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Review received and published: 3 July 2020

Dear Reviewer,

Thanks a lot for your thorough review and the valuable suggestions. We will reply below in detail
to your comments. Your comments are italic; our replies are highlighted bold. The line numbers
in red are referring to the revised draft.

Best regards,
Julie, James, and Bryan

Summary

The authors introduce a novel sensitivity analysis method, called Extended Sobol’ Sensitivity Anal-
ysis (xSSA), that advances upon existing procedures in several ways:

1. it can provide insight into the sensitivity of individual model structure choices;

2. it can clarify the relation between parameter and structure sensitivity;

3. it can account for cases where model parameters are present or absent in different model
structures; and

4. it is much faster than alternative methods.

The main novelty of xSSA is that it estimates parameter/process sensitivity inside a flexible model-
ing framework (Raven), which allows the sensitivity estimates to be re-combined through weighting.
On any given timestep, the simulated states and fluxes can thus be based on multiple different
parametrizations of the same process, depending on how the weights are set. The authors test xSSA
against two cases where analytical estimates of sensitivities can be derived (one case where each
parameter only occurs once in all possible flux parametrizations, and one case where parameters
are shared between multiple flux parametrizations), and in a real-world application of the Raven
framework in a single watershed. They find that xSSA converge to the analytical solutions in both
test cases, while current methods are only able to converge in the first test case. The real-world
test case is used to showcase why process-based SA can be useful. I’ve read this paper with great
interest. Model structure uncertainty is receiving considerable attention and this extension of ex-
isting SA methods to take advantage of modern multi-model frameworks is a welcome and timely
contribution. Overall, the paper is easy to read but I have outlined various comments that can help
the authors clarify their message. In general I think all the required information is there but some
polishing would make the manuscript much more accessible for readers who are not so well-versed
in Sobol’ SA and Raven as the authors are.

Thanks a lot for your interest and your positive evaluation of our manuscript.

General comments

The results section relies heavily on understanding of the Raven functions. It would be very helpful
if the authors expand on the model description in section 2.1.2 or appendix C, by including the
actual equations or descriptions of each parametrization.

We agree that this is a very valuable information. The details can all be found in
the Raven documentation (Craig, 2020). We copied the according information and
provide this now in the Supplementary Material. We decided to not include this in
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the manuscript or appendix to not artificially inflate the manuscript and distract from
the actual message of the work. We attached the Supplementary Material at the end
of this response letter for reference.

The results section relies on an understanding of each process to interpret model sensitivities.
It is not entirely clear to me what each process includes. Can the authors clarify this by briefly
explaining what each process in Figure 1C and further figures includes? For example, how does
process 8 (potential melt) relate to process 5 (snow balance)? I don’t think these explanations need
to be very long, but it would be good if they include a bit more detail then the 1-3 words they
currently get.

Thanks for this really good suggestion. As mentioned above, we now include the
description of the processes and options used in the Supplementary Material. We also
added a flowchart of the model structure used here to the Supplementary Material
(Figure S1). The processes and functions are labeled according to the usage in this
work (see circled labels such as M , N , etc.). This should make more clear how the
processes are interlinked with each other.

I would encourage the authors to be careful with words such as “appropriate” and “important”
in the manuscript. To some of the community, “appropriate process representations” might mean
“process representations that are an accurate mathematical description of the real-world”. To the
authors (I believe) this instead means “equally sensitive, so equally good choices” (e.g. L538). Sim-
ilarly, “important” seems synonymous with “high sensitivity” in this manuscript, but I don’t think
having high sensitivity over an arbitrarily wide parameter range necessarily dictates importance
for matching a specific set of observations. Therefore I would strongly recommend the authors to
go through the manuscript and either define such words clearly, or avoid ambiguity by being more
specific in each case where such words are used (e.g. change “soil and surface processes are of
secondary importance for streamflow prediction, ...” to “simulations are less sensitive to soil and
surface processes, ...”; L556).

The reviewer is correct in the interpretation of our interchangeable use of “impor-
tance”, “sensitivity” and appropriateness. We agree that it might lead to too much
leeway of interpretation for a reader. We went through the manuscript and hope that
we reduced this ambiguity.

line 521 ff. The analysis of model parameters (Fig. 5A) shows that the most sensitive
ones are [...]

line 586 ff. The strong impact of these processes (together with the input adjust-
ments) highlights the sensitivity of streamflow regarding snow and melting pro-
cesses in this mountainous, energy-limited catchment.

line 589 ff. This demonstrates that soil and surface processes are of secondary sen-
sitivity regarding streamflow. Their sensitivity may increase if the uncertainty
of the snow and melting processes can be reduced, i.e. by narrowing parameter
ranges during calibration.

line 610 ff. Evaporation (dark blue) is [...], expectedly, less sensitive during winter.
Snow balance (medium green) and potential melt (orange) are sensitive as long
as snow is present (Nov to May).
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Line by line comments

L32. It might be more accurate to refer to “input (forcing) uncertainty” as “data uncertainty” or
“observational uncertainty” to acknowledge that uncertainties are also present in model evaluation
data such as streamflow observations. See e.g. McMillan et al. (2012).

We agree. We only focus in this work on the input uncertainty but at this part of
the introduction it should be made clear that data uncertainty is the third source of
uncertainty. We have made the following adjustment:

line 32 ff. Model structural uncertainty is commonly recognized (e.g., Gupta et al.,
2012) as one of the three key components of hydrological model uncertainty, along
with parameter uncertainty (Evin et al., 2014, among many more) and data (e.g.,
input forcing or observational) uncertainty (e.g., McMillan et al., 2012).

L47. It would be helpful to the reader if the authors could summarize the Baroni method in one or
two sentences.

We agree. We rewrote major parts of that paragraph in the introduction and hope
that the additional details given are now more helpful to follow the line of arguments.
Following another reviewer’s suggestion we also renamed the “Baroni method” with
“discrete values method (DVM)” throughout the whole manuscript.

line 50 ff. To date, there have been limited attempts to simultaneously estimate model
parameter, input, and structural sensitivities. One notable attempt is introduced
by Baroni and Tarantola (2014) using a Sobol’ sensitivity analysis based on
grouped parameter. In that study, groups of soil and crop parameters, the num-
ber of soil layers, and a group of parameters to perturb inputs are investigated.
These groups of parameters are pre-sampled and a finite set of parameters for
each of the four groups is chosen and each set is enumerated. The sensitivity
analysis is then based on those enumerated sets. This means, rather than sam-
pling each individual parameter like in a classic Sobol’ analysis, an integer for
each group acting as a hyper-parameter is sampled. The model is then run with
the associated pre-sampled parameter set. While the approach may be generally
applicable to arbitrary structural differences, in their testing, Baroni and Taran-
tola (2014) varied only in how the model was internally discretized (i.e., in the
number of soil layers). The soil and crop parameters were always used for the
same soil and crop process. The major limitation of this method is, however, that
individual parameters need to be mutually exclusive and can only be associated
to one type of uncertainty. The method hence limits the groups that can be de-
fined, for instance, overlapping group definitions are not possible. The method
will be referred to as “discrete values method (DVM)” in the following and will
be contrasted to the method developed here to examine this limitation in more
detail.

L53. “The method introduced ...” some text is missing here.

We deleted this. It was a remainder of a previous version. We are sorry about that.

L94. This special Raven property is a bit unclear to me. What dimension are the simulated fluxes
weighted over? Is this a weighted average across multiple parameter sets, model structures, some-
thing else? – If this property is critical to the functioning of xSSA I think it should be explained in
more detail here. Perhaps an example can be added.

The weighted average is for the estimates of the different process options. Let’s assume
there are three infiltration options. The first derives an infiltration of 1.0 [mm/d], the
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next 1.5 [mm/d], and the third 2.0 [mm/d]. The model would proceed with an estimate
for infiltration of 1.35 [mm/d] (= 1.0×0.5+1.5×0.3+2.0×0.2) if the weights are 0.5, 0.3,
and 0.2, respectively. This is performed for each process with multiple options at each
time step (basically any time infiltration needs to be obtained during the simulation).

We added the following additional explanation and hope this is more clear now:

line 105 ff. [...] may be calculated via the weighted average of simulated fluxes gen-
erated by individual process algorithms; other flexible models may be revised
to accommodate such analysis. The weighted averaging means that at each time
step each option chosen for a process would derive an estimate for the flux, in
[mm/d], and the weighted average of these estimates would be used for the next
step.

L103. I appreciate what the authors are going for, but “unconditional parameter sensitivity” is too
broad a statement. The answers to questions A-D will be conditional on the catchment(s) being
considered. It would be good to acknowledge that somewhere in lines 99-103.

Absolutely. We made the following adjustments and hope that it is now more clear
that we indeed mean only “unconditional” regarding model structure and nothing
beyond this.

line 111 ff. The xSSA method allows us to efficiently estimate not only the global sen-
sitivity of model parameters independent and hence unconditional of the chosen
model structure [...]

B. Unconditional parameter sensitivity: Which model parameter is most influ-
ential independent and hence unconditional of model option choice?
For example, which model parameter is overall the most influential given all
possible model structures (available in the modeling framework)?

L205. I’m somewhat confused about this statement. One does not need to run 12 fixed model struc-
tures but instead needs to run a single flexible structure that contains all the options that are present
in the 12 models. How does this reduce the number of computations required? [...]

The runtime of running the 12 models independently would be only the same as the
runtime of the single flexible structure if the time it takes to read inputs, to initialize
the model, and to write model outputs would be negligible. This is certainly true for
the two benchmark models but is not the case in most hydrologic and land-surface
models. Most of these models do, for example, usually not allow the users to reduce
the amount of model outputs written. Raven is highly optimized regarding I/O and
initialization. The runtimes for three individual models of the 108 Raven models
are 51.786s (M1 − N1 − O1 − P1 − Q1), 52.695s (M2 − N1 − O1 − P1 − Q3), and 51.985s
(M2 −N1 −O1 − P2 −Q3) each for 100 runs while the runtime of the single model with
the flexible structure is 53.342s for 100 runs. This yields runtime savings of about
99% for using the flexible model structure with weights over running the individual
models: [

1− 53.342

(51.786 + 52.695 + 51.985)/3× 108

]
× 100% = 99.05%

[...] As far as I understand, it’s still the same elements that are being tested. If the authors mean
that all elements can be tested independently (implying that if and how they are connected to other
elements can be ignored), than why would they need to be part of a model structure at all? Why
not test each element in isolation and recombine the results through the proposed weighting? This
could result in even further computational savings in cases where the same parametrization can be
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used in multiple processes (quite common in bucket models, possibly also in physics-based models
that discretize snow/soil into multiple layers).

This is true but we think it will be pretty unlikely to beat the runtime improvement
of 99% as shown above with the approach suggested by the reviewer.

L212. Caption of Figure 1. “The three processes are connected through A.B+C (C.D+E) ...” Text
in the brackets should read (D.E+F).
L212. Caption of Figure 1. “Processes A (D) and C (E) ...” (E) should be (F).

Thanks for spotting this. This is resolved now.

Figure 1 caption. The three processes are connected through A · B + C (D · E + F )
to obtain the hypothetical model outputs. Processes A (D) and C (F ) have two
options, process B (E) has three.

L213. Which numerical scheme does Raven use to solve its model equations?

We would like to refer to the publication that introduced Raven (Craig et al., 2020)
(end of Section 3.2 therein) for details on all numerical schemes supported in Raven.
The default is the Ordered Series approach which was used here. Besides that Raven
supports the explicit Euler and iterative predictor–corrector method for solving a set
of ODEs (Snowdon, 2010). Additional details can also be found in the Raven manual
(Craig, 2020). We have added the following information to the manuscript:

line 259 ff. For the case study used herein, Raven is applied in lumped mode and the
models are solved using the ordered series numerical scheme defined in Craig
et al. (2020, (end of Section 3.2 therein)).

L262. “forcings” → “forcing”?

Done.

L269. Why were only 20 years of data used if 56 are available? Wouldn’t more data give a more
complete assessment because a wider range of conditions is (likely) covered?

This is probably true. We however think that a 20 years simulation period is already
covering a wide range of conditions. The reduction of the simulation period from 56
to 22 years (including the two years used for warm-up) was mainly to reduce the
runtime of the whole analysis. The 22-year setup took about 22 hours and would have
been 56 hours for the full period. We decided that the gain in results does not justify
the longer runtime. A 20-year simulation period is indeed a very long period used
for sensitivity studies: Markstrom et al. (2016) used 3 years of warmup and 11 years
of simulations, Mendoza et al. (2015) used 2 years of warmup and only 6 years of
simulations, and Cuntz et al. (2016) used 16 years of simulations.

L308. It took me a while to figure out that these numbers are: # of models x (# of parameters
+2 × K), mainly because the order of operations is reversed compared to L307 (which gives # of
parameters first and # of models second) and because the operation K × (N+2) from L303 has
already been completed. I’d suggest to clarify this.

Thanks for pointing us to this. We have made the following adjustment and hope it
is easier to follow now.

line 331 ff. Out of the 12 possible shared-parameter benchmark models (Eq. 2) there
are 4 models that contain 3 parameters, 5 models contain 4 parameters, 2 models
consist of 5 parameters, and 1 model has 6 parameters. Hence, 72 000 (= 4× (3 +
2)× 1000 + 5× (4 + 2)× 1000 + 2× (5 + 2)× 1000 + 1× (6 + 2)× 1000) model runs would
be required if K = 1000 reference parameter sets would be used.
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L350. The authors use analytically derived Sobol’ scores for their shared-parameter model setup.
Can these derivations be made part of the appendices or can the authors provide a reference to a
paper that provides these?

We are deriving these values following the example provided in Saltelli et al. (2008)
in example 5 described on page 179 and following. We added this to the manuscript:

line 386 ff. All analytically derived indexes are obtained by following the descriptions
in Saltelli et al. (2008, page 179 ff).

L358. Single-sentence paragraphs look strange. Suggest to merge with preceding paragraph.

Done.

L364, L366. I was under the impression that the shared-parameter models was being tested. Why
do these sentences refer to parametrizations A, B and C instead of D, E and F?

We are sorry for that. The reviewer is absolutely right. We adjusted the text to:

line 392 ff. [...] model runs are required for the 7 process options D1, D2, . . ., F2 and the
4 weight deriving random numbers ri. For the analysis of processes (sensitivity
metric D) the model needs to be run (3 + 2) ×K times to obtain sensitivities of
the 3 processes D, E, and F .

L429-441. I find this section difficult to follow, in part because it was not clear to me that the Baroni
method uses a regular Sobol’ approach. The only mentions of Sobol’ so far (I believe) have been in
relation to xSSA and the mention of Sobol’ analysis on L434 threw me off. I’ll repeat my earlier
comment that a brief description of the Baroni method would be very helpful in understanding these
results.

Agreed. We hope the revised section in the introduction (line 50 ff.) clarifies this now.

L435. “This contradiction cannot be resolved.” Is it part of the Baroni method to include a single
parameter twice? In my (admittedly limited) experience with the regular Sobol’ method, one would
include any parameter only once, regardless of how many times it occurs in the model processes
being considered. This would mean that processes cannot be assessed individually if they share a
parameter (which the authors already mention) but getting into this situation in the first place
requires that one is looking to investigate processes, not parameters. I think the authors can make
their reasoning stronger by repeating here that investigating process sensitivity requires a different
approach then parameter sensitivity in cases where parameters are shared between processes.

The point is that the Baroni method (now Discrete Values Method DVM) indeed does
not investigate the sensitivity of individual parameters either. We wanted to highlight
the difference to this existing method. Most parameters certainly only appear in
individual groups but especially when several process options are investigated (Baroni
and Tarantola (2014) did not do this) several parameters will appear in several process
options. For example, porosity is likely a parameter in each process option related to
soil processes. Let’s say we have two process options and found that option 1 depends
on parameters x1, x2, and x3 while option 2 only depends on two parameters, again
on x1 and an new parameter x4.

Group 1 Group 2
x1 x2 x3 x1 x4

0.1 5.0 10.0 0.2 6.0
0.2 2.0 20.0 0.4 7.0
0.3 3.0 15.0 0.3 8.0

Even without knowing how exactly the Sobol’ method works, the problem becomes
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clear when a value for parameter x1 has to be picked. Is it 0.1 or 0.2 for the first set
(first row in above table)? This leads in any method to problems; not even only for
the Sobol’ method.

We followed the reviewers advise and emphasized again that a method that is applica-
ble for shared parameters is needed when analyzing the sensitivity of process options
and processes.

line 464 ff. This contradiction can not be resolved in a method that does not allow
for shared parameters. Shared parameters occur often in several process options
of the same process but also across processes and hence need to be considered
when analyzing process options and processes in flexible frameworks.

L451. It might be good to add a reference to sensitivities of non-additive models not summing to
1. I seem to recall this is discussed in Saltelli et al. (2008) for example.

Yes, that is a good idea. We added two references there.

line 481 ff. We do not expect the process sensitivities to sum up to 1 which is anyway
not achievable with non-additive models (Sobol and Kucherenko, 2004; Saltelli
et al., 2008).

L461. “hence” → “this”?

Done.

line 493 ff. The errors converge to zero in every analysis and this proves that [...]

L499. Suggest to delete “and hence most sensitive”

Absolutely! Thanks for spotting this.

line 530 ff. A sensitivity analysis regarding model parameters is often performed prior
to model calibration to identify the most sensitive parameters which are in turn
the parameters that [...]

L509. It might be instructive to adapt the x-axis in Figure 5B, so that it shows which parameters (x-
axis in 5A) are included in each process option in 5B. This could clarify whether process sensitivities
can be traced back to particular parameters.

We in general agree with the reviewer. The information however is given in Table C1.
We do not want to make the figure more complex than it already is. We however
added the reference to Table C1 to the figure caption:

Figure 5 caption. [...] The Sobol’ sensitivity index estimates are determined also for
(B) 19 process options and (C) the 11 processes. The information which param-
eters are used in which process option and process can be found in Table C1.
[...]

L515. “Same” → “The same”

Done.

line 547 ff. The same holds for the two options of the evaporation process (dark blue
bars) [...]
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Figure 5. It might be worthwhile to change the orientation of these plots so that the Sobol’ scores
are on the x-axis and the parameters/parametrizations/processes are on the y-axis, so that these
are easier to read. I currently need to tilt my head back and forth to read the results in 3.3.2 and
compare them to the axes in Figure 5.

Thanks for this suggestion. We did that and Figure 5 appears now as shown below.

L525. “The latter serves as a consistency check of the implementation.” Can the authors clarify
what they mean here? – upon reading further, it might make sense to swap this sentence with the
one immediately after it.

We are sorry that the line of arguments was a bit mixed up here. We rearranged the
order and provided a bit more information. It now reads as:

line 556 ff. The zero sensitivity is expected since the SNOBAL SIMPLE MELT op-
tion does not require any parameters (see Tab. C1). Model outputs of such
options do not change for different model runs and hence have a zero variance
which leads to a zero Sobol’ index. Such settings and parameters that are a priori
known to yield zero sensitivities are beneficial in sensitivity analyses as they act
as a consistency check of the implementation (Mai and Tolson, 2019).

L527. I admit I’m a bit confused that model outputs of process representations do not change in
different model runs. Because this process representation is connected to the rest of the model,
and there are changes in the contributions of other processes as a result of different parameter
values, wouldn’t it be expected that the model states change as well, and as a consequence, that the
contribution of this particular process to overall simulations changes too? [...]

The process outputs of other processes might change- especially when a parameter
is in the current group that also participates in other groups (e.g., parameter x29).
That process options, processes and parameters are not independent of other parts
of the model can be seen through the interaction effect that is derived by STi − Si of
the respective parameter, process option or process. The analysis however shows how
much the process impacts the overall model output (here streamflow). Therefore,
it is a desirable behavior that also other process outputs might change. But one
knows that these differences are only caused by the change of the parameter/process
option/process currently analyzed.

[...] Without knowing with SNOBAL SIMPLE MELT (Q2) actually does, I assume that even if
it has a constant melt rate, it is still constrained by snow availability and thus cannot produce a
time-invariant flux. I would expect such a case (no parameters in a given process, but influenced
by other parameters by virtue of being part of a bigger model) as showing in a 0 Sobol’ main effect,
but a non-zero Sobol’ total effect. Can the authors clarify this?

The mentioned snow balance process option does not contain any parameter. The
process output of SNOBAL SIMPLE MELT over time t is Q2(t) = Q2(Mpotmelt) where
Mpotmelt is the potential melt at time t. The potential melt, i.e., the calculation of
available energy at the snow surface, is another process (i.e., T1) because it is used
for other options and in other places of the model. In other hydrologic models the
snow balance and potential melt are usually not separated but Raven allows the user
to mix-and-match different approaches with each other. The snow balance Q2 itself
has hence no parameter x. The potential melt Mpotmelt is an input. This means when
all parameters associated to SNOBAL SIMPLE MELT (means none) are changed,
nothing in the model outputs Q2(t) ever changes because literally nothing is changed.
The output of the SNOBAL SIMPLE MELT is not constant over time though. It is
just does not change. That is the reason for our statement in the comment before that
this is a very helpful consistency check for the implementation of the analysis. The
interaction effect is zero because none of the independent variables is derived by any
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Figure 5: Results of the Sobol’ sensitivity analysis of the hydrologic modeling framework Raven.
(A) The sensitivities of 35 model parameters (see Table C2) and 8 parameters ri that are used to
determine the weights of process options are estimated. The Sobol’ sensitivity index estimates are
determined also for (B) 19 process options and (C) the 11 processes. The different colors indicate
the association of parameters and process options to the eleven processes. Parameters x29 and x30

are associated with several process options and are not colored but gray. The Sobol’ main and total
effects are shown (dark and light colored bars, respectively). All sensitivity index estimates shown
are originally time-dependent and are aggregated as variance-weighted averages (Eq. 23 and 24).
The average weights over the course of the year are shown in Figure 6.
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of the other processes and process options. The output of Q2 is hence always constant
even if other parts of the model are changed.

L538. “The three infiltration options are equally sensitive and hence equally appropriate.” Logically,
only one or none of these infiltration options is appropriate (in the sense of accurately representing
the real world). I also doubt that high sensitivity automatically indicates high appropriateness. I
suggest to rephrase this sentence.

We adjusted the manuscript to the following:

line 547 ff. The three infiltration options are equally sensitive and hence are all able to
achieve the same amount of variability in simulated streamflow time series. This
similarity is an indicator that the choice of the infiltration option will therefore
not influence the model performance.

L538. “quickflow” → should this be “infiltration”?

Indeed. Thanks for spotting this. We adjusted this to:

line 570 ff. The three infiltration options are equally sensitive and hence are all able to
achieve the same amount of variability in simulated streamflow time series. This
similarity is an indicator that the choice of the infiltration option will therefore
not influence the model performance.

L545. Can it be said that rain-snow partitioning is a forcing correction function? It does not change
the water balance, only the phase and thus by extent, the timing of liquid water availability.

Yes, that is correct. We slightly adjusted the phrasing in the manuscript:

line 578 ff. Technically, potential melt T as well as rain-snow partitioning V and pre-
cipitation correction W are handling inputs to the hydrologic system and can
hence be regarded to quantify input uncertainties or, in other words, are forcing
correction function and do not change the water balance within the model.

L556. “This demonstrates that soil and surface processes are of secondary importance for streamflow
prediction, ...” Is this true? As far as I understand, the SA only shows that impact of parameter
changes on the variability of the simulations. I don’t think relatively low sensitivity automatically
indicates low importance for accurate streamflow simulation, because (1) no simulations have been
compared to observations; (2) parameters ranges might be wider during this SA than their “real”
range of values and thus much of this variability might occur in regions of the model output space
that are far away from the observations. I would recommend slightly more careful phrasing, like
used in L559.

We absolutely agree with the reviewer and rephrased this to:

line 589 ff. This demonstrates that soil and surface processes are of secondary sen-
sitivity regarding streamflow. Their sensitivity may increase if the uncertainty
of the snow and melting processes can be reduced, i.e. by narrowing parameter
ranges during calibration.

L677. These are not author contributions.

The author contributions have been adjusted to the following:

line 702 ff. JM set up the analyses, implemented the sensitivity analysis based on
groups of parameters, implemented the proper sampling of weights used in this
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study, wrote main parts of the manuscript, prepared all figures and tables; JRC
contributed to the writing of the manuscript, implemented the weighting of pro-
cess options in Raven, provided ranges for the parameters included in the anal-
ysis, helped to setup the model with the selected options and resolved incon-
sistencies in Raven detected by earlier versions of the sensitivity analysis, and
helped with the hydrologic interpretation of the results; BAT contributed to the
writing of the manuscript, provided feedback on the manuscript and the setup
of all experiments including the benchmark models as well as helped with the
hydrologic interpretation of the results.
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S.1 The Raven Model with Weighted Process Options

The Raven model allows to specify multiple options for each process such as infiltration, evaporation, and baseflow. Instead of

the model using one unique parametrization and output for each process it is then deriving the weighted average of outputs for

the various options (Craig et al., 2020). This is defined in the main manuscript (Eq. 18) by

fshared(x,w) = (wd1D1 +wd2D2) · (we1E1 +we2E2 +we3E3) + (wf1F1 +wf2F2) (S1)5

where

wd1 +wd2 = 1

we1 +we2 +we3 = 1

wf1 +wf2 = 1 .

where, for example, D1 and D2 might be two options for one process. For example, deriving infiltration is performed once10

using the infiltration definition of HMETS and once derived as defined in the HBV model. The infiltration outputs D1 and D2

are then weighted using wd1 and wd2 to derive the infiltration estimate Raven will use for the remainder of the simulation. The

overall flowchart of the model given all hydrologic processes involved is given in the flowchart in Fig. S1. In that flowchart

the processes labeled with M to Q are used here with multiple options while the processes R to W are fixed with only

one option. The processes labeled with X are the ones that are also fixed at one option and this option does not contain15

tunable parameters. In the following we will explain briefly the process options chosen for this study that will lead to non-zero

sensitivities, i.e. processes M to W . Most of these description as well as all descriptions for processes X can be found in the

Raven documentation (Craig, 2020).
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Figure S1. The model schematic of the models structure used in this study. The connection of storages (boxes with thick outlines), processes

(hexagonal shapes), and forcing functions (diamond shapes) are shown. Some processes are simplified in this schematic (hexagonal shape

with dashed outline). The labels used for the processes/functions in this study are indicated by the circled letters right of the processes and

forcing functions. The five processes M to Q are used here with multiple options while the processes R to W are fixed with only one option.

The processes labeled with X are the ones that are also fixed at one option and this option does not contain tunable parameters. Hence the

sensitivity of the processes X is already prior known to be zero. The processes and options as well as the parameters active in each option

are listed in Tab. C1 of the main manuscript.

S.1.1 Infiltration Process M

Infiltration refers to the partitioning of ponded water (the residual rainfall and/or snowmelt) between the shallow surface soil20

(infiltrated water) and surface water (runoff). Infiltration is typically controlled by the saturation of the soil and its hydraulic

properties (e.g., hydraulic conductivity, infiltration capacity).
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Infiltration always moves water from PONDED_WATER to SOIL[0] (the top soil layer), and depending upon the soil structure

model specified by the :SoilModel command, may additionally push water to lower soil moisture stores. The remaining

infiltrated water is typically treated as runoff and moved to SURFACE_WATER.25

Infiltration is limited by the availability of soil/ aquifer storage. Many of the following algorithms use the quantities of max-

imum soil storage (φmax [mm]), maximum tension storage (φtens [mm]), and field capacity storage (φfc [mm]) in a layer,

always calculated as:

φmax = Hn(1−SF ) (S2)

φtens = φmax(Sfc−Swilt)30

φfc = φmaxSfc

where H is the soil layer thickness [mm] (in this study parameter x29), n is the porosity (soil property POROSITY), SF is the

stone fraction (soil property STONE_FRAC), Sfc is the saturation at field capacity (soil parameter FIELD_CAPACITY), and

Swilt is the saturation at the wilting point (soil parameter SAT_WILT).

S.1.1.1 HMETS infiltration method (INF_HMETS) used as option M135

From the HMETS model (Martel et al., 2017):

M1 = R ·
(

1−α · φsoil
φmaxsoil

)

where R is the rainfall/snowmelt rate [mm/d], α is the unitless land use parameter HMETS_RUNOFF_COEFF (in this study

parameter x1), φsoil is the topsoil layer water content, and φmax is the maximum soil storage [mm] calculated using equation

S2.40

S.1.1.2 VIC/ARNO method (INF_VIC_ARNO) used as option M2

The VIC/ARNO model as interpreted by (Clark et al., 2008).

M2 = R ·
(

1−
(

1− φsoil
φmax

)b)

where R is the rainfall/snowmelt rate [mm/d], b is the soil parameter B_EXP (in this study parameter x2), φsoil is the top soil

layer water content [mm], and φmax is the maximum topsoil storage [mm] calculated using equation S2.45

S.1.1.3 HBV method (INF_HBV) used as option M3

The standard HBV model approach (Bergström, 1995).

M3 = R ·
(

1−
(
φsoil
φmax

)β)

where β is the soil parameter HBV_BETA (in this study parameter x3), φsoil is the soil layer water content [mm], and φmax is

the maximum soil storage [mm] calculated using equation S2.50
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S.1.1.4 Weighted sum of all options used for infiltration process M

The combined, weighted sum of the three options is used as infiltration estimate in Raven, i.e.

M = w1M1 +w2M2 +w3M3

The three weights wi are derived from the two i.i.d. parameters rj sampled uniform from the unit interval following the

approach described in Appendix A of the main manuscript:55

w1 = 1− (1− r1)
1
2

w2 = (1−w1)r2

w3 = 1−w1 −w2

S.1.2 Quickflow Process N

S.1.2.1 Linear storage (BASE_LINEAR_ANALYTIC) used as option N160

A very common approach used in a variety of conceptual models. The baseflow rate is linearly proportional to storage

(BASE_LINEAR_STORAGE):

N1 = kφsoil

Where k [1/d] is the baseflow coefficient (soil parameter BASEFLOW_COEFF for the TOPSOIL; in this study parameter x4),

and φsoil is the water storage [mm] in the soil or aquifer layer (Eq. S2). The alternate version BASE_LINEAR_ANALYTIC is65

used here. It simulates the same condition except using a closed-form expression for integrated flux over the time step (∆t):

N1 = φsoil · (1− exp(−k∆t))/∆t

The two methods are effectively equivalent for sufficiently small time steps, but the second is preferred for large values of k.

The second was used in this study.

S.1.2.2 VIC baseflow method (BASE_VIC) used as option N270

From the VIC model (Wood et al., 1992) as interpreted by (Clark et al., 2008):

N2 =Mmax

(
φsoil
φmax

)n

where Mmax [mm/d] is the maximum baseflow rate at saturation (soil parameter MAX_BASEFLOW_RATE; in this study pa-

rameter x5), φsoil is the water storage [mm] in the soil or aquifer layer, φmax is the maximum soil storage capacity , and n is

the user-specified soil parameter BASEFLOW_N (in this study parameter x6).75
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S.1.2.3 VIC baseflow method (BASE_TOPMODEL) used as option N3

From TOPMODEL (Beven and Kirkby, 1979) as interpreted by Clark et al. (2008):

N3 =Mmax ·
φmax
n

· 1

λn
·
(
φsoil
φmax

)n

where Mmax [mm/d] is the maximum baseflow rate at saturation (soil parameter MAX_BASEFLOW_RATE; in this study pa-

rameter x5), φsoil is the water storage [mm] in the soil layer, φmax is the maximum soil storage capacity, λ is the mean of the80

power-transformed topographic index [m] (terrain parameter LAMBDA; in this study parameter x7), and n is the user-specified

soil parameter BASEFLOW_N (in this study parameter x6).

S.1.2.4 Weighted sum of all options used for quickflow process N

The combined, weighted sum of the three options is used as quickflow estimate in Raven, i.e.

N = w4N1 +w5N2 +w6N385

The three weights wi are derived from the two i.i.d. parameters rj sampled uniform from the unit interval following the

approach described in Appendix A of the main manuscript:

w4 = 1− (1− r3)
1
2

w5 = (1−w4)r4

w6 = 1−w4 −w590

S.1.3 Soil Evaporation O

Soil evaporation (really evapotranspiration) involves converting water from the soil layers to water vapour in the atmosphere

via both evaporation and transpiration. The rate of evapotranspiration depends on soil moisture, plant type, stage of plant

development and weather conditions such as solar radiation, wind speed, humidity and temperature.

Soil evaporation always moves water between SOIL[m] and ATMOSPHERE units. Which soil layers are subjected to evapo-95

ration depend on the soil structure model specified by the :SoilModel command and the particular evaporation algorithm.

Soil evaporation is rate-limited by the availability of soil/aquifer storage (dependent on the soil thickness which is parameter

x29 in this study) and by the capacity of the atmosphere to absorb water vapour.

In all notation below, PET refers to the potential evapotranspiration determined by one of the forcing function estimators for

PET (see Raven manual). In all cases, this PET is modified by the soil parameter PET_CORRECTION (in this study parameter100

x8), which only modifies PET in these algorithms.

S.1.3.1 Uncorrected evaporation algorithm (SOILEVAP_ALL) used as option O1

Water is removed from soil at the maximum rate until there is no water remaining:

O1 = PET
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S.1.3.2 TOPMODEL evaporation algorithm (SOILEVAP_TOPMODEL) used as option O2105

Soil ET is at PET if storage exceeds the tension storage, then is linearly proportional to the soil saturation:

O2 = PET ·min(
φsoil
φtens

,1)

where PET is the potential evapotranspiration rate [mm/d], and φsoil [mm] and φtens [mm] are defined in equation S2 (contains

parameters SAT_WILT TOPSOIL x9, FIELD_CAPACITY TOPSOIL x9+x10, and thickness of TOPSOIL x29). The HBV

model uses an additional snow correction (in this study parameter x8), such that ET is zero in non-forested areas if snow depth110

is non-zero.

S.1.3.3 Weighted sum of all options used for soil evaporation process O

The combined, weighted sum of the two options is used as soil evaporation estimate in Raven, i.e.

O = w7O1 +w8O2

The two weightswi are derived from one parameter rj sampled uniform from the unit interval following the approach described115

in Appendix A of the main manuscript:

w7 = r5

w8 = 1−w7

S.1.4 Baseflow Process P

S.1.4.1 Linear storage (BASE_LINEAR_ANALYTIC) used as option P1120

The same linear storage computation as described in Sec. S.1.2.1 is used here. The only difference is the baseflow coefficient

k [1/d] that is now the soil parameter BASEFLOW_COEFF for the PHREATIC soil layer (in this study parameter x11).

P1 = φsoil · (1− exp(−k∆t))/∆t

S.1.4.2 Non-linear storage (BASE_POWER_LAW) used as option P2

The non-linear storage is a very common approach used in a variety of conceptual models, including HBV (Bergström, 1995).125

The baseflow rate is non-linearly proportional to storage:

P2 = kφnsoil

Where k [1/d] is the baseflow coefficient (soil parameter BASEFLOW_COEFF here for the PHREATIC soil layer; parameter

x11), and φsoil is the water storage [mm] in the soil or aquifer layer, and n is the user-specified soil parameter BASEFLOW_N

(in this study parameter x12).130
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S.1.4.3 Weighted sum of all options used for baseflow process P

The combined, weighted sum of the two options is used as baseflow estimate in Raven, i.e.

P = w9P1 +w10P2

The two weightswi are derived from one parameter rj sampled uniform from the unit interval following the approach described

in Appendix A of the main manuscript:135

w9 = r6

w10 = 1−w9

S.1.5 Snow Balance Process Q

Snow balance algorithms are used to simulate the strongly coupled mass and energy balance equations controlling melting and

refreezing of snow pack and the liquid phase in the snow pores.140

Most snow balance algorithms consists of multiple coupled equations, and there are also many ’to’ and ’from’ compartments,

depending on which algorithm is selected. ’From’ compartments include SNOW (as SWE), SNOW_LIQ and SNOW_DEPTH.

’To’ compartments include SNOW, ATMOSPHERE, SNOW_LIQ, SNOW_DEPTH and SURFACE_WATER. Snow balance is rate-

limited by the storage in ’from’ and ’to’ compartments.

Most of the snowmelt algorithms that explicitly simulate liquid water content within the snowpack use the global parameter145

SNOW_SWI to determine the maximum possible liquid water storage of the snowpack:

φslmax = SWE ·SWI

where φslmax [mm] is the maximum liquid water storage of the snowpack, SWE is the snow water equivalent of the snowpack

[mm], and SWI is the global parameter SNOW_SWI, which defaults to 0.05 if not specified.

S.1.5.1 HMETS snow balance (SNOBAL_HMETS) used as option Q1150

A snowmelt model documented in Martel et al. (2017). This is a simple single layer snowmelt model with degree day freezing,

which tracks liquid water content in the snowpack in addition to SWE. The refreeze rate (constrained by water availability) is

given by:

Q1 =Kf · (Trf −Tdi)
f

where Kf is the land use property REFREEZE_FACTOR (in this study parameter x18), Trf is the degree day refreeze factor155

(land use property DD_REFREEZE_TEMP; parameter x16), and f is the land use parameter REFREEZE_EXPONENT (param-

eter x17). The water retention capacity (upper limit of liquid water content in snow) varies over the course of the year based

upon cumulative snowmelt:

SWI = max(SWImin,SWImax · (1−α ·Mcumul)
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where SWImin and SWImax are the land use parameters SNOW_SWI_MIN (parameter x13) and SNOW_SWI_MAX (parameter160

x13 +x14), α is the land use parameter SWI_REDUCT_COEFF (parameter x15), and Mcumul is the cumulative melt since the

last period of zero snow depth.

S.1.5.2 Simple melt (SNOBAL_SIMPLE_MELT) used as option Q2

The melt rate (in [mm/d]) is simply calculated by applying the potential melt rate to the snowpack until it is gone.

Q2 =




Mpotmelt, if S ≥ 0

0, if S < 0
165

where Mpotmelt [mm/d] is calculated using the method described in section S.1.6.2, i.e. Mpotmelt = T1. Note that the simple

melt process option Q2 for simulating the snow balance does not include any tunable parameter x.

S.1.5.3 HBV snow balance (SNOBAL_HBV) used as option Q3

The HBV snow balance (Bergström, 1995) represents both melt and liquid water storage in the pore space of the snow. The melt

rate is determined by the potential melt rate algorithm (POTMELT_HBV for true HBV emulation), while refreeze is calculated170

using:

Q3 =Mrefreeze =Ka ·max(Tf −T,0)

where Ka is the land use parameter REFREEZE_FACTOR [mm/d/◦C] (in this study parameter x18). Meltwater fills the snow

pore space first with the maximum fillable pore space determined by the global parameter SNOW_SWI (in this study pa-

rameter x19) and is then allowed to overflow. All overflow percolates into SOIL[0] by default, but may be redirected to175

PONDED_WATER using the :Redirect command if desired.

S.1.5.4 Weighted sum of all options used for snow balance process Q

The combined, weighted sum of the three options is used as snow balance estimate in Raven, i.e.

Q = w11Q1 +w12Q2 +w13Q3

The three weights wi are derived from the two i.i.d. parameters rj sampled uniform from the unit interval following the180

approach described in Appendix A of the main manuscript:

w11 = 1− (1− r7)
1
2

w12 = (1−w11)r8

w13 = 1−w11 −w12
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S.1.6 Processes with Single Options With Tunable Parameters185

For the following processes only one option has been used during this study for simplicity. Each option is hence theoretically

weighted with 1.0 in every model run.

S.1.6.1 Convolution Processes for Surface and Delayed Runoff (R and S)

Since convolution methods store the time history of inputs to convolution storage of a duration consistent with the longest time

delay in the convolution, it is not suggested to use convolution with a time constant in days with an hourly time step. Typically190

the order of the time delay should be on the order of the model time step.

The below convolution methods are available. All of them perform a discrete version of the following convolution:

R1 = S1 =

∞∫

0

UH(τ)I(t− τ)dτ

where I(t) is the input flux history (in mm/d) to the convolution storage unit and UH(t) is the transfer function; the area under

the transfer function is always equal to one to ensure mass balance. For the convolution of the surface and delayed runoff two195

different transfer functions have been used.

Gamma transfer function 1 (CONVOL_GAMMA) used as option R1

For the convolution of the surface runoff R the following transfer function is used

UH(t) =
1

t

(βt)a

Γ(a)
exp(−βt)

where a and β are the land use parameters GAMMA_SHAPE and GAMMA_SCALE (in this study parameters x20 and x21,200

respectively).

Gamma transfer function 2 (CONVOL_GAMMA2) used as option S1

For the convolution of the delayed runoff S the following transfer function is used

UH(t) =
1

t

(βt)a

Γ(a)
exp(−βt)

where a and β are the land use parameters GAMMA_SHAPE2 and GAMMA_SCALE2 (in this study parameters x22 and x23,205

respectively).

S.1.6.2 Potential Melt T

Potential snow melt can be estimated using a number a methods in the Raven model. To set the appropriate process in the model

the RVI must include the :PotentialMeltMethod keyword along with the appropriate value for the method selected. The

method selected here is:210

Potential Melt HMETS method (POTMELT_HMETS) used as option T1

9



A revised degree day model from the HMETS model (Martel et al., 2017), which uses a degree day factor which varies with

cumulative snowmelt. The degree day model is given as

T1 =Ma · (T −Tf )

where T is the daily average temperature. Tf is the melt temperature (zero by default, but can be set with the land use parameter215

DD_MELT_TEMP; in this study parameter x26), and Ma [mm/d/◦C] is the degree day melt factor, calculated as a function of

cumulative melt:

Ma = min
(
Mmax
a ,Mmin

a · (1 +α ·Mcumul

)

where the following land use parameters are used: the minimum melt rate Mmin
a [mm/d/◦C] (MIN_MELT_FACTOR; in this

study parameter x24), the maximum melt rate Mmax
a [mm/d/◦C] (MAX_MELT_FACTOR; in this study parameter x24 +x25),220

and α [1/mm] is the parameter DD_AGGRADATION (in this study parameter x27).

S.1.6.3 Percolation Process U

Percolation refers to the net downward flow of water from one soil/ aquifer unit to another. This process is physically driven

by a moisture gradient, but this is often simplified in conceptual percolation models.

Percolation moves water between SOIL[m] or AQUIFER units, depending upon the soil structure model specified by the225

:SoilModel command. The user typically has to specify both the ’from’ and ’to’ storage compartments. Percolation is

rate-limited by the availability of soil/aquifer storage and by the capacity of the receptor ’to’ compartment.

Linear Percolation (PERC_LINEAR) used as option U1

Percolation is proportional to soil water content:

U1 = kφsoil230

where k [1/d] is the soil parameter PERC_COEFF (in this study parameter x28 for TOPSOIL and x35 for PHREATIC soil

layer) and φsoil [mm] is defined in equation S2. All parameters refer to that of the ’from’ soil compartment.

S.1.6.4 Rain-Snow Partitioning Process V

If only total precipitation is specified at a gauge station or grid cell, then this total precipitation is partitioned into rain and

snow. All of the provided algorithms in Raven calculate the snow fraction αs, and rain and snow are determined from:235

R = (1−αs)P

S = αP

where R [mm/d], S [mm/d], and P are rainfall, snowfall, and total precipitation rates, respectively.

Linear approach (RAINSNOW_HBV) used as option V1
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In these approaches, a linear transition between all snow and all rain is determined from the average daily temperature, Tave:240

αs = 0.5 +
Ttrans−Tave

∆T

in the range from Ttrans−∆T/2 to Ttrans + ∆T/2, where Ttrans is the rain/snow transition temperature (global parameter

RAINSNOW_TEMP, [◦C]; in this study parameter x31) and ∆T is the global parameter RAINSNOW_DELTA [◦C] (in this study

parameter x32). If Tave is outside of this temperature range, the precipitation is either all snow (αs = 1) or all rain (αs = 0),

accordingly. This snow fraction is applied for the entire day.245

S.1.6.5 Precipitation Correction Process W

Measured total precipitation, snow precipitation, or rain precipitation may be corrected on a gauge-by-gauge basis by using

gauge-dependent rainfall and snowfall corrections to correct for observation bias. This is handled using the :RainCorrection

and :SnowCorrection commands given for each gauge. The parameters used in this study are x33 and x34, respectively.

S.1.7 Processes with Single Options Without Tunable Parameters250

The following processes have been fixed at single options that do not contain tunable parameters. They have been added for

completeness and have been labeled as process X1 which is known a priori to have a sensitivity of zero since no parame-

ter will be perturbed during the analysis. We refer to the Raven documentation (Craig, 2020) for details on those options.

The options are SW_RAD_DEFAULT for Extraterrestrial Shortwave Generation, PET_OUDIN for potential evapotranspira-

tion, ROUTE_DUMP for in-catchment routing, and in-channel routing is switched off (ROUTE_NONE) since only lumped255

catchments are analyzed here.
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