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Abstract. The empirical attribution of rapid hydrologic change presents a unique data availability challenge in terms of estab-

lishing baseline prior conditions. On the one hand, one cannot go back in time to collect the necessary in situ data if it were

not serendipitously collected when the change was taking place. On the other hand, modern satellite monitoring missions are

often too recent to capture changes that are ancient enough to provide sufficient observations for adequate statistical inference.

In that context, the four decades of continuous global high resolution monitoring enabled by the Landsat missions are an unri-5

valed source of information to study hydrologic change globally. However, extracting the relevant time series information in a

systematic way across Landsat missions remains a monumental challenge. Cloud masking and inconsistent image quality often

complicate the automatized interpretation of optical imagery.

Focusing on the monitoring of lake water extents, we address this challenge by coupling supervised and unsupervised image

classification techniques. Unsupervised classification is first used to detect water on unmasked (cloudless and high quality)10

pixels. Classification results are then compiled across images to estimate the inundation frequency of each pixel, hinging on

the assumption that different pixels will be masked at different times. Inundation frequency is then leveraged to infer the

inundation status of masked pixels on individual images through supervised classification. Applied to a representative set of

global and rapidly changing lakes, the approach successfully captured water extent fluctuations obtained from in situ gauges

(when applicable), or from other Landsat missions during overlapping time periods.15

1 Introduction

Large lakes often sustain fragile ecosystems while providing critical ecological services to local communities (i.e. fisheries,

irrigation and water supply (Kummu et al., 2010). Despite their importance, many lakes are undergoing rapid change, both

in their volume and seasonal fluctuation. Once imposing bodies of water have declined to a small fraction of their historical20

volume in many parts of the world, with the Aral Sea standing out as an iconic example (Micklin, 2007). In addition to

dessication, the seasonality of lakes in humid climates are also rapidly changing. Seasonal fluctuations in the Tonle Sap, which

are vital to local fisheries, are rapidly changing as a consequenceof shifting flow regimes in the Mekong River Basin (Kummu

1

https://doi.org/10.5194/hess-2020-198
Preprint. Discussion started: 30 June 2020
c© Author(s) 2020. CC BY 4.0 License.



and Sarkkula, 2008). These changes often emerge as a result of complex interplay of natural (e.g., changing temperatures and

precipitations) and anthropogenic (damming and irrigation) factors (Haddeland et al., 2014). Proper attribution of their drivers25

is critical to inform policy, particularly in complex transboundary basins where the lake often plays a key strategic role (Wine

et al., 2019). By providing a consistent space-time representation of the earth system, satellite remote sensing is a promising

data source for causal attribution of historic change (Sheffield et al., 2018; Müller and Levy, 2019). Satellite imagery with

global coverage provides the unique ability to study change ex post in situations where in situ observations are nonexistent,

unavailable or disputed.30

A substantial body of recent research has focused on monitoring surface water extents using satellite data, with applications

ranging from small reservoirs (Avisse et al., 2017; Müller et al., 2016) to large continental water bodies (Mercier et al., 2002),

paddy rice fields (Islam et al., 2010), tidal floods (Yan et al., 2010) and global-scale assessments (Busker et al., 2019). Active

remote sensing at microwave frequencies has long been used to monitor the elevation (radar altimetry) and extent (synthetic

aperture radar - SAR) of surface water bodies (Van Den Hoek et al., 2019). These approaches are unimpeded by clouds and35

do not rely on reflected sunlight. Space-borne radar altimeters (e.g., Topex/Posidon, GFO, Jason 1 and 2) can detect changes

in surface water elevation on the order of decimeters, with return times of 10-35 days (Avisse et al., 2017). Although the

limitations normally associated with radar altimetry (narrow swath, coarse cross-track spacing and large along-track path

length (see Yale et al., 1998)) have limited implications for large lakes, radar altimetry cannot directly be used to map water

coverage or estimate storage volumes, which are often the considered policy-relevant variables. These characteristics can only40

be determined when combined with digital elevation models (DEMs) (with vertical accuracies on the order of meters (Yan

et al., 2015)) or water extent observations from other remote sensing sources (Busker et al., 2018). As an alternative to radar

altimeters, SAR have long been used to monitor water extents (as opposed to elevation) at a large scale (Bioresita et al.,

2018). These approaches leverage the fact that areas of open, smooth water bodies exhibit lower back-scatter coefficients in the

X, L or C band. A number of recently launched SAR missions (e.g. COSMO-SkyMed, TerraSAR-X and Sentinel-1) allow for45

detection of water at resolutions and return times that are appropriate to capture rapidly unfolding local changes (Pérez Valentín

and Müller, 2020). For instance, Sentinel 1 was launched in 2014 and has a 6-day revisit time and a spatial resolution of 20

m. However, while promising in their ability to monitor ongoing changes, these recent sensors are unable to capture events

that happened before their launch. Studying changes that occurred sufficiently far in the past is often necessary for enough

(post-event) observations to be available to attribute the change with adequate statistical power.50

In this context, optical satellite imagery remains an important source of information for the study of historic changes.

Passive mulispectral sensors from the Landsat missions have collected high resolution (30 m) images at the global scale since

the early 1990s at weekly to bi-weekly return times. A number of spectral indices have been proposed to detect water on

multispectral imagery, including the Modified Normalized Difference Water Index (MNDWI) (Xu, 2006) used in this study.

These indices leverage the high contrast between land and water at specific frequencies of the electromagnetic spectrum,55

and a range of techniques have been developed to systematically classify pixels (as "wet" or "dry") based on their spectral

index. These methods range from manual thresholding using a raw MNDWI image (Xu, 2006) to complex and dynamically

calibrated machine learning algorithms including maximum-likelihood classification, decision trees , artificial neural networks,
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fuzzy clustering method and k-means clustering (Lu and Weng, 2007). These approaches are limited in their ability to identify

water in situation when surface reflectance is impeded by poor image quality (e.g., Landsat 7 Scan Line Corrector failure on60

images taken after May 2003) or clouds. Clouds in particular obstruct the electromagnetic signal at the frequencies necessary

to identify inundated surfaces, and cloud shadows have a similar spectral signature to that of open water (Zhu and Woodcock,

2012). These limitations are particularly restrictive for large lakes in highly seasonal climates which are likely to be at least

partially masked by clouds at any given time. For instance, our analysis suggests that the Tonle Sap Lake in Cambodia did not

have a single cloud-free Landsat 7 image during 14 of the last 20 rainy seasons (here cloud-free is interpreted as less then 5%65

cloud coverage and rainy seasons extend between May 1 and October 31).

A variety of statistical interpolation approaches have been developed to infer the status of masked categorical pixels (see

Shen et al., 2015, for an extensive review). For lake area monitoring, these approaches often build on the intuition that a

masked pixel within the lake’s footprint will likely be inundated if its elevation is lower than that of an unmasked pixel that

is inundated. Avisse et al. (2017) used a DEM to infer the inundation status of masked pixels through non-linear regressions70

that accommodate the typically large vertical uncertainty of DEMs. The approach was predominantly applied to man-made

reservoirs that were once empty, which allowed DEMs to be used to estimate bathymetry. More recently, Van Den Hoek

et al. (2019) measured lake surface elevation via radar altimetry and utilized a regression framework to infer area-volume

relationships and classify masked pixels.

Here we combine supervised and unsupervised classification approaches to infer the inundation status of each masked (i.e.75

cloudy) pixels based their inundation history. The proposed approach relies on the crucial assumption (further discussed in

Sect. 4) that clouds are randomly distributed in time and space and that no pixel is permanently covered by clouds. Unlike

previous efforts, the approach does not rely on secondary sources of information, which may be unavailable at the appropriate

frequency or study period (radar altimetry as in Van Den Hoek et al. (2019)) or prone to high levels of uncertainty (DEM as

in Avisse et al. (2017)). Instead, the proposed method relies exclusively on Landsat imagery, making it scalable and accessible80

(i.e., through Google Earth Engine (Gorelick et al., 2017)), and a promising tool to study long-term change through the analysis

of historic imagery from older Landsat missions.

2 Methods

2.1 Water detection algorithm

The proposed algorithm consists of four main steps, depicted on Fig. 1.85

– Pre-processing. A rudimentary cloud-scoring algorithm available on Google Earth Engine (SimpleCloudScore) is used

to detect and mask clouds based on "Top of Atmosphere" Landsat reflectance images (see Supplementary Information

(SI) S3). Pixels indicated as faulty (e.g., due to the Landsat 7 Scan Line Corrector failure) are also masked out. Individual

images can then optionally be aggregated at the desired observation frequency (here monthly) through Normalized

Difference Vegetation Index (NDVI) based maximum value compositing (Chen et al., 2003).90
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– Stage 1: Unsupervised classification. The inundation status ("wet" or "dry") of the unmasked pixels of each monthly

image is estimated through unsupervised classification.

– Stage 2: Supervised classification. Classified images are then assembled to produce an Inundation Frequency (IF)

image indicating the historic probability of a pixel being classified as "inundated". The IF raster is then used to infer

the status of the masked pixels in each image through supervised classification, using classified (unmasked) pixels as95

training.

– Post-processing. A time series of lake area is generated by counting, on each monthly classified image, the number of

inundated pixels within a predetermined polygon encompassing the maximum historical extent of the lake. Outliers are

removed from the time series using the automatic detection approach suggested in Chen and Liu (1993).

Implementation details of the two classification steps (Stages 1 and 2) are discussed in the following paragraphs. The algorithm100

is implemented on Google Earth Engine with operational JavaScript source code openly accessible at the url: "https://code.

earthengine.google.com/bed0dacc981bb883533f4958e80b50be".

2.1.1 Unsupervised classification

Cloud-free pixels of each monthly image were classified as wet or dry based on their modified normalized difference water

index (MNDWI) value (Xu, 2006):105

MNDWI =
G−MIR

G + MIR
(1)

where G and MIR are the green and mid-infrared range of the electromagnetic spectrum, respectively (see Table 1 for

corresponding bands in the considered imagery). The MNDWI enhances water/land contrasts by leveraging the ability of

open water (compared to dry land) to preferentially absorb and reflect in the MIR and G regions of the electromagnetic

spectrum, respectively. A clustering algorithm is applied to each image to identify the MNDWI threshold that partitions its110

pixels into two sets, so as to minimizes the MNDWI variance within each set. Because it can dynamically separate dry and

wet pixels in cloud-free images, unsupervised classification stands as a promising (and somewhat less arbitrary) alternative to

the manual determination of classification thresholds implemented in past studies (e.g., Müller et al. (2016) among others).

However, by minimizing within-cluster variance, k-means tends to favor clusters of comparable sizes (Jain, 2010), which is

problematic for cloudy images with preferential cloud covers on either land or water. As an extreme example, if all unmasked115

pixels are covered by water, a two-cluster k-means classification will not be able to distinguish water from land. We address

this issue by computing the median value from the set of MNDWI thresholds obtained from the classification of individual

images. This single median MNDWI threshold is then used to classify all unmasked pixels from all monthly images. Assuming

the unsupervised classification can distinguish water from dry land on most images, the median threshold will allow for the

identification of all unmasked pixels from the above extreme example as "wet". Using a single threshold comes at the cost of120
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Figure 1. Lake surface monitoring algorithm in four steps: (i) Pre-processing, (ii) Stage 1: Unsupervised classification, (iii) Stage 2: Super-

vised classification and (iv) Post-processing: Aggregation and noise removal.

induced classification errors on individual images, e.g., due to changing land cover or atmospheric conditions. This important

trade-off is further investigated in Sect. 4.

2.1.2 Supervised classification

A supervised classification approach was used to infer the wet/dry status of masked (cloudy) pixels based on their inundation

history. To do so, space-time information on historic water extents are compiled into a single IF image representing the historic125

probability of each pixel i being identified as "wet" by the threshold-based unsupervised classification:

IFi =
N

(wet)
i

N
= 1− Ndry

i + Nmasked
i

N
(2)

where N
(wet)
i , N

(dry)
i and N

(masked)
i are (respectively) the number of times pixel i is classified as "wet", "dry" or masked

(i.e. cloudy) over the N considered monthly images. The IF image is then used to classify masked images by relying on two

5

https://doi.org/10.5194/hess-2020-198
Preprint. Discussion started: 30 June 2020
c© Author(s) 2020. CC BY 4.0 License.



Cannonsville Reservoir
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Man-made Reservoir
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Figure 2. Location and characteristics of the considered water bodies.

critical assumptions (further discussed in 4.2): (i) cloud coverage is not affected by the inundation status of a pixel; and (ii) a130

more often inundated pixel is "lower" topographically, and therefore more likely to be inundated. More specifically, if cloud-

free pixels associated with a certain IF value are inundated in a given image, it is very likely that pixels associated with an

equal or higher IF (i.e. pixels of equal or lower elevation) are also inundated. We instrumentalize this principle in a supervised

classification process (random-forest algorithm Pelletier et al. (2016)), that estimates the statistical association between the

(known) classification status of unmasked pixels and their inundation frequency given by the IF image. The algorithm then135

uses the estimated relationship to infer the status of the masked pixels of that image based on their own inundation frequency.

Classification noise that emerges from the uncertainty of the estimated statistical relationship are then removed through mor-

phological filtering (Schowengerdt, 2006). The supervised classification algorithm is run independently on each individual

image using a different set of unmasked classified pixels as training, but using the same IF image as the independent variable.

This implies that the relative inundation frequency of each pixel (i.e. the bathymetry of the lake) is assumed to not change over140

the duration of the study period, which is a corollary of assumption (ii) discussed above.

2.2 Data sources and validation

The approach was validated on Lake Buchanan (TX, USA), Choke Canyon Reservoir (TX, USA) and Cannonsville Reservoir

(NY, USA), for which long (17 to 47 years) time series of daily lake levels were obtained from the United States Geological

Survey and the Texas Water Development Board. The two water bodies in Texas are emblematic of rapidly changing lake145

conditions that emerge in intensively managed lakes in semi-arid areas. Cannonsville Reservoir represents the complex topog-

raphy and strongly seasonal climate and land-cover (including snow and ice) that emerges in mountainous regions and affects
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Satellite Spectral Bands Resolution Return Time Coverage

Landsat 5
B2-Green (0.52-0.60 µm)

30 m 16 days 1984 - 2013
B5-MIR1 (1.55-1.75 µm)

Landsat 7
B2-Green (0.52-0.60 µm)

30 m 16 days 1999 - Present
B5-MIR1 (1.55-1.75 µm)

Landsat 8
B2-Green (0.53-0.59 µm)

30 m 16 days 2013 - Present
B6-MIR1 (1.57-1.65 µm)

Table 1. Properties of Data Sources (Survey and , 2015)

the performance of our approach (see Sect. 4). For each lake, monthly water extents were determined based on daily water

levels using the provided elevation-area-capacity tables (see S2 for detailed procedures) and corrected for additive bias. In-

deed, visual inspection of satellite classification output during cloudless days when water and land can be clearly distinguished150

(Fig. 3) reveal a near-perfect detection of water extents, which area does not match the area obtained from in situ water level

observation. The source of this bias is unclear (and beyond the scope of this paper) and may be related to temporal changes

in the elevation-area-capacity curves, for instance due to sedimentation processes (Raje and Mujumdar, 2010). Bias correction

was implemented as follows:

A∗
i = Ai−Ai + A

(RS)
i (3)155

where Ai indicates a (biased) in situ area estimate, Ai its average value across observations, and A
(RS)
i indicates the average

lake area from the remote sensing observation.

Additive biases notwithstanding, the above validation demonstrates the ability of the approach to capture changes in lake

water extent with no in situ data requirements. We illustrate this capability by applying the approach to reconstruct the historic

water extents of three rapidly changing lakes that are of major regional significance: Lakes Tonle Sap (Cambodia), Urmia (Iran)160

and Chapala (Mexico). We did not have access to in situ data from these lakes for direct validation. Instead, we compared

estimates from the Landsat 7 to estimates from Landsats 5 and 8 during respective overlapping periods. This provides a

reasonable estimate of the error in data-scarce regions as error sources across Landsat missions are close to independent

(different sensors on different space platforms taking images at different times, see S1).

3 Results165

3.1 Validation against in situ observation

Validation results are presented in Fig. 3, where lake area outputs from Landsats 5 (red) and 7 (blue) are compared to bias-

corrected in situ observations. Outliers removed by the automatic detection procedure (Chen and Liu, 1993) are displayed
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Choke Canyon Area Comparison (2000-09)

Cannonville Reservoir Area Comparison (2014-09)

Lake Buchanan Area Comparison (2000-08)

2 km
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2 km2 km

Landsat 5 vs In-situ: R2=0.930
Landsat 7 vs In-situ: R2=0.982

Landsat 5 vs In-situ: R2=0.936
Landsat 7 vs In-situ: R2=0.979

Landsat 7 vs In-situ: R2=0.892
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8
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9
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WinterOutliers WinterOutliers Water Extent Estimates

Figure 3. Validation of the Approach. Left: Time series representation water extent from in situ observation (green) and Landsat 7 (blue).

Automatically removed outliers (crosses) and raw (non-bias corrected) in situ time series (dashed) are also displayed for indicative purpose.

Winter (ice-covered) periods are shaded out for Cannonville to illustrate the limitation of the approach. Corresponding observations are

also marked as outliers. Middle Scatter-plot of Landsat 5 (red) and Landsat 7 (green) water extent estimates against bias-corrected in situ

observations. Winter observations are represented as empty symbols for Cannonville. Left False color composite of a Landsat 7 image of

each lake on a cloud-free day. For all three lakes, the area estimated by the approach (green) matches the open water visible on the image.

Yet their areas are substantially larger than that given by in situ observation (see difference between the blue and dashed time series at the

vertical line drawn on the left panel). This is indicative of biases in the in situ observations.

as crosses for indicative purposes on the time series. Note that the outlier detection algorithm is fully automatic and does

not require any user input. Results show a strong correlation between in situ and Landsat-determined lake extents for Lake170

Buchanan (R2 = 0.982 on normal scale), Choke Canyon (R2 = 0.979 on normal scale) and Cannonsville Reservoir (R2 =

0.892 on normal scale). In all cases, the remote sensing algorithm was able to capture the strong temporal change in water

extent of these intensively managed reservoirs. Performance was good for the Cannonsville Reservoir after winter is removed,

which illustrates the main limitations of the approach under ice-covered conditions (keeping winter observations decreases the
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coefficient of determination to R2 = 0.01 on normal scale) and small lake sizes (see Sect. 4). These two limitations are further175

discussed Sect. 4.1.

3.2 Application to data-scarce, rapidly changing lake

Landsat 7 vs 5: R2=0.882
Landsat 7 vs 8: R2=0.731

Landsat 7 vs 5: R2=0.864
Landsat 7 vs 8: R2=0.849

Landsat 7 vs 5: R2=0.988
Landsat 7 vs 8: R2=0.884

Landsat 7 vs 5: R2=0.884
Landsat 7 vs 8: R2=0.721

Landsat 7 vs 5: R2=0.827
Landsat 7 vs 8: R2=0.819

Landsat 7 vs 5: R2=0.989
Landsat 7 vs 8: R2=0.883

Figure 4. Implementation of the approach on lakes with documented changes. Left: Time series of monthly lake extent estimates from

Landsat 5 (red), Landsat 7 (green) and Landsat 8 (blue) for Lakes Tonle Sap (Top), Urmia (Right) and Chapala (Bottom). Right Column:

Scatterplots representing Landsat 8 (green) and Landsat 5 (blue) water extent estimates against Landsat 7 during overlapping periods.
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Application to Lakes Tonle Sap, Urmia and Chapala, where no in situ observations were obtained, shows a high level of

agreement across Landsat missions during overlapping periods (Fig. 4) with normal scale R2 values ranging between 0.83 and

0.99 (or between 0.72 and 0.88) when comparing Landsat 7 and 5 (or 7 and 8), respectively. The approach provides consistent180

and reliable time series of historic water extent that are consistent with documented historical patterns. The analysis suggests

that recent fluctuations in the amplitude of the seasonal inundation cycles of the Tonle Sap, which are critical to maintain its

function as a regional biodiversity and food security hotspot. This is consistent with recent modeling simulations that predict

decreased seasonal variations owing to flow regime alterations in the Mekong tributary region (Yu et al., 2019; Kummu and

Sarkkula, 2008). The dramatic desiccation of Lake Urmia, once among the world’s largest freshwater lakes, is also clearly185

visible in our analysis. Lake extent has declined steadily since the late 1990’s to reach a low point in August 2014, which is

consistent with existing estimates (AghaKouchak et al., 2015). Similarly, large water fluctuations in Lake Chapala, a strategic

and historically overexploited reservoir in Central Mexico (Wester, 2008; Godinez-Madrigal et al., 2019) in the 1990’s and

early 2000’s can be seen in our analysis, along with the effects of the dramatic (albeit controversial (Godinez-Madrigal et al.,

2019)) remediation policies that were implemented thereafter to restore lake levels (Wester, 2008).190

4 Discussion

A key feature of the water detection algorithm is its reliance on an inundation frequency (IF) image to infer the inundation

status of clouded pixels. The IF image is constructed based on the historic probability of each pixel being covered by water

under cloud-free conditions, as determined by the unsupervised classification procedure in the first stage of the algorithm.

This presumes the existence of two random binary processes – cloud coverage and inundation status – that are (i) stationary,195

(ii) independent from each other, and (iii) can be reliably identified on Landsat imagery. These three important assumptions

potentially constrain the applicability of the method and merit further discussion.

4.1 Assumption 1: Stationarity

A threat to the stationarity requirement may for instance emerge if erosion or sedimentation processes substantially alter the

bathymetry of the lake shores. We used a split sample approach to assess this possibility. Two IF images were constructed using200

the first (1998-2009) and second (2010-2020) half of the available Landsat 7 dataset. The inundation frequencies given by the

first and second image were then collected for a random sample of 5000 pixel which IF value was above zero and below one

for both images. The sample pixels were then ranked according to their IF value for each images. The stationary assumption

implies that the ranks of the pixels do not vary between observation periods: if bathymetry did not change, a pixel that is more

often inundated than another given pixel during the 1998-2009 period should still be more often inundated during 2010-2020.205

Results on Fig. 5 (top) suggest that the effect of bathymetric change on the classification outcome is negligible. To interpret

this, note that classification outcomes are only affected by bathymetric changes that concern those pixels that lie within the

range of variability of water extent. This excludes pixels that are permanently covered (IF=1), where bathymetry may be most

affected by sedimentation processes.
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4.2 Assumption 2: Independence210

A threat to the independence requirement may emerge if the inundation status of a pixel determines its cloud coverage. For

instance, fog can be produced by the micro-climatic conditions associated with open water (Koračin et al., 2014). We test this

hypothesis by comparing the inundation frequency of pixels during cloudless days (the output of the first stage of the algorithm),

with their unconditional inundation frequency (during cloudy and cloudless days). The latter was determined by computing

the probability of inundation predicted by the second stage of the algorithm (supervised classification), which includes cloudy215

days. As before, we sampled 4000 pixels with IF values between (and excluding) 0 and 1 for both images (cloudless and

unconditional). We then ranked the pixels according to their IF value for each image. The independence assumption implies

that the pixels rank is not affected by its cloud coverage status: a pixel with a higher inundation frequency than another for

a subset of observations that had cloudless conditions should also have a higher inundation frequency if the full sample of

observations (cloudless and cloudy) is considered. Results, shown in Fig. 5 (bottom), suggests that the ranking of inundation220

frequency does not depend on cloud coverage. Again, to interpret this, consider that preferential cloud coverage will only affect

classification output if it concerns pixels near shores (i.e. where 0 < IF < 1), whereas lake-induced fog tends to occur over

permanently inundated pixels (Koračin et al., 2014).

R2=0.93R2=0.99R2=0.87

R2=0.95R2=0.93R2=0.96

Figure 5. Stationary and independence assumptions. Top: Inundation Frequency ranks per pixel estimated under cloudless condition (unsu-

pervised classification, y-axis) plotted against corresponding ranks estimated using the full sample of observations (combined supervised-

unsupervised classification, x-axis) for Lake Buchannan (left), Choke Canyon Reservoir (middle) and Cannonville Reservoir (right). Bottom:

Inundation frequencies ranks per pixel estimated using the first (x-axis) and second (y-axis) half of the Landsat 7 observation period (1999-

2019).
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4.3 Assumption 3: Detection

The procedure used to detect open water under cloudless conditions is widely used and its performance well established225

(see, e.g., MNDWI (Xu, 2006)). Nonetheless, two important limitations of MNDWI-based water detection may affect the

performance of our approach. The first issue concerns the difficulty in distinguishing open water from cloud shadows which

have a similar MNDWI reflectance (see Zhang et al., 2015). Cloud shadows are visible on Landsat imagery when cloud cover

is fragmented and, if shadows dry land in the vicinity of the lake, may cause an overestimation of the surface area of the lake.

This error will be amplified by the supervised classification step of our approach (Stage 2), which will mistakenly associate230

low IF pixels to inundated conditions. This issue is particularly salient for smaller lakes with surface area on the order of the

typical size of cloud fragments. To the extreme, a small lake completely covered by a cloud shadow would lead to a very large

overestimation of its surface area. Note that a lake completely covered by clouds would be removed from the analysis in the

pre-processing step. While problematic, such large individual deviations in water extent estimations are typically captured by

the automatic outlier detection implemented in the post-processing stage.235

Summer False Color Landsat 8 Image (2018-07-08)

Winter False Color Landsat 8 Image (2019-11-09) Winter MNDWI Landsat 8 Image (2019-11-09)

Cannonsville Reservoir (New York)

Summer MNDWI Landsat 8 Image (2018-07-08)

MNDWI (Snow) = 0.33

MNDWI (Land) = -0.18

MNDWI (Land) = -0.39

MNDWI (Water) = 0.63

MNDWI (Water) = 0.66

Outline of Water Extent

Figure 6. Illustrative example of the effect of snow and ice cover on water detection for the Cannonville reservoir. The contrast between land

and water on the MNDWI image (right) is much larger during the summer (bottom) than during the winter, when snow cover (in white on

the false color image, top left) has a similar MNDWI value to water.
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The second issue arises from the fact that snow and ice have a MNDWI reflectance which is much larger than land and closer

to that of open water. Under these conditions, a predetermined MNDWI threshold (here the median of k-means classification

on individual images) would mistakenly classify snow (or ice) -covered dry land as open water. Similar to cloud shadows, the

ensuing overestimation of water cover in the first stage will then be amplified by the supervised classification in the second

stage. This phenomenon is visible for Cannonville Reservoir (Fig. 6), where water cover is substantially overestimated during240

winter months. Because these errors persist throughout the winter season, they are typically not captured by the automatic

outlier detection and must be removed manually based on the image date.

5 Conclusion

The level and seasonality of lake water is rapidly changing globally and long-term, high frequency time series observations of

lake water extents are essential to ascertain and attribute these changes. This data is rarely collected in situ and challenging to245

obtain from satellite imagery due to cloud coverage, missing images and the limited temporal coverage of recent remote sensing

missions. The proposed method addresses these challenges using a hybrid unsupervised-supervised classification approach that

is scalable in that it does not require any local ancillary data. It also seamlessly integrates images from the three most recent

Landsat missions (Landsats 5, 7 and 8), which provide consistent high frequency (bi-weekly to monthly) inundation estimates

with high spatial resolution (30 m) between the late 1980’s and today.250

The method was successfully validated against in situ observations for three lakes within the US with rapidly changing water

extents. Application to ungauged lakes was demonstrated on a sample of three regionally significant lakes: Tonle Sap (Cam-

bodia), Lake Urmia (Iran), and Lake Chapala (Mexico). For all three lakes, water extent estimates were consistent with data

from Landsat missions during overlapping periods, and the observed time series reproduced documented historical patterns.

Key assumptions of the approach – stationarity, independance and detection – are discussed, pointing to potential limitations of255

the approach. In particular, the approach hinges on the fact that relevant information used by the algorithm is most salient for

partially inundated pixels near the shores of the lake, whereas potential threats to the underlying assumptions are most salient

away from the shores (e.g. sedimentation, fog-on-water). The application of the method is therefore limited for small lakes

where shore-to-surface ratio is large.

Despite its limitations, the algorithm stands as a valuable tool to provide reliable observation on the historical extent of260

rapidly changing lakes, at a temporal frequency and over an observation period that allows for modern statistical approaches

(e.g., Müller and Levy, 2019; Penny et al., 2020; Pérez Valentín and Müller, 2020) to be leveraged to understand the underlying

causes.

Data availability. Lake level datasets for validation are publicly made available by the United States Geological Survey (https://waterdata.

usgs.gov/nwis) and the Texas Water Development Board (https://www.waterdatafortexas.org/reservoirs/statewide)265
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