
“Importance of spatial and depth-dependent drivers in groundwater level modeling through 

machine learning” by Pragnaditya Malakar, Abhijit Mukherjee, Soumendra N. Bhanja, Dipankar 

Saha, Ranjan Kumar Ray, Sudeshna Sarkar, Anwar Zahid 

Reviewer #2: Groundwater is an important source of water, in particular for the transboundary 

areas of IGBM Rivers. This study used a liner regression approach based on dominance analysis 

and machine learning methods to identify the spatial and depth-wise drivers based on a large 

network of ground-based observations. Some interesting conclusions are found by the authors, 

including e.g. the groundwater level change is primarily influenced by abstraction and population 

in most of the IGBM; the machine learning methods can well simulate the groundwater level and 

the performance decreases from shallow to deep observation wells. The conclusions can be useful 

for groundwater management in the IGBM areas. However, the quality of this manuscript is not 

good enough for publication in HESS. The detailed comments are shown as the following. 

Reply: We thank the reviewer for his/her review and support for the general intent of the paper. 

We appreciate that the appended comments are helpful and intended to improve the manuscript. 

We have addressed the reviewer’s comments and done a complete major revision of the 

manuscript. Doing so, we have added details on the method, results, and discussion, rewritten 

several sections, and added a few new figures, which we believe have greatly improved the 

manuscript. 

Highlights of the revision: 

In this revision, we have 

a) Included a detailed discussion of the prevailing methods, differences between our study 

and previous studies. 

b) Highlighted the originality of the present study 

c) Shown the representative groundwater level time series for different basins 

d) Discussed the interdependence of the variables and its relation to dominance analysis 

e) Included the rationale for using ANN and SVM in the study 

f) Discussed possible limitation of using machine learning methods in groundwater level 

modeling 



g) Explained the possible reasons for relatively large deviations in the Indus basin. 

Rev 2. Comment 1: Machine learning methods are popular over the years. The authors gave an 

introduction to machine learning methods used in GWL. I expect that more prevailing methods 

should be mentioned in the introduction instead of ANN and SVR. I also expect a comparison of 

these prevailing methods. 

Reply: We thank the reviewer for the comment. In recent times, machine learning-based methods 

have been widely used to simulate and predict groundwater levels across the world. Most of these 

studies used methods like autoregressive integrated moving average (ARIMA), Artificial Neural 

Network (ANN), hybrid-ANN, Adaptive neuro-fuzzy inference system (ANFIS), genetic 

programming (GP), Support Vector Machine (SVM) and nonlinear auto-regressive exogenous 

model-based (NARX), long-short term memory (LSTM) model few others using a wide range of 

frequency and temporal data on past GWLs, satellite observations derived groundwater storage 

(GWS), Normalized difference vegetation index (NDVI)), meteorological variables, river 

discharge, variables of groundwater use, few dummy variables to simulate and/or predict GWLs. 

However, most studies (including studies on India and Bangladesh) are mainly small-scale studies, 

and due to the small number of observation wells, they are unable to characterize the spatial 

variability in model performances extensively. Moreover, the temporal extent of the studies on 

India and Bangladesh is often short. Hence the predictions are based on the short-term trends of 

dependent variables and do not consider the long-term variability. Furthermore, to our knowledge, 

none of the studies have considered the spatial and depth-wise performance variability of machine 

learning models in predicting GWL. The originality of this study lies in addressing some critical 

aspects which were not included in the previous studies. Firstly, to understand the spatial 

variability in machine learning-based model performances, we have considered a large network of 

monitoring wells (n = 2303) from 1985 to 2015 to simulate GWLs in the IGBM. Secondly, 

considering the variable depth-wise patterns of groundwater abstraction, we showed the 

significance of well depth (intake depth of the observation wells) information in GWL modeling 

using machine learning. Thirdly, we used meteorological variables exclusively to simulate in-situ 

GWLs. Fourthly, based on dominance analysis and outputs from the machine learning models, we 

investigated the most influential basin specific predictor(s) (both natural and human-induced) in 

GWL modeling. Following the reviewer's suggestion, we have modified the text, including the 



findings of the previous studies, and added new text to show the differences and originality of the 

present study. 

Following the suggestion of the reviewer, we have added other prevailing methods in the 

introduction section. We further modified the text regarding the comparison of the prevailing 

methods and added new text to show the difference and originality of the study. 

“Over the years, the simplistic approach and acceptable results of the machine learning (ML) 

methods are preferred when the underlying physical system is not well understood. Sometimes, 

decoding the physical system becomes much more complex due to interactions and feedbacks 

between multiple processes. GWL modeling based on ML has the unique ability to find the likely 

relationships between GWL and controlling hydro-climatic-anthropogenic variables without 

constructing knowledge-driven conceptual or physically-based models. Therefore, researchers 

have studied the performance of ML methods for GWL modeling in India and Bangladesh (Nayak 

et al., 2006; Nury et al., 2017; Malakar et al., 2018; Mukherjee and Ramachandran, 2018; Bhanja 

et al., 2019b; Sun et al., 2019; Yadav et al., 2020; and the references therein) and other parts of 

the world (Coulibaly et al., 2001; Feng et al., 2008; Sun, 2013; Nourani and Mousavi, 2016; Sun 

et al., 2016; Yoon et al., 2016; Barzegar et al., 2017; Ebrahimi and Rajaee, 2017; Wunsch et al., 

2018; Zhang et al., 2018; Chen et al., 2019; Lee et al., 2019; Jeong et al., 2019 and the references 

therein). Most of these studies used methods like autoregressive integrated moving average 

(ARIMA), Artificial Neural Network (ANN), hybrid-ANN, Adaptive neuro-fuzzy inference system 

(ANFIS), genetic programming (GP), Support Vector Machine (SVM) and nonlinear auto-

regressive exogenous model-based (NARX), long-short term memory (LSTM) model few others 

using a wide range of frequency and temporal data on past GWLs, satellite observations derived 

groundwater storage (GWS), Normalized difference vegetation index (NDVI)), meteorological 

variables, river discharge, variables of groundwater use, few dummy variables to simulate and/or 

predict GWLs. In a study by Yoon et al. (2011), ANN and SVM models were used using tide level, 

precipitation, and past GWLs as inputs to predict GWL fluctuations at a South Korean coastal 

aquifer. They reported that precipitation and tide levels are the most important input variables, 

and SVM performs better than ANN. Furthermore, the ability of GP, ANFIS, ANN, SVM, and 

ARIMA methods was evaluated by Shiri et al. (2013) in predicting GWL in Korea. The results 

suggest that the performance of GP is better than others. Using hybrid ANN with preprocessing 



approach Sahoo et al. (2017) predicted GWL change in some of the agriculture alluvial aquifers 

of the USA. Another recent study (Jeong et al., 2019) reported that NARX and LSTM methods 

provide good accuracy in predicting the water level of two observation wells in the Korean 

peninsula using preprocessed climatic variables (temperature, precipitation, humidity, sunshine 

hours, and atmospheric pressure) that potentially affect GWL through changing the 

evapotranspiration and recharge. Zhang et al. (2018) identified stressed aquifer conditions by 

comparing the observed and estimated GWL with LSTM using precipitation, temperature, water 

diversion, and evaporation as input. A recent study by Mukherjee and Ramachandran (2018) 

simulated GWLs for a small number (n = 5)  of in-situ observation wells in India using Linear 

Regression Model (LRM), Artificial Neural Network (ANN), and Support Vector Regression (SVR) 

using Gravity Recovery and Climate Experiment (GRACE) derived terrestrial water storage 

(TWS) change and meteorological variables. However, the above-mentioned studies (including 

studies on India and Bangladesh) are mainly small-scale studies, and due to the small number of 

observation wells, they are unable to characterize the spatial variability in model performances 

extensively. Furthermore, the temporal extent of the studies on India and Bangladesh is often short 

(e.g., Mukherjee and Ramachandran (2018) considered the time period from 2005 to 2018). Hence 

the predictions are based on the short-term trends of dependent variables and do not consider the 

long-term variability. Moreover, using a combination of physically-based modeling and deep 

convolutional neural network (CNN), Sun et al. (2019) matched the GRACE based and simulated 

(by a land surface model as inputs) terrestrial water storage anomalies (TWSA). They further 

compared the calculated in-situ GWS (using specific yields and in-situ GWLs) with the variation 

between the observed and simulated model values and found a good correlation. However, this 

study does not use in-situ GWLs as model input and mainly based on the satellite observations and 

land surface model outputs. Moreover, a recent study by Yadav et al. (2020) used ANN and SVM 

on preprocessed data on GWL, precipitation, Southern Oscillation Index, Northern Oscillation 

Index, Niño3, and population as input to predict GWL in the urban areas of Bengaluru, India. 

They also discussed the significant impact of population growth in GWL estimation and prediction 

in urban areas in India (Yadav et al., 2020).”  

We further added on the originality of our study, 



“The previous studies, as well as the studies on Bangladesh and India, are mostly based on a small 

spatial and a short temporal extent. Furthermore, to our knowledge, none of the studies have 

considered the spatial and depth-wise performance variability of machine learning models in 

predicting GWL. The originality of this study lies in addressing some critical aspects which were 

not included in the previous studies. Firstly, to understand the spatial variability in machine 

learning-based model performances, we have considered a large network of monitoring wells (n 

= 2303) from 1985 to 2015 to simulate GWLs in the IGBM. Secondly, considering the variable 

patterns of groundwater abstraction, we showed the significance of well depth (intake depth of the 

observation wells) information in GWL modeling using machine learning. Thirdly, we used 

meteorological variables exclusively to simulate in-situ GWL. Fourthly, based on dominance 

analysis and outputs from the machine learning models, we investigated the most influential basin 

specific predictor(s) (both natural and human-induced) in GWL modeling.” 
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Rev 2. Comment 2: From the manuscript, it is difficult to see the originality of this study. For me, 

the only originality might be the use of a large network of monitoring wells to identify the spatial 

and depth-wise drivers. 

Reply: We thank the reviewer for the comment. Over the years, a host of machine learning methods 

is applied in groundwater level prediction and simulation worldwide. However, to our knowledge, 

the previous studies have not considered the spatial and depth-wise performance variability of 

machine learning models in simulating GWL. The originality of this article lies in addressing these 

critical aspects. Following the reviewer's comment, we have highlighted the originality of our 

study. We added, 

"The previous studies, as well as the studies on Bangladesh and India, are mostly based on a small 

spatial and a short temporal extent. Furthermore, to our knowledge, none of the studies have 

considered the spatial and depth-wise performance variability of machine learning models in 

predicting GWL. The originality of this study lies in addressing some critical aspects that were not 

included in the previous studies. Firstly, to understand the spatial variability in machine learning-

based model performances, we have considered a large network of monitoring wells (n = 2303) 

from 1985 to 2015 to simulate GWLs in the IGBM. Secondly, considering the variable patterns of 

groundwater abstraction, we showed the significance of well depth (intake depth of the observation 

wells) information in GWL modeling using machine learning. Thirdly, we used meteorological 

variables exclusively to simulate in-situ GWL. Fourthly, based on dominance analysis and outputs 

from the machine learning models, we investigated the most influential basin specific predictor(s) 

(both natural and human-induced) in GWL modeling." 

Rev 2. Comment 3: Line 120: Although a large network of monitoring wells was used, the time 

resolution is rather coarse. Also can the authors show us the time series of monitored water levels? 

Reply: We thank the reviewer for the comment. We would like to mention that this is the best 

possible dataset in terms of spatial resolution available in the region to date. We agree with the 

reviewer that the temporal resolution of the data is a little coarse; however, we could not  find any 

other data with better temporal resolution covering the entire study area.  



Based on the reviewer's suggestion, we have inserted the time series plots of groundwater levels 

from multiple locations. Since the time series of all the 2303 monitoring wells was not possible to 

show, following the reviewer's comment, we have shown the 100 randomly selected observation 

wells in each of the basins with most records in the supplementary information. 

 

Figure S19. Borehole hydrographs (GWL depths below surface) of 100 representative monitoring 

wells with most records in the Indus basin. 



 

Figure S20. Borehole hydrographs (GWL depths below surface) of 100 representative monitoring 

wells with most records in the Ganges basin. 

 

Figure S21. Borehole hydrographs (GWL depths below surface) of 100 representative monitoring 

wells with most records in the Brahmaputra basin. 



 

Figure S22. Borehole hydrographs (GWL depths below surface) of 100 representative monitoring 

wells with most records in the Meghna basin. 

Rev 2. Comment 4: For the dominance analysis, the independent variables seem dependent, such 

as groundwater withdrawals and population, temperature and potential evapotranspiration. Will 

this affect the results of dominance analysis? 

Reply: We would like to thank the reviewer for this concern. We agree with the reviewer that 

population and groundwater withdrawal are interlinked parameters in some aspects. For example, 

assuming per capita groundwater withdrawal for domestic purposes is nearly equal, a net rise in 

population is directly proportional to the rise in groundwater withdrawal for domestic purposes. 

However, domestic withdrawal is limited to only ~4-8% of the total groundwater withdrawal in 

the basin, while irrigation-linked groundwater withdrawal contributes more than 90%. Irrigation 

strategies are shifting from flood irrigation to drip and sprinkler based irrigation systems, and this 

would continue in the near future. Thus, the water withdrawal for irrigation purposes (being the 

highest consumer of groundwater) is not directly linked to the population increase of the study 

area. This is the reason we have considered two separate parameters for designing this study.  



"We considered both the population and groundwater withdrawal as input parameters in the 

dominance analysis. Although these two parameters seem to be interlinked, however, in reality, 

they are not directly related in the IGBM basin. For example, assuming per capita groundwater 

withdrawal for domestic purposes is not changing over the years, a net rise in population is 

directly proportional to the rise in groundwater withdrawal for domestic purposes. However, 

domestic withdrawal is limited to only ~4-8% of the total groundwater withdrawal in the basin 

(Sharma et al., 2008; CGWB, 2019). Irrigation-linked groundwater withdrawal contributes more 

than 90% throughout the basin (Sharma et al., 2008; CGWB, 2019). Irrigation strategies are 

shifting from flood irrigation to drip and sprinkler based irrigation systems, and this would 

continue in the near future. Thus, the water withdrawal for irrigation purposes (being the highest 

consumer of groundwater) is not directly linked to population increase; rather, it is dependent 

upon the irrigation strategies used (Bhanja et al., 2017a)." 

The temperature could be considered as a proxy of water uses for irrigation. We also agree with 

the reviewer that potential evapotranspiration is controlled by ambient temperature. Furthermore, 

in addition to temperature, PET (used in the study) is calculated from variables such as net 

radiation at crop surface, wind speed, soil heat flux, and vapour pressure using the Penman-

Monteith formula. Thus, these variables influencing the potential evapotranspiration are 

significant components of the regional hydrological cycle. Hence, we have included PET in our 

analyses. 

We included in the text, 

“Temperature could be considered as a proxy of water uses for irrigation (Sun, 2013). 

Furthermore, potential evapotranspiration (PET) dependents on temperature, net radiation at 

crop surface, wind speed, soil heat flux, and vapour pressure (Ekström et al., 2007; Harris et al., 

2020). PET has been included in the analysis since these variables are significant components of 

the regional hydrological cycle.” 

Furthermore, the dominance analysis (DA) computes the coefficient of determination (R2) in 

multiple regression of all possible predictor combinations. The relative importance of the predictor 

variables is determined by the DA through a pair-wise comparisons of all predictors in the multiple 

regression model as they relate to an outcome variable. The DA has been developed specifically 



to address the issue of multicollinearity between predictors and provide the relative importance 

not affected by the multicollinearity between the predictors.  

Following the reviewer's comment, we have added a brief description.  

2.4 Dominance analysis 

“Yearly precipitation, temperature, groundwater withdrawals, population, and potential 

evapotranspiration for the IGBM and each of sub-basins were taken as the predictor variable to 

understand their relationship with the outcome variable GWLs. However, the predictor variables 

used in the study could be interrelated to some degree. Thus it is hard to assess the importance of 

each predictor if there exists a high degree of multicollinearity within the predictors. The DA has 

been developed specifically to address the issues and provide the relative not affected by the 

multicollinearity between the predictors. (Tighe et al., 2014). 

The dominance analysis (DA) computes the coefficient of determination (R2) in multiple regression 

of all possible predictor combinations (Azen and Budescu, 2006; Budescu, 1993; Thomas and 

Famiglietti, 2019). The relative importance of the predictor variables is determined by the DA 

through a pair-wise comparisons of all predictors in the multiple regression model as they relate 

to an outcome variable (Budescu, 1993; Tighe et al., 2014). The DA method partition coefficient 

of determination (R2) of the overall multiple regression into “shares”. These shares are 

attributable to each of the predictors (Braun et al., 2019) and identify the predictors that are more 

or less important or dominant than others. Here, the conditional dominance of the variables for 

p-1 sub-models is performed (where p is the numeric value of total sub-models) (Thomas and 

Famiglietti, 2019). A comprehensive narrative on the dominance analysis can be found in Budescu 

(1993) and Azen and Budescu (2006).” 
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Rev 2. Comment 5: Section 2.5: I am curious why the authors used two somewhat old-fashioned 

models including ANN and SVM. It is very easy to over-train these two types of models. I suggest 

the authors to use other models including LSTM. 



Reply: We would like to thank the reviewer for the comment. We agree that ANN and SVM are 

used for quite a long time. These methods are seemed to be robust, widely accepted, and 

extensively used in the earth science discipline. We have mentioned the rationale for using ANN 

and SVM in our study. We added,  

“Despite many computationally intensive and suitable machine learning methods available in the 

literature, ANN and SVM are selected here since these are the two most popular and widely used 

methods in predicting GWL, and proven to provide very good results in predicting GWL worldwide 

and in the similar study areas. The previous studies, as well as the studies on Bangladesh and 

India, are mostly based on a small spatial and a short temporal extent. Furthermore, to our 

knowledge, none of the studies have considered the spatial and depth-wise performance variability 

of machine learning models in predicting GWL." 

Rev 2. Comment 6: Line 251: replace ‘has’ with ‘have’ 

Reply: We thank the reviewer for noticing the typo. We have corrected the typo in the text. 

We corrected,  

“Moreover, in general, the ML methods may have some weaknesses in modeling complex 

relationships regarding the low generalizability of the methods, risk of overtraining (Rajaee et al., 

2019; Boutaghane et al., 2020).” 
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Rev 2. Comment 7: If the ML methods used in the study have some weakness regarding the low 

generalizability of the methods, risk of overtraining, why did the authors choose other machine 

learning methods? 

Reply: We thank the reviewer for the comment. The statement of ML methods having low 

generalizability, risk of overtraining may be true to most of the other ML methods when modeling 

complex relationships. We mentioned this in Section 2.6 (Limitations, assumptions, and 

uncertainty) to highlight the possible drawback of using ML methods in general. Other methods, 

such as LSTM, are also subjected to these issues. In one of the recent studies, Boutaghane et al. 

(2020) reported that a poor training procedure of the LSTM for these situations leading to a bad 

generalization ability. In fact, they further added the possibility to be trapped in local minima with 

bad generalization in such complex relationships as rainfall-runoff is possible, even when using 

the advanced Adam algorithm with measures taken to avoid the overtraining problem (holdout 

method and dropout layer). We have modified the sentence as 

"Moreover, in general, most of the ML methods may have some weaknesses in modeling complex 

relationships regarding the low generalizability of the methods, risk of overtraining (Rajaee et al., 

2019; Boutaghane et al., 2020).” 

Furthermore, we performed a sensitivity analysis using different model configurations and selected 

the model that provides better performances. 
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Rev 2. Comment 8: Line 268: it seems to me that only half of the observation wells having 

correlations greater than 0.6 is not much. 



Reply: We thank the reviewer for the comment. In this study, we performed a comparative analysis 

involving different models and different combinations of input parameters. Our findings suggest 

that using the best model, which is Model B (SVM, using GWL and meteorological variables as 

input) in the study, almost 76% of the observation wells show correlations greater than 0.6. Thus, 

in the concluding remark, we recommended using SVM with GWL and meteorological variables 

as input. We added, 

“Furthermore, model efficiency improves when climatic variables are included as input variables 

in addition to past GWLs into the system. Thus, the best performance in predicting GWL is found 

when SVM is used with GWL and meteorological variables as input. It is recommended to use 

SVM with GWL and meteorological variables as input in performing similar analysis.” 

Rev 2. Comment 9: Line 328: it is expected that the ANN and SVM models have limitations in 

areas with higher groundwater abstraction.  

Reply: We agree with the reviewer.  

Rev 2. Comment 10: Figure 4: why large deviations in Indus? 

Reply: We thank the reviewer for the comment. Figure 4 illustrates the comparative time series of 

the observed and simulated median groundwater levels for all the basin, sub-basin, and depth 

categories using ANN and SVM. The Indus basin is the most exploited basin in the study area. 

The shallow and deep observation wells are significantly influenced by a host of natural and 

anthropogenic drivers, resulting in a very complex hydrological condition. Hence, it is difficult to 

model the complex hydrological relationship. We have explained the probable reasons for large 

deviations in the Indus basin:  

"Indus basin is the most exploited basin in the study area (Figure 1c, Table S4). Thus, observation 

wells in the Indus basins are severely influenced by the local scale groundwater abstraction. 

Furthermore, irrigation return flow (Bhanja et al., 2019b) and inflow from canal leakage 

(Macdonald et al., 2015; Macdonald et al., 2016) may influence the shallow observation wells in 

the Indus basin. Moreover, the bulk of groundwater abstraction in the Indus basin is accounted 

for from the deep aquifers (which are often confined) through the deep irrigation wells in the 

agriculture regions (Girotto et al., 2017). Thus, the deep observation wells significantly influenced 



by deep irrigational activity. Moreover, the deep confined aquifers are affected by the pumping 

with a much larger head decline at a larger area and the equilibrium time depending upon the 

nature of the confining bed (Alley et al., 1999; Castellazzi et al., 2016). Thus, the GWL changes in 

the Indus basin involves several natural and human-influenced drivers, resulting in a rather 

complex hydrological condition. Hence, it is difficult to model the complex hydrological 

relationship. More information on sub-surface geometry and local groundwater pumping is 

needed for a better understanding. Furthermore, due to the changes in the irrigational pattern 

(Figure S17, shallow vs. deep irrigational wells), we observed differential GWL hydrographs 

(Figure S19, 100 representative monitoring wells in Indus basin) in the training and testing stages 

of the machine learning modeling. This could also be a potential reason for relatively weak model 

performances in the Indus basin."  
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Rev 2. Comment 11: Figure 6: how were the relative contributions calculated? Based on 

coefficient of determination? 

Reply: We thank the reviewer for the comment. The dominance analysis (DA) computes the 

coefficient of determination (R2) in multiple regression of all possible predictor combinations. The 

relative importance of the predictor variables is determined by the DA through a pair-wise 

comparisons of all predictors in the multiple regression model as they relate to an outcome 

variable. Following the reviewer's comments, we have added a brief description. We modified and 

added, 

2.4 Dominance analysis 

“Yearly precipitation, temperature, groundwater withdrawals, population, and potential 

evapotranspiration for the IGBM and each of sub-basins were taken as the predictor variable to 

understand their relationship with the outcome variable GWLs. However, the predictor variables 

used in the study could be related to some degree. Thus it is hard to assess the importance of each 

predictor if there exists a high degree of multicollinearity within the predictors. The DA has been 

developed specifically to address the issues and provide the relative not affected by the 

multicollinearity between the predictors. (Tighe et al., 2014). 

The dominance analysis (DA) computes the coefficient of determination (R2) in multiple regression 

of all possible predictor combinations (Azen and Budescu, 2006; Budescu, 1993; Thomas and 

Famiglietti, 2019). The relative importance of the predictor variables is determined by the DA 

through a pair-wise comparisons of all predictors in the multiple regression model as they relate 

to an outcome variable (Budescu, 1993; Tighe et al., 2014). The DA method partition coefficient 



of determination (R2) of the overall multiple regression into “shares”. These shares are 

attributable to each of the predictors (Braun et al., 2019) and identify the predictors that are more 

or less important or dominant than others. Here, the conditional dominance of the variables for 

p-1 sub-models is performed (where p is the numeric value of total sub-models) (Thomas and 

Famiglietti, 2019). A comprehensive narrative on the dominance analysis can be found in Budescu 

(1993) and Azen and Budescu (2006).” 
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