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Abstract. Less is known about evapotranspiration (ET) along elevation gradients of low mountain ranges, especially with 

regard to different land uses and concerning long-term studies. We investigate ET of four sites of different land-uses along 

an elevation gradient of a low mountain range over eleven years (2008-2018) based on daily values. Three different ET 

estimates are inspected, which can give a reasonable range of ET. These estimates are ET based on the energy balance 

residual (ET_residual), ET corrected for the energy balance closure gap (ET_corr) and ET not corrected for the energy 10 

balance closure gap (ET_uncorr). In general, ET_residual showed largest values and ET_uncorr showed lowest values with 

ET_corr in between. Average annual differences between ET_residual and ET_corr ranged between 111 mm a-1 and 196 mm 

a-1. Average annual differences between ET_uncorr and ET_corr ranged between 70 mm a-1 and 167 mm a-1. For two site 

years ET_corr was lower than ET_uncorr. This could be related to gap-filling. Differences between different estimates were 

site-specific and related to the respective energy balance closure gap. Principal component analysis revealed similar 15 

dependency on driving variables for all three estimates and all sites. Given the influence of the energy balance closure gap 

on ET_uncorr and ET_residual, we recommend using ET_corr, but ET_residual can be still useful especially for sites with 

low vegetation, which rarely experience water stress. Comparison of two coniferous sites situated at different altitudes 

showed frequently larger values for the site located at a higher altitude. This might be a result of rainfall interception, which 

however must be investigated at sub-daily timescale.  20 

1 Introduction 

Evapotranspiration (ET) is a key process in the earth-atmosphere system as it is an important component of the water 

balance and is related to the latent heat flux, a component of the energy balance at the earth surface, via the latent heat of 

evaporation and sublimation, respectively. Thus, it is a highly relevant process in the earth-atmosphere system concerning 

the exchange of mass and energy. 25 

However, measurements of ET are still a challenging task. The Eddy Covariance (EC) method has gained outstanding 

importance in measuring ET over the last 25 years (e.g. Goulden et al. 1996; Aubinet et al. 1999; Bernhofer and Vogt 1999; 

Wilson et al. 2001; Baldocchi 2003; Panin and Bernhofer 2008; Moderow et al. 2009; Aubinet et al. 2012, Baldocchi 2014). 
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The broad application of this technique in international networks, which address the exchange between the earth and the 

atmosphere (FLUXNET, ICOS), reflects this but also the vast number1 of publications using EC based ET-data.  30 

However, we often encounter the problem of energy balance closure gap (e.g. Tsvang et al. 1991; Kanemasu et al. 1992; 

Wilson et al. 2002; Foken 2008; Franssen et al. 2010; Stoy et al. 2013; Gerken et al. 2018; McGloin et al. 2018) when 

assessing the surface fluxes of latent (LE) and sensible heat (H) of the energy balance at the earth surface by means of EC. 

Commonly the measured sum of LE and H is often smaller than the measured sum of the available energy (net radiation 

minus ground heat flux minus heat storages changes). The measured components of the energy balance do not sum up to 35 

zero. An energy residual remains, often called energy balance closure gap. Most multi-site studies report an energy balance 

closure gap between 10% and 30%. (Wilson et al. 2002; Foken 2008; Franssen et al. 2010; Stoy et al. 2013). Only a few 

studies report a negligible energy balance closure gap (Heusinkveld et al. 2004; Mauder et al. 2007).  

EC based ET is affected by the energy balance problem and, therefore, very likely underestimates the actual 

evapotranspiration. Several methods have been proposed for a partition of the energy balance residual to LE and H in order 40 

to arrive at more reliable estimates of LE and hence ET (Blanken et al. 1997, Twine et al. 2000; Barr et al. 2012; Mauder et 

al. 2013; Charuchittipan et al. 2014; FLUXNET 2017; De Roo et al. 2018). There is an ongoing discussion on how the 

missed energy should be partition between H and LE (Mauder et al. 2013; Charuchittipan et al. 2014; De Roo et al. 2018; 

Mauder et al. 2018). 

Different methods for partitioning the residual between H and LE inevitably produce different estimates of LE and hence 45 

ET. However, at least we need to know a reasonable range for ET. A reasonable upper border would be given by ET 

estimates based on LE determined as a residual of the energy balance (ET_residual) whereby all components of the energy 

balance are measured but not LE. This method has been frequently applied in different studies and compared to other 

estimates of ET (e.g. McNeil and Shuttleworth 1975; Amiro and Wuschke 1987; Adams et al. 1991;Twine et al. 2000; 

Amiro 2009; Wohlfahrt et al. 2010, Barr et al. 2012; Spank et al. 2013; Mauder et al. 2018). ET_residual overestimates ET 50 

in relation to ET based on LE corrected for the energy balance closure gap (ET_corr) or not corrected for the missed energy 

(ET_uncorr) as reported by (e.g.) Twine et al. 2000; Barr et al. 2012; Gebler et al. 2015; Castellvi and Oliphant 2017; Perez-

Priego et al. 2017 and Mauder et al. 2018). However, only a few studies published results for several years (Barr et al. 2012; 

Mauder et al. 2018).  

The objective of this paper is to investigate differences and similarities and the possible range of these ET-estimates. It is 55 

focused on long-term ET of low mountain ranges along an elevation gradient, commonly less studied. It will address 

differences in ET due to different land uses and different altitude. The work is based on four sites of different land uses 

(coniferous forests, grassland, crop rotation) and of different altitudes of the Cluster of the Technische Universität Dresden 

                                                           
1 approx. 23 000 
https://scholar.google.com/scholar?hl=de&as_sdt=0%2C5&q=evapotranspiration+eddy+covariance&oq=Evapotranspiration
+Eddy assessed 04.04.2020 
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for greenhouse gas and water fluxes (Moderow and Bernhofer 2014). The investigated period covers 11 years and daily 

values are used for analyses. 60 

2 Sites and Instrumentation 

2.1 Site description 

All four investigated sites of this study belong to the Cluster of the Technische Universität Dresden for greenhouse gas and 

water fluxes (Moderow and Bernhofer 2014). Three of these sites are located about 15-25 km southwest of Dresden 

(Germany; Fig. 1) in or close to the Tharandt forest (60 km²) in the lower region of the Eastern Ore Mountains 65 

(Osterzgebirge). These sites are Anchor Station Tharandter Wald (DE-Tha, old spruce forest, EC-data since 1996), 

Grillenburg (DE-Gri, grassland site, EC-data since 2003) and Klingenberg (DE-Kli; crop site, EC-data since 2005). The forth 

site Oberbärenburg (DE-Obe, spruce forest, some EC-data since 1994) is situated at a higher altitude of the Ore Mountains 

about 50 km south of Dresden (Germany). All four sites contribute to FLUXNET (https://daac.ornl.gov/cgi-

bin/dataset_lister.pl?p=9 assessed 29.04.2020). DE-Tha, DE-Gri and DE-Kli are ICOS sites (www. https://www.icos-cp.eu/ 70 

assessed 29.04.2020). Only complete years with similar instrumentation at all four sites are used in this paper. According to 

the Köppen-Geiger climate classification, all sites belong to the climate type Cfb (warm temperate climate, fully humid, 

warm summer; Kottek et al. 2006).  

 

 75 

Figure 1: Locations of the four investigated sites (Tharandt DE-Tha; Grillenburg DE-Gri; Klingenberg DE-Kli; Oberbärenburg 
DE-Obe). Map is based on freely available Geodata.  
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An overview of general climatic conditions of all four sites during the investigated period (years 2008-2018) gives Fig. 2. 

DE-Tha was the site with highest annual mean temperature (9.4 °C), followed by DE-Gri and DE-Kli (8.8 °C and 8.0 °C, 

respectively) and DE-Obe being the coldest site (6.7 °C). Based on corrected numbers DE-Obe received most precipitation 80 

with an average of 1176 mm a-1 for the investigated period due to its location at a higher altitude. The mean annual 

precipitation sums of the lower altitude sites are 906 mm a-1 (DE-Kli), 987 mm a-1 (DE-Tha) and 1022 mm a-1 (DE-Gri). 

During the investigated period (years 2008-2018), the year 2010 was comparatively cool and wet (Fig. 2b and 2d) whereas 

2018 was a very warm and extremely dry year, also in relation to available long-term records at DE-Tha (30 year average of 

period 1981-2010: 8.4°C).  85 

 

Figure 2: Mean annual temperature (a) and precipitation sum (c) from 2008 to 2018 and respective averages of this period. Lower 
panels show differences of each year’s temperature (b) and precipitation (d) to the period’s respective average value. THA stands 
for Anchor Station Tharandter Wald (old spruce forest), GRI for Grillenburg (grassland site), KLI for Klingenberg (crop 
rotation) and OBE for Oberbärenburg (spruce forest at a higher altitude of the Ore mountains).  90 

2.1.1 Old Spruce forest – Anchor station Tharandter Wald (DE-Tha) 

The Anchor Station Tharandter Wald (50°58' N 13°34' E) is located in the eastern part of the Tharandt forest at an altitude of 

385 m above sea level. It has an undulating terrain with a slope (2°) facing south. The Norway spruce stand (Picea abies) 

was established by seeding in 1887 (Grünwald and Bernhofer 2007) and had mean tree height of 31 m in 2018. Maximum 

plant area index is between 7 m2 m-2 and 8 m2 m-2. Norway spruce (Picea abies) is the dominating tree species (> 70 % of all 95 

mature trees). Other species of trees are Scots Pine (Pinus sylvestris, 15 %), European Larch (Larix decidua, 10 %) and 

subordinated different deciduous trees (3 %) like Silver Birch (Betula pendula), Norway Maple (Acer platanoides) and 
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Horse Chestnut (Aesculus hippocastanum) (Grünwald and Bernhofer 2007). Beech (Fagus sylvatica) underplanting took 

place in 1995 in some areas of the site. Those Beech trees reached a height about 3 to 4 m in 2007. During the investigated 

period 2008-2018, the canopy was thinned in 2011 and 2016. The understorey is very sparse and dominated by Wavy Hair 100 

grass (Deschampsia flexuosa) or even absent in areas densely populated with spruce. Thus the canopy is characterized by a 

marked trunkspace.  

The soil can be classified as loamy-skeletal podsol-brown earth (WRB: Dystric Cambisol) on rhyolite (Nebe and Wenk 

1997) with a soil depth around 1 m and a main rooting zone of 35 cm. It has a high rock content which increases from the 

upper soil layer to the lower soil layers (Schwärzel et al. 2009). The soil has a soil water content of 16 Vol% at field capacity 105 

and 7 Vol% at wilting point (Grünwald and Bernhofer 2007). 

According to Mellmann et al. (2003) and Rebmann et al. (2005) the main (southwesterly) footprint of the flux measurements 

can be characterised as sufficiently homogeneous. The old spurce forest contributes at least 80% to the measured flux for 

90% of the half-hourly flux measurements (Göckede et al. 2008). 

2.1.2 Grassland site Grillenburg (DE-Gri) 110 

The site Grillenburg (50° 57’ N, 13°31 E) is a permanent pasture (mesophytic hay meadow). It is located at an altitude of 

385 m at a large clearing of around 40 ha. Typical species of the grass cover are couch grass (Agropyron repens) meadow 

foxtail (Alopecurus pratensis), yarrow (Achillea millefolium), common sorrel (Rumex acetosa) and white clover (Trifolium 

repens).  

The soil (Pseudogley, WRB: Stagnosol) is a deep soil (up to 1.35 m) of high silt content (at least 75% at all soil layers). The 115 

upper horizons are influenced by former ploughing. For the upper two horizons (23 cm) the wilting point is at 13 Vol% and 

the amount of water held between field capacity and wilting point is 30 Vol%  

The permanent grassland has been unfertilized since 1987 and is extensively managed (one to three cuts per year for fodder 

and hay production, occasional cattle, sheep or horse grazing in autumn).  According to cutting, the canopy height varies 

over the year as well as the leaf area index. Maximum leaf area index before cutting is around 5-6 m² m-2. 120 

The grassland is surrounded by forest and the fetch is correspondingly restricted to 530 m (North), 250 m (West), 470 m 

(South) and 350 m (East), respectively.  

2.1.3 Agricultural site Klingenberg (DE-Kli) 

The agricultural site Klingenberg (50°54' N 13°31' E, 480 m above sea level) is located 4 km south of the Tharandt Forest at 

a gentle slope facing south.  125 

Different crops are grown here in a crop rotation cycle. Starting in 2008, the rotation cycle began with spring barley 

(Hordeum vulgare), followed by winter barley (Hordeum vulgare) in 2008/2009, rapeseed (Brassica napus) in 2009/2010, 

winter wheat (Triticum aestivum) 2010/2011 and maize (Zea mays) 2012. The crop rotation cylcle started again with spring 

barley (Hordeum vulgare) in 2013, followed by winter barley (Hordeum vulgare) in 2013/2014, rapeseed (Brassica napus) 
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2014/2015, winter wheat (Triticum aestivum) 2015/2016, followed by cover crop (cultivated radish, Raphanus sativa 130 

brassica) 2016/2017; spring wheat (Hordeum vulgare) 2017; cover crop (cultivated radish, Raphanus sativa brassica) 

2017/2018 and maize (Zea mays) in 2018. Before 2016, DE-Kli represented fallow ground in periods between harvests and 

sowings of the subsequent crop. During this periods, only volunteer seedlings or weed species occurred.Due to crop rotation, 

canopy height and leaf area index varied from year to year and within a year.  

The site is strongly influenced by management (low tillage, sowing, harvesting). Mineral fertilisation is applied several times 135 

every year. Organic fertilisation is also applied but not yearly. Herbicides are applied regularly several times every year.  

The soil is a Gleysol, which is at least 80 cm deep. The upper horizon (0-20 cm) is influenced by ploughing and can be 

characterized as medium clayey loam. The adjacent horizon below is slightly sandy clay and clayey. Wilting point is at 26 

Vol% and the field capacity has a soil water content of 41 Vol% for the upper 40 cm of the soil. 

According to Spank et al. (2016) a sufficient fetch of at least 300 m can be assumed for the two main wind direction sectors 140 

(South-West and North-West). 

2.1.3 Spruce forest Oberbärenburg (DE-Obe) 

The site Oberbärenburg (50°47’N, 13°43’) is located in the Eastern Ore Mountains at 735 m above sea level and slightly 

faces northeast. Oberbärenburg is situated in a region which was heavily damaged by smoke in the second half of the last 

century (Queck 2004).  145 

The age of the Norway spruce (Picea abies) stand was 55 years in 2010. The mean canopy height was 21 m in 2011. 

Maximum plant area index is between 7 m2 m-2 and 8 m2 m-2 (Moderow and Bernhofer 2014). Understorey is very sparse or 

even absent.  

According to an adjacent forest research station of the Freestate Saxony, the soil is a podsol-brown earth (WRB: Dystric 

Cambisol) on rhyolite. Loamy sand dominates until 0.25 m depth and deeper layers can be characterised as sandy loam.  150 

During the investigated period 2008-2018, the canopy was thinned in 2016.  

2.2 Instrumentation 

We restrict the description of the instrumentation to the most relevant variables. Table 1 shows main instrumentation of the 

four investigated sites. Precipitation (P) measurements are based on weighing rain gauges at each site. In the case of DE-

Obe, precipitation measurements of a small gauged catchment (Rotherdbach, Zimmermann et al. 1999) is used, which is less 155 

than 1 km away of DE-Obe. P measurement of Rotherdbach is located at an altitude of 720 m. Comparison of precipitation 

measurement when P measurements of the catchment Rotherdbach and DE-Obe were both available revealed negligible 

differences. Precipitation measurements were corrected for wind errors according to Richter 1995. 
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Table 1: Measurement setups of the respective sites. 160 

 DE-Tha DE-Gri DE-Kli DE-Obe 

Net radiation CNR1§ CNR1§ CNR1§ CNR1§ 

Measurement height 37 m 1.5 m 1.8 m 30 m 

Wind GILL R3-50%% GILL R3-50%% Gill R3-50%%;a 

Young 81000&,a 

METEK USA-1# 

Measurement height 42 m 3 m 3.5 m 30 m 

Humidity 

(high frequency 

measurements) 

Li-7000$ 

 

Li-7000$ 

 

Li-7000$ 

 

Li-7000$ 

 

Measurement height 42 m 3 m 3.5 m 30 m 

Ground heat flux PLE&& (2 

plates) 

PLE&& (2 plates) PLE&& (2 plates) PLE&& (2 plates) 

Measurement height -0.02 m -0.02 m -0.02 m -0.02 m 

Air temperature 

Relative humidity 

HMP45$$ 

 

HMP45$$ HMP45$$ HMP45$$ 

Measurement height 40 m 2 m 2 m 30 m 

Soil water content TDR§§ TDR§§ TDR§§ TDR§§,## 

Measurement height -0.10 m -0.10 m -0.10 m -0.10 m 

Soil temperature Thermocouple% Thermocouple% Thermocouple% Thermocouple% 

Measurement height -0.02, 0.05 m -0.02, 0.05 m -0.02, 0.05 m -0.02, 0.05 m 

§ Kipp & Zonen, Delft, The Netherlands  
§§ IMKO, Ettlingen, Germany  
$ LI-COR, Lincoln, Nebraska, USA  
$$ Vaisala, Helsiniki, Finnland 
% Manufacturer not specified 165 
%% Gill Instruments Ltd, Lamington, Hampshire, UK 
& R.M. Young Company, Traverse City, Michigan, USA 
&& Laborelektronik Ing. Peter Leskowa, Austria 
#  Metek, Elmshorn, Germany 
## since July 2018, Delta-T Devices, Burwell, Cambridge, UK 170 
a depending on availability 
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3. Methods 

3.1. Evapotranspiration estimates 

Evapotranspiration (ET) is part of the water balance, 

� = �� + � +	∆�,            (1) 175 

where P denotes precipitation, ET evapotranspiration, R runoff and ΔS storage change. All terms are given in mm.  

Via the latent heat of vaporization and sublimation L, respectively, ET is connected to the energy balance (Eq. 2 and Eq. 3) 

at the earth surface, 

�� =	
��

�
            (2) 

�� − � − � = � + ��,           (3) 180 

where Rn denotes net radiation, G ground heat flux, J heat storage changes, H sensible heat flux and LE latent heat flux. All 

energy balance components are given in W m-2. 

When assessing the energy balance at earth surface by means of Eddy-Covariance in general there is an energy imbalance, 

i.e. the left hand side of Eq.3 does not equal the right hand side of Eq. 3 (e.g. Foken et al. 2008, c.f. Introduction) and 

commonly the sum of (H+LE) is smaller than the sum of (Rn – G – J). Consequently, measured ET is likely to be to small as 185 

its energy equivalent is underestimated. Therefore, ET values not corrected for this gap are likely to be smaller than the 

actual value. We will call these estimates ET_uncorr. ET estimates obtained by accounting for this gap will be called 

ET_corr. 

In order to obtain daily values of ET_uncorr, half-hourly values of LE were averaged over the whole day (24 hour average). 

As outlined before, different methods exist to correct for the missing energy (c.f. introductory part). LE correction follows 190 

the FLUXNET procedure (FLUXNET 2017), which is the current procedure applied within ICOS. This correction was 

applied to daily values of LE_uncorr. Daily values of ET_corr were then obtained by converting LE_corr to ET_corr using 

the latent heat of vaporization.  

Besides ET_uncorr, ET_corr, the third estimate of ET is obtained via LE determined as a residual of the energy balance on a 

daily basis. 195 

�� =
��

�
=

(��������)

�
		           (4) 

where, L denotes latent heat of vaporization and sublimation, respectively, in J kg-1. Estimates according to Eq. 4 will be 

referred to as ET_residual. Components of heat storage changes might be important when determining ET_residual for 

periods with snow and snowmelt (Amiro et al. 2009). Most studies report an overestimation of ET_residual with respect to 

the chosen reference ET of the respective publication (Adams et al. 1991; van der Tol et al. 2003; Consoli et al. 2006; 200 

Wohlfahrt et al. 2010; Barr et al. 2012; Gebler et al. 2015; Castellvi and Oliphant et al. 2017; Perez-Priego et al. 2017; 

Mauder et al. 2018). We therefore assume that ET_residual is a reasonable estimate for an upper estimate of ET. However, 

differences to the chosen reference ET may vary with inspected time scale and season (Adams et al. 1991; Amiro 2009; 
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Perez-Priego et al. 2017) and with different measurement campaigns for the same site (Wohlfahrt et al. 2010). Furthermore, 

results should be carefully reviewed as this methods piles up all errors of all other components of the energy balance in LE 205 

(McNeil and Shuttleworth 1975; Barr et al. 2012) and hence ET. 

3.2 Eddy – Covariance data 

The sensible and latent heat fluxes have been measured using Eddy-Covariance (Aubinet et al. 2012). Raw data were 

recorded at frequency of 20 or 25 Hz. EddyPro® version 6.2.0 (LI-COR, Lincoln, Nebraska, USA) was used for post-

processing to obtain half-hourly data of H, LE and ET. Following flux corrections have been implemented: Coordinate 210 

rotation according to Wilczak et al. (2001) for 8 different wind sectors with a size of 45°, humidity correction of sonic 

temperature (Dijk et al. 2004; correction for cross wind contamination was already implemented in the software of the used 

sonic anemometers), correction for high frequency spectral losses (Fratini et al. 2012 and Horst and Lenschow 2009) as well 

as low frequency spectral losses (Moncrieff et al. 2005). Ibrom et al. (2007) has been chosen in order to convert gas 

concentrations into mixing ratios. For measurement heights and setups please refer to Table 1. 215 

3.3 Heat storage changes of energy balance at the earth surface 

Commonly, it is not possible to measure all components of the energy balance at the earth surface directly. Therefore, one 

has to account for the different heat storage changes in the layer between the uppermost measurement height of an energy 

balance component, commonly the height of the EC-system measuring latent and sensible heat flux above the canopy, and 

the lowest measurements height of an energy balance component commonly the depth of the heat flux plate measuring the 220 

ground heat flux (c.f. Oke 1987; Arya 2001). 

Different heat storage changes contribute to the total heat storage change (Thom 1975, McCaughey 1985, Bernhofer et al. 

2003; Oliphant et al. 2004, Moderow et al. 2009). Calculated heat storage changes of the energy balance equation included 

following components (Eq. 5) 

� = 	 �� + ��� + �� + ���� + �� ,          (5) 225 

where JH and JLE denote sensible and latent heat storage changes in the canopy air layer, JC accounts for the energy fixed and 

released by photosynthesis and respiration, respectively, and Jveg denotes heat storage changes in the vegetation. JG accounts 

for possible heat storage changes between the soil surface and the depth of the heat flux plate. All heat storage changes are 

given in W m-2, have been calculated on the basis of gap-filled half-hourly data and averaged over 24 hours in order to obtain 

daily values. A description of the assessment of the different heat storage changes of Eq. 5 is given in Appendix A. Jveg was 230 

calculated for the two coniferous sites (DE-Tha, DE-Obe) but not the crop site (DE-Kli) and the grassland site (DE-Gri) as 

sufficient data concerning fresh weight of biomass is missing. Furhermore, results of Eshonkoluv et al. (2019) and Jacobs et 

al. (2008) indicated that Jveg of low vegetation is be of minor importance compared to other heat storage change components. 
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3.4 Gap filling 

Gap filling is inevitable in order to achieve yearly, seasonal and monthly budgets of LE and ET, respectively. Table 2 gives 235 

an overview of missing half-hourly data of main energy balance components before gap-filling. Statistic of H and LE relate 

to half-hourly data after post-processing using EddyPro. 

 

Table 2: Percentage of missing half-hourly data of main energy balance components before gap-filling. Total number of half-

hourly values of the eleven year period 2008-2018: n=192864.  240 

Site Rn G$ LE H 

DE-Tha 1.2 0.3 3.3 1.8 

DE-Gri 1.2 1.3 8.7 7.0 

DE-Kli 7.0 12.6 20.3 10.7 

DE-Obe 1.8 1.1 11.9 9.6 

$Measured half-hourly values represent the average of two heat flux plates or the measurement of a single heat flux plate, 

depending on availability 

 

Net radiation was gap-filled following Allen et al. (1994). Missing half-hourly values of G were filled with a moving 

average over a time window of -/+ 7 days from a particular half hourly value. The calculation was only made if at least 5 245 

half-hour values were available within the two weeks. This procedure was repeated until all gaps of G were filled. Half-

hourly values of H and LE were gap-filled using the algorithm of Reichstein et al. (2005) and the corresponding online tool 

(REddyProcWeb; https://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWeb viewed 15. April 2020).  

Half-hourly data, needed for the calculation of the heat storage changes (Eq. 3 and Eq. 5), were also gap-filled. These data 

included net ecosystem exchange of CO2 (NEE), soil temperatures, air temperature, relative humidity and water vapour 250 

pressure deficit. Most gaps could be filled using the algorithm of Reichstein et al. (2005). However, some gaps remained in 

the case of DE-Obe (soil temperatures), DE-Gri (NEE) and DE-Kli (soil temperatures and NEE). These remaining gaps were 

filled using moving averages as described above. 

In the case of DE-Kli it should be noted that longer data gaps exists in 2008/2009 and 2013. A pragmatic approach was 

chosen in order to arrive at complete yearly budgets. Daily values of the next following year with the same crop were used 255 

for gap-filling. Furthermore, bare soil or conditions with almost no soil cover, which occur between harvest and sowing of 

the next winter crop are underrepresented in the data, as the measurement equipment must be at least partially removed and 

reinstalled in most cases for harvest and sowing.  

Soil water content measurements used in the subsequent analysis were not gap-filled. In the case of DE-Obe, soil water 

content measurements were not available during the extremely dry summer 2018. 260 
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3.5 Principal component analysis  

Principal component analysis (PCA) was used for analysing the possibly changing dependency of the different ET-estimates 

on meteorological variables and soil water content with changing season. Here, the ‘precomp’ function of package ‘stats’ 

(version 3.6.1) of R (R Core Team 2019) was used. Different combinations of variables were tested including net radiation 

(Rn) , global radiation (RG), vapour pressure deficit (VPD), air temperature (Tair), wind speed (WS), soil water content 265 

(SWC), energy balance closure gap (EB_gap) and evapotranspiration (ET) out of which RG, VPD, SWC and ET produced 

largest explained variance of the data by the first two principal components. We used scaled data for PCA because chosen 

variables have different dimensions. Furthermore, only daily values not subject to gap-filling were used for this analysis. 

Data were binned according to months prior performing PCA. PCA was then applied to all data of months December, 

January, February, to all data of months March, April, May, to all data of months June, July August and to all data of months 270 

September, October, November. This was done for every ET_estimate (ET_uncorr, ET_corr, ET_residual). 

Please note that in the case of DE-Obe (coniferous site at a higher altitude than the other three sites) no SWC-measurements 

were available during the warm and extremely dry summer 2018. 

4. Results 

4.1 Energy balance closure 275 

Energy balance closure of all four sites were investigated including and excluding heat storage changes due to changes in 

temperature (JH), changes in humidity (JLE), changes in biomass temperatures (Jveg, only determined for DE-Tha and DE-

Obe), heat storages changes between the heat flux plate and the soil surface (JG) and heat storage changes due to 

photosynthesis and respiration (JC). This analysis was based on coefficient of determination (R²), simple linear regression 

((H+LE) = a + b(Rn-G)) and the energy balance ratio (Eq. 6), which was obtained as follows for each year as well as over all 280 

years.  

��� = 	
∑(����)

∑��
 ,            (6) 

where EBR denotes energy balance ratio (dimensionless), H sensible heat flux, LE latent heat flux and AE available energy. 

H, LE and AE are given in W m-2. If heat storage changes are considered, AE equals net radiation (Rn) minus ground heat 

flux (G) minus the sum of the respective heat storage changes. If heat storages changes are not considered, AE equals Rn – 285 

G.   

Over the whole period of 11 years as well as for each year, energy balance closure expressed as energy balance ratio (Eq. 6) 

was very similar whether including or excluding heat storage changes (Table 3). All other investigated statistical measures 

(not shown) did also support this. The coefficient of determination R² changed by up to ± 0.02 if storage terms were 

included. Most changes were smaller than this upper bound. For all sites the offset a of the simple linear regression only 290 

slightly changed (maximum absolute change < 1.5 W m-2). Slopes of the simple linear regressions were also only slightly 

altered and most changes indicated an improvement (maximum absolute change ≤ 0.03). 
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Therefore, we neglected these minor terms in the subsequent analysis of evapotranspiration and latent heat fluxes, 

respectively, as they are of minor importance. 

 295 

Table 3: Annual energy balance ratios (Eq. 6) and energy balance ratio over all 11 inspected years excluding (and including) 

heat storage changes. Values considering heat storage changes are given in brackets.  

 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 All 

years 

DE-Tha 0.64 

(0.64) 

0.59 

(0.59) 

0.67 

(0.68) 

0.59 

(0.60) 

0.66 

(0.66) 

0.72 

(0.72) 

0.76 

(0.77) 

0.72 

(0.73) 

0.73 

(0.74) 

0.76 

(0.76) 

0.78 

(0.78) 

0.69 

(0.70) 

DE-Gri 0.65 

(0.65) 

0.65 

(0.65) 

0.62 

(0.62) 

0.64 

(0.64) 

0.61 

(0.62) 

0.61 

(0.61) 

0.67 

(0.67) 

0.64 

(0.64) 

0.64 

(0.64) 

0.66 

(0.66) 

0.65 

(0.65) 

0.64 

(0.64) 

DE-Kli 0.77 

(0.77) 

0.64 

(0.65) 

0.79 

(0.79) 

0.84 

(0.85) 

0.70 

(0.70) 

0.91 

0.92 

0.80 

(0.80) 

0.76) 

(0.77) 

0.63 

(0.63) 

0.47 

(0.47) 

0.62 

(0.62) 

0.71 

(0.72) 

DE-Obe 0.87 

(0.87) 

0.95 

(0.95) 

0.78 

(0.78) 

0.74 

(0.75) 

0.82 

(0.83) 

0.79 

(0.80) 

0.72 

(0.73) 

0.72 

(0.72) 

0.66 

(0.67) 

0.72 

(0.72) 

0.76 

(0.76) 

0.77 

(0.78) 

 

In 2017, the energy balance ratio was unusually low at DE-Kli. This year was rather a normal year concerning wetness (Fig. 

2) but Bowen’s ratio was quite large and indicates problems with the measurement of LE. Therefore, data of this year should 300 

be interpreted carefully.  

4.2. Results on annual scale 

Figure 3 shows yearly sums of ET of all four sites regarding different estimates of ET complemented by yearly sums of 

(corrected) precipitation. 

  305 
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Figure 3: Annual sums of ET-estimates and precipitation of all investigated sites for the period 2008 - 2018. ET_uncorr usually 
constituted the lowest estimates of ET of all sites while ET_residual constituted the largest estimates with ET_corr in between.  

Differences between the estimates were calculated as ET_corr minus ET_uncorr and ET_residual minus ET_uncorr (Table 

4). Obtained differences changed from year to year  and varied between -21 mm a- 1 and 200 mm a- 1 in the case of ET_corr 310 

and between 47 mm a- 1 and 413 mm a-1 in the case of ET_residual. 

Yearly differences between ET_uncorr and ET_corr and ET_residual, respectively, were closely related to energy balance 

closure gap of the respective year (c.f. Table 3 and Table 4). Differences plotted against yearly EBR showed almost a linear 

relationship (not shown) as could be expected according to the applied methods. This held for all sites except for DE-Gri 

(grassland site), a site with a comparatively invariant EBR (c.f. Table 3). 315 

In 2018 (drought year), ET_residual was larger than the corresponding total precipitation for two  out of four sites (DE-Tha, 

DE-Gri, Fig. 3 and Table 4). In the case of DE-Kli, ET_residual was almost equal to total precipitation in 2018. ET_residual 

remained considerably smaller than precipitation only in the case of DE-Obe, which received more precipitation than the 

other three sites in 2018 (Table 4). This indicated that the size of ET_residual can be questioned with respect to the yearly 

sum of precipitation during years of intense droughts. 320 
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ET_uncorr was larger than ET_corr for two site years. Those were the years 2013 at DE-Kli and 2009 at DE-Obe. In 2013, a 

comparatively high amount of data must be gap-filled in the case of DE-Kli. Data of other years when the same crop was 

grown were used for gap-filling. The amount of gap-filled data did not explain why ET_uncorr is very similar to ET_corr at 

DE-Obe in 2009. However, August 2009 was the month with most gaps at DE-Obe in 2009, a month with comparatively 

large ET. We can, therefore, not exclude that this result is due to gap-filling. 325 

 

Table 4:Annual sums of ET_uncorr, ET_corr, ET_residuals and precipitation (P) in mm a-1 for all sites. Grey rows display 

the differences of ET_corr and ET_residuals in relation to ET_uncorr.  

DE-Tha 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 cumulative 

P 1001 1087 1290 908 1003 1207 941 871 965 994 592 10860 

ET_uncorr 373 352 407 338 382 394 426 399 441 501 368 4382 

ET_corr 489 485 494 472 484 491 494 497 527 580 434 5446 

ET_residual 717 746 722 733 702 637 638 672 695 746 597 7605 

ET_corr - ET_uncorr 116 132 87 133 103 96 68 98 86 79 66 1064 

ET_residual - ET_uncorr 344 394 315 395 320 243 213 274 253 244 228 3223 

DE-Gri 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 cumulative 

P 1039 1187 1328 924 1061 1245 854 884 1019 1051 647 11238 

ET_uncorr 423 456 381 468 449 395 463 489 474 486 399 4883 

ET_corr 560 606 545 643 649 559 632 666 649 651 555 6717 

ET_residual 682 717 641 751 754 663 719 791 769 758 694 7939 

ET_corr - ET_uncorr 137 150 164 176 200 164 169 178 175 165 156 1834 

ET_residual - ET_uncorr 259 261 260 283 305 268 256 302 295 272 295 3056 

DE-Kli 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 cumulative 

P 859 982 1173 912 884 1139 825 691 908 942 650 9963 

ET_uncorr 416 363 370 477 366 479 513 515 386 238 304 4428 

ET_corr 428 470 430 495 442 457 621 618 513 369 415 5258 

ET_residual 566 614 497 577 574 532 661 698 677 651 632 6680 

ET_corr - ET_uncorr 13 106 59 19 76 -21 108 102 127 131 111 830 

ET_residual - ET_uncorr 150 250 126 101 208 54 148 183 291 413 328 2252 

DE-Obe 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 cumulative 

P 1117 1394 1634 1107 1208 1343 914 1108 1165 1230 714 12933 

ET_uncorr 429 630 385 446 483 397 348 380 292 329 228 4345 

ET_corr 481 627 463 543 523 455 420 456 405 435 304 5112 

ET_residual 538 676 563 665 641 556 566 629 574 578 451 6437 

ET_corr - ET_uncorr 52 -3 79 97 40 58 72 76 113 106 77 767 

ET_residual - ET_uncorr 109 47 179 219 158 159 218 250 282 249 223 2092 
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Variability of yearly sums of ET_uncorr was largest at all sites as indicated by the variation coefficient (DE-Tha: 11.4%, 330 

DE-Gri: 8.6%, DE-Kli: 22.8%, DE-Obe: 26.8%) and decreased from ET_uncorr to ET_corr (7.2%, 7.6%, 16.7%, 17.8%) and 

ET_residual (7.2%, 6.6%, 10.5%, 11.1%). The old spruce site (DE-Tha) showed a lower variability in ET than the younger 

spruce site (DE-Obe). DE-Tha and DE-Obe are characterized by tall vegetation. DE-Gri and DE-Kli are characterized by low 

vegetation. Here, the strongly managed crop site DE-Kli showed larger variation than the less managed grassland site DE-

Gri.  335 

Largest yearly precipitation (P) does not necessarily coincide with largest ET indicating the irregular seasonal distribution of 

P. Furthermore, other driving factors like available energy are not addressed in Fig. 3, but are important. The latter is an 

important point as ET of the selected study region is rather limited by energy than by P (c.f. Fig.3). Figure 4 addresses this 

issue and shows yearly evaporative fractions (LE/Rn), ET/P as well as (Rn/L)/P. Commonly, the ratio ET/P is smaller than 

the ratio ET/Rn, indicating that a larger fraction of available energy is used for ET than of received precipitation. However, 340 

the ratio ET/P was larger than the ratio ET/Rn when (Rn/L)/P was larger than one. These were years where more energy was 

supplied by Rn than would have been needed to evaporate the yearly sum of P. The ratios of ET/P and ET/Rn of these years 

suggest that limitation of ET of these years by P was more prominent than limitation of ET by Rn (rather P-limited than 

energy limited). Figure 4 further shows that the partition of available energy to sensible heat and latent heat would change 

with used estimate of ET. The used fraction of Rn for ET generally increases from ET_uncorr to ET_corr and ET_residual 345 

for all sites. Exceptions are the two site years discussed above. However, ET_residual always used the largest fraction of Rn. 

In the case of DE-Gri (grassland site, soil with large water holding capacity) ET_residual almost totally consumed Rn very 

often. 
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Figure 4: Yearly ratios of ET/P, ET/Rn and (Rn/L)/P using ET_uncorr, ET_corr und ET_residual. Left graph refers to DE-Tha 350 
and right graph refers to DE-Gri. Subplot (a) refers to ET_uncorr, subplot (b) to ET_corr, and subplot (c) to ET_residual. Rn 
refers to net radiation and L latent heat of vaporization. 

All different estimates of ET showed no clear relationship when inspected as a function of Rn and P. However, there is a 

slight tendency to smaller ET when either Rn is small but P is large or P is small and Rn is large. DE-Kli with its crop 

rotation management did not show this tendency. These results confirmed that inter-annual variation of these two variables is 355 

important.  

4.3 Results at seasonal scale 

4.3.1 Intra-annual variation 

Figure 5 shows the average yearly courses of all three ET estimates over the investigated period for all four sites. In order to 

display complete yearly courses gap-filled data were used. 360 
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Figure 5: Monthly boxplots of daily values of ET_uncorr, ET_corr and ET_residual based on gap-filled data. 

All estimates share a similar annual course with largest values in summer and lowest values in winter and tend to peak in 

June/July. ET_residual generally show largest values, whereas ET_uncorr show smallest values with ET_corr in between. 

The interquartile range is considerably smaller in colder month for ET_uncorr and ET_corr than for ET_residual.  365 

 

Figure 6: Monthly boxplots of daily values of ET_uncorr minus, ET_corr and ET_residual minus ET_corr  based on gap-filled 
data. 
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The differences (Fig. 6) between ET_uncorr and ET_corr show a well marked yearly course with larger values during 

summer than during winter. Differences between ET_uncorr and ET_corr are primarily negative over the whole year, 370 

indicating that ET_uncorr underestimates ET in relation to ET_corr. In contrast to this, the differences between between 

ET_residual and ET_corr show no clear yearly course and their interquartile range is comparatively invariant over the year. 

This indicates that ET_residual overestimates ET in relation to ET_corr in relative terms more during the colder months than 

during the warmer months.  

Differences between ET_residual and ET_corr are more often negative in the case of DE-Kli (agricultural site) and 375 

especially in the case of DE-Obe (coniferous site) during winter months. 

 

Figure 7: Linear correlation between ET_corr and ET_uncorr (black open circles) and ET_corr and ET_residual (red asterisks). 
Only daily values were used, which were not subject to gap filling. Upper panel shows results for DE-Tha (old coniferous forest) 
and lower panel shows results for DE-Gri (grassland site). For equations of simple linear regressions please refer to Table 5. 380 
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Although all three estimates of ET share a similar mean yearly course, differences indicate larger deviations for the colder 

months. This is confirmed when inspecting correlation between the different estimates for different months of the year (Fig. 

7 and Table 5). Only daily values were used, which were not subject to gap filling. 

All sites showed least agreement between ET_corr and ET_residual for December, January and February. During these 

months ET_corr and ET_residual are totally uncorrelated. Best agreement was found for the months March, April and May 385 

but correlation is still very weak except for DE-Gri (grassland site). The offset of the linear regression line is largest for sites 

during June, July and August. The values were 1.82 mm d-1, 0.76 mm d-1, 1.35 mm d-1, 1.66 mm-d-1
’in the case of DE-Tha 

(old coniferous site), DE-Gri (grassland site), DE-Kli (crop site) and DE-Obe (coniferous site). 

DE-Gri, in typical years with little water stress, showed deviating results in case of the comparison of ET_corr to 

ET_residual (Fig. 6). As for the other sites, results of correlation analysis of months December, January and February 390 

indicated that ET_corr and ET_residual are uncorrelated. However, R² considerably improved for the other inspected 

months, which indicated that the relative course agreed reasonably well but absolute overestimation by ET_residual 

persisted. 

For all sites ET_uncorr and ET_corr correlate well, as ET_corr is based on ET_uncorr and they are therefore not independent 

of each other. 395 
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Table 5: Results of linear regressions, R² denotes coefficient of determination. Slope a and offset b of linear regression line 

(y = a + bx) is given too. Numbers used for linear regression varied between 812 and 935. Please note that only days were 

used which were not subject to gap filling. 

 
Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 

DE-Tha     
ET_corr vs. ET_uncorr     

R² 0.94 0.97 0.94 0.94 

Slope b 0.79 0.8 0.77 0.84 

Offset a in mm d-1 0.02 -0.01 0.00 0.04 

ET_corr vs. ET_residual     

R² 0.07 0.54 0.42 0.33 

Slope b  0.56 0.79 0.59 0.68 

Offset a in mm d-1 0.58 0.91 1.82 0.69 

DE-Gri     

ET_corr vs. ET_uncorr     

R² 0.94 0.99 0.96 0.97 

Slope b 0.72 0.73 0.74 0.68 

Offset a in mm d-1 0.01 -0.06 0.02 0.01 

ET_corr vs. ET_residual     

R² 0.13 0.92 0.90 0.85 

Slope b  0.69 0.87 0.86 0.93 

Offset a in mm d-1 0.38 0.67 0.76 0.29 

DE-Kli     

ET_corr vs. ET_uncorr      

R² 0.94 0.93 0.85 0.83 

Slope b 0.78 0.84 0.84 0.81 

Offset a in mm d-1 0.03 0.04 -0.07 0.06 

ET_corr vs. ET_residual     

R² 0.02 0.64 0.68 0.46 

Slope b  0.24 0.78 0.69 0.80 

Offset a in mm d-1 0.32 0.78 1.35 0.52 

DE-Obe     

ET_corr vs. ET_uncorr      

R² 0.91 0.78 0.95 0.91 

Slope b 1.2 0.92 0.84 0.82 

Offset a in mm d-1 0.02 -0.07 -0.09 0.03 

ET_corr vs. ET_residual     

R² 0.06 0.55 0.48 0.37 

Slope b  0.49 0.80 0.60 0.76 

Offset a in mm d-1 -0.02 0.74 1.66 0.60 
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4.3.2 Dependency on meteorological variables – principal component analysis 400 

 

Fig. 8: Results of PCA for data grouped according to month. Only days not subject to gap-filling were used. Coordinates of arrow 
heads represent the correlation of the respective variable with principal component 1 (Dim1) and 2 (Dim2), respectively. The cos2-
value is the squared value of the coordinates and ranks the variables according to their representation in the respective principal 
component. Number of used data points: Dec, Jan, Feb.: 663; Mar, Apr, May:  677; Jun Jul Aug: 716; Sep Oct, Nov: 717. 405 

 

Fig. 9: Same as Fig. 8 but for ET_corr. 

 

Fig. 10: Same as Fig. 8 but for ET_residual. 

Principal component analysis (PCA) was performed using the variables global radiation, vapour pressure deficit, soil water 410 

content and respective ET estimates. Figure 8, 9 and 10 shows the factor map of DE-Gri (grassland site) for each ET-

estimate and grouped months.  

For the chosen combination of variables (RG, VPD, SWC, ET) the first two principal components (PC) explained most of 

the variance of the data for the months March, April and May (between 77% and 92%) for all four sites. Least variance was 

explained in the months December, January and February (between 63% and 71%). This ranking did not depend on the 415 

chosen ET estimate or on inspected site. Explained variance by the first two PCs was always lowest for ET_residual for all 

sites in December, January and February.  

The large discrepancy between ET_corr and ET_residual as well as ET_corr and ET_residual suggests a possibly deviating 

dependency on meteorological variables. Therefore, we analysed which variables contributed most to the first and second 

principal component (PC1 and PC2, respectively). However, no consistent differences could be detected. RG mostly 420 
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contributed most to PC1, but contributions of VPD and ET were often of similar magnitude and sometimes slightly larger. 

RG contributed most to PC1 for all sites in the warmer months (June – November). Soil water content always dominated 

PC2. Table B1, B2, B3, B4 (Appendix B) give an overview over all contributions of all variables to all PCs. 

5. Discussion 

5.1 Yearly values 425 

Results of annual evapotranspiration showed largest values for ET_residual and lowest values for ET_uncorr whereas 

ET_corr was in between. This agrees with the study of Barr et al. (2012). They investigated ten years data of different sites 

all located in the White Gull Creek watershed (Canada) and obtained best agreement between estimated and measured 

outflow when using estimates of ET corrected for the energy balance closure gap. Using ET_residual instead of ET_corr 

yielded a slightly negative outflow indicating an overestimation of ET. Their obtained mean annual difference between 430 

ET_uncorr and ET_residual was 173 mm a-1 and corresponds to the lower bound of mean annual differences obtained in this 

study (c.f. Table 4).  

Gebler et al. (2015) compared lysimeter based ET data to ET corrected for energy balance closure and to ET_residual. Best 

agreement was found between ET corrected for an energy balance closure gap and lysimeter data whereas ET_residual 

overestimated lysimeter data by 15% on average. Assuming that our estimate ET_corr would also be closest to the true value 435 

of ET, overestimation of ET by ET_residual would be even larger and between 20 and 40 % based on mean annual values.  

Unfortunately we lack lysimeter data or runoff data for an independent evaluation of our different ET-estimates. However, 

we are able to review results with regard to a possible water and energy limitation. All annual estimates of ET_residual are 

plausible with respect to received precipitation (except two sites in 2018) and radiation. For a commonly well watered 

grassland (DE-Gri) yearly values of ET_residual represents the maximum attainable ET (Fig. 11) constituting an upper 440 

estimate of ET with regard to supplied Rn. This is not the case for the other sites where ET_residual do not follow the 1:1 

line of the Budyko-curve (Fig. 11). We hypothesize that different water management strategies of the respective landuse 

(grassland vs forest), management (DE-Kli) as well as gap-filling (particularly in the case of DE-Kli and DE-Obe) might be 

an issue for the differing results of the differing sites.  
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 445 

Figure 11: Annual sums of ET based on different methods assessed in a framework following Budyko (1974). Right graph refers to 
DE-Tha (old spruce site) and left graph refers to DE-Gri (grassland).  

Again, the year 2018 (drought year) constitutes a special case, where for two sites (DE-Tha and DE-Gri) the yearly sum of 

ET_residual is not supported by the received precipitation but would have been possible with respect to supplied energy by 

net radiation (Fig. 4). This indicates that yearly P might be used as a plausibility check in the case of ET_residual whether 450 

these large estimates are possible at all (assuming that all available water of the respective year for ET is supplied by P). 

However, single dry years can profit from proceeding wetter years and plants might be able tap water from deeper layers. 

For the investigated sites, longterm P was always larger than ET (Fig. 12). 

The large differences between the estimates indicated that different estimates would drastically change obtained water 

balance as already demonstrated by Barr et al. (2012) and Gebler et al. (2015) also on an annual basis. These large 455 

differences produced inter-annual variations, which considerably changed with different ET estimates (Fig. 3). This should 

be kept in mind when differences in ET between sites are assessed, as relation between sites with regard to ET might 

considerably change with different estimates. Gaps in the energy balance closure are site specific resulting in site specific 

underestimations of ET. Therefore, uncorrected ET indicate not only implausible low numbers regarding water budget but 

also an unrealistic large land use variability of ET. This underlines the need of correction of ET for energy balance closure 460 

gaps to avoid spurious land use dependencies. 

Results further showed that on annual scale there is not necessarily a strong relationship between annual P and annual Rn. 

On one hand, this highlighted the importance of intra-annual variation of P and Rn. On the other hand, we have to consider 

management as (e.g.) management can change from year to year according to the crop grown at DE-Kli (crop site). 
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Furthermore, influences of gap-filling could not be excluded (especially in the case of DE-Kli and DE-Obe) but are 465 

unavoidable for obtaining annual sums. 

 

 

Figure 12: Cumulative sums of ET and P for all sites and the whole investigated period (years 2008 – 2018) 

5.2 Discussion intra-annual variation 470 

Differences between ET_uncorr and ET_corr are primarily negative over the whole year, indicating that ET_uncorr 

underestimates ET in relation to ET_corr. Largest differences between ET_uncorr and ET_corr were found for DE-Gri 

(grassland site), which was the site with lowest energy balance ratio (EBR) when averaged over all years, followed by DE-

THA (old coniferous site), which showed second lowest EBR (c.f. section 4.1 Energy balance closure). The overestimation 

of ET_residual in relation to ET_corr is in accordance with other studies (e.g. Wohlfahrt et al. 2010; Barr et al. 2012; Gebler 475 

et al. 2015, Mauder et al. 2018). 
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In relative terms ET_residual is more often negative in the colder months in the case of DE-Kli (crop site) and DE-Obe 

(coniferous site) and large negative values could frequently occur. Excluding all days with missing half-hourly data, i.e. 

using only days with measured 48 half-hourly values of LE, H, Rn and G did not change this picture, therefore we assume 

that gap-filling is of minor importance here. We further tested whether this result could be related to snow coverage as these 480 

two sites (DE-Kli and DE-Obe) are situated at higher altitudes than DE-Gri (grassland site) and DE-Tha (old coniferous 

forest). Excluding days with snow, based on available information, reduced times with negative ET_residual at DE-Kli but 

not necessarily at DE-Obe. Therefore, we analysed the corresponding values of Rn, H and G in the case of DE-Obe. G was 

always close to zero for negative values of ET_residual. Large negative values of ET_residual occurred when either both Rn 

and H were small but positive and H was larger than Rn or Rn was comparatively large but negative and H close to zero. It 485 

should be noted that in both cases the energy supply by radiation for a possibly positive ET was rather limited and other 

energy sources than radiation must have sustained a possibly positive ET, e.g. energy supply by heat storage changes. 

However, obtained cumulative heat storage changes explained only a minor portion of positive values of ET_corr when Rn 

as well ET_residual were negative. We hypothesize that this is due to uncertainties in the calculation of the heat storage 

changes and other energy balance components. However, daily values of heat storages changes are rather small and often 490 

negligible as positive contributions over the day are cancelled out by negative contributions during nighttime. Sub-daily time 

scales are needed to investigate the importance of heat storage changes as a possible energy source for evaporation during 

winter. 

When inspecting differences between ET_residual and ET_corr, it became apparent that ET_corr is more overestimated 

during winter months in relative terms than during summer months. Additionally, differences of both estimates can be of 495 

opposite sign. We hypothesize that this is mainly due to measurement uncertainties as involved fluxes are small during 

winter and little absolute changes can result in large relative errors (c.f. McNeil and Shuttleworth 1975, Barr et al. 2012).  

Therefore, ET_residual should be used very cautious during winter months as it has been already noted by Amiro et al. 

(2009). 

This result was confirmed by simple linear regressions performed for different seasons of the year, which indicated 500 

uncorrelated ET estimates of ET_corr in relation to ET_residual. However, results of DE-Gri (a site with little water stress in 

typical years) showed reasonably coefficients of determination (R² > 0.85) except for the months December, January and 

February. We assume that this result is obtained due to the fact that this site very rarely experiences low soil moisture 

content and also due to the different water use strategies of grass compared to trees.  

We note, that DE-Tha (old coniferous forest) tend to show lower maximal values of ET than DE-Obe (coniferous forest) 505 

although DE-Tha is situated at an lower altitude than DE-Obe, which calls for reviewing the general assumption of 

decreasing ET with increasing altitude (e.g. Baumgartner et al. 1982/1983; Goulden et al. 2012). We hypothesize, that 

rainfall interception is important here. DE-Obe commonly receives more rainfall than DE-Tha. This means the canopy is 

more often wetted at DE-Obe than at DE-Tha. Therefore, rainfall interception occurs more often at DE-Obe. When 

interception evaporation takes places, the surface of the canopy cools down and reverses the vertical temperature gradient 510 
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(surface of canopy and adjacent air layers is cooler than air layers above) which facilitates a sensible heat flux now directed 

towards the earth surface (negative sensible heat flux). This negative sensible heat flux serves as an additional energy input 

for further interception evaporation. Of course this is also true for DE-Tha. The difference might be larger wind speeds at 

DE-Obe compared to DE-Tha. This can facilitates higher interception evaporation despite a low VPD. Additionally, DE-Obe 

is more often cloudy compared to DE-Tha and more cloud-water is intercepted at this site and can accordingly enhance 515 

interception evaporation. However, rainfall interception cannot be resolved using daily values as it typically is a process 

which takes place at sub-daily timescale. The issue of rainfall interception will be more detailed addressed in subsequent 

research.  

5.3 Discussion PCA-results 

The dependency of the different ET estimates on driving meteorological variables were analysed using principal component 520 

analysis (PCA) using the variables RG, VPD, SWC and ET. 

Results showed that commonly RG contributed most to the first principal component, but contributions of VPD and ET itself 

were often of similar magnitude. These variables dominate PC1 as they are closely correlated. 

In contrast to this, SWC dominates the second principal component (PC2). The difference in explained variance between 

PC1 and PC2 is most pronounced for March, April May. Explained variance by PC1 decreases from March, April, May to 525 

June, July, August whereas the variance explained by PC2 increases. This can be explained by the fact that soil moisture is 

commonly plenty available during March, April, May. Therefore, ET of March April, May depends more on variables 

contributing to PC1 (e.g. RG). Soil moisture availability often decreases over the summer month whereas the inputted energy 

by radiation is comparatively large. Therefore variance explained by PC2 increases from March, April, May to June, July 

August, indicating that the importance of SWC increased.  530 

PC1 and PC2 explained least variance of the data for December, January, February, which is a consistent result for all sites. 

One reason might be measurement uncertainty as ET values are comparatively small during winter months and therefore the 

relative uncertainty increases. Explained variance by PC1 and PC2 was always lowest in the case of ET_residual during 

December, January, February. This was a consistent result but differences in explained variance by PC1 and PC2 compared 

to ET_uncorr and ET_corr were rather small. A cautious interpretation would be that ET_residual is somewhat less 535 

dependent on the contributing variables to PC1 and PC2 as the errors of all other components of the energy balance pile up 

in ET_residual (McNeil and Shuttleworth 1975; Barr et al. 2012).  

6. Summary and conclusion  

Three different estimates for ET were compared to each other for four sites differing in land-use and also in altitude at a 

daily time-scale for 2008 – 2018 (11 years) on a daily basis. These three ET estimates were, ET_residual based on the 540 

residual of the energy balance, ET_corr (corrected for the energy balance closure gap)  and ET_uncorr (not corrected for the 

energy balance closure gap). ET_residual delivered largest values. On average, it was 196 mm a-1 (111 mm a-1, 129 mm a-
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1,121 mm a-1) larger than ET_corr at DE-Tha (DE-Gri, DE-Kli, DE-Obe). ET_uncorr showed lowest values and was 97 mm 

a-1 (167 mm a-1, 75 mm a-1,70 mm a-1) lower than ET_corr on average at DE-Tha (DE-Gri, DE-Kli, DE-Obe). The 

differences between the different estimates were site-specific and were closely related to the respective energy balance 545 

closure gap.  

ET_uncorr is affected by undetected latent heat fluxes. It can represent a reasonable lower estimate of ET but underestimates 

ET due to the inherent energy balance closure gap. ET_residual is represents a reasonable upper estimate but tends to 

overestimate ET from a water budget point of view. During the dry year 2018 the annual sum of ET_residual was larger than 

the annual sum of P for two of the four investigated sites. Within this range ET_corr is the most reliable estimate and is 550 

recommended, especially when assessing land use dependencies of ET.  

ET_uncorr was slightly larger on a yearly basis than ET_corr for two site years. This was most likely an issue of gap-filling 

as the respective years were years with a large amount of gap-filled data. 

During the cold season ET_residual was uncorrelated to the other two estimates of ET. We attribute this to measurement 

errors of the other components of the energy balance, which are also comparatively small and therefore the relative error is 555 

comparatively large. Consequently, ET_residual should be used only very cautious during the cold season.  

ET_residual correlated best with ET_corr and ET_uncorr at DE-GRI (grassland site). The different water use strategy 

compared to the coniferous sites and the moderate management compared to the crop site might be possible explanations. 

Therefore, ET-residual can provide reliable results for low vegetation sites that are not heavily managed and rarely exposed 

to water stress during most of the year.  560 

We also tested whether the different estimates of ET differ in their dependencies on driving variables by using principal 

component analysis. No large differences could be detected concerning the dependency on RG, VPD and SWC. 

We noted that maximum values of ET can be larger for the coniferous site DE-Obe than the coniferous site DE-Tha despite 

the fact that DE-Obe is situated at an altitude 350 m higher than DE-Tha. We hypothesize that this is due to differences in 

rainfall interception. However, rainfall interception is a process which takes place at sub-daily timescales. Studies at smaller 565 

time-scales than the daily scale are needed to investigate this aspect further. 

Appendices 

Appendix A – Heat storage changes 

JH and JLE were calculated using air temperature and humidity changes above the canopy following Aubinet et al. (2001) 

according to Eq. A1 and Eq. A2, respectively, 570 

�� ≅
��	��	�		∆����

∆�
,            (A1) 

where ΔTair denotes air temperature difference of between two consecutive time steps in K, ρa air density in kg m-3, cp 

specific heat capacity of air at constant pressure in J kg-1 K-1, z reference height in m and Δt time step in s (Δt = 1800s).  

JLE was calculated in an analogous way, 
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��� ≅
�	(����)�	∆��

∆�
            (A2) 575 

were L denotes latent heat of vaporisation in J kg-1. L was calculated as a function of air temperature Tair. Δρv. denotes 

difference in water vapour density between two consecutive time steps in kg m-3. L was assumed to be constant over the 

whole canopy. 

JC was obtained following Leuning et al. (2012) according to Eq. A3 

�� = −��	���,            (A3) 580 

where αp is the photosynthetic energy conversion factor (0.469 J µmol-1, Blanken et al. 1997) and a negative sign 

representing an uptake of CO2. NEE is net ecosystem exchange of CO2 in µmol m-2 s-1. NEE was obtained via EC at the 

respective sites. 

Jveg was calculated for the two coniferous sites DE-Tha and DE-Obe following Thom (1975) Eq. A4. 

���� =
����	����	∆��_���

∆�
,         (A4) 585 

where, cveg denotes canopy specific heat capacity in J kg-1 K-1 whereas a value of 2958 J kg K-1 was assumed following 

Thom (1975) that cveg is approximately 70% of the corresponding value for water. Wet biomass of vegetation in kg was 

calculated based on empirical findings of Sharma (1992). A fitted air temperature Ta_fit was used in order to reproduce bole 

temperature, which is damped and shifted in time in comparison to air temperature. Firstly, the air temperature was 

smoothed by a moving average over 5 consecutive half hourly values. Secondly, the time lag between bole temperature and 590 

air temperature was determined using cross correlation. This was done on basis of data of DE-Tha (old coniferous forests). A 

time lag of 3.5 h was obtained, which was accordingly applied to the smoothed air temperature. The same time-lag as for 

DE-Tha was assumed in the case of DE-Obe (coniferous site) as there were no bole temperature measurements available. 

Jveg was not calculated for the agricultural site DE-Kli and the grassland site DE-Gri due to missing sufficient information 

about fresh weight of biomass. However, former studies have shown that for sites with low vegetation as in the case of DE-595 

Gri and DE-Kli, Jveg is of minor importance in comparison to other heat storage changes (Jabcobs et al. 2008; Eshonkulov et 

al. 2019). 

Heat storage change between ground heat flux plate and soil surface JG was calculated according to Moderow et al. (2009), 

which is a pragmatic approach using Eq. A5, 

�� =
��	��	∆��

∆�
,            (A5) 600 

cs is the volumetric heat capacity of the soil in J m-3 K-1, zs is the depth of the heat flux plate in m, Ts is soil temperature at 

0.01 m depth. Values for cs were taken from Dehner et al. (2007) according to the proportion of sand, silt and clay (DE-Tha, 

DE-Obe, DE-Gri: 1.8 *106 J m-3 K-1; DE-Kli: 1.7*106 J m-3 K-1) assuming soil water contents of field capacity. cs was taken 

as constant and results in an overestimation of JG for drier conditions and an underestimation of JG for wetter conditions. Ts 

at 0.01 m depth was obtained via linearly extrapolation using temperature from deeper depths (Table 1).  605 
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Appendix B – Contributing variables to principal component 1 and 2 

Table B1: Contribution of each variable to principal component 1 (Dim. 1) and principal component 2 (Dim. 2). 

Contributions are given in %. Table refers to site DE-Tha (old coniferous forest). Shaded numbers highlights the highest 

contribution to the respective component.  

DE-Tha 

ET_uncorr ET_corr ET_residual 

Dec, Jan, Feb Dim.1 Dim.2 Dim.1 Dim.2 Dim.1 Dim.2 

Tair 38.1 4.2 38.6 4.4 51.1 1.0 

vpd 41.6 5.5 42.0 5.5 46.8 8.8 

SWC 2.1 78.0 2.1 76.0 1.4 30.6 

ET 18.2 12.3 17.2 14.1 0.7 59.6 

Mar Apr May Dim.1 Dim.2 Dim.1 Dim.2 Dim.1 Dim.2 

Tair 31.1 3.1 31.4 2.7 32.2 1.8 

vpd 29.7 2.8 29.8 2.2 30.6 1.0 

SWC 14.9 83.2 14.8 82.2 15.7 75.9 

ET 24.3 10.9 24.0 12.9 21.4 21.3 

Jun Jul Aug Dim.1 Dim.2 Dim.1 Dim.2 Dim.1 Dim.2 

Tair 41.6 0.2 42.5 0.5 42.3 2.8 

vpd 42.4 0.1 43.6 0.0 43.9 3.1 

SWC 9.0 47.2 9.7 43.1 13.7 29.4 

ET 7.0 52.5 4.2 56.4 0.1 64.8 

Sep Oct Nov Dim.1 Dim.2 Dim.1 Dim.2 Dim.1 Dim.2 

Tair 35.5 0.4 34.8 0.8 37.6 0.4 

vpd 32.6 0.0 31.8 0.2 33.5 0.4 

SWC 10.9 73.6 11.0 78.4 13.3 54.4 

ET 21.1 25.9 22.4 20.6 15.7 44.8 
 610 
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Table B2: Same as Table B1 but for DE-Gri (grassland site).  

DE-Gri 

ET_uncorr ET_corr ET_residual 

Dec, Jan, Feb Dim.1 Dim.2 Dim.1 Dim.2 Dim.1 Dim.2 

Tair 29.1 5.6 29.0 6.1 35.9 0.6 

vpd 36.8 6.5 37.3 6.5 24.7 24.2 

SWC 3.7 80.9 3.8 79.8 8.7 74.8 

ET 30.5 7.0 29.9 7.7 30.7 0.4 

Mar Apr May Dim.1 Dim.2 Dim.1 Dim.2 Dim.1 Dim.2 

Tair 25.9 11.1 26.2 9.2 26.6 7.3 

vpd 28.2 5.5 28.4 4.5 28.7 3.6 

SWC 17.4 81.1 17.0 82.3 16.7 83.0 

ET 28.5 2.3 28.4 3.9 28.0 6.2 

Jun Jul Aug Dim.1 Dim.2 Dim.1 Dim.2 Dim.1 Dim.2 

Tair 32.3 0.2 31.9 0.3 31.2 0.5 

vpd 37.6 0.1 37.1 0.1 36.8 0.0 

SWC 9.4 69.0 9.3 71.5 9.7 74.0 

ET 20.6 30.7 21.7 28.0 22.3 25.5 

Sep Oct Nov Dim.1 Dim.2 Dim.1 Dim.2 Dim.1 Dim.2 

Tair 28.0 6.1 27.8 6.2 28.2 6.3 

vpd 31.0 0.6 30.9 0.7 30.4 0.4 

SWC 14.0 83.1 13.9 83.4 13.4 83.5 

ET 27.1 10.2 27.4 9.7 28.0 9.8 
 

  615 
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Table B3: Same as Table B1 but for DE-Kli (crop rotation). 

DE-Kli 

ET_uncorr ET_corr ET_residual 

Dec, Jan, Feb Dim.1 Dim.2 Dim.1 Dim.2 Dim.1 Dim.2 

Tair 33.9 5.8 35.0 5.8 40.1 0.0 

vpd 38.2 3.1 38.5 2.7 27.1 9.0 

SWC 3.2 76.7 3.3 74.9 5.0 89.3 

ET 24.6 14.5 23.3 16.7 27.8 1.7 

Mar Apr May Dim.1 Dim.2 Dim.1 Dim.2 Dim.1 Dim.2 

Tair 30.2 7.9 31.1 8.5 33.4 10.6 

vpd 29.7 6.0 29.8 6.6 30.1 10.0 

SWC 10.5 86.1 11.0 84.9 12.4 78.4 

ET 29.6 0.1 28.1 0.0 24.0 1.0 

Jun Jul Aug Dim.1 Dim.2 Dim.1 Dim.2 Dim.1 Dim.2 

Tair 34.9 0.8 32.9 5.0 32.8 4.1 

vpd 39.1 0.1 37.4 1.5 37.0 1.1 

SWC 9.1 77.9 9.5 89.6 9.0 89.6 

ET 16.9 21.2 20.3 4.0 21.2 5.2 

Sep Oct Nov Dim.1 Dim.2 Dim.1 Dim.2 Dim.1 Dim.2 

Tair 37.8 0.0 37.3 0.1 38.0 1.1 

vpd 36.1 2.3 35.4 1.6 36.3 0.6 

SWC 2.4 73.7 3.5 77.1 7.0 75.2 

ET 23.7 23.9 23.8 21.3 18.8 23.1 
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Table B4: Same as Table B1 but for DE-Obe (coniferous forest). 

DE-Obe 

ET_uncorr ET_corr ET_residual 

Dec, Jan, Feb Dim.1 Dim.2 Dim.1 Dim.2 Dim.1 Dim.2 

Tair 30.1 15.2 31.1 14.2 38.8 2.6 

vpd 46.8 0.0 46.9 0.1 38.6 0.1 

SWC 0.1 60.9 0.2 60.9 0.9 84.8 

ET 23.0 23.9 21.7 24.8 21.7 12.5 

Mar Apr May Dim.1 Dim.2 Dim.1 Dim.2 Dim.1 Dim.2 

Tair 33.1 0.3 33.1 0.3 34.8 1.0 

vpd 33.5 0.8 33.1 0.9 32.6 1.7 

SWC 2.5 97.1 2.5 97.2 3.4 96.5 

ET 30.9 1.8 31.3 1.6 29.2 0.9 

Jun Jul Aug Dim.1 Dim.2 Dim.1 Dim.2 Dim.1 Dim.2 

Tair 43.5 0.4 43.1 0.1 42.3 0.1 

vpd 43.7 0.3 43.1 0.0 41.9 0.0 

SWC 9.8 43.1 8.9 46.0 8.8 47.8 

ET 3.0 56.2 5.0 53.9 7.1 52.1 

Sep Oct Nov Dim.1 Dim.2 Dim.1 Dim.2 Dim.1 Dim.2 

Tair 34.1 0.3 33.5 1.4 37.6 1.9 

vpd 37.2 0.8 35.4 0.4 31.0 2.9 

SWC 4.2 81.9 4.7 86.7 4.1 81.7 

ET 24.6 17.0 26.3 11.5 27.3 13.5 
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