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Abstract. Model structure uncertainty is known to be one of the three main sources of hydrologic model uncertainty along

with input and parameter uncertainty. Some recent hydrological modeling frameworks address model structure uncertainty by

supporting multiple options for representing hydrological processes. It is, however, still unclear how best to analyze structural

sensitivity using these frameworks. In this work, we apply the Extended Sobol’ Sensitivity Analysis (xSSA) method that oper-

ates on grouped parameters rather than individual parameters. The method can estimate not only traditional model parameter5

sensitivities but is also able to provide measures of the sensitivities of process options (e.g., linear vs. non-linear storage) and

sensitivities of model processes (e.g., infiltration vs. baseflow) with respect to a model output. Key to the xSSA method’s appli-

cability to process option and process sensitivity is the novel introduction of process option weights in the Raven hydrological

modeling framework. The method is applied to both artificial benchmark models and a watershed model built with the Raven

framework. The results show that: 1) The xSSA method provides sensitivity estimates consistent with those derived analyti-10

cally for individual as well as grouped parameters linked to model structure. 2) The xSSA method with process weighting is

computationally less expensive than the alternative aggregate sensitivity analysis approach performed for the exhaustive set of

structural model configurations, with savings of 81.9% for the benchmark model and 98.6% for the watershed case study. 3)

The xSSA method applied to the hydrologic case study analyzing simulated streamflow showed that model parameters adjust-

ing forcing functions were responsible for 42.1% of the overall model variability while surface processes cause 38.5% of the15

overall model variability in a mountainous catchment; such information may readily inform model calibration and uncertainty

analysis. 4) The analysis of time dependent process sensitivities regarding simulated streamflow is a helpful tool to understand

model internal dynamics over the course of the year.

1 Introduction

Hydrologic processes such as infiltration of water into soil or water interception by the canopy of trees are often too complex20

to parameterize or insufficiently understood at scales of interest to be represented in every detail in computer models. The

consequence of this is that simplified conceptual or empirical models are often used to represent these physical processes; such

models are typically computationally expedient and possess a relatively smaller number of parameters than continuum models

based upon the Freeze and Harlan (1969) blueprint. The model descriptions are also non-unique as they depend on the modelers
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simplifications and choices made during the model conceptualization. A large number of non-unique process algorithms can25

be found in the hydrological modeling literature; non-unique model representations are similarly ubiquitous in (e.g.) ecological

models or socioeconomic systems models. The availability of different conceptualization schemes leads to a wide variety of

algorithmic options to describe phenomena within a model. The subjective decision of which processes representation should

be used in a model is complemented by other subjective decisions such as how a modeled system is discretized, how processes

may be simplified, or what time step is appropriate. The uncertainty introduced by these decisions is usually referred to as30

structural model uncertainty.

Model structural uncertainty is commonly recognized (e.g., Gupta et al., 2012) as one of the three key components of

hydrological model uncertainty, along with parameter uncertainty (Evin et al., 2014, among many more) and data (e.g., input

forcing or observational) uncertainty (e.g., McMillan et al., 2012). A key purpose of model sensitivity analysis is to inform

model calibration or model uncertainty analysis so as to focus either of these analyses on only the model inputs/model structural35

choices the model outputs are most sensitive to. While the literature on sensitivity analysis for model parameters is rich (Morris,

1991; Sobol’, 1993; Demaria et al., 2007; Foglia et al., 2009; Campolongo et al., 2011; Rakovec et al., 2014; Pianosi and

Wagener, 2015; Cuntz et al., 2015, 2016; Razavi and Gupta, 2016a, b; Borgonovo et al., 2017; Haghnegahdar et al., 2017),

and there has likewise been a good deal of research into the influence of model input uncertainty (Baroni and Tarantola, 2014;

Abily et al., 2016; Schürz et al., 2019), sensitivity to model structural choice has received far less attention (McMillan et al.,40

2010; Clark et al., 2011). With model structure we refer to various process conceptualizations within a model rather than, for

example, model discretization. One major reason for difficulties in addressing sensitivity to model structural choice, or model

structural uncertainty, is due, in part, to the historical inflexibility of environmental and hydrological models which readily

allow the user to perturb parameters or input forcings via input files, but are often constrained to a hard-coded model structure

or a generally fixed model structure with a relatively small number of options. However, the advent of flexible hydrological45

modeling frameworks such as FUSE (Clark et al., 2008), SUPERFLEX (Fenicia et al., 2011), SUMMA (Clark et al., 2015), or

Raven (Craig et al., 2020) enables manipulation of model structure in addition to parameters and inputs. They afford a sufficient

number of degrees of freedom in model structure to start to explore model sensitivity to structural choices, and the interplay

between model structures.

To date, there have been limited attempts to simultaneously estimate model parameter, input, and structural sensitivities. One50

notable attempt is introduced by Baroni and Tarantola (2014) using a Sobol’ sensitivity analysis based on grouped parameter.

In that study, groups of soil and crop parameters, the number of soil layers, and a group of parameters to perturb inputs are

investigated. These groups of parameters are pre-sampled and a finite set of parameters for each of the four groups is chosen and

each set is enumerated. The sensitivity analysis is then based on those enumerated sets. This means, rather than sampling each

individual parameter like in a classic Sobol’ analysis, an integer for each group acting as a hyper-parameter is sampled. The55

model is then run with the associated pre-sampled parameter set. While the approach may be generally applicable to arbitrary

structural differences, in their testing, Baroni and Tarantola (2014) varied only in how the model was internally discretized (i.e.,

in the number of soil layers). The soil and crop parameters were always used for the same soil and crop process. The major

limitation of this method is, however, that individual parameters need to be mutually exclusive and can only be associated to
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one type of uncertainty. The method hence limits the groups that can be defined, for instance, overlapping group definitions are60

not possible. The method will be referred to as “discrete values method (DVM)" in the following and will be contrasted to the

method developed here to examine this limitation in more detail.

Günther et al. (2019) applied the discrete values method to determine the sensitivity of a multi-physics snowpack model

regarding model parameters, forcing data, and 32 distinct model structures, but individual model parameter sensitivities were

not determined. Schürz et al. (2019) proposed a comprehensive sensitivity analysis regarding alternative model inputs, climate65

scenarios, and model setups, where the model setups varied in the number of sub-basins and hydrologic response units (but

not process representation). The analysis, based on pre-sampled behavioral parameter sets and 7000 model combinations,

could assess the relative impact of the different sources of uncertainty, but could not be used to examine the linkages between

different types of uncertainty. Similar to the discrete values method, parameters were treated in an aggregate fashion which

made it impossible to attribute the parameter sensitivity to a certain parameter or model component.70

Van Hoey et al. (2014) is one of the few studies that explicitly examined the sensitivity of a model output to changes

in process representation, estimating sensitivities of parameters of various model structures with two or three alternatives

per process, e.g., linear vs. non-linear storage; with or without an interflow process. A computationally expensive sensitivity

analysis was performed for each individual model analyzing the results by pairwise visual comparison of the alternatives,

leading to N sensitivity estimates for each parameter conditional on which of the N model structures it is based on. It remains75

unclear on how to aggregate these N estimates to derive a global overall sensitivity for all parameters.

Francke et al. (2018) proposed a similar method that was only capable of distinguishing between binary model components

(i.e., a model feature/ enhancement is either present or not). Although Pfannerstill et al. (2015) did not explicitly focus on

modeling frameworks, they studied the sensitivity of parameters regarding individual model processes verifying if a process

output is behavioral.80

Dai et al. (2017) proposed a so-called process sensitivity metric which is based on Sobol’ sensitivities. They enable the

derivation of a countable set of process options for each of the model processes and derive an overall sensitivity through model

averaging.

In all cases above, the resultant sensitivity metrics may be useful for (e.g.) differentiating between the magnitude of model

sensitivity to structure versus that of parameters. However, these methods cannot be used to provide insight into the sensitivity85

of individual model structural choices, nor can they be used to disentangle the complex relations between model parameter

and structure sensitivities or the interplay between interacting model structures. It is therefore difficult to use such methods

to identify preferred model structures to inform the process of model calibration. In addition, none of the methods that derive

sensitivities across multiple model structures recognize the fact that model parameters may be present or absent conditional

upon the model structure. Lastly, the above mentioned methods are generally computationally expensive, are only available90

for a small number of process parameterization options, and only determine the sensitivity of the parameterization in general

without providing insight into what is causing this sensitivity by analyzing, for example, the sensitivity of individual parame-

terization options or individual parameters. While potentially useful for some applications, the available approaches have either
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not been applied or do not allow for such an in-depth analysis of model structure and hence might provide only limited support

for improvements in hydrologic modeling.95

Two main contributions of this work are to (A) reformulate a hydrologic modeling framework so that it can define model

structure by weighting or blending of discrete model process options continuously for simulating process level hydrologic

fluxes and (B) to propose a technique, the Extended Sobol’ Sensitivity Analysis (xSSA) method, based on the existing con-

cept of grouping parameters when applying the Sobol’ method (Sobol and Kucherenko, 2004; Saltelli et al., 2008; Gilquin

et al., 2015) to derive the sensitivity of a model prediction (here streamflow) to model structural choices. To our knowledge,100

the method of grouping parameters to derive sensitivities of parameters, process options, and processes without the explicit

necessity of averaging parameter sensitivities after deriving them for individual models (referred to as conventional/ traditional

sensitivity analysis) has not yet been applied. The xSSA method is made uniquely possible due to a special property of the

Raven hydrologic modeling framework (Craig et al., 2020), whereby hydrologic fluxes (e.g., infiltration, runoff, or baseflow)

may be calculated via the weighted average of simulated fluxes generated by individual process algorithms; other flexible mod-105

els may be revised to accommodate such analysis. The weighted averaging means that at each time step each option chosen

for a process would derive an estimate for the flux, in [mm/d], and the weighted average of these estimates would be used

for the next step. As will be demonstrated below, the xSSA is uniquely capable of simultaneously providing global sensitivi-

ties of parameters, process algorithms (e.g., the Green and Ampt (1911) infiltration method), and hydrologic processes (e.g.,

infiltration).110

The xSSA method allows us to efficiently estimate not only the global sensitivity of model parameters independent and hence

unconditional of the chosen model structure, but also to evaluate the sensitivity of alternative model process options (e.g., that

of different snowmelt algorithms), and the sensitivity of hydrological process components (e.g., snowmelt vs. infiltration). We

here pose these as four distinct sensitivity metrics:

A. Conditional parameter sensitivity: Which model parameter is most influential given a certain model structure?115

For example, which model parameter is most influential in the HBV model? (This is the traditional Sobol’ metric. This

conventional approach would test all possible models and derive parameter sensitivities conditional on the model tested.)

B. Unconditional parameter sensitivity: Which model parameter is most influential independent and hence unconditional of

model option choice?

For example, which model parameter is overall the most influential given all possible model structures (available in the120

modeling framework)?

C. Process option sensitivity: Which of the available options for a process in a modeling framework is the most sensitive?

For example, which choice of the infiltration process description has the largest impact on the simulated streamflow in

my catchment of interest?

D. Process sensitivity: Which model process or component is most influential upon model results?125

For example, is infiltration more influential than the handling of snow melt? Or, is the simulated streamflow more

sensitive to infiltration or evaporation?
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Below, we define these metrics explicitly and introduce the xSSA methodology for calculating them. The xSSA method is

tested using two artificial benchmark model to check for consistency between analytical and numerically derived sensitivity

index estimates. The proposed method is also compared to the existing discrete values method (DVM) revealing limitations130

that can be resolved using the xSSA method. The xSSA method is then applied to a hydrologic modeling case study using

the Raven hydrologic modeling framework, demonstrating the insights that may be gained through the simultaneous in-depth

analysis of model parameters and model structure to improve hydrologic modeling practices.

We propose a method for estimating how sensitive a simulated model output is to groups of parameters. We have chosen

here streamflow as this model output as it is the fundamental and most important and common output variable in hydrologic135

studies. The sensitivities of the groups of parameters is hence obtained regarding streamflow. The groups defined here are

either individual parameters (metric B) or the set of parameters that is used in an individual process option (metric C) or all

parameters used in any available process option for a modelled process (metric D). We acknowledge that the definition of these

groups is subjective and has been chosen here to demonstrate a novel approach of how to evaluate process and process option

sensitivities, i.e., how sensitive is the simulated streamflow regarding the choice of a specific infiltration process description or140

how sensitive is the simulated streamflow regarding infiltration in general. We also wish to mention that the terms ‘sensitive’

and ‘influential’ are used interchangeably throughout this work.

2 Materials & Methods

The section will first introduce the models and their setups (Sec. 2.1) used to test and validate the proposed Extended Sobol’

Sensitivity Analysis (xSSA) method as here applied to determine model structure and parameter sensitivities. In section 2.2,145

we will briefly revisit the traditional method of Sobol’ that is so far primarily used to obtain model parameter sensitivities

(sensitivity metric A; Sec. 2.2.1) before we introduce the major contribution of this work (Sec. 2.2.2) which supports sensitivity

estimates for model process options (sensitivity metric C) and model processes (sensitivity metric D) besides the sensitivities

of model parameters (sensitivity metric B). Finally, we present the experiments used to test the proposed method and address

the research questions raised in the introduction (Sec. 2.3).150

2.1 Models and Setup

This section will briefly introduce the three test cases used to demonstrate the functioning of the xSSA. The first two test

cases are artificial benchmark models where the sensitivity index values can be derived analytically (Sec. 2.1.1). We use two

benchmark models to demonstrate limitations of available methods and to show that the proposed xSSA method is converging

to all analytical values. The third model is a real world example using a hydrologic model that allows for flexible model155

structures, i.e. the hydrologic modeling framework Raven (Sec.2.1.2). The watershed being modeled is described in the last

section (Sec. 2.1.3).
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2.1.1 Artificial Benchmark Model Setups

The artificial benchmark models are employed to demonstrate that the proposed method is capable of deriving the sensitivities

of not only individual model parameters but also of grouped parameters linked to individual process options (e.g., the linear160

baseflow algorithm) or processes regardless of available options (e.g., baseflow). The benchmark models are further used to

demonstrate limitations of existing methods that were previously used to analyze model structure sensitivities. We use two

hypothetical models here: One model where each model parameter is only used in distinct processes and process options

(disjoint-parameter benchmark; Fig. 1A) and a more advanced benchmark model where parameters are shared between several

processes and process options (shared-parameter benchmark; Fig. 1B). The latter is assumed to be more realistic as model165

parameters such as, for example, the thickness of the upper soil layer can appear in multiple processes (e.g., evaporation,

quickflow, infiltration, and percolation). The two benchmark models are both assumed to consist of three processes: A, B, and

C as well as D, E, and F . The model output f(x), a function of model parameters x, is defined by

fdisjoint(x) = A ·B+C (1)

fshared(x) = D ·E+F . (2)170

The product of processes A (D) and B (E) is intended to mimic non-linear coupling of model processes while the addition of

C (F ) is intended to resemble linear process coupling. Each of the three processes is assumed to allow for multiple process

options. For the disjoint-parameter benchmark model, the process A is set to have 2 options (A1, A2), B has 3 options (B1,

B2, B3), and C has two options (C1, C2):

A1 = sin(x1) (3)175

A2 = 1 (4)

B1 = 1 + bx4
2 (5)

B2 = 1 + bx2
3 (6)

B3 = x4 + bx5 (7)

C1 = asin2(x6) (8)180

C2 = 1 + bx4
7 (9)
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For the shared-parameter benchmark model, the process D is set to have 2 options (D1, D2), E has 3 options (E1, E2, E3),

and F has two options (F1, F2):

D1 = sin(x1) (10)

D2 = x1 +x2
2 (11)185

E1 = 1 + bx4
2 (12)

E2 = 1 + bx2
3 (13)

E3 = x4 + bx5 (14)

F1 = asin2(x6) (15)

F2 = 1 + bx4
7 +x2

3 (16)190

This allows for 2×3×2 = 12 individual models for the disjoint-parameter benchmark and 12 individual models for the shared-

parameter setup using seven model parameters x1 to x7 that are all sampled uniformly from the range [−π,π]. By design, not

all model parameters are used in each of the 12 models. The number of "active" parameters for the shared-parameter setup

ranges from 3 (e.g., D1 ·E1 +F1) to 6 (e.g., D2 ·E3 +F2). For the disjoint-parameter setup each parameter appears in exactly

one process option. In the shared-parameter setup, parameter x1 is used in two process options of the same process (D1 and195

D2). Parameter x2 and x3 are used in multiple process options of different processes. x2 is present in process options D2 and

E1 to evaluate the behavior of sensitivities for multiplicative parameters and x3 is present in process options E2 and F2 to

check for additive behavior. A schematic of the model options and associated model parameters are shown in Figure 1A and B.

The model that is built using the first process options

fdisjoint(x) = A1 ·B1 +C1200

= sin(x1) · (1 + bx4
2) + asin2(x6) (17)

= D1 ·E1 +F1 = fshared(x)

resembles the Ishigami-Homma function (Ishigami and Homma, 1990) which is a common benchmark function in sensitivity

analysis studies (Homma and Saltelli, 1996; Cuntz et al., 2015; Stanfill et al., 2015; Pianosi and Wagener, 2015, 2018; Mai and

Tolson, 2019). The Ishigami-Homma parameters a and b are fixed at 2.0 and 1.0, respectively.205

The Sobol’ sensitivity indexes of all 12 model configurations can be derived analytically following closely the description in

Saltelli et al. (2008) (p. 179–182). They are listed for the shared-parameter benchmark model in Table B1 of the Appendix B.

A reasonable approach for evaluating the sensitivity of 12 individual models involves choosing exactly one process option

for each process in Eq. 2, e.g.D =D1, E = E2 and so on. This can be generalized by choosing a weighted sum of all available

process options to represent a process, e.g. D = w1D1 +w2D2 + . . .. The sum of weights wi per process is assumed to be 1.210

In case of the shared-parameter benchmark example, Eq. 2 is therefore changing to

fshared(x,w) = (wd1D1 +wd2D2) · (we1E1 +we2E2 +we3E3) + (wf1F1 +wf2F2) (18)
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where

wd1 +wd2 = 1

we1 +we2 +we3 = 1215

wf1 +wf2 = 1 .

The 12 individual models can be obtained when the weights are set accordingly, e.g. the Ishigami-Homma function can be

obtained by settingwd1 = we1 = wf1 = 1. However, given that weights can take on non-integer values, we now have an infinite

number of model structures rather than 12. The same can be constructed for the disjoint-parameter model setup.

For sampling the continuum of all process options, the weights need to be independently and identically distributed (iid).220

Therefore, random numbers ri are sampled from the uniform distribution, U[0,1], and transformed into the weights following

the approach described by Moeini et al. (2011). N−1 such random numbers are required for N weights of competing options.

The recipe on how to transform the uniformly sampled numbers ri into weights is specified in Eq. A1 of Appendix A. For the

benchmark example, one requires 4 such uniform random numbers (r1, . . ., r4) to derive the 7 weights (w1, . . ., w7).

The approach of weighted model options hence comes at the expense of introducing additional parameters ri to derive the225

weights. Larger numbers of model parameters always results into an increased number of model runs needed for the sensitivity

analysis. However, using the model with weighted options, one now has to run and analyze only one generalized model structure

instead of 12 fixed structures. Therefore, this approach reduces the number of required model runs provided that the model

allows to derive outputs of weighted process options directly. This feature is available in the hydrologic modeling framework

Raven and was the primary reason for the choice of this flexible modeling framework over others. The sensitivities of the230

additional model parameters (i.e., weights) can further hold interesting insights into the model structure (see Section 3).

The analytically-derived Sobol’ indexes for the remaining three sensitivity metrics (B-D) can be derived using the revised

model description (Eq. 18). The indexes for the shared-parameter model setup can be found in Eq.s B1 to B3 in Appendix B.

2.1.2 Hydrologic Modeling Framework Raven

The Raven hydrologic modeling framework developed by James R. Craig at the University of Waterloo (Craig et al., 2020) is a235

C++ based framework that gives users full flexibility regarding model input handling and hydrologic process description chosen

for each process of the water cycle. It is platform independent, open-source and is retrievable from http://raven.uwaterloo.ca.

For this study we used the released version 3.0. The Raven framework currently allows for an ensemble of about 8× 1012

hydrologic model configurations with, for example, 14 options for infiltration, 13 options for percolation, and 9 for baseflow

handling. The overall number of model structures is hypothetical as not all processes need to be present in a model setup.240

For example, the sublimation process allows for 6 different options in Raven but would likely not be used to model an arid

catchment. Further, other processes might appear several times. For example, convolution processes can be defined for each

soil layer and hence would increase the number of possible models.

In Raven, the user defines the model as a list of hydrologic processes which move water between storage compartments

corresponding to physical stores (e.g., topsoil, canopy, snowpack). The list determines the state variables, connections between245
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Figure 1. The three model setups used in this study. The first two serves as a artificial benchmark model since sensitivities of parameters,

process options and processes can be derived analytically. The benchmark examples consists of three processes: A, B, and C (D, E, and F ).

The three processes are connected through A ·B+C (D ·E+F ) to obtain the hypothetical model outputs. Processes A (D) and C (F ) have

two options, process B (E) has three. The parameters xi required for each process option are listed right of the respective process options.

Each parameter of the disjoint-parameter benchmark model (A) appears in exactly one process option (disjoint parameters) while in the more

advanced benchmark model (B) parameters x1 and x3 appear in multiple process options and processes. The process formulations can be

found in Eq.s 3 to 9 and Eq.s 10 to 16. (C) The third setup is used for a sensitivity analysis of the hydrologic modeling framework Raven.

The three options Mi are used for the infiltration process, three options Ni for quickflow, two options Oi for evaporation, two options Pi for

baseflow, and three options Qi for snow balance. All other processes needed for the model are used with one fixed option, i.e., convolution for

surface and delayed runoff R1 and S1, respectively, potential melt T1, percolation U1, rain-snow partitioning V1, and precipitation correction

W1. The remaining processes also have only one option but none of them contains tunable parameters. They are merged to a "remaining"

process X1. The Raven model parameters x1 to x35 are listed right of the process options. Details about the chosen process options can be

found in Appendix C Table C1, and details on the model parameters and their ranges in Appendix C Table C2.

stores and the parameters required. For each hydrologic process, several options of process algorithms are implemented. There

are, for example, 14 infiltration process options available. Amongst others, the GR4J (Perrin et al., 2003), HMETS (Martel

et al., 2017), UBC watershed model (Quick and Pipes, 2009), PRMS (Markstrom et al., 2015), HBV (Bergström, 1995), VIC
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(Wood et al., 1992), and VIC/ARNO (Clark et al., 2008) infiltration descriptions are implemented. All options of each process

can be combined with all options of other processes. Raven can fully emulate a number of hydrologic models (GR4J, HMETS,250

MOHYSE, HBV-EC, and the UBC Watershed model) by choosing specific configurations of the hydrologic processes.

Raven has another unique feature relative to other modular frameworks: Rather than selecting one process option (e.g.,

HMETS method for estimation of infiltration runoff fluxes) one can specify multiple process options (e.g., HMETS, VIC/ARNO,

and HBV) and define weights for each option (e.g., 0.4, 0.5,and 0.1, respectively). Raven then uses the weighted sum of the

fluxes calculated by the process options internally. Raven is run only once and not multiple times to obtain the outputs for255

the multiple process options. Based on this feature, we chose Raven as model for our study. Please note that the proposed

sensitivity method is applicable for any multi-model framework that allows to mix-and-match process descriptions. However,

in the case of a framework without weights for process options, the application of the method would be much less efficient.

For the case study used herein, Raven is applied in lumped mode and the models are solved using the ordered series numerical

scheme defined in Craig et al. (2020, (end of Section 3.2 therein)). We have chosen three different optionsMi for the infiltration260

process, three options Ni for quickflow, two options Oi for evaporation, two options Pi for baseflow, and three options Qi for

snow balance. All other processes, i.e. convolution for surface runoff R1 and delayed runoff S1, potential melt T1, percolation

U1, rain-snow partitioning V1, and precipitation correctionW1 are used with one fixed process option. The remaining processes

also have only one option but none of them contains tunable parameters. They are merged to a "remaining" process X1. This

remaining process will never appear in the sensitivity analysis because it is constant. Details of process options can be found265

in Appendix C Table C1.

This selection of process options results in 3× 3× 2× 2× 3× 1× 1× 1× 1× 1× 1× 1 = 108 possible models when only

one option is allowed per process. When the first option of each process M1, N1, O1, P1, Q1, R1, S1, T1, U1, V1, W1, and

X1 is chosen and parameter x35 is set to zero, the Raven setting emulates the HMETS model (Martel et al., 2017) perfectly.

All other combinations are unnamed models. The Raven model is stable for all of these combinations although a check of the270

hydrologic realism of these models, as done by Clark et al. (2008), was not performed.

Figure 1B shows the possible combinations and associated active parameters. In total 35 model parameters are active in at

least one model option. The details on model parameters and their ranges used for the sampling of parameter sets are listed

in Table C2 of the appendix. An additional number of 13 (= 3 + 3 + 2 + 2 + 3) weights is required for the weighted model

setup (similar to Eq. 18), and are also sampled using the approach described in Appendix A. Therein, 8 (= 2 + 2 + 1 + 1 + 2)275

parameters ri are sampled uniformly U [0,1] and transformed into weights wi.

2.1.3 Case Study Domain

The Salmon River catchment located in the Canadian Rocky Mountains in British Columbia is selected as the study watershed.

The domain is depicted in Figure 2A and was chosen only for the purpose of demonstrating the proposed method. The catch-

ment drains towards a Water Survey Canada (WSC) streamflow gauge station near Prince George (WSC ID 08KC001; latitude280

54.09639° N, latitude -122.67972° W, elevation 606 m) and has continuous data since 1953. The 4230 km2 large, low-human
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impacted catchment is mainly evergreen needleleaf forested (83% of whole domain) on a loamy (63%) and loamy sandy (25%)

soil (Fig. 2C and Fig. 2D).

Meteorological inputs are obtained from Natural Resources Canada on an approximately 10×10 km2 grid. The model is

setup in lumped mode. Hence, all available forcing grid points that fall within the catchment have been aggregated. Average285

daily temperature and the daily sum of precipitation have been used to force the Raven model. The forcings are available from

1954 to 2010. The average annual precipitation of the Salmon River catchment is 592.7 mm over the 57 years of available data.

The monthly distribution of precipitation is shown in Figure 2B where rain is highlighted as the dark blue portion of each bar

and snow as the light blue portion of each bar. The basin has a dryness index (PET/P) of 0.735, which demonstrates the energy

limitation of this catchment.290

The lumped model was setup for the simulation period from January 1, 1989 to December 31, 2010 while the first two years

were discarded as warm-up. Hence, 20 years of daily streamflow simulations were used for this study.
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Figure 2. (A) Location of the Salmon River catchment (red polygon) in British Columbia, Canada. The watershed is 4230 km2 and located

around 700 km north of Vancouver. It is located in the Rocky Mountains with an elevation of 606 m above sea level at the streamflow

gauge station of the Salmon River (08KC001). (B) The average monthly mean temperatures (red line) and average monthly precipitation

is divided into rain (dark blue) and snow (light blue). Maps of (C) the four soil types based on the Harmonized World Soil Data (HWSD;

30”) (Nachtergaele et al., 2010) and (D) four land cover types based on the MCD12Q1 MODIS/Terra+Aqua Land Cover (500m) (Friedl and

Sulla-Menashe, 2015) of the Salmon River catchment are provided. The colors indicate different soil and land use classes.
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2.2 Sensitivity Analysis: Theory

In this section we briefly describe the Sobol’ method (Sobol’, 1993) that is traditionally used to derive model parameter

sensitivities (Sec. 2.2.1). This corresponds to the sensitivity metric A mentioned in the introduction. To calculate the sensitivity295

metrics B, C, and D, we propose an extended version of the Sobol’ method which is introduced in Sec 2.2.2.

2.2.1 Traditional Sobol’ Sensitivity Analysis: Sensitivities of Individual Model Parameters

Traditionally, the Sobol’ sensitivity analysis- as all other methods- focuses on the sensitivity of model parameters. In case of

multiple models, one would typically run the analysis individually for each model and might aggregate the sensitivity index

estimates for parameters that are active in multiple models. This, however, may underestimate the sensitivity of parameters that300

are active in only a few models while parameters that are active in almost all models might be overestimated in their aggregated

sensitivity.

We here briefly revisit the implementation of the traditional Sobol’ method to emphasize the differences with the extended

method we propose that will be able to handle multiple process options and derive (overall) parameter sensitivities, sensitivities

of process options, and sensitivities of whole processes.305

Usually two Sobol’ indexes are derived: the main and total Sobol’ index. The main Sobol’ index Sxi
of a parameter xi

regarding a certain model output f(xi) represents the variability in the model output Vi that can be achieved by changing this

parameter while keeping all other parameters at a nominal value. This impact is normalized by the overall model variability

V (f) that can be generated when all model parameters are varied. Therefore, the main index is derived by

Sxi
=

Vi
V (f)

=
V [E(f |xi)]
V (f)

(19)310

where V depicts variances and E expected values. E(f |xi) is the expected model output when the model parameter xi is fixed.

Similarly, the total Sobol’ index STxi
for a parameter xi regarding a certain model output f(xi) is similar to the main

index but includes parameter interactions. Therefore, it is derived using the variability of model output that can be generated

by changing all parameter subsets that include parameter xi. Since there might be a large number of such subsets, the total

index for parameter xi can also be viewed as 1 minus the variability that can be achieved by changing all parameters but not315

parameter xi (V∼i) normalized by the overall possible model output variability Vf :

STxi = 1− V∼i
V (f)

= 1− V [E(f |x∼i)]
V (f)

(20)

where V depicts variances and E expected values. E(f |x∼i) is the expected model output when all model parameter except

xi are fixed.

Sobol’ (1993) proposed an elegant and efficient method to approximate the variances Vi, V∼i, and V (f). We have used the320

implementations proposed by Cuntz et al. (2015) (Appendix D therein). Unlike derivative based methods, the Sobol’ index

calculations are only dependent on the model outputs but not the parameter values xi.

For the numerical estimation of the indexes Sxi and STxi , one samples two base matrices A and B which each contain K

parameter sets (rows) of N parameters (columns). The samples are assumed to be independent within one matrix and between
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the matrices. We used the stratified sampling of Sobol’ sequences here to improve convergence speed of the derived indexes325

compared to a Monte-Carlo sampling. Based on A and B, a set of additional N matrices Ci is constructed. Ci is a copy of

A but column i is replaced with column i of matrix B. The model then needs to be forced with all the parameter sets; in

total K × (N + 2) model runs are required where N is the number of parameters and K is the so-called number of reference

parameter sets. K needs to be chosen to be large enough to obtain stable Sobol’ indexes. This number is highly dependent on

the model but K = 1000 seems to be a good rule-of-thumb (Cuntz et al., 2015, 2016).330

Out of the 12 possible shared-parameter benchmark models (Eq. 2) there are 4 models that contain 3 parameters, 5 models

contain 4 parameters, 2 models consist of 5 parameters, and 1 model has 6 parameters. Hence, 72 000 (= 4× (3+2)×1000+

5× (4+2)×1000+2× (5+2)×1000+1× (6+2)×1000) model runs would be required if K = 1000 reference parameter

sets would be used.

2.2.2 Extended Sobol’ Sensitivity Analysis: Sensitivities of Groups of Model Parameters335

The Sobol’ method is here generalized to groups of parameters xG rather than focusing on individual parameters xi. The

subscript G is used here to refer to parameter groups, such that VG represents the variance of a group of parameters xG,

e.g., the set xG = {x2,x4,x5}. Although the grouping of parameters has previously been used (Sobol and Kucherenko, 2004;

Saltelli et al., 2008; Gilquin et al., 2015), it is- to our knowledge- the first time they have been used to group parameters of

process options in the context of examining model structure sensitivity. The calculation of the main and total Sobol’ indexes340

is marginally changed: Instead of changing individual parameters xi groups of parameters get changed. The derivation of the

main index gets generalized to:

SxG
=

VG
V (f)

=
V [E(f |xG)]

V (f)
(21)

where V depicts variances and E expected values. E(f |xG) is the expected model output when the set of model parameters

xG is fixed. This simplifies to Eq. 19 in case the group xG contains exactly one model parameter xi. Similarly, the total Sobol’345

index can be generalized to:

STxG
= 1− V∼G

V (f)
= 1− V [E(f |x∼G)]

V (f)
(22)

where V depicts variances and E expected values. E(f |x∼G) is the expected model output when all model parameters except

the ones in of group xG are fixed. This simplifies to Eq. 20 when the group xG contains only the parameter xi. Note that the

groups are not assumed to be mutually exclusive, which means that parameters can appear in multiple groups.350

The numerical approximation of these indexes is similar to the traditional approach. It is again based on the two matrices

A and B containing K parameter sets each. Assuming that the sensitivity of M groups needs to be estimated, M matrices Cm
have to be constructed where Cm is a copy of A but all columns that correspond to parameters in group m are replaced by the

corresponding column of B. For example, if the group consists of parameters x2, x4, and x5, the columns 2, 4, and 5 would be

replaced by the columns 2, 4, and 5 of matrix B. The number of model runs that need to be performed is (M + 2)×K where355

K is the number of reference parameter sets.
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The Extended Sobol Sensitivity Analysis (xSSA) method can be used to derive conventional model parameter sensitivities

by using groups that contain exactly one of the model parameters xi or random number ri that are required to derive weights

(sensitivity metric B). It can also supply the sensitivity of process options by defining a group for each process option containing

exactly the parameters of that option (sensitivity metric C) or defining a group for each process containing all parameters active360

in at least one of the process options to derive the sensitivity of whole model processes (sensitivity metric D).

As an example, (see Fig. 1B) the group to derive the sensitivity of process option A2 of the shared-parameter benchmark

model would contain parameters x1 and x2. The group to determine the sensitivity of process B of this benchmark model

would contain parameters x2, x3, x4, and x5.

The shared-parameter benchmark model consists of 7 model parameters xi and 4 random variables ri used to derive the 7365

weights wi. Let’s assume we used K = 1000 reference parameter sets for each of the three analyses. One would require 13000

(= (7+4+2)×1000) model runs to derive individual parameter sensitivities using the xSSA method. This is compared to the

72000 model runs required when the conventional Sobol’ sensitivity analysis method is applied to the 12 individual models.

It requires 13000 (= (7 + 4 + 2)× 1000) additional model runs to derive the sensitivity of the seven process options A1, A2,

B1, . . . C2 and 5000 (= (3+2)×1000) additional model runs to derive the sensitivity of the three processes A, B, and C. The370

total of 31000 model runs for all three analyses thus leads to a computational cost reduction of 57% while providing additional

information about process option and process sensitivity.

2.3 Sensitivity Analysis: Experiments

Four experiments will be performed for each of the two benchmark models to demonstrate that the proposed method is able to

obtain the analytically derived values available for the the benchmark examples (Sec. 2.3.1). Another set of four experiments375

is performed using the Salmon River catchment model (Sec. 2.3.2). These experiments are performed to demonstrate the type

of insights that can be obtained for hydrologic models using the proposed method.

2.3.1 Experiments Using the Benchmark Models

The artificial benchmark models are used to prove that the proposed method of Extended Sobol’ sensitivity indexes and its

implementation is working. They are furthermore employed to demonstrate some limitations of the existing method proposed380

by Baroni and Tarantola (2014) (discrete values method) to derive sensitivities regarding model structures. The analytically-

derived values for the traditional approach analyzing the individual 12 models independently (sensitivity metric A) can be

found in Appendix B Table B1 for the shared-parameter model setup. The budget of such an analysis is 72×K with K

reference parameter sets as described in Sec. 2.2.1. Mai and Tolson (2019) and Cuntz et al. (2015) have demonstrated that

these indexes can be obtained with a classical Sobol’ analysis for the Ishigami-Homma model. The analytically-derived values385

for the sensitivity metrics B to D of the shared-parameter model are available in Eq. B1-B3 of the Appendix B. All analytically

derived indexes are obtained by following the descriptions in Saltelli et al. (2008, page 179 ff).

The xSSA method is tested using different budgets to show that numerical values indeed converge. The number of reference

sets used are
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K = {50,100,200,500,1000,2000,5000,10000,20000,50000,100000}. The budget to derive parameter sensitivities (sensi-390

tivity metric B) is (11+2)×K for 7 parameters xi and 4 weight deriving random numbers ri. To derive sensitivities of process

options (sensitivity metric C) (11 + 2)×K model runs are required for the 7 process options D1, D2, . . ., F2 and the 4 weight

deriving random numbers ri. For the analysis of processes (sensitivity metric D) the model needs to be run (3 + 2)×K times

to obtain sensitivities of the 3 processes D, E, and F .

The discrete values method (DVM) also applied to the two benchmark models was setup using the same computational bud-395

gets K as above. The method requires additionally the definition of the algorithmic parameter ni which denotes the number of

realizations for each source of uncertainty Ui analyzed (ni and Ui are terms used in the original publication). The term "sources

of uncertainty" (Ui) is used by Baroni and Tarantola (2014) to describe groups of parameters with aggregated sensitivity, and

is here equivalent to the process groupings A, B, and C for the disjoint-parameter benchmark model and D, E, and F for the

shared-parameter benchmark model. Several values for ni were tested (32, 64, 128, 256, 512, 1024). Only results for ni equal400

to 128 which was used in the original publication (Baroni and Tarantola, 2014) will be reported as all other results appeared to

be similar.

The errors between approximated main effects S(appr)
i and the analytically derived true indexes S(theo)

i as well as errors

between the approximated total indexes ST (appr)
i and its analytically derived truth ST (theo)

i are reported for both the xSSA and

the discrete values method (DVM).405

2.3.2 Experiments Using the Raven Modeling Framework

The Salmon watershed model is analyzed using the xSSA method with K = 1000 reference parameter sets assuming that this

number of parameter sets is large enough to derive stable results. The analysis of individual models (sensitivity metric A)

would have required 3258000 model runs and is not performed here.

The budget for the sensitivity metric B analyzing unconditional sensitivity of parameters independent of choice of model410

options, results in (43 + 2)×K model runs for the 35 model parameters xi and 8 weight deriving random numbers ri. The

budget for process options is (27 + 2)×K model runs for the 19 process options M1, M2, . . ., W1 and 8 weight deriving

random numbers ri. The process X1 not analyzed since it does not contain any parameters and is hence constant, resulting in a

zero sensitivity. The budget for the analysis to obtain process sensitivities is (11 + 2)×K for the 11 processes M , N , . . ., W .

The sensitivities are determined for simulated streamflow Q(t) for the 20 year simulation period from 1991 to 2010. The415

main and total Sobol’ indexes Sxi(t) and STxi(t), respectively, are determined for each time step t and are aggregated to Sw
xi

and STw
xi

using variance-weighted means (Cuntz et al., 2015):

Sw
xi

=
∑T

t=1V (t)Sxi
(t)∑T

t=1V (t)
=

∑T
t=1Vxi

(t)∑T
t=1V (t)

, (23)

STw
xi

=
∑T

t=1V (t)STxi
(t)∑T

t=1V (t)
= 1−

∑T
t=1Vxi

(t)∑T
t=1V (t)

(24)

where V (t) is the total variance at time step t.420
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We further analyze the time dependent behavior of process sensitivities to reveal temporal patterns in the importance of

processes at different times of the year. Therefore, the total process sensitivity STM (t), STN (t), . . . STW (t) over the 20

year simulation period (t= 1, . . . ,7305) are averaged for each process at each day of the year (t′ = 1, . . . ,365) resulting in

STM (t′), STN (t′), . . . STW (t′). Sensitivity estimates from leap days are discarded. The sum of sensitivities at each time step

are normalized to 1.0 in order to ease the comparison of all time steps:425

ŜTP(t′) =
STP(t′)∑

P∈Ω

STP(t′)
∀P ∈ Ω = {M,N,. . . ,W} (25)

3 Results and Discussion

We will present the results of the Extended Sobol’ Sensitivity Analysis (xSSA) applicable not only to model parameters but

also for model process options and processes. First, the xSSA method will be compared to the existing discrete values method

(DVM) to derive sensitivities of groups of parameters introduced by Baroni and Tarantola (2014) highlighting limitations430

of these existing method (Section 3.1). Second, we will present the convergence of the xSSA results regarding parameters,

process options, and processes focusing on the more shared-parameter benchmark model (Sec. 3.2). The results of xSSA for

the hydrologic modeling framework are presented in Sec. 3.3.

3.1 Benchmarking Against Analytically-Derived Solutions and An Existing Method

In this section the proposed xSSA method based on grouped parameters and weighted process options will be compared against435

analytically-derived Sobol’ sensitivity indexes for both benchmark problems (Fig. 1A and B). The xSSA method will aslso be

compared to the sensitivity analysis method introduced by Baroni and Tarantola (2014) (hereafter called discrete values method

DVM) which is also making use of grouped parameters. Weighted process options are irrelevant for the version of the discrete

values method employed by Baroni and Tarantola (2014) as only one "process option" was used in their publication.

The DVM method defines the term "sources of uncertainty" (Ui) to describe groups of parameters with aggregated sensitivity,440

and is here used to be equivalent to the process groupings A, B, and C for the disjoint-parameter benchmark model and D,

E, and F for the shared-parameter benchmark model. The DVM method pre-samples a defined number ni of sets for each

"uncertainty source" Ui. Forcing datasets could be one of such source of uncertainty. In this case, the DVM method pre-samples

ni input time series and the Sobol’ method would use the ID of the time series (1 . . .ni) as the hyper-parameter to derive the

sensitivity of the inputs. In the case of their proposed example, the sources of uncertainty are distinct and the parameterizations445

of the "sources of uncertainty" are disjoint. The question is how the DVM method would be applied if two competing error

structures of the same forcings are supposed to be tested. For example, when both error structures shared one or more of the

same statistical parameters such as the mean error and error variance, eliminating the disjoint nature of parameters that all

past studies using the DVM method implicitly assume and utilize. The same question appears in the context of process option

sensitivity when a parameter (e.g., porosity) is shared between multiple alternative process options or even multiple processes450

(e.g., a soil evaporation process option and a percolation process option). The xSSA method is not limited in these situations
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by using the weighted sum of all competing model options and the definition that parameters are allowed to appear in multiple

process options and even in multiple processes.

To demonstrate this major difference of the DVM method and the proposed xSSA concept, we define three groups (sources

of uncertainty) as the processes A, B, and C of the disjoint-parameter benchmark model (Fig. 1A). For this scenario, all the455

parameters are disjoint and it can be shown that both methods converge to the analytically derived Sobol’ indexes (Fig. 3A and

3B).

The shared-parameter benchmark model (Fig. 1B), on the contrary, has parameters that appears in several process options of

the same process (e.g., x1 in A1 and A2) and parameters that are involved in several process options across processes (e.g., x3

in E2 and F2). This non-disjoint (overlapping) setting of influencing factors leads to the result that the DVM method converges460

to a wrong sensitivity for some processes. This is caused by the usage of the ni pre-sampled parameter sets for each source

of uncertainty (here processes). When a parameter appears in two source of uncertainty, one has to make a decision which

parameter value to choose for running the model; during the Sobol’ analysis (when creating the M matrices Cm) one process

expects this parameter to stay constant while the other assumes it is getting changed. This contradiction can not be resolved

in a method that does not allow for shared parameters. Shared parameters occur often in several process options of the same465

process but also across processes and hence need to be considered when analyzing process options and processes in flexible

frameworks. In this methodology, it is at the user’s discretion which parameters are grouped and how they are grouped. A

defining characteristic of the xSSA approach is that it can support any grouping of parameters, though interpretation of xSSA

results benefits from meaningfully assigning group membership. In our implementation we had chosen to use the parameter

value of the last process leading to process F converging to the analytically-derived correct value. Process E also converges470

almost to the correct value but only because parameter x3 which is shared between processes E and F is very insensitive

(STx3 = 0.0045). Process D shares the highly sensitive parameter x2 (STx2 = 0.77089) with process E. Thus the sensitivity

for process D is significantly underestimated. The underestimation is caused by the fact that the parameter value is supposed

to change but it is kept constant because it gets overwritten by the value of x2 of the pre-sampled set of process E.

We also tested several numbers of pre-sampled parameter sets ni as this is mentioned by Baroni and Tarantola (2014) to be475

one factor that can influence the convergence of the method. We tested ni with 32, 64, 128, 256, 512, and 1024 and all led to

the same results (results not shown).

The xSSA method does not pre-sample parameters. When one group is analyzed, all parameters contained in this group get

perturbed. The Cm matrices can be defined without causing any contradiction or overwriting of parameter values. The method

intrinsically counts repeatedly sensitivities for parameters that appear multiple times. This characteristic of this method is480

intentional and desirable. When the groups are defined as process options, i.e. various conceptual implementations of the same

hydrologic process, parameters will be used in multiple options. Some parameters such as, for example, soil thicknesses or

porosity might even be required across processes (for example infiltration and percolation). We do not expect the process

sensitivities to sum up to 1 which is anyway not achievable with non-additive models (Sobol and Kucherenko, 2004; Saltelli

et al., 2008). In addition to the practical benefit of allowing for non-disjoint parameter groups, the theoretical underpinning of485
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Figure 3. Error between approximated and analytically-derived total Sobol’ sensitivity index estimates for processes of the benchmark

models ST (appr)
i and ST (theo)

i , respectively. The analyses are performed using increasing numbers of Sobol’ references sets K. The errors are

expected to converge to zero for increasing number of reference sets. The existing discrete values method (DVM) proposed by Baroni and

Tarantola (2014) (A,C) is compared to the proposed method xSSA (B, D) using the disjoint-parameter and shared-parameter benchmarking

model (Fig. 1A and Fig. 1B, respectively). The model parameters are here grouped to model processes A, B, and C for the disjoint-parameter

benchmarking model and D, E, and F for the shared-parameter benchmarking model. The main difference between these two models is that

parameters of the latter model can appear in multiple processes (or groups of uncertainty) which is regarded to be more realistic. Note that

the x-axis is in logarithmic scale.

analytically-derived Sobol’ indexes does not require this constraint as shown with the xSSA results converging towards those

values.

It is notable that several publications that are considering structural sensitivities so far are limited by the disjoint definition

of parameter groups (Baroni and Tarantola, 2014; Schürz et al., 2019; Francke et al., 2018; Günther et al., 2019). They would

hence show a similar behavior as presented here for the results of an example discrete values method.490

3.2 Extended Sobol’ Sensitivity Analysis for Shared-Parameter Benchmark Setup

The shared-parameter benchmark setup is utilized to compare the xSSA derived numerical sensitivity metric values with the

analytically derived, correct sensitivity metric values for all three metrics: parameters, process options, and processes. We have

chosen the shared-parameter over the disjoint-parameter benchmark model here as it appears to be the more difficult model

to analyze. The errors converge to zero in every analysis and this proves that the implementation of the Extended Sobol’495

sensitivity analysis is coherent with the analytical theory (Figure 4).

It holds for all three analyses that the model parameters/ options/ processes with the largest sensitivities converge slowest. For

example, model parameter x2 and weight generating random number r2 have much higher sensitivities than other parameters

analyzed and need about 5000 model runs to obtain an error below 0.1 (Fig. 4A and B). Similarly, Figure Fig. 4C and 4D

18



−0.25

0.00

0.25

S(ap
pr

)
i

−
S(th

eo
)

i

A
Main Sobol′ Index S i

x1
x2
x3

x4
x5
x6

x7
r1
r2

r3
r4 −0.25

0.00

0.25

ST
(ap

pr
)

i
−
ST

(th
eo

)
i

B

Pa
ra
m
et
er
s

Total Sobol′ Index STi

x1
x2
x3

x4
x5
x6

x7
r1
r2

r3
r4

−0.25

0.00

0.25

S(ap
pr

)
i

−
S(th

eo
)

i

C

D1
D2
E1

E2
E3
F1

F2
r1
r2

r3
r4 −0.25

0.00

0.25

ST
(ap

pr
)

i
−
ST

(th
eo

)
i

D

Pr
oc
es
sO

pt
io
ns

D1
D2
E1

E2
E3
F1

F2
r1
r2

r3
r4

102 103 104 105

Number of Sobol′ Reference Sets K

−0.25

0.00

0.25

S(ap
pr

)
i

−
S(th

eo
)

i

E

D E F

102 103 104 105

Number of Sobol′ Reference Sets K

−0.25

0.00

0.25

ST
(ap

pr
)

i
−
ST

(th
eo

)
i

F

Pr
oc
es
se
s

D E F

Figure 4. Error between xSSA approximated and analytically-derived Sobol’ sensitivity index estimates S (appr)
i and S (theo)

i , respectively. The

errors are derived for the main Sobol indexes Si and the total Sobol indexes STi. The analyses were performed for (A,B) model parameters,

(C,D) process options, and (E,F) processes of the shared-parameter benchmark model (Figure 1B, Eq. 2). The analyses are performed using

increasing numbers of Sobol’ references sets K. Note that the x-axis is in logarithmic scale. Figure 4F is the same as Figure 3D.

show that for the most influential process options (D2, E1) and most influential variable (r2) converge slowest (SD2
= 0.43,500

SE1 = 0.38, Sr2 = 0.06, STD2 = 0.80, STE1 = 0.77, STr2 = 0.32). Process F’s sensitivity estimates converge faster than the

other two as is consistent with the fact that this process is the least sensitive (Fig. 4E and F).

It can be noted that the weight generating random numbers ri show high interaction effects- which makes sense since they

always couple at least two parameters or process options- and hence tend to converge slower due to the higher sensitivity. In

this study we are primarily interested in the model parameter, process option and process sensitivities and hence suggest that a505

number of K = 1000 model runs is sufficient to derive useful sensitivity estimates.

3.3 Extended Sobol’ Sensitivity Analysis Applied to Hydrologic Modeling Framework

Each subsection here focuses on one experiment performed using the hydrologic modeling framework Raven. The subsec-

tions will address the results of the unconditional parameter sensitivities (Sec. 3.3.1), the sensitivities of the process options

(Sec. 3.3.2) and the processes (Sec. 3.3.3). All these sensitivity indexes are presented as variance-weighted aggregates over510

time such that one index per model parameter, option, or process can be analyzed. The last subsection focuses on temporally

varying process sensitivities over the course of the year (Sec. 3.3.4) as shown to be of importance previously (Dobler and

Pappenberger, 2012; Herman et al., 2013; Günther et al., 2019; Bajracharya et al., 2020).
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It is important to note that the results of the analysis for the hydrologic framework are the product of an iterative process

where the intermediate results are not quantitatively reported on. Qualitatively, we wish to emphasize that the intermediate515

xSSA-based results helped us to improve the modeling framework by identifying sources of model instabilities and non-

intuitive model results. It was especially helpful to have estimates for aggregated model compartments, i.e., process options

and processes. We strongly believe that this kind of analysis will help to analyze the hydrologic realism of models since the

estimates are easier to interpret and to compare to experience and known evidence.

3.3.1 (Unconditional) Parameter Sensitivity520

The variance-weighted main and total Sobol’ sensitivity estimates Sw
xi

and STw
xi

are shown in Figure 5. The sensitivities are

unconditional since the estimates are averaging over all possible model structures through the weighted sum of all analyzed

model options as it is described in Eq. 18. The analysis of model parameters (Fig. 5A) shows that the most sensitive ones are

x24 to x27 which are all associated with the potential melt (process T ) that handles the melting of snowpack until it is gone.

The quickflow parameters x5 (maximum release rate from topsoil) and x6 (baseflow rate exponent n of topsoil) are sensitive as525

well. Parameters of medium sensitivity are x8 (PET correction factor), x16 (degree day refreeze factor), x18 (refreeze factor),

x19 (maximum snow liquid saturation), x29 (thickness of topsoil), x31 (temperature of rain-snow transition), and x34 (snow

correction factor).

Besides that, the most influential parameters are the weight generating random variables associated to processes that are

most sensitive (indicated by same color in Fig. 5A), i.e., r3, r4, r7. This is intuitive since switching processes may cause large530

variability in the model outputs and hence shifting their weighted averages is also likely to lead to large variability.

A sensitivity analysis regarding model parameters is often performed prior to model calibration to identify the most sensitive

parameters which are in turn the parameters that are most likely to be identifiable during calibration. The analysis shows that

13 of the 35 parameters (x5, x6, x8, x16, x18, x19, x24, x25, x26, x27, x29, x31, and x34) are responsible for 96.5% of the

overall model variability (only STw
xi

; 77.2% if STw
ri included). All other parameters are unlikely to be identifiable during535

model calibration using streamflow measurements alone. Independent of the model structure selected, these model parameters

are negligible and thus could be fixed at default values for the Salmon River catchment over the 20-year simulation period.

This analysis helps to identify the most influential parameters independent of model structure and therefore helps to identify

main sources of parametric uncertainty in models despite structural configuration, presuming that individual structures are

equally viable. It likewise determines non-identifiable parameters- as a traditional sensitivity analysis does- with respect to540

streamflow.

3.3.2 Process Option Sensitivity

The results of the sensitivity analysis of model parameters are consistent with the analysis of process options (Fig. 5B) where

all model parameters used in a process option are varied together rather than individually. The analysis of the process option

sensitivities identifies options as most sensitive that contain model parameters that have been previously determined to be545

sensitive.
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The potential melt process- the algorithm used to determine incoming melt energy- is used in this study only with one

process option (POTMELT_HMETS) and it is still the hydrologic process that the simulated streamflow is most sensitive to

(orange bar). The three infiltration options are all equally sensitive (light blue bars). The same holds for the two options of

the evaporation process (dark blue bars) which are slightly more influential than the infiltration processes (light blue bars).550

The quickflow options BASE_VIC and BASE_TOPMODEL (medium blue bars) are the second-most sensitive after the po-

tential melt. The quickflow option BASE_LINEAR_ANALYTIC however is much less sensitive. The two baseflow options

(dark green bars) as well as the convolution options for surface and delayed runoff (yellow and light green bar) exhibit al-

most no influence with sensitivity metrics near zero (STw
G < 0.0017 with G ∈ {P1,P2,R1,S1}}). The only percolation op-

tion (PERC LINEAR; light red bar), rain-snow partitioning option (RAINSNOW_HBV; medium red bar), and precipitation555

correction (RAINSNOW_CORRECTION; dark red bar) are showing medium sensitivities similar to the ones of the infiltra-

tion options. The SNOBAL_HBV option is the most sensitive among the three snow balance options. SNOBAL_HMETS

is slightly less sensitive while SNOBAL_SIMPLE_MELT has a zero sensitivity. The zero sensitivity is expected since the

SNOBAL_SIMPLE_MELT option does not require any parameters (see Tab. C1). Model outputs of such options do not change

for different model runs and hence have a zero variance which leads to a zero Sobol’ index. Such settings and parameters that560

are a priori known to yield zero sensitivities are beneficial in sensitivity analyses as they act as a consistency check of the

implementation (Mai and Tolson, 2019). Another interesting result is the high sensitivity of the weight generating random

numbers associated with the snow balance options (r7 and r8). The sensitivity of these parameters is caused by the fact that

they are responsible for the "mixing" of the outputs of the model options. In this case they are mixing a process that is always

the same (SNOBAL_SIMPLE_MELT) and two options that can vary significantly with parameter choice (SNOBAL_HBV and565

SNOBAL_HMETS). Hence, the weighting of these processes can perturb the model output drastically and is hence yielding a

high sensitivity of r7 andr8.

In summary, it can be deduced that the potential melt, the quickflow options BASE_VIC and BASE_TOPMODEL, and the

evaporation options are most influential upon modeled streamflow. The interpretation and use of this process option sensitivity

is open, and depends upon the purpose of the sensitivity analysis. As an example of interpretation, we can consider whether or570

not we wish to maximize the flexibility of our models in calibration, and if so, we may wish to discard insensitive processes.

The three infiltration options are equally sensitive and hence are all able to achieve the same amount of variability in simulated

streamflow time series. This similarity is an indicator that the choice of the infiltration option will therefore not influence the

model performance.

This analysis of process options allows, for the first time, to objectively compare model process options by mix-and-matching575

all of them through the approach of a weighted mean of all outputs. It can assist the setup of models by guiding choices of

process options and hence guides model structure decisions depending on the purpose of the model built.

3.3.3 Process Sensitivity

The sensitivity analysis of the eleven processes (Fig. 5C) consistently identifies potential melt T (orange bar) to be the dominat-

ing process for the Salmon River catchment. Technically, potential melt T as well as rain-snow partitioning V and precipitation580
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correctionW are handling inputs to the hydrologic system and can hence be regarded to quantify input uncertainties or, in other

words, are forcing correction function and do not change the water balance within the model. The three processes are respon-

sible for 42.1% of the overall model variability in this catchment. Note that the process weights ri, unlike for parameter and

process option sensitivities, are not explicitly included in the process sensitivity results in Fig. 5C (unlike Fig.s 5A and 5B).

The weights are part of the parameters that get grouped for each process to assess its sensitivity.585

Processes associated to the surface are quickflow N and snow balance Q (medium blue and medium green bar, respectively)

which are the second and third-most influential processes. These two processes control together about 38.5% of the model

variability. The strong impact of these processes (together with the input adjustments) highlights the sensitivity of streamflow

regarding snow and melting processes in this mountainous, energy-limited catchment.

The soil-related processes of infiltration M , evaporation O, and percolation U show a medium sensitivity (19.2% of total590

model variability). This demonstrates that soil and surface processes are of secondary sensitivity regarding streamflow. Their

sensitivity may increase if the uncertainty of the snow and melting processes can be reduced, i.e. by narrowing parameter

ranges during calibration.

Baseflow P , and the convolution of the surfaceR and delayed runoff S have almost no influence on the simulated streamflow

(control on 0.2% of overall variability). These three processes demonstrate that subsurface and routing processes are not595

influential in this catchment over the 20-year simulation period at a daily time step. This in turn leads to the conclusion that

even if, for example, additional ground water observations were available, it would not help to reduce model streamflow

prediction uncertainty.

This model structure-based sensitivity analysis can help to guide model development by targeting the dominant model

processes. It derives a high-level sensitivity of the main model components, i.e. processes. It reveals, for the first time, the sen-600

sitivity of model processes independent of model structure chosen and hence is one step towards sensitivity analyses regarding

model structure using a true model ensemble by mix-and-matching a variety of model process options.

3.3.4 Process Sensitivity Over Time

The previous analysis estimated the time-aggregated sensitivities Sw
P and STw

P of model processes P (Fig. 5C) which might

mask interesting patterns in the temporal sensitivities of streamflow to the eleven processes. We therefore augment the analysis605

by calculating the normalized total Sobol’ sensitivity indexes ŜTP(t′) of each process P at every day of the year t′ (Fig. 6).

Each value displayed is an average over 20 values- one for each year of the 20 year simulation period. The figure also shows

the weights V (t) (Fig. 6 black line) that were used to derive the variance-weighted total Sobol’ indexes (Eq. 24) previously

discussed using Fig. 5C. The weights are generally higher during the high-flow freshet period (mid Feb to mid May) and are

close to zero for the rest of the year.610

Infiltration (light blue) has an almost constant but minor sensitivity throughout the whole year. Quickflow (medium blue) is

most of the time the dominating process- especially in summer- but not during the high-flow melt season. Evaporation (dark

blue) is consistently responsible for about 35.4% of the sensitivity during summer (Jun to Oct) and is, expectedly, less sensitive

during winter. Snow balance (medium green) and potential melt (orange) are sensitive as long as snow is present (Nov to May).
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Potential melt is about twice as influential than snow balance process. Percolation (light red) is almost constant in its sensitivity615

but nearly negligible. Baseflow (dark green) and the convolution of the surface runoff as well as the delayed runoff (light green

and yellow) are not even visible in the graph and have negligible sensitivities throughout the whole year.

These results highlight the importance of the weighting procedure when deriving the aggregated sensitivities shown in Fig. 5.

Potential melt (orange) is the most sensitive process when using variance-weighted aggregates due to its dominant influence in

the high-flow season. The arithmetic mean of all time-dependent sensitivities Si(t) and STi(t) would have certainly resulted620

in a much higher sensitivity of the quickflow process which is not as influential during the melting period but is responsible

for 41.7% of the model variability during summer (Jun to Oct). The same holds for the evaporation process, which is highly

sensitive in summer but not during the melting season.

4 Conclusions

The traditional method to derive sensitivity index estimates for model parameters conditional on a fixed model structure is625

of limited applicability when the model is allowed to vary in its structure. First, the number of model runs can be massive

when each model is analyzed independently. Second, the analysis derives a unique model-dependent sensitivity index for each

parameter but no overall parameter sensitivity across the ensemble. Third, aggregated sensitivities of model processes or the

sensitivity of a set of process options may lead to more useful insights than analyzing individual model parameters.

In this work we introduce two new concepts. The first is the idea of reformulating a hydrologic modeling framework such630

that is able to weight or blend discrete model process options for simulating process level fluxes. This converts the countable,

discrete model ensemble space into an infinite, continuous model space. The method of weighted process options is shown to

significantly reduce number of model runs required to run a sensitivity analysis based on model parameters. For the shared-

parameter benchmark model 81.9% fewer model runs are required (A: 72000 vs B: 13000). For the hydrologic model example,

the reduction is greater than 98.6% (A: 3258000 vs B: 45000). The method of weighted process options derives unconditional635

sensitivities of the model parameters independent on the model structure.

The second key contribution here is the application of the conventional Sobol’ sensitivity analysis method based on grouped

of parameters and interpreting these groups as process options and hydrologic processes. The Extended Sobol’ Sensitivity

Analysis (xSSA) method uses these groups of parameters to perturb them simultaneously rather than individually, allowing

the simultaneous assessment of model output sensitivity to model parameters, model process options, and model processes.640

While grouping of parameters is not a new concept for Sobol’ analyses they have to our knowledge not yet been interpreted

in the context of sensitivity assessment to model structural choices. The method was successfully tested using two artificial

benchmark models based upon the Ishigami-Homma function. The estimated sensitivity indexes are proven to converge against

the analytically derived Sobol’ sensitivity indexes for model parameters, process options, and processes. The xSSA method is

shown to resolve limitations of an existing method that also derives sensitivities of groups of parameters but that cannot handle645

overlapping parameter groupings.
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Figure 5. Results of the Sobol’ sensitivity analysis of the hydrologic modeling framework Raven. (A) The sensitivities of 35 model parame-

ters (see Table C2) and 8 parameters ri that are used to determine the weights of process options are estimated. The Sobol’ sensitivity index

estimates are determined also for (B) 19 process options and (C) the 11 processes. The information which parameters are used in which

process option and process can be found in Table C1. The different colors indicate the association of parameters and process options to the

eleven processes. Parameters x29 and x30 are associated with several process options and are not colored but gray. The Sobol’ main and

total effects are shown (dark and light colored bars, respectively). All sensitivity index estimates shown are originally time-dependent and

are aggregated as variance-weighted averages (Eq. 23 and 24). The average weights over the course of the year are shown in Figure 6.
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Figure 6. Results of the Sobol’ sensitivity analysis of the hydrologic modeling framework Raven. The sensitivities of eleven processes are

shown as their averages per day of the year (colored bars). The simulation period is 1991 to 2010. The sensitivities are normalized such that

they sum up to 1.0 at every day of the year (Eq. 25). The sensitivities are variance-weighted averages (Eq. 24). The (average) weight of each

day of the year is shown as a black line. The weights for every time step are determined by the average simulated discharge at this time step

(V (t) in Eq. 24). The time-aggregated sensitivity index estimates of the eleven processes are shown in Figure 5C.

The Extended Sobol’ sensitivity analysis method was also applied to a hydrologic modeling framework that supports the

representation of internal model fluxes using a weighted sum of fluxes calculated from individual process algorithms/ options.

The sensitivity analysis of the hydrologic modeling framework used here identified potential melt process and other surface

processes as the most influential processes regarding streamflow in a mountainous, energy-limited, and snow-dominated catch-650

ment while all subsurface and routing processes were insensitive. These information helps to guide further model development,

model calibration, and can inform the incorporation of additional observations to reduce model uncertainty. Three processes

(potential melt, rain-snow partitioning, precipitation correction) handle solely inputs to the hydrologic system and can hence

be attributed as input uncertainty or, in other words, model components adjusting forcing functions.

The presented methods of weighted process options and the application of the Extended Sobol’ sensitivity analysis method655

is presenting a simultaneous analysis of model structure, model parameters, and forcing adjustments in a frugal way consistent

with known methods based on the Sobol’ method.

Code and data availability. The code and data used for this analysis will be made available on GitHub (https://github.com/julemai/xSSA)

upon publication of the manuscript.
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Appendix A: Generating Weights660

In this work we define a model that is using the weighted average of a set of process options instead of choosing one fixed

process option (Eq. 18). This is enabling to analyze several model structures at the same time by either setting weights to 0

or 1 (which selects exactly one option) or any weight in between which leads to the weighted average of those process option

outputs.

The sampling of such weights needs to lead to independent and identically (not necessarily uniform) distribution for each of665

the weights wi. We use the sampling strategy introduced by Moeini et al. (2011) which can be summarized as follows: For each

set of N + 1 weights needed, first generate a vector of random numbers (r1, r2, . . ., rN ) from a uniform distribution between 0

and 1. The corresponding vector of weights (w1, w2, . . ., wN+1) can then be calculated using:

w1 = SN (r1)

w2 = (1−w1)SN−1(r2)670

w3 = (1−w1−w2)SN−2(r3)

...

wj =

(
1−

j∑
i=1

wi

)
SN−j+1(rj) (A1)

...

wN+1 =

(
1−

N∑
i=1

wi

)
675

with

Sj(ri) = 1− (1− ri)
1
j . (A2)

This sampling leads to the following CDF FN and PDF fN for each of the N + 1 weights wi:

FN (wi) = 1− (1−wi)
N (A3)

fN (wi) = N · (1−wi)
N−1 . (A4)680

Python and R implementations of the sampling algorithm of Eq. A1 are freely available on https://github.com/julemai/

PieShareDistribution.
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Appendix B: Analytically-derived Sobol’ Sensitivities of Shared-Parameter Benchmark Model

All sensitivity indexes for the benchmark setups (Section 2.1.1) are obtained by following the descriptions in Saltelli et al.

(2008, page 179 ff). We provide the results for the shared-parameter benchmark (Eq. 2 with Eq. 10 to 16) in the following.685

The analytically-derived sensitivity indexes of sensitivity metric A are given in Table B1 using Ishigami-Homma parameters

a= 2.0 and b= 1.0. The values are given for each of the 12 models that can be built using the different process options of the

artificial benchmark model.

The analytically-derived results of the overall parameter sensitivities (independent of the model options chosen; metric B),

the sensitivities of process options (metric C), and sensitivities of processes (metric D) are listed in Eq. B1, Eq. B2, and690

Eq. B3, respectively. The parameters ri therein are the random variables required to derive the weights wi of the process

options according to Eq. 18 using the sampling strategy described in Appendix A. r1 is used to derive the weights wd1 and

wd2, r2 and r3 are used to derive the weights we1, we2 and we3, and r4 is used to derive the weights wf1 and wf2.

Sx1

Sx2

Sx3

Sx4

Sx5

Sx6

Sx7


=



0.02298

0.38064

0.00222

0.00023

0.00023

0.00003

0.03928


,


Sr1

Sr2

Sr3

Sr4

=


0.05163

0.05770

0.00043

0.01006

 ,



STx1

STx2

STx3

STx4

STx5

STx6

STx7


=



0.07533

0.77089

0.00450

0.00103

0.00103

0.00004

0.05237


,


STr1

STr2

STr3

STr4

=


0.26086

0.31784

0.00264

0.02333

 (B1)



SD1

SD2

SE1

SE2

SE3

SF1

SF2


=



0.02298

0.42889

0.38064

0.00222

0.00046

0.00003

0.04149


,


Sr1

Sr2

Sr3

Sr4

=


0.05163

0.05770

0.00043

0.01006

 ,



STD1

STD2

STE1

STE2

STE3

STF1

STF2


=



0.07533

0.80441

0.77089

0.00450

0.00207

0.00004

0.05687


,


STr1

STr2

STr3

STr4

=


0.26086

0.31784

0.00264

0.02333

 (B2)695


SD

SE

SF

=


0.61237

0.60821

0.06485

 ,

STD

STE

STF

=


0.87597

0.86055

0.06697

 (B3)
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Table B1. Analytically-derived Sobol’ indexes Si and STi of the shared-parameter benchmark model with 3 processes D, E, and F that

allow for multiple process descriptions (Eq. 2 and Eq.s 10-16). For example, process D has two options D1 and D2. The model output f(x)

is assumed to be f(x) =D ·E+F to mimic additive and multiplicative model structures. The model f(x) =D1 ·E1 +F1 corresponds to

the Ishigami-Homma function (Ishigami and Homma, 1990). The parameters a and b of the Ishigami-Homma function are set to 2.0 and 1.0,

respectively. A dash (−) in the table indicates that the parameter is not active in the according model.

n Model Sn
x1

Sn
x2

Sn
x3

Sn
x4

Sn
x5

Sn
x6

Sn
x7

STn
x1

STn
x2

STn
x3

STn
x4

STn
x5

STn
x6

STn
x7

1 D1 E1 F1 0.383 0.000 − − − 0.001 − 0.999 0.616 − − − 0.001 −
2 D1 E1 F2 0.171 0.000 0.007 − − − 0.548 0.445 0.274 0.007 − − − 0.548

3 D1 E2 F1 0.656 − 0.000 − − 0.036 − 0.964 − 0.309 − − 0.036 −
4 D1 E2 F2 0.013 − 0.012 − − − 0.968 0.019 − 0.019 − − − 0.968

5 D1 E3 F1 0.000 − − 0.000 0.000 0.132 − 0.868 − − 0.434 0.434 0.132 −
6 D1 E3 F2 0.000 − 0.013 0.000 0.000 − 0.983 0.005 − 0.013 0.002 0.002 − 0.983

7 D2 E1 F1 0.024 0.937 − − − 0.000 − 0.063 0.976 − − − 0.000 −
8 D2 E1 F2 0.024 0.926 0.000 − − − 0.012 0.062 0.964 0.000 − − − 0.012

9 D2 E2 F1 0.145 0.382 0.224 − − 0.001 − 0.213 0.561 0.472 − − 0.001 −
10 D2 E2 F2 0.052 0.138 0.138 − − − 0.583 0.077 0.202 0.227 − − − 0.583

11 D2 E3 F1 0.000 0.000 − 0.237 0.237 0.003 − 0.144 0.379 − 0.498 0.498 0.003 −
12 D2 E3 F2 0.000 0.000 0.010 0.043 0.043 − 0.810 0.026 0.068 0.010 0.090 0.090 − 0.810
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Appendix C: Details on Raven Process Options and Parameters

The Raven hydrologic modeling framework (Craig et al., 2020) has been employed for this study. We used the released version

3.0 of Raven. The process options M1, M2, . . ., X1 selected for this study are listed in Table C1). The model parameters active

in the individual process options are given in that table as well. In total 35 model parameters are used in at least one of the700

model options. The valid ranges and parameter descriptions are given in Table C2. Further details about the process option

implementation and the parameters can be found in the Raven documentation (Craig, 2020).
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Table C1. Processes and process options used for the Raven setup. In total 3× 3× 2× 2× 3× 1× 1× 1× 1× 1× 1× 1 = 108 models are

possible. The first option of each process M1, N1, O1, P1, Q1, R1, S1, T1, U1, V1, W1, and X1 resemble the HMETS model if parameter

x35 is set to zero. All other combinations are artificial models. All process options, however, are used in different hydrologic models. The

model parameters active in each option are listed as well. The ranges and a description of the parameters can be found in Table C2.

Process Process option Parameters active

Processes with multiple options:

Infiltration M1 INF_HMETS {x1,x29}

" M2 INF_VIC_ARNO {x2,x29}

" M3 INF_HBV {x3,x29}

Quickflow N1 BASE_LINEAR_ANALYTIC {x4,x29}

" N2 BASE_VIC {x5,x6,x29}

" N3 BASE_TOPMODEL {x5,x6,x7,x29}

Soil evaporation O1 SOILEVAP_ALL {x8,x29}

" O2 SOILEVAP_TOPMODEL {x8,x9,x10,x29}

Baseflow P1 BASE_LINEAR_ANALYTIC {x11}

" P2 BASE_POWER_LAW {x11,x12}

Snow balance Q1 SNOBAL_HMETS {x13, . . . ,x18}

" Q2 SNOBAL_SIMPLE_MELT −

" Q3 SNOBAL_HBV {x18,x19}

Processes with single option:

Convolution (surface runoff) R1 CONVOL_GAMMA {x20,x21}

Convolution (delayed runoff) S1 CONVOL_GAMMA_2 {x22,x23}

Potential melt T1 POTMELT_HMETS {x24,x25,x26,x27}

Percolation U1 PERC_LINEAR {x28,x29,x30,x35}

Rain-snow partitioning V1 RAINSNOW_HBV {x31,x32}

Precipitation correction W1 RAINSNOW_CORRECTION {x33,x34}

Processes with single option but no tunable parameter combined to process X1:

Extraterr. Shortwave Gener. X1 SW_RAD_DEFAULT −

Potential evapotranspiration X1 PET_OUDIN −

In-catchment routing X1 ROUTE_DUMP −

In-channel routing X1 ROUTE_NONE −
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Table C2: The model parameters xi used for the Raven setup. The parameters are uniformly distributed in the range given.

The process option shows where the corresponding parameter is active. The Raven table and parameter name can be used to

locate the parameter in the Raven setup files. A three-layer soil model was used here with the third (groundwater) layer being

of infinite depth. The TOPSOIL is the upper soil layer while PHREATIC is the lower soil layer. The three Raven parameters

FIELD_CAPACITY TOPSOIL, SNOW_SWI_MAX, and MAX_MELT_FACTOR are derived using a sampled parameter (x10,

x14, and x25) and SAT_WILT TOPSOIL, SNOW_SWI_MIN, and MIN_MELT_FACTOR, respectively, to make sure that one

parameter is always larger than the other. The baseflow coefficients BASEFLOW_COEFF TOPSOIL and PHREATIC are

derived from parameters x4 and x11 to allow for a logarithmic sampling.

Param. Range Unit Proc. Opt. Raven table Parameter name

Infiltration:

x1 [0.0,1.0] - M1 LandUseParameterList HMETS_RUNOFF_COEFF

x2 [0.1,3.0] - M2 SoilParameterList B_EXP TOPSOIL

x3 [0.5,3.0] - M3 SoilParameterList HBV_BETA TOPSOIL

Quickflow:

x4 [−5.0,−1.0] 1/d N1 SoilParameterList BASEFLOW_COEFF TOPSOIL = 10.0x4

x5 [0.0,100.0] mm/d N2, N3 SoilParameterList MAX_BASEFLOW_RATE TOPSOIL

x6 [0.5,2.0] - N2, N3 SoilParameterList BASEFLOW_N TOPSOIL

x7 [5.0,10.0] m N3 TerrainClasses TOPMODEL_LAMBDA

Evaporation:

x8 [0.0,3.0] - O1, O2 SoilParameterList PET_CORRECTION TOPSOIL

x9 [0.0,0.05] frac O2 SoilParameterList SAT_WILT TOPSOIL

x10 [0.0,0.45] frac O2 SoilParameterList FIELD_CAPACITY TOPSOIL =

SAT_WILT TOPSOIL + x10

Baseflow:

x11 [−5.0,−2.0] 1/d P1, P2 SoilParameterList BASEFLOW_COEFF PHREATIC = 10.0x11

x12 [0.5,2.0] - P2 SoilParameterList BASEFLOW_N PHREATIC

Snow balance:

x13 [0.0,0.1] frac Q1 GlobalParameter SNOW_SWI_MIN

x14 [0.01,0.3] frac Q1 GlobalParameter SNOW_SWI_MAX =

SNOW_SWI_MIN + x14

x15 [0.005,0.1] 1/mm Q1 GlobalParameter SWI_REDUCT_COEFF

x16 [−5.0,2.0] ◦C Q1 LandUseParameterList DD_REFREEZE_TEMP

x17 [0.0,1.0] - Q1 LandUseParameterList REFREEZE_EXP

Continued on next page
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Table C2 – Continued from previous page

Param. Range Unit Proc. Opt. Raven table Parameter name

x18 [0.0,5.0] mm/d/◦C Q1, Q3 LandUseParameterList REFREEZE_FACTOR

x19 [0.0,0.4] frac Q3 GlobalParameter SNOW_SWI

Convolution (surface runoff):

x20 [0.3,20.0] - R1 LandUseParameterList GAMMA_SHAPE

x21 [0.01,5.0] - R1 LandUseParameterList GAMMA_SCALE

Convolution (delayed runoff):

x22 [0.5,13.0] - S1 LandUseParameterList GAMMA_SHAPE2

x23 [0.15,1.5] - S1 LandUseParameterList GAMMA_SCALE2

Potential melt:

x24 [1.5,3.0] mm/d/◦C T1 LandUseParameterList MIN_MELT_FACTOR

x25 [0.0,5.0] mm/d/◦C T1 LandUseParameterList MAX_MELT_FACTOR =

MIN_MELT_FACTOR + x25

x26 [−1.0,1.0] ◦C T1 LandUseParameterList DD_MELT_TEMP

x27 [0.01,0.2] 1/mm T1 LandUseParameterList DD_AGGRADATION

Percolation:

x28 [0.00001,0.02] 1/d U1 SoilParameterList PERC_COEFF TOPSOIL

x35 [0.0,0.02] 1/d U1 SoilParameterList PERC_COEFF PHREATIC

Rain-snow partitioning:

x31 [−3.0,3.0] ◦C V1 GlobalParameter RAINSNOW_TEMP

x32 [0.5,4.0] ◦C V1 GlobalParameter RAINSNOW_DELTA

Precipitation correction:

x33 [0.8,1.2] - W1 Gauge RAINCORRECTION

x34 [0.8,1.2] - W1 Gauge SNOWCORRECTION

Soil model:

x29 [0.0,0.5] m M1,2,3,N1,2,3 SoilProfiles thickness TOPSOIL

O1,2,3,4, U1

x30 [0.0,2.0] m U1 SoilProfiles thickness PHREATIC
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