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Abstract. The empirical attribution of hydrologic change presents a unique data availability challenge in terms of establishing

baseline prior conditions, as one cannot go back in time to retrospectively collect the necessary data. Although global remote

sensing data can alleviate this challenge, most satellite missions are too recent to capture changes that happened long enough

ago to provide sufficient observations for adequate statistical inference. In that context, the four decades of continuous global

high resolution monitoring enabled by the Landsat missions are an unrivaled source of information. However, constructing5

time series of land cover observation across Landsat missions remains a significant challenge because cloud masking and

inconsistent image quality complicate the automatized interpretation of optical imagery.

Focusing on the monitoring of lake water extent, we present an automatized gap-filling approach to infer the class (wet or dry)

of pixels masked by clouds or sensing errors. The classification outcome of unmasked pixels is compiled across images taken

on different dates to estimate the inundation frequency of each pixel, based on the assumption that different pixels are masked at10

different times. Inundation frequency is then used to infer the inundation status of masked pixels on individual images through

supervised classification. Applied to a variety of global lakes with substantial long term or seasonal fluctuations, the approach

successfully captured water extent variations obtained from in situ gauges (where applicable), or from other Landsat missions

during overlapping time periods. Although sensitive to classification errors in the input imagery, the gap filling algorithm is

straightforward to implement on Google’s Earth Engine platform and stands as a scalable approach to reliably monitor, and15

ultimately attribute, historical changes in water bodies.

Copyright statement. TEXT

1 Introduction

The water extent of many lakes has changed substantially over the last few decades (Busker et al., 2019). Once imposing bodies

of water have declined to a small fraction of their historical volume in many parts of the world, the Aral Sea standing out as an20

iconic example (Micklin, 2007). In more humid climates, shifts in the flow regimes of tributary streams has affected the seasonal

variability of the corresponding lakes. In the Mekong basin, changes in the seasonal flood pulse of the Tonle Sap threaten the

lake’s sensitive ecosystems and fishery (Kummu and Sarkkula, 2008) with direct repercussion to the region’s food security
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and unique biodiversity. These changes often emerge as a result of complex interplay of natural (e.g., changing temperatures

and precipitations) and anthropogenic (damming and irrigation) factors (Haddeland et al., 2014). Proper attribution of their25

drivers is critical to inform policy, but hampered by a dearth of monitoring data due prevailing financial, institutional and legal

barriers (Solander et al., 2016). In that context, a substantial body of recent research has focused on monitoring surface water

extents using satellite data, with applications ranging from small reservoirs (Avisse et al., 2017; Gao et al., 2012; Zhao and

Gao, 2018) to large water bodies (Mercier et al., 2002) at the regional (Müller et al., 2016), continental (Zou et al., 2018) and

global scales (Busker et al., 2019; Pekel et al., 2016; Gao et al., 2012; Wang et al., 2018). By providing a consistent global30

space-time representation of the earth system, satellite imagery offers a unique ability to study and attribute change ex post, in

situations where in situ observations are nonexistent, unavailable or disputed. Yet a sufficiently large sample of high quality

remote sensing observations is necessary to attribute change with adequate statistical power (Müller and Levy, 2019). Hence,

imagery used to monitor lake water extent needs to (i) cover a sufficiently long period of regular observations (e.g., several

decades of monthly observations); and (ii) allow open water to be consistently distinguished from dry land in all weather35

conditions, including through clouds. These two requirements are challenging to satisfy simultaneously.

All-weather water detection can be achieved using active remote sensing at microwave frequencies. The process is unim-

peded by clouds and does not rely on reflected sunlight. Synthetic aperture radars (SAR) in particular leverage the fact that

areas of open, smooth water bodies exhibit lower back-scatter coefficients in the X, L or C bands (Bioresita et al., 2018). A

number of recently launched SAR missions (e.g. COSMO-SkyMed, TerraSAR-X and Sentinel-1) allow for detection of water40

at resolutions and return times that are appropriate to capture local changes in water cover (Pérez Valentín and Müller, 2020).

For instance, Sentinel 1 was launched in 2014 and has a 6-day revisit time and a spatial resolution of 20 m. However promising

in their ability to monitor ongoing changes, these very recent sensors are unable to capture events that happened before their

launch.

In contrast, satellites with optical sensors have been orbiting the earth for decades and remain a preferred source of informa-45

tion to monitor open water (see Huang et al., 2018a, for a recent review). A number of spectral indices have been proposed to

detect water using multispectral imagery (see Zhou et al., 2017), including the Modified Normalized Difference Water Index

(MNDWI, Xu, 2006) used in this study. These indices leverage the high contrast between land and water at specific frequencies

of the electromagnetic spectrum, and a range of techniques have been developed to systematically classify pixels as "wet" or

"dry" based on their spectral index (see Lu and Weng, 2007). A fundamental limitation of optical sensors, however, is their50

inability to capture land surface reflectance through clouds. A number of studies have addressed this impediment by leveraging

the high (daily) return time of NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) mission to build cloud-free

lower frequency (e.g., bi-weekly) mosaics (Gao et al., 2012; Wang et al., 2018). MODIS has relatively short coverage period

(1999 and 2002 to present for the Terra and Aqua satellites, respectively), but has been combined with space-borne radar

altimeters to monitor lake water extents in earlier periods (up to 1992 using the Topex-Poseidon altimeter) by leveraging over-55

lapping coverage periods to estimate water-level to inundation area relationships (Gao et al., 2012). However the limitations

normally associated with radar altimetry (narrow swath, coarse cross-track spacing and large along-track path length (see Yale

et al., 1998)) have restricted this approach to lakes that are well covered by altimeter orbits (Gao et al., 2012). In addition, the
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relatively coarse spatial resolution (250 m to 500 m for visible and near infrared bands) of MODIS limits its applicability for

smaller lakes. Unlike MODIS, the successive Landsat missions provide high resolution coverage of the earth surface since the60

1970s. Landsat imagery has recently been used by Pekel et al. (2016) to generate consistent monthly 30-m resolution estimates

of global surface water cover (GSW) between the mid 1980s and 2015. However, Landsat image interpretation is complicated

by a set of well known challenges including clouds, cloud shadows, terrain shadows, and the Scan Line Corrector (SLC) fail-

ure on Landsat 7. These effects complicate the detection of surface water, causing approximately a third of the pixels in the

GSW dataset to be marked as ‘no data’ (see Code and data availability). Discarding these masked pixels when identifying65

water-covered pixels will lead to a substantial underestimation of water cover (Zhao and Gao, 2018). This points to the need

for scalable and easily implementable post-processing approaches to infer the inundation status of masked pixels.

We address this problem by predicting the binary class (e.g., ‘wet’ or ‘dry’) of masked (‘no data’) pixels, based on the

observed class of comparable unmasked pixels. Two broad sets of such gap-filling approaches have been proposed in the

literature. The first set of approaches are based on topographic consistency: a pixel will not be ‘dry’ if it lies at an elevation70

that is lower than the highest (unmasked) ‘inundated’ pixel within the same water body (Khandelwal et al., 2017; Avisse et al.,

2017). An important limitation to these approaches is their reliance on either a digital elevation model (Khandelwal et al., 2017;

Avisse et al., 2017) or a radar altimeter (Van Den Hoek et al., 2019). However, digital elevation models can have a low level

of accuracy in the vertical direction (with standard deviation on the order of meters (Avisse et al., 2017)) and may not capture

the topography of regions that were flooded during the satellite overpass, whereas radar altimeters are limited with the spatial75

coverage limitations that we previously discussed (Yale et al., 1998). In contrast, the second set of studies does not rely on

ancillary information but uses the historical inundation frequency (IF) of a masked pixel (estimated using observations taken

at times when the pixel was unmasked) to predict its current inundation status. Zou et al. (2018) use a fixed IF threshold of

0.75 (i.e. pixels that are inundated on 75% or more of the unmasked images) to identify permanent water bodies. Zhao and Gao

(2018) apply a heuristic on the histogram of the IF of unmasked inundated pixels: masked pixels with an IF value larger than80

the IF corresponding to an arbitrary (i.e. 0.17) fraction of the mean histogram value are classified as ‘inundated’. Schwatke

et al. (2019) use an IF-image as a proxy for a digital elevation model and estimates an area-IF curve for each lake as a proxy

for its area-elevation curve. An iterative algorithm is then used to estimate the maximum IF value of masked inundated pixels,

so as to maintain topographic consistency within the lake.

Here, we use a supervised classification technique to infer a statistical relationship between the IF value and the inundation85

status of the unmasked pixels, which we then use to predict the inundation status of the masked pixels of the same image. Unlike

Zou et al. (2018) and Zhao and Gao (2018), the proposed approach does not rely on arbitrary heuristics but uses information

from all unmasked pixels (both inundated and dry) to infer the status of masked pixels. Unlike Schwatke et al. (2019), the

approach is exclusively based on pixel-level statistical relationships and does not rely on aggregate-level constraints such as

maintaining topographic consistency within the lake. This feature allows it to use a standard machine learning technique (90

random forest) and leverage the massive parallelization capability of Google Earth Engine, thus benefiting from the scalability

and portability associated with that platform. The approach is independent from cloud and water classification approaches that
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are used to construct the ternary images (i.e., images comprised of ‘wet’, ‘dry’, and ‘no data’ values) used as input, and our

results demonstrate that gap-filling performance is generally robust to unbiased classification errors.

The proposed gap-filling algorithm is described in Section 2.1, along with its four underlying assumptions. These assump-95

tions then structure the validation of the approach. We first assess its sensitivity to deviations from each assumption through

the numerical experiments described in Section 2.2, with results presented in Section 3.1. We then evaluate the propensity for

such deviations to happen in practice by applying the approach to monitor the extent of 9 global lakes using Landsat 5, 7, and

8 imagery. The selected lakes represent a variety of sizes and climatic and topographic characteristics and were selected based

on the availability on in situ data (Section 3.2) or documented historic water extent variations (Section 3.3). Section 4 discusses100

the results and offers concluding thoughts on the specific contribution of the proposed method with regard to other existing

gap-filling algorithms. We also provide a JavaScript function that can be readily integrated into any Google Earth Engine script

(see Code and data availability)

2 Methods

2.1 Gap filling algorithm105

The algorithm addresses the challenge of converting a time-series of ternary images (’wet’, ’dry’, and ’masked’ categories,

Figure 1B) into an equivalent time series of binary images (’wet’ and ’dry’, Figure 1D). To do so, it uses a readily avail-

able supervised classification method (random forest, Pelletier et al., 2016) to infer the category (’wet’ vs. ’dry’) of masked

pixels based on their inundation history. For this purpose, space-time information about historical water extents are compiled

into a single inundation frequency (IF, Figure 1C) image representing the historic probability of each pixel location i being110

categorized as ‘wet’ across the time series of images:

IFi =
N

(wet)
i

N
(wet)
i +N

(dry)
i

=
N

(wet)
i

N −N
(masked)
i

(1)

where N
(wet)
i , N (dry)

i and N
(masked)
i are (respectively) the number of times pixel i appears as wet, dry or masked over the

N considered monthly images. For each image, the supervised classification algorithm then proceeds to estimate a statistical

relationship between the inundation status of unmasked pixels and their IF value. This relationship is then used to infer the115

status of all pixels of the image based on their own IF value. Classification noise that emerges from the uncertainty of the

estimated statistical relationship is then dampened through morphological filtering (Schowengerdt, 2006). Note that the super-

vised classification algorithm is run independently on each individual image using a different set of unmasked classified pixels

as training (depending on the associated cloud mask), but using the same IF image as predictor. An implementation example

using monthly ternary images (’wet’,’dry’,’masked’) from Pekel et al. (2016) is provided under Code and data availability120

below.
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1 km
Choke Canyon, TX, November 2000

A. Landsat 7 False Color Composite

C. Inundation Frequency Raster
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Figure 1. Illustration of the gap filling algorithm. A. Original Landsat 7 false color composite image for Choke Canyon, TX, November

2000. B. Input classified ternary image from (Pekel et al., 2016) with the wet, dry and masked classes represented in green, dark pink and

light pink, respectively. C. Inundation Frequency image constructed using the 430 monthly ternary images from the (Pekel et al., 2016)

between March 1984 and December 2019. The IF value is displayed on a linear scale of grays with values of 0 and 1 respectively represented

as black and white. D. Output binary image for November 2000, with wet and dry pixels represented in green and dark pink, respectively. E.

Examples of classification errors: (i) Light clouds over land mistakenly classified as clouds; (ii) land in cloud shadows mistakenly classified

as water; (iii) light cloud over water mistakenly classified as land.

A fundamental assumption of the approach is that pixels with a higher IF-value are lower topographically, and therefore

more likely to be inundated on any given image. More specifically, if unmasked pixels associated with a certain IF value are

inundated in a given image, it is very likely that pixels with an equal or higher IF value (i.e. pixels of equal or lower elevation)

are also inundated. This assumption holds if four important conditions are satisfied:125

– Classification accuracy: The ternary input image must be accurate in that the classification technique accurately dis-

tinguishes water, land and no data in the original multispectral imagery. An overly eager cloud detector would mask

too many pixels and decrease the precision of the supervised classification in the gap-filling process. An overly cautious

cloud detector (or a faulty water detector) would lead to misclassification of water (or clouds) as land, and vice-versa.

This then affects gap-filling by introducing errors in both the IF raster and the classification of unmask pixels in individual130

images used to train the supervised classifier.

– Independence: The propensity of a pixel to be masked in any given image must be independent of its inundation

status. If this assumption does not hold, the inundation status of a pixel determines its cloud coverage. Under these
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conditions, the relationship between its IF and inundation status estimated in cloudless conditions will not reliably

predict its status in cloudy conditions. This situation may arise, for instance, from fog being produced by the micro-135

climatic conditions associated with open water (Koračin et al., 2014), or from spatially persistent classification errors

associated with topographic shading (Huang et al., 2018b).

– Stationarity: The statistical relationship between the IF value and the inundation status of pixels must not change

over time. A threat to the stationarity assumption might emerge, for instance if erosion or sedimentation processes

substantially alter the near-shore bathymetry of the lake.140

– Homogeneity: The statistical relationship between the IF value of pixels and their inundation status must be homoge-

neous in space. This assumption is necessary for the IF-inundation status relationship estimated for unmasked pixels

to be transferred and applied to mask pixels. This could be violated in situations when the lake bathymetry contains

multiple depressions and the lake separates into multiple water bodies as water levels fall.

2.2 Validation145

A direct validation of the approach would require a sample of in situ observations of lake extents that (i) is representative of the

variety of water bodies that the method applies to, and (ii) matches the monthly frequency and multi-decadal observation period

that are targeted by the analysis. The few openly available datasets that span such long observation periods typically focus on

small to medium sized regulated reservoirs within the US) and/or feature lake elevation time series with no reliable elevation-

area relationships to estimate lake extents. To address this data availability challenge we use a two-step validation approach150

focusing on the four main error sources identified in the previous section. In the first step, we investigate the sensitivity of

the gap filling algorithm to each error source using numerical experiments (Section 2.2.1). In the second step we illustrate the

application of the approach to monitor the water extent of real lakes and discuss the propensity of each error source to emerge

in real life. The approach is implemented on a sample of 9 particular lakes that span a variety of sizes, geographic locations

and levels of data availability (Section 2.2.2).155

2.2.1 Numerical Experiments

We use numerical experiments to evaluate the sensitivity of the gap-filling approach to deviations from its four fundamental

assumptions. The experiments use 430 monthly ternary classification images (wet, dry, masked) obtained from Pekel et al.

(2016) for Choke Canyon Reservoir (TX) between March 1984 and December 2019. Note that the experiment hinges on the

controlled addition of random classification errors, and is not materially affected by the specific location chosen as a baseline.160

The numerical experiment then proceeds as follows:

1. A fraction F1 of unmasked pixels in each image is randomly selected and masked.

2. A fraction F2 of the remaining unmasked pixels in each image is then (independently) randomly selected and flipped,

i.e. recast as ‘wet’ if they are ‘dry’ and vice versa.
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3. The gap-filling algorithm is then carried out using the appropriate combinations of images from steps 1 and 2 (see below)165

to construct the IF raster and the training dataset.

4. The predicted inundation status (‘wet’ or ‘dry’) of the pixels masked in step 1 are compared to their original status. The

proportion of masked pixels that are misclassified in the gap-filling process is recorded as gap-filling error. We finally

compute the mean gap-filling error across images and its 95% empirical confidence interval.

We carried out the following experiments to simulate deviations from each of the four assumptions (see Code and data170

availability below):

– Classification accuracy: We simulate the effects of (i) over-detection of cloud and (ii) under-detection of clouds or

misclassification of land as water (and vice versa) by respectively (i) varying the fraction F1 of unmask pixels in step 1

and (ii) varying the fraction F2 of ’flipped’ pixels in step 2. We simulate the combined effect of both types of errors by

considering combinations of F1 and F2.175

– Independence: We evaluate the effect of a correlation between the IF value of the pixels and their inundation status

by comparing the outcome of two experiments. In the first (baseline) experiment, the pixels flipped in step 2 are inde-

pendently drawn for each image. In the second (alternative) experiment, the pixels flipped in step 2 are drawn once and

do not vary across images. Because the flipped pixels are persistently wrongly classified in the alternative experiment,

we expect a persistent bias to emerge in the relationship between IF and inundation status estimated by the supervised180

classifier. This, in turn, will lead to a larger gap-filling error compared to the baseline experiment. We measure the effect

of a non-independent inundation status as the difference between the gap-filling errors associated with the alternative

and baseline experiments.

– Stationarity: We simulate the effect of an IF-inundation status relationship that evolves over time by only introducing

errors in the images used to construct the IF-raster. We introduce persistent errors in step 2 by flipping the same pixels on185

all images, which we then use to construct the IF raster. However, we use the outcome of step 1 (the unflipped images)

as training data when carrying out the supervised classification in step 3. This represents the situation where an outdated

(here, noisy) IF is being used to classify contemporaneous observations. The larger the percentage of pixels flipped, the

’noisier’ the IF and thus the less representative it is of the actual IF of the training images. Under these conditions, the

simulated gap-filling errors represent the effect of violating the stationarity assumption.190

– Homogeneity: We simulate the effect of a spatially heterogeneous IF-inundation status relationship by introducing a

persistent error in the training data but not in the images used to construct the IF raster. Under these conditions, the

relationship between the IF value and the inundation status that prevails for the unflipped pixels will be inverted for

the flipped pixels. This portrays a situation where an arbitrary subset of pixels with a given IF value will tend to be

wet whenever the remaining pixels with the same IF value are dry, as can emerge for example in a wetlandscape where195

water bodies are governed by the same hydrologic drivers when connected and different drivers when disconnected
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Figure 2. Location and characteristics of the considered water bodies.

(e.g., drainage vs. seepage). In that context, the fraction F2 of pixels flipped represent the degree of heterogeneity of the

landscape (i.e. 50% means that half the pixels are governed by an inverted IF-flooding status relationship)

2.2.2 Application to real lakes

We focus on 9 particular lakes – 6 gauged lakes in the US, and 3 ungauged lakes outside the US (Figure 2) – to illustrate the200

practical application of the gap-filling algorithm (Section 3.2), and discuss the validity of its four underlying assumptions in

operational situations (Section 4). The 6 US lakes have between 17 and 47 years of daily water level observations, available

from the United States Geological Survey and the Texas Water Development Board. The four water bodies in Texas are

emblematic of changing seasonal to inter-annual lake conditions that prevail in intensively managed small lakes and reservoirs

in semi-arid areas. The two reservoirs in upstate New York represent the complex topography and strongly seasonal climate205

and land-cover (including snow and ice) that prevail in high latitude mountainous regions and complicate cloud and water

detection. For each lake, monthly water extents were determined based on daily water levels using the provided elevation-

area-capacity tables and corrected for additive bias (see Supplementary Information, SI). The three lakes outside the US have

documented seasonal and inter-annual changes in their water extents that are of major regional significance: Lakes Tonle Sap

(Cambodia), Urmia (Iran) and Chapala (Mexico). No long-term in situ observations were available for validation. However, we210

compared estimates from the Landsat 7 to estimates from Landsat 5 and 8 during respective overlapping periods. This process

provides reasonable estimates of lake extent prediction errors, assuming that sources of errors across Landsat missions are

close to independent (different sensors on different space platforms taking images at different times, see Table 1).
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Input to the gap-filling algorithm can be provided by any cloud- and water-detection method that is able to generate the

required input ternary images. Here, we demonstrate its application using two particular techniques that are widely used in215

practice and straightforward to implement on Google Earth Engine, noting that more elaborate approaches to detect both

clouds (Foga et al., 2017) and water (Rokni et al., 2014; Lu and Weng, 2007) on Landsat imagery are available. A rudimentary

cloud-scoring algorithm available on Google Earth Engine (ee.Algorithms.Landsat.simpleCloudScore()) is

used to detect and mask clouds based on Top of Atmosphere Landsat reflectance images. Pixels indicated as faulty (e.g., due to

the Landsat 7 Scan Line Corrector failure) are also masked out. The weekly to bi-weekly Landsat images are then aggregated220

at the monthly time scale through maximum value compositing using the Normalized Difference Vegetation Index (NDVI)

(Chen et al., 2003). This last step is based on the presumption that clouds have a low NDVI value. Cloud-free pixels of each

monthly image were then classified as wet or dry based on their modified normalized difference water index (MNDWI) value

(Xu, 2006), that is the normalized difference between the green and mid-infrared bands of the relevant Landsat sensor (see

Table 1 for corresponding bands in the considered imagery). The MNDWI enhances water/land contrasts by leveraging the225

ability of open water (compared to dry land) to preferentially absorb and reflect in the mid-infrared and green regions of the

electromagnetic spectrum, respectively. A clustering algorithm is applied to each image to identify the MNDWI threshold that

partitions its pixels into two sets, so as to minimize the MNDWI variance within each set. Because it can dynamically separate

dry and wet pixels in cloud-free images, unsupervised classification stands as a promising (and somewhat less arbitrary)

alternative to the manual determination of classification thresholds implemented in past studies (e.g., Müller et al. (2016)230

among others). However, by minimizing within-cluster variance, k-means tends to favor clusters of comparable sizes (Jain,

2010), which is problematic for cloudy images with preferential cloud covers on either land or water. As an extreme example,

if all unmasked pixels are covered by water, a two-cluster k-means classification will not be able to distinguish water from

land. We address this issue by computing the median value from the set of MNDWI thresholds obtained from the classification

of individual images. This single median MNDWI threshold is then used to (re)classify all unmasked pixels from all monthly235

images. Assuming the unsupervised classification can distinguish water from dry land on most images, the median threshold

will allow for the identification of all unmasked pixels from the above extreme example as "wet". A time series of lake area

is finally generated by counting, on each monthly classified image, the number of inundated pixels within a predetermined

polygon encompassing the maximum historical extent of the lake. Outlier predictions associated with detection errors (see

Section 4) are automatically identified and removed using the approach described in (Chen and Liu, 1993).240

3 Results

3.1 Numerical Validation

Results of the numerical experiments are presented in Figure 3. Panel A displays gap-filling errors for various combinations of

F1 (pixels masked) and F2 (pixels flipped). The former (F1) represents the effect of the supervised classifier being provided

with ‘too little’ information in the sense that the cloud detector overestimates cloud coverage. Results in Figure 3A suggest245

that this has a modest effect on gap-filling errors as long as the remaining (unmasked) pixels are correctly classified as water
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Satellite Spectral Bands Resolution Return Time Coverage

Landsat 5
B2-Green (0.52-0.60 µm)

30 m 16 days 1984 - 2013
B5-MIR1 (1.55-1.75 µm)

Landsat 7
B2-Green (0.52-0.60 µm)

30 m 16 days 1999 - Present
B5-MIR1 (1.55-1.75 µm)

Landsat 8
B2-Green (0.53-0.59 µm)

30 m 16 days 2013 - Present
B6-MIR1 (1.57-1.65 µm)

Table 1. Properties of Landsat data sources

or land. Introducing even modest levels of classification errors in the unmasked pixels (e.g, F2 = 5− 10% of unmasked pixels

are flipped) can cause the gap-filling error to blow up for high levels of F1. In other words, for sufficiently high cloud cover

or small lake size, the accuracy of the approach becomes highly sensitive to classification errors, which occurs in the example

when more than 75% of the lake is masked. Given that the lake in the synthetic analysis is ∼ 1km2, precautions should be250

taken when lakes are covered by excessive clouds or lakes are sufficiently small such that unmasked pixels cover less than 25

ha (or roughly 17 × 17 Landsat pixels).

These classification errors are further investigated in Figure 3B. Of note is that gap filling errors arising from water-land

classification errors (Figure 3B) are generally larger than those arising from an overestimation of cloud cover (Figure 3A).

This suggests that the gap filling approach works best combined with an overly eager cloud detection algorithm that tends255

to overestimate (rather than underestimate) cloud cover. Importantly, Figure 3B also suggests that the gap-filling approach is

generally robust to faulty water-land classification in input images. Introducing classification errors into up to F2 = 30% of

unmasked pixels of each image causes gap-filling errors in less than 10% of the control pixels. For context, a value of F2 = 50%

would represent the situation where wet and dry pixels are perfectly randomly distributed throughout the image (white noise).

An F2 value larger than 50% reintroduces some signal; in particular F2 = 100% has the same information as F2 = 0, but with260

all ’wet’ and ’dry’ pixels being swapped. The numerical experiment also allows to assess the pathway through which input

classification errors affect gap filling performances. Specifically, the supervised classification is affected by (i) errors in the IF

raster used as a predictor of inundation status for all images, and by (ii) errors in the individual images used by the classifying

as training. We investigate the relative importance of these two pathways by using the ‘flipped’ images from step 2 (see Section

2.2) to either construct the IF raster or serve as training data for the classifier; unflipped images from step 1 are then used to265

fulfill the other task. Results in Figure 3B suggests that the gap filling algorithm is more sensitive to classification errors in its

training data (blue) than to errors in its IF raster (green).

Results in Figure 3C indicate the sensitivity of the gap filling approach to deviations from each of its four underlying

assumptions. The approach is most sensitive to errors in the detection of water and land in the input ternary imagery, although

diversions from all four assumptions have a generally modest effect on gap-filling errors. As in Figure 3B, gap-filling errors270

remain below 10% for up to 30% of pixels flipped (note that red symbols in Fig 3B and 3C have an identical meaning).
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For higher levels of deviations (>30% of pixels flipped), deviations from the independence (blue) and homogeneity (green)

assumptions have comparable effects, which is both lower than that of classification errors (red) and higher than that of non-

stationarities (purple). Note that the experiments used to evaluate stationarity and homogeneity assumptions are similar to

the experiments to distinguish the IF-errors from training errors on Figure 3B, with the important distinction that the errors275

introduced to evaluate the assumptions are persistent in space (i.e. they are not independently drawn for each input image). The

negative values in the gap filling errors obtained for the independence experiment (blue) arise from image-by-image subtraction

of classification errors that is included in the experiment (see Section 2.2): for particular images, the gap filling error obtained

from independently drawn classification errors is ostensibly larger than that obtained from persistent classification errors.
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Figure 3. Results of the Numerical Experiments. A. Gap filling errors resulting from various combinations of independent random errors in

cloud (% pixels masked) and water (% pixels flipped) detection. B. Origin of the gap filling errors associated with faulty land/water detection.

Images with introduced errors are alternatively used to construct the IF-raster (green) or the training dataset (blue) or both inputs (red) of the

supervised classifier used to estimate the status of masked pixels. C. Effect of deviations from the four fundamental assumptions obtained

from the four numerical experiments described in Section 2.2. The % gap filling errors in panels B and C were evaluated by masking 5% of

unmasked pixels in each image. These pixels were than used as validation data (step 1 in Section 2.2). Validation pixels were randomly and

independently sampled for each image.

3.2 Application to real lakes280

Applications to US lakes with available in situ lake level observations are presented in Figures 4 (Horde TX, Choke TX and

Cannonsville NY) and S1 (Buchanan TX, Mackenzie TX and Schohaire NY), where the gap-filling algorithm was combined

with commonly implemented approaches to detect clouds and water on multispectral Landsat imagery. Lake area outputs from

7 (brown) generally fit bias-corrected water extent estimates (black) based on lake level observations, suggesting that the remote

sensing approach was able to capture the strong temporal change in water extent of these intensively managed reservoirs. Of285
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note is that the outlier predictions, which were removed without user input (following (Chen and Liu, 1993), and displayed as

crosses on Figures 4 and S2) predominantly concern lakes in upstate New York and are clustered in the winter season (shaded

on Figures 4 and S2). This points to known challenges in detecting open water in a landscape where land (and sometimes

water) are covered by snow (e.g., Acharya et al., 2018). These challenges and their implications for the gap-filling algorithm

are further discussed in Section 4. After removing winter classification results, lake extents estimated from Landsat 7 were290

strongly correlated to in situ observations for all lakes (Figures 4 and S1).

Application to Lakes Tonle Sap, Urmia and Chapala, where no in situ observations are available, shows a high level of

agreement across Landsat missions during overlapping periods (Fig. 5). The analysis suggests that recent fluctuations in the

amplitude of the seasonal inundation cycles of the Tonle Sap, which are critical to maintain its function as a regional biodiversity

and food security hotspot, are decreasing. This is consistent with recent modeling simulations that predict decreased seasonal295

variations owing to flow regime alterations in the Mekong tributary region (Yu et al., 2019; Kummu and Sarkkula, 2008). The

dramatic desiccation of Lake Urmia, once among the world’s largest freshwater lakes, is also clearly visible in our analysis.

Lake extent has declined steadily since the late 1990s to reach a low point in August 2014, which is consistent with existing

estimates (AghaKouchak et al., 2015). Similarly, large water fluctuations in Lake Chapala, a strategic and historically over-

exploited reservoir in Central Mexico (Wester, 2008; Godinez-Madrigal et al., 2019) in the 1990s and early 2000s can be300

seen in our analysis, along with the effects of the dramatic (albeit controversial (Godinez-Madrigal et al., 2019)) remediation

policies that were implemented thereafter to restore lake levels (Wester, 2008).

4 Discussion

Results from the numerical experiments suggest that the performance of the gap-filling algorithm is generally robust to devi-

ations from its four underlying assumptions. However, the analysis also showed that performance can be strongly impacted if305

these deviations are substantial enough. Therefore, the propensity of these four deviations to emerge in practice is an important

question to consider when validating the proposed approach.

– Classification Accuracy: Despite its widespread use, the identification of clouds and water based on spectral indices

entails inherent limitations. For example, challenges in distinguishing open water pixels from cloud or topographic

shadows, or from snow-covered land, based on their MNDWI value have been reported in the literature (see e.g., Zhang310

et al., 2015; Huang et al., 2018b) and encountered in our analysis (Figure 1E). However, the lack of direct in situ

observations of lake extents and the highly local nature of the error source (e.g., topography, snow cover) makes it

challenging to estimate their general prevalence. Instead, we find it helpful to characterize classification errors as having

two distinct and alternative effects. On the one hand, misclassification of either land or water as clouds, for instance

due to an overly eager cloud detector, will decrease the amount of input information (too little information). On the315

other hand, misclassification of water (or land) as land (or water) will introduce an error into the input information

(wrong information). This situation can emerge from an overly cautious cloud detector, where undetected clouds are then

arbitrarily classified as either water or land. Results from the numerical experiments suggest that wrong input information
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has a much larger effect on the gap-filling performance than too little input information (compare red symbols in Figures

3A and B). This insight is corroborated by comparing two sets of lakes from the case studies. The approach performed320

well for the two small lakes in Texas (Horde Creek and Mackenzie reservoir,∼ 1km2 each), where the semi-arid climate

and the flat topography are not prone to water classification error, but their small size limits the number of input pixels

(too little information). In contrast, the two lakes in upstate New York (Schoharie and Cannonsville reservoirs) have

more input pixels but the cold climate and mountainous terrain introduce errors in the unsupervised classification of

water and land (wrong information). There, the gap filling algorithm performed markedly worse, particularly in winter325

when snow and ice are prevalent. These results illustrate a key limitation of the approach, that gap-filling accuracy is

constrained by the accuracy of the input ternary imagery. They also suggest that the approach is more compatible with

an overly eager cloud detector: by overestimating cloud cover the input imagery will err in favor of providing too little

(rather than wrong) information, which has a smaller effect on the accuracy of the gap filling algorithm. The benefits of

an over-eager cloud detection algorithm will be limited when unmasked pixels cover a sufficiently small area (roughly330

20-30 ha), at which point accuracy becomes highly sensitive to wrong information.

– Independence: A threat to the independence requirement may emerge if the inundation status of a pixel determines its

cloud coverage. For instance, fog can be produced by the micro-climatic conditions associated with open water (Koračin

et al., 2014). We test whether threats to the independence assumptions emerged in our case studies by comparing the

inundation frequency of pixels during cloudless days, with their inundation frequency estimated for all days. The former335

corresponds to the IF value from Equation (1). The latter was determined computing the estimated IF values of pixels

after gap-filling, which includes cloudy days. We sampled 4000 pixels with IF values between (and excluding) 0 and

1 for both images (before and after gap-filling). We then ranked the pixels according to their IF value for each image.

The independence assumption implies that the pixel rank is not affected by its cloud coverage status: a pixel with a

higher inundation frequency than another for a subset of observations that had cloudless conditions should also have a340

higher inundation frequency if the full sample of observations (cloudless and cloudy) is considered. Results, shown in

Fig. 6 (Top), suggest that the ranking of inundation frequency does not depend on cloud coverage. In other words, the

independence assumption does not appear to be threatened in the considered lake. Note that non-random cloud coverage

will only affect classification output if it concerns pixels near shores (i.e. where 0< IF < 1). This excludes permanently

inundated pixels, which are predominantly affected by fog-over-water (Koračin et al., 2014).345

– Stationarity: We used a split sample approach to determine whether the relationship between IF and the inundation

status of pixels remains constant over time. Two IF images were constructed using the first (1998-2009) and second

(2010-2020) half of the available Landsat 7 images. The inundation frequencies given by the first and second IF images

were then collected for a random sample of 5000 pixels with IF ∈]0,1[ on both images. The sampled pixels were then

ranked according to their IF value for each image. The stationary assumption implies that the rank of the pixels does350

not vary between the two observation periods: If bathymetry did not change, a pixel that is more often inundated than

another pixel during the 1998-2009 period should still be more often inundated during the 2010-2020 period. Results
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on Fig. 6 (Bottom) suggest that the effect of bathymetric change on the classification outcome is negligible. Note that

classification outcomes are only affected by bathymetric changes that concern those pixels that lie within the range of

variability of water extent. This excludes pixels that are permanently covered (IF=1), where bathymetry may be most355

affected by sedimentation processes.

– Homogeneity: The homogeneity assumption implies that the relationship between the historical inundation frequency

of a pixel and their current inundation status does not vary in space. In other words, pixels that are historically more often

inundated will be more likely inundated on any given day. This assumption clearly holds for the non-disjoint bodies of

water that are considered in this study, but may not apply to bodies of water that fragment upon drainage (Figure 7).360

There, the gap filling algorithm should be applied independently for each homogeneous region. The need to identify

homogeneous regions a priori in fragmenting lakes and more complex wetlandscapes is an important limitation of the

approach.

5 Conclusion

We propose a gap-filling approach that uses a standard supervised classification algorithm to predict the binary status (wet-dry)365

of masked pixels based on the historic frequency of their status. We validate the approach by (i) using numerical simulation to

assess its sensitivity to deviations from its four fundamental assumptions and (ii) applying it to 9 global lakes representing a

variety of sizes, climates, topographies and levels of in situ data availability. Applying the approach to real lakes also allows us

to evaluate the propensity for fundamental assumptions of the approach to hold in practical situations. Both analyses suggest

that the approach is robust to substantial deviations from its underlying assumptions, several of which are likely to hold in370

most practical settings. However, the analyses also outlined two important limitations of the approach. First, the approach is

sensitive to classification errors in the input imagery, particularly in small lakes. Misclassification of the output binary classes

(here wet/dry) have a stronger impact on performance than misidentification of masked pixels (here clouds) and the effect

is exacerbated when unmasked lakes pixels fall below 25 ha (roughly 17 × 17 Landsat pixels). This further implies that the

approach might not perform well in locations where circumstances (topographic shading, cloud shading, snow/ice, etc) makes375

it difficult to reliably distinguish water from clouds and land using multispectral imagery. In contrast, the method appears

generally robust to situations where a limited number of input classified pixels are available for training (e.g., small lakes or

high cloud coverage). These two observations imply that the approach is preferably combined with a cloud detector that tends

to overestimate cloud coverage. Second, the approach requires the a priori identification of homogeneous regions, where the

relationship between the inundation frequency and inundation status of pixels is unique. This requirement limits the scalability380

of the approach in complex wetlandscapes, where the relationship might vary through space.

Despite these limitations, the approach stands as a promising approach (it can be readily implemented in Google Earth

Engine, see Code and data availability) to monitor the water extent of lakes and reservoirs at scale, particularly when combined

with recent global datasets of ternary (wet/dry/masked) water cover (Pekel et al., 2016; Donchyts et al., 2016). More generally,
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the algorithm can be used to infer the status of any masked binary imagery (not only water cover) that satisfies its four385

fundamental assumptions.

Data availability. Lake level datasets for validation are publicly made available by the United States Geological Survey (https://waterdata.

usgs.gov/nwis) and the Texas Water Development Board (https://www.waterdatafortexas.org/reservoirs/statewide)
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//code.earthengine.google.com/767ad2fe5931857550056e41213a4dcb. Gap filling algorithm combined with MNDWI-based classification of390

Landsat 7 images:https://code.earthengine.google.com/49efc5e51b9257da9a72d45c8ce486be. Numerical experiments used to test the four

underlying assumptions: https://code.earthengine.google.com/1d7e23f5d5594ff9574fa73dd651b52e. Analysis of the percentage of masked

pixels in the (Pekel et al., 2016) dataset: https://code.earthengine.google.com/b41fdccbe6267d6a7e4c40deae8e9bf5
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WinterOutliersWinterOutliers

Figure 4. Application to lakes with in situ observation data Left: Time series representation water extent from in situ observation (black)

and Landsat 7 (brown). Automatically removed outliers (crosses) are also displayed for indicative purposes. Winter months (December to

February) are shaded out for Cannonsville NY. Right Scatter-plot of absolute percentage errors on Landsat 7 water extent estimates (compared

to in situ observations) against the proportion of the lake’s maximum footprint that was covered by clouds.
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Figure 5. Implementation of the approach on lakes with documented changes. Left: Time series of monthly lake extent estimates from

Landsat 5 (blue), Landsat 7 (brown) and Landsat 8 (green) for Lakes Urmia (Top), Tonle Sap (Middle), and Chapala (Bottom). Right Scatter-

plot of absolute percentage errors on Landsat 8 water extent estimates (compared to Landsat 7 estimates) against the proportion of the lake’s

maximum footprint that is covered by clouds.
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Figure 6. Assessment of the independence (Top) and stationarity (Bottom)assumptions for Lake Buchannan (Left), Choke Canyon Reservoir

(Middle) and Cannonsville Reservoir (Right). Top: Inundation Frequency ranks per pixel estimated under cloudless condition (unsupervised

classification, y-axis) plotted against corresponding ranks estimated using the full sample of observations (combined supervised-unsupervised

classification, x-axis).Bottom: Inundation frequencies ranks per pixel estimated using the first (x-axis) and second (y-axis) half of the Landsat

7 observation period (1999-2019).
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Figure 7. Violation of the homogeneity assumption in a fragmenting lake. A single body of water (top) might fragment into independent

fragments when draining (middle and bottom). On the figure, the lake is drained by seepage and the two fragments are supplied by distinct

tributaries. Under these conditions, pixels A and B might have an identical IF value but do not have an identical flooding status at times 2

and 3, hence violating the homogeneity assumption.
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