NCEP+Reanalysis+Daily+Averages 

LUH2 datasets are downloaded from https://luh.umd.edu/data.shtml. Observed discharge data are 

available from http://cwc.gov.in/. The source code for VIC-3L version 4.2.d is available from 700 

https://github.com/UW-Hydro/VIC/releases/tag/VIC.4.2.d. 
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Table 1. VIC-3L model parameters considered for the sensitivity analysis 

 

Table 2. Percent of each Land use type in VIC2005 and LUH2005 (WB – Water Body; ENF – 990 

Evergreen Needleleaf Forest; DBF – deciduous Broadleaf Forest; GL- Grassland; CL- Cropland; 

U – Urban) 

 

 

 995 

 

 

 

 

 1000 

 

 

 

 Parameter Realistic range Estimating method 

Soil 
parameters 

Initial soil moisture (mm) 56.7-276.4 
(Cosby et al., 1984; 

Reynold et al., 2000; 
Rawls et al., 1998 ) 

Bulk density (kgm-3) 1390-1520 
Fractional soil moisture content at critical point : Wcr_frac 0.02-0.46 
Fractional soil moisture content at wilting point: Wp_frac 0.01-0.23 

Thickness of first soil layer: d1 0.01-0.3 

Subjected to SA / 
Calibration 

Thickness of second soil layer: d2  0.3-3.5 
Thickness of third soil layer: d3 0.3-3.5 
Max. velocity of baseflow: Dsmax 0.0001-30 
Fraction of max. velocity of baseflow: Ds 0.0001-1 
Parameter to describe the Variable Infiltration Curve: binf 0.0001-4 
Saturated hydraulic conductivity: Ksat 1-5000 
Fraction of maximum soil moisture of the third layer: Ws 0.0001-1 
Parameter characterizing the variation of saturated 
hydraulic conductivity with soil moisture: Exp 
 

3.1-30 

Vegetation 
Parameters 

Root zone depth (m) 0-2 Raje et al. 2014, Zeng 
2001 and Nijssen et al. 

1997 
Root fraction for each land cover type 0-1 

Albedo: α 0-0.168  
GLDAS database 

http://ldas.gsfc.nasa.gov/ 
 

Architectural Resistance: rarc (sm-1) 0-60 
Roughness length: z0 (m) 0-2.65 
Displacement height: d0 (m) 0-27.37 
Minimum stomatal resistance: rmin (sm-1) 0-150 

Leaf Area index, LAI 0-3.2 / 0-10.3 GLDAS/ MODIS 

Routing 
parameters 

Velocity 0.1 - 3 
Subjected to SA / 

Calibration Diffusion 500 -5000 

LULC classes (%)         NRSC2005 
 

LUH2005 
 

WB  2.6 0.76 

ENF  0.08 0 

DBF  35.98 41 

GL  0.13 4.7 

CL  49 53 

U  0.52 0.4 

BG  12.3 0 
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Table 3: Land cover area change in Mahanadi river basin  

 1005 

Table 4. Annual water balance components (runoff, ET, baseflow, change of water storage) 

for all scenarios (LUH: baseline, present, near future, far future; hypothetical: cropland, forest 

and grassland) computed for 3 models (M6:Model 6, M20:Model 20, M67:Model 67) out of 

101 models lying within 25th percentile and 75th percentile of NSE values computed for each 

catchment. Annual water balance components are averaged over 20 years (1990-2010)  1010 

 

 

 

 

 1015 

 

 

  

LULC 
classes 

(%) 

 
Baseline 
2005 

 

Present 
2015 

Near Future 
2050 

Far Future 
2100 

All 
Cropland 

All 
Forest 

All 
Grassland 

WB  0.76 0.76 0.76 0.76 0.76 0.76 0.76 

F  41 42.4 25.45 18.35 0 97.7 0 

GL  4.7 4.6 6.9 4.5 0 0 97.7 

CL  52 51.5 65.6 75.3 97.7 0 0 

U  0.4 0.5 1.2 1 0.4 0.4 0.4 

Scenarios 
LULC area (%) Runoff/year (mm) ET/year (mm) Baseflow/year (mm) 

Change of water 
storage/year 

(mm) 

CL F GL M6 M20 M67 M6 M20 M67 M6 M20 M67 M6 M20 M67 

Baseline 53 41 5 265 333 290 981 948 976 66 32 30 4 4 21 

Present 52 42 4 266 334 290 980 947 975 67 32 21 4 4 31 

Near 
Future 

66 25 6 277 345 302 961 932 957 74 36 36 4 4 22 

Far 
Future 

75 18 4 280 348 305 957 929 953 75 36 37 4 4 22 

Cropland 97 0 0 288 354 314 949 924 944 77 35 36 4 4 23 

Forest 97 0 0 238 308 260 1021 978 1014 54 28 24 5 4 19 

Grassland 97 0 0 271 336 296 974 946 969 68 32 31 4 3 21 
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 1025 

 

 

 

Figure 1: The Mahanadi river basin boundary and its subcatchments (indicated with Ba, Ka, 
Ke, Su, Sa). 1030 

 

 

 

 

 1035 

 

 

 

 

 1040 

Figure 2: (a) LULC map of Mahanadi river basin (b) LAI from MODIS and GLDAS 
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 1045 

 Figure 3. Comparison of LULC maps from NRSC and LUH for 2005 
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 1060 

Cropland (NRSC) Cropland (LUH) Forest (NRSC) Forest (LUH) 

Grassland (NRSC) Grassland (LUH) Urban (NRSC) Urban (LUH) 

 Water (NRSC) Water (LUH) 
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Figure 4: Top: Fraction of catchment area occupied by Land use classes for scenario RCP3.4 

SSP4 Bottom: land cover scenarios from LUH (resolution- 25 km) for years 2015, 2050 and 

2100 used in this study. LUH land cover classes shown here are resampled to the model grid 

resolution and only the predominant class is shown here for clarity. For actual model 

simulations VIC accounts for the individual proportion for each land cover type at each grid 1065 

point. 

 

  

 

 1070 

 

 

 

 

 1075 

Figure 5: Sensitivity indices (normalised mean) of EET method for VIC model parameters for 

all the subcatchments and objective functions. Colour bar on the right side indicates 

sensitivity of the model parameters to the streamflow. ‘0’ indicates least sensitive and ‘1’ 

indicates most sensitive. 

 1080 

 

 

 

 

 1085 

 

 

 

 

Figure 6: (a) Box plot showing NSE range for 10,000 simulations, calibrated (best) simulations 1090 

obtained through pareto ranking and validated simulations (b) Parallel coordinate plot 

showing soil parameters that had resulted in best simulations during model calibration. 

(a) 

(b) 
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 1100 

 

 

Figure 7: Box plot showing comparison of performance of model simulations: control scenario 

using LUH2005 and calibrated best simulations using NRSC2005 for the validation period 

(2001-2010) 1105 

 

 

 

 

 1110 

 

 

 

 

 1115 

 

 

Figure 8: Percent change in annual average of extreme flows (i.e., 95th percentile or higher) 

in the Near future (NF), Far future (FF), Cropland (CL), Forest (F) and Grassland (GL) scenarios 

with respect to baseline land cover condition from 2005 for all the subcatchments. Please 1120 

note that the climate forcing is kept fixed for the period corresponding to year (1990-2010) 

The results are shown for the 101 ‘best’ model simulations obtained through calibration. 
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 1130 

 

 

Figure 9: Box plot showing percent change in mean annual Runoff, ET and baseflow and 

change in Soil moisture for (1990-2010) for the scenario RCP3.4 SSP4 for the entire Mahanadi 

river basin. Please note that the climate forcing is kept fixed for the period corresponding to 1135 

year (1990-2010) and therefore precipitation is constant in all the scenarios considered. 
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 1145 

 

 

 

Figure 10: Parallel coordinate plot showing model parameters that had resulted in lowest to 

highest estimates of water balance components in the Far Future scenario for subcatchment 1150 

Kantamal. Each line represents corresponds to a simulation performance: ‘0’ in the colour bar 

Runoff ET 

Baseflow Soil moisture content 
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represents the lowest performance value and ‘1’ represents highest value obtained from best 

101 simulations. 
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