Supplementary Information for:

Importance of spatial and depth-dependent drivers in groundwater level modeling through machine learning

5 Pragnaditya Malakar¹, Abhijit Mukherjee^{1,2,3}, Soumendra N. Bhanja⁴, Dipankar Saha⁵, Ranjan Kumar Ray⁶, Sudeshna Sarkar⁷, Anwar Zahid⁸

¹Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, West Bengal 721302, India

²School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India

³Applied Policy Advisory for Hydrogeoscience (APAH) Group, Indian Institute of Technology Kharagpur, West Bengal 721302, India

⁴Interdisciplinary Centre for Water Research, Indian Institute of Science, Bangalore, Karnataka 560054, India

- ⁵Formerly Central Ground Water Board, Ministry of Water Resources, River Development and Ganga Rejuvenation, Government of India, Faridabad, Haryana, India ⁶Central Ground Water Board (CGWB), Bhujal Bhawan, NH-IV, Faridabad, India ⁷Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
- ⁸Bangladesh Water Development Board (BWDB), Dhaka, Bangladesh

Contents of the supplementary information:

Tables S1 to S11 Figures S1 to S17

30

25

10

35

40

Table S1. Long-term spatial mean annual precipitation between 1985 and 2015.

Basin Name	Precipitation (mm/year)
Indus-Ganges-Brahmaputra-Meghna Basin	~1140
(IGB-M)	
Indus Basin (I)	~590
Ganges Basin (G)	~1030
Brahmaputra Basin (B)	~2240
Meghna Basin (M)	~2560

50

Table S2. Statistics of groundwater abstraction per unit area (million m^3/km^2) in the year 2013.

	Annual Groundwater abstraction (million m ³)	Area (km²)	Groundwater abstraction per unit area (million m ³ /km ²)
Entire IGBM basin	194692.7	1151698.9	0.169
Indus basin	52012	94774	0.549
Ganges basin	117779.4	897072.7	0.131
Brahmaputra basin	5200	101017.2	0.052
Meghna basin	19701.2	58835	0.335

 Table S3. Different data sources used in the study.

Data type	Source	Spatial	Temporal
		resolution	resolution
GWL data for India	Central Groundwater Board	~14000	1985 -2015
	(CGWB), India	wells	
GWL data for Bangladesh	Bangladesh Water	~1300 wells	1985 -2015
	Development Board (BWDB),		
	Bangladesh		
Precipitation data for India	India Meteorological	0.25°×0.25°	1985 -2015
	Department (IMD), India		
Precipitation data for	Climatic Research Unit	0.5°×0.5°	1985 -2015
Bangladesh	(CRU TS v-4.01)		
Evapotranspiration data	Climatic Research Unit	0.5°×0.5°	1985 -2015
	(CRU TS v-4.01)		
Temperature (max, min,	Climatic Research Unit	0.5°×0.5°	1985 -2015
mean) data for Bangladesh	(CRU TS v-4.01)		

Temperature (max, min,	India Meteorological	1°×1°	1985 -2015
mean) data for India	Department (IMD), India		
Population data	Palisades NY: NASA	~ 5 km grids	2000, 2005,
	Socioeconomic Data and		2010, 2015
	Applications Center (SEDAC),		
	2018		
Groundwater withdrawals for	Central Groundwater Board	District	2013
India	(CGWB), India; AQUASTAT,	level	
	2017; Minor irrigation, 2017		
Groundwater withdrawals for	Bangladesh Water		2013
India Bangladesh	Development Board (BWDB),		
	Bangladesh; AQUASTAT,		
	2017		

 Table S4:
 Summery of observation well number.

	Number of Shallow observation wells	Number of deep observation wells	Number of total observation wells
Indus basin	133	29	162
Ganges basin	1687	155	1842
Brahmaputra basin	164	3	167
Meghna basin	96	36	132
Entire IGBM basin	2080	223	2303

Table S5. Configurations for training and testing set, adapted to select the final split up of the dataset.

Configurations	Total data	Training Set	Testing Set
Configuration - 1	31 years	5 Years	26 Years
	(124 seasons)	(20 seasons)	(104 seasons)
Configuration - 2	31 years	10 Years	21 Years
	(124 seasons)	(40 seasons)	(84 seasons)
Configuration - 3	31 years	15 Years	16 Years
	(124 seasons)	(60 seasons)	(64 seasons)
Configuration - 4	31 years	21 Years	10 Years
	(124 seasons)	(84 seasons)	(40 seasons)
Configuration - 5	31 years	26 Years	5 Years
	(124 seasons)	(104 seasons)	(20 seasons)

	Correlation coefficient (r)					
	Typ	be A	Typ	be B	Typ	be C
	ANN	SVM	ANN	SVM	ANN	SVM
IGBM	0.998	1	0.998	1	0.994	0.998
IGBM SH	0.997	1	0.997	1	0.994	0.997
IGBM DP	0.985	0.998	0.987	0.999	0.979	0.992
Ι	0.882	0.989	0.84	0.993	0.843	0.924
I SH	0.876	0.991	0.852	0.996	0.862	0.959
I DP	0.858	0.937	0.863	0.973	0.794	0.858
G	0.997	1	0.998	1	0.995	0.998
G SH	0.997	1	0.997	1	0.995	0.998
G DP	0.983	0.998	0.985	0.999	0.978	0.994
В	0.951	0.998	0.964	0.999	0.93	0.992
B SH	0.951	0.997	0.962	0.999	0.939	0.99
B DP	0.945	0.997	0.958	0.998	0.914	0.977
М	0.937	0.997	0.955	0.998	0.871	0.995
M SH	0.933	0.996	0.954	0.999	0.865	0.994
M DP	0.948	0.994	0.943	0.998	0.911	0.967

Table S6. Basin-scale correlation coefficient (r) for the training stage

 Table S7. Basin-scale correlation coefficient (r) for the testing stage

	Correlation coefficient (r)						
	Туре	e A	Тур	Type B		Type C	
	ANN	SVM	ANN	SVM	ANN	SVM	
IGBM	0.997	0.999	0.996	0.998	0.997	0.997	
IGBM SH	0.997	0.998	0.996	0.998	0.998	0.997	
IGBM DP	0.909	0.974	0.948	0.977	0.955	0.980	
Ι	0.401	0.853	0.595	0.879	0.586	0.731	
I SH	0.446	0.853	0.661	0.897	0.525	0.905	
I DP	-0.079	0.645	0.119	0.595	0.099	-0.198	
G	0.996	0.998	0.996	0.998	0.996	0.998	
G SH	0.996	0.997	0.996	0.998	0.996	0.998	
G DP	0.917	0.981	0.952	0.983	0.951	0.980	
В	0.911	0.994	0.930	0.994	0.953	0.994	
B SH	0.934	0.993	0.969	0.994	0.968	0.993	
B DP	0.610	0.706	0.726	0.692	0.722	0.657	
М	0.854	0.986	0.921	0.988	0.854	0.929	
M SH	0.846	0.981	0.922	0.984	0.847	0.933	
M DP	0.833	0.929	0.901	0.939	0.853	0.910	

	Nash-Sutcliff efficiency (NSE)						
	Тур	be A	Тур	Туре В		Type C	
	ANN	SVM	ANN	SVM	ANN	SVM	
IGBM	0.99	0.999	0.992	0.999	0.911	0.97	
IGBM SH	0.99	0.999	0.992	0.999	0.895	0.966	
IGBM DP	0.942	0.996	0.951	0.997	0.954	0.979	
Ι	0.611	0.975	0.573	0.984	0.667	0.797	
I SH	0.679	0.982	0.663	0.99	0.692	0.903	
I DP	0.691	0.872	0.724	0.943	-0.848	0.699	
G	0.991	0.999	0.993	1	0.925	0.975	
G SH	0.989	0.999	0.991	1	0.914	0.973	
G DP	0.947	0.996	0.956	0.998	0.944	0.986	
В	0.897	0.996	0.923	0.997	0.753	0.985	
B SH	0.891	0.995	0.918	0.998	0.74	0.984	
B DP	0.887	0.988	0.913	0.996	0.812	0.932	
М	0.858	0.993	0.903	0.997	0.638	0.979	
M SH	0.851	0.993	0.899	0.997	0.466	0.974	
M DP	0.876	0.993	0.881	0.995	0.727	0.926	

Table S8. Basin-scale Nash-Sutcliff efficiency (NSE) for the training stage

Table S9. Basin-scale Nash-Sutcliff efficiency (NSE) for the testing stage

	Nash-Sutcliff efficiency (NSE)						
	Тур	e A	Тур	Туре В		Type C	
	ANN	SVM	ANN	SVM	ANN	SVM	
IGBM	0.980	0.964	0.985	0.983	0.906	0.936	
IGBM SH	0.973	0.971	0.982	0.980	0.876	0.925	
IGBM DP	0.738	0.942	0.837	0.949	0.805	0.902	
Ι	-0.625	0.547	0.292	0.718	-0.045	-1.280	
I SH	-1.421	0.195	0.307	0.267	-0.204	0.172	
I DP	-0.533	0.186	-0.523	-0.096	-2.542	-0.860	
G	0.978	0.964	0.984	0.980	0.913	0.957	
G SH	0.975	0.973	0.982	0.980	0.903	0.957	
G DP	0.829	0.960	0.868	0.965	0.792	0.917	
В	0.824	0.976	0.940	0.986	0.719	0.986	
B SH	0.841	0.983	0.924	0.987	0.706	0.986	
B DP	0.360	0.427	0.515	0.440	0.441	0.410	
М	0.700	0.961	0.858	0.962	0.504	0.948	
M SH	0.686	0.957	0.843	0.964	0.286	0.940	
M DP	0.393	0.714	0.763	0.753	0.471	0.602	

	Normalized Root mean square error (RMSE _n)					
	Туј	be A	Туј	Type B		be C
	ANN	SVM	ANN	SVM	ANN	SVM
IGBM	0.099	0.026	0.087	0.025	0.296	0.172
IGBM SH	0.1	0.026	0.089	0.025	0.321	0.185
IGBM DP	0.238	0.059	0.221	0.052	0.212	0.144
Ι	0.62	0.156	0.65	0.125	0.573	0.448
I SH	0.564	0.132	0.577	0.098	0.552	0.31
I DP	0.552	0.356	0.523	0.237	1.351	0.545
G	0.093	0.028	0.083	0.022	0.272	0.156
G SH	0.104	0.027	0.093	0.022	0.291	0.165
G DP	0.229	0.063	0.208	0.049	0.235	0.117
В	0.319	0.066	0.275	0.051	0.494	0.123
B SH	0.329	0.071	0.285	0.048	0.431	0.127
B DP	0.334	0.08	0.293	0.061	0.507	0.259
М	0.375	0.081	0.31	0.056	0.598	0.143
M SH	0.384	0.083	0.316	0.057	0.519	0.161
M DP	0.35	0.109	0.343	0.07	0.726	0.27

Table S10. Normalized Root mean square error (RMSE_n) for the training stage

Table S11. Normalized Root mean square error (RMSE_n) for the testing stage

	Normalized Root mean square error (RMSE _n)					
	Тур	be A	Тур	be B	Type C	
	ANN	SVM	ANN	SVM	ANN	SVM
IGBM	0.138	0.124	0.119	0.111	0.302	0.249
IGBM SH	0.163	0.137	0.133	0.120	0.347	0.270
IGBM DP	0.738	0.942	0.399	0.222	0.335	0.298
Ι	1.259	0.665	0.831	0.525	1.010	1.491
I SH	1.536	0.886	0.822	0.845	1.084	0.898
I DP	1.223	0.891	1.218	1.034	1.858	1.347
G	0.147	0.133	0.126	0.111	0.290	0.204
G SH	0.158	0.139	0.133	0.129	0.307	0.204
G DP	0.409	0.198	0.359	0.184	0.325	0.235
В	0.412	0.117	0.240	0.117	0.523	0.115
B SH	0.391	0.128	0.271	0.114	0.535	0.119
B DP	0.790	0.748	0.688	0.739	0.738	0.758
М	0.541	0.194	0.372	0.191	0.691	0.224
M SH	0.554	0.203	0.391	0.186	0.830	0.241
M DP	0.765	0.525	0.763	0.488	0.714	0.619

Fig. S1. Long-term average temperature and potential evapotranspiration map for the year 1985to 2015.

Fig. S2. Summary of observation well data included in the study.

Fig. S3. Flowchart showing methodology followed in this manuscript for machine learning modeling.

Fig. S4. Rational of selection of training and testing set. Configuration – 5 performance is best
 among other configurations. Configuration – 4 is adapted maintaining a trade-off between the
 model performances and highest possible test set.

Fig. S5. Correlation coefficient (r) map between observed and predicted groundwater levels for the testing period.

Fig. S6. Nash-Sutcliff efficiency (NSE) map between observed and predicted groundwater levels for the testing period.

Fig. S7. Normalized Root mean square error $(RMSE_n)$ map between observed and predicted groundwater levels for the testing period.

Fig S8. Box plots showing the range of correlation coefficient observed from individual well scale analysis for the sub-basins.

Fig S9. Box plots showing the range of Nash-Sutcliff efficiency observed from individual well scale analysis for the sub-basins.

Fig S10. Box plots showing the range of Normalized root mean square error (RMSE_n) observed from individual well scale analysis for the sub-basins.

Fig. S12. Distribution of well counts with r, NSE RMSE_n for the Indus basin.

Fig. S13. Distribution of well counts with r, NSE RMSE_n for the Ganges basin.

Fig. S14. Distribution of well counts with r, NSE RMSE_n for the Brahmaputra basin.

Fig. S15. Distribution of well counts with r, NSE RMSE_n for the Meghna basin.

Fig. S16. Population count in ~5 km grids, for the year 2000, 2005, 2010, 2015.

Fig. S17. Hodrick–Prescott (HP) of the total number (in thousands) of shallow and deep
 irrigational wells in the IGBM. The plot is generated using data from the Minor irrigation census reports of India and Minor irrigation survey reports of Bangladesh.

145 **References**

Bangladesh Agricultural Development Corporation (BADC), 2014. Minor Irrigation Survey report, 2013 – 14: G.o.B.

Minor Irrigation Census (MIC), 1993, Report on census of irrigation schemes (1986-1987): G. o. I., Ministry of Water Resources.

- Minor Irrigation Census (MIC), 2001, Report on census of irrigation schemes (1993-1994): G. o. I., Ministry of Water Resources.
 Minor Irrigation Census (MIC), 2005, Report on 3rd census of irrigation schemes (2000-2001): G. o. I., Ministry of Water Resources.
 Minor Irrigation Census (MIC), 2014, 4th census on minor irrigation schemes report (2006-
- 2007): G. o. I., Ministry of Water Resources.
 Minor Irrigation Census (MIC), 2017, 5th census on minor irrigation schemes report (2013-2014): G. o. I., Ministry of Water Resources.