
 

Dear Dr Kelleher,  

Please find attached the revised version of our previously submitted manuscript: “Assessing historic water 
extents in rapidly changing lakes: a hybrid remote sensing classification approach", now renamed “A 
simple cloud-filling approach for remote sensing water cover assessments”, for consideration as a 
research article at HESS. 

We have carefully addressed the concerns voiced by yourself and the two reviewers and are grateful for 
the opportunity to resubmit. The most substantive changes to the manuscript are: 

 

1. A complete rewrite of the introduction to re-scope the paper as proposing a new simple 
cloud-filling approach for the remote sensing assessment of water cover. We have also revised the 
title of the paper to reflect this new scope. The revised introduction now contains an extensive 
literature review that clearly outlines the gap that this study seeks to fill. In response to your 
comment, we now also explicitly articulate the specific type of new insights that the proposed 
method will allow to provide.  

 

2. An enhanced validation of the approach, which now relies on numerical experiments and three 
added validation lakes. These additional analyses focus on the four fundamental assumptions of 
the approach and allow us to rigorously assess its key limitations. In response to your comment, 
these limitations are explicitly discussed in the discussion and conclusion sections of the revised 
manuscript.  

 

We are extremely grateful to both reviewers and to yourself for taking the time to read our paper and for 
offering such constructive comments. We believe that the revised manuscript has been substantially 
improved thanks to this feedback and hope that we have addressed all reviewers' concerns. A 
point-by-point response (in blue) to all reviewers' comments and the related revised text (in red) are 
provided below. A track-change version of the manuscript and SI is enclosed. 
  
Thanks again for your consideration.  

Sincerely, 

Marc Muller, on behalf of all authors.  
 
  

  
 

 



 

 
Editor: 
Dear authors, 
The manuscript has received two constructive reviews. Both reviewers note that the approach proposed in 
this manuscript is of interest to the broader remote sensing community. However, both reviewers had 
recommendations that should be addressed in an updated manuscript. 
 
In particular, both reviewers had common concerns: 
 
-That key literature was missing from the manuscript, necessitating placing this work within the context 
of this broader literature on surface water extents: Both reviewers note that key literature is missing. 
 
While your response to the reviewers indicates that you will use this literature to revise your introduction, 
I would encourage you to go beyond this. In particular, I would encourage bringing this literature into the 
discussion section, to compare and contrast your approach with these existing approaches. Placing your 
findings in the context of this existing literature within the discussion section will help to show what is 
novel about this approach and how it advances the methodology of detecting lake extents. 
 
The addition to the discussion that is most important will be clearly articulating how this approach 
enables researchers to answer new questions about lake water extent – what does this new approach allow 
that other approaches do not? As noted by Reviewer 1, what new insights can be gained? Crafting this 
novelty within the discussion section by bringing in the broad body of literature on lake water extent 
detection is necessary to show how this manuscript goes beyond what has already been accomplished in 
this research area. 
 
Response 
Thank you for your thoughtful comments and suggestions. We agree that the manuscript was in need of a 
stronger discussion about the specific contribution of the proposed method and have completely rewritten 
the introduction to reflect that. We made the stylistic choice of discussing the novelty of the approach in 
the introduction, rather than the discussion, because we believe that it is critical that the specific 
contributions of the paper be made clear upfront: as a reader why go through the trouble of even reading 
the paper if one is not convinced that what is presented is new and useful?  
 
Specifically, we start by making the case that gap-filling approaches are necessary to leverage 
landsat-derived information to attribute historical change (L1-67).  We then review the (few) gap-filling 
approaches that already exist to infer the binary status (e.g., wet vs dry) of masked pixels. We argue that 
they either (i) require ancillary data, (ii) rely on arbitrary heuristics, or (iii) are not straightforward to 
implement and scale (L68-84). We then present our approach as addressing all three issues 
simultaneously by using a standard machine learning algorithm to fully leverage the information 
embedded in the masked input dataset (L 85-94).  
 
In terms of new insights, this allows our approach to be robust to detection errors, which we now formally 
test using numerical experiments. It also allows it to be fully compatible with Google Earth Engine with 
the scalability and portability that this implies. This last point represents an important contribution: the 



 

approach is packaged into a relatively simple (~10 lines) javascript function that can be easily integrated 
into any google earth engine script.  
 
 
 
Text Modifications 
 
L60-67: 
Introduction 
 
Unlike MODIS, the successive Landsat missions provide high resolution coverage of the earth surface 
since the 1970s. Landsat imagery has recently been used by Pekel et al. (2016) to generate consistent 
monthly 30-m resolution estimates of global surface water cover (GSW) between the mid 1980s and 
2015. However, Landsat image interpretation is complicated by a set of well known challenges including 
clouds, cloud shadows, terrain shadows, and the Scan Line Corrector (SLC) failure on Landsat 7. These 
effects complicate the detection of surface water, causing approximately a third of the pixels in the GSW 
dataset to be marked as `no data' (see SI). Discarding these masked pixels when identifying water-covered 
pixels will lead to a substantial underestimation of water cover (Zhao and Gao, 2018). This points to the 
need for scalable and easily implementable  
post-processing approaches to infer the inundation status of masked pixels. 
 
L68-84 
Introduction 
We address this problem by predicting the binary class (e.g., `wet' or `dry') of masked (`no data') pixels, 
based on the observed class of comparable unmasked pixels. Two broad sets of such gap-filling 
approaches have been proposed in the literature. The first set of approaches are based on topographic 
consistency: a pixel will not be `dry' if it lies at an elevation that is lower than the highest (unmasked) 
`inundated' pixel within the same water body  (Khandelwal et al., 2017; Avisse et al.,2017). An important 
limitation to these approaches is their reliance on either a digital elevation model (Khandelwal et al., 
2017; Avisse et al., 2017)  or a radar altimeter (Van Den Hoek et al., 2019). However, digital elevation 
models can have a low level of accuracy in the vertical direction (with standard deviation on the order of 
meters (Avisse et al., 2017) and may not capture the topography of regions that were flooded during the 
satellite overpass, whereas radar altimeters are limited with the spatial coverage limitations that we 
previously discussed (Yale et al., 1998). In contrast, the second set of studies does not rely on ancillary 
information but uses the historical inundation frequency (IF) of a masked pixel (estimated using 
observations taken at times when the pixel was unmasked) to predict its current inundation status. Zou et 
al. (2018) use a fixed IF threshold of 0.75 (i.e. pixels that are inundated on 75\% or more of the unmasked 
images) to identify permanent water bodies. Zhao and Gao (2018) apply a heuristic on the histogram of 
the IF of unmasked inundated pixels: masked pixels with an IF value larger than the IF corresponding to 
an arbitrary (i.e. 0.17) fraction of the mean histogram value are classified as `inundated'. Schwatke et al. 
(2019) use an IF-image as a proxy for a digital elevation model and estimates an area-IF curve for each 
lake as a proxy for its area-elevation curve. An iterative algorithm is then used to estimate the maximum 
IF value of masked inundated pixels, so as to maintain topographic consistency within the lake.  
 



 

L85-94 
Introduction 
Here, we use a supervised classification technique to infer a statistical relationship between the IF value 
and the inundation status of the unmasked pixels, which we then use to predict the inundation status of the 
masked pixels of the same image. Unlike Zou et al. (2018) and Zhao and Gao (2018), the proposed 
approach does not rely on arbitrary heuristics but uses information from all unmasked pixels (both 
inundated and dry) to infer the status of masked pixels. Unlike Schwatke et al. (2019), the approach is 
exclusively based on pixel-level statistical relationships and does not rely on aggregate-level constraints 
such as maintaining topographic consistency within the lake. This feature allows it to use a standard 
machine learning technique ( random forest) and leverage the massive parallelization capability of Google 
Earth Engine, thus benefiting from the scalability and portability associated with that platform. The 
approach is independent from cloud and water classification approaches that are used to construct the 
ternary images (i.e., images comprised of `wet', `dry', and `no data' values) used as input, and our results 
demonstrate that gap-filling performance is generally robust to unbiased classification errors. 
 
-That only a few lakes have been chosen for analysis and validation: I like that the dataset used for testing 
this approach draws on lakes of different sizes and with different data availability, and in different places. 
I also appreciate that you have already conducted additional analysis and plan to include three additional 
lakes within the revised manuscript.  
 
That said, I do think that the limited dataset, as well as your experiences searching for validation data, 
should be acknowledged within the discussion section. In particular, reviewer 1 asks for more discussion 
of the limitations of the approach – including where it will work, and how it will be impacted by other 
environmental conditions. Given the size of the training dataset, discussing these other potential 
limitations will add to the contribution of this work to the broader literature. When revising this 
Discussion section, I would encourage you to broadly discuss challenges to the satellite detection of lake 
water extents, and then move into more specific challenges for your application. Adding a more general 
discussion will help place this work in the context of other similar studies, and provide more context on 
common challenges to these types of approaches.  
 
 
Response 
Thank you for your comment and understanding regarding the data availability challenge for in-situ 
validation. To more rigorously evaluate our approach, we have re-thought our validation as a two-step 
process specifically focusing on the four fundamental assumptions of the algorithm (L 126-145). In the 
first step, we investigate how sensitive the gap filling algorithm is to deviations from each assumption 
using numerical experiments (described in L156-195). This analysis is now presented as a main result in 
the revised manuscript (L. 243-274). In the second step we apply the approach to monitor the extent of 9 
specific lakes that span a variety of sizes, topographies, climates and levels of data availability. We use 
these case studies to discuss the propensity for deviations from the four fundamental assumptions to 
emerge in practice (L 306-359).  
 
Text modifications: 
L 126-144: 



 

 
2.1 Gap filling algorithm 
This assumption holds if four important conditions are satisfied 
 

● Classification accuracy: The ternary input image must be accurate in that the classification 
technique accurately distinguishes water, land and no data in the original multispectral imagery. 
An overly eager cloud detector would mask too many pixels and decrease the precision of the 
supervised classification in the gap-filling process. An overly cautious cloud detector (or a faulty 
water detector) would lead to misclassification of water (or clouds) as land, and vice-versa. This 
then affects gap-filling by introducing errors in both the IF raster and the classification of unmask 
pixels in individual images used to train the supervised classifier. 

● Independence: The propensity of a pixel to be masked in any given image must be independent 
of its inundation status. If this assumption does not hold, the inundation status of a pixel 
determines its cloud coverage. Under these conditions, the relationship between its IF and 
inundation status estimated in cloudless conditions will not reliably predict its status in cloudy 
conditions. This situation may arise, for instance, from fog being produced by the micro-climatic 
conditions associated with open water (Koravcin 2014), or from spatially persistent classification 
errors associated with topographic shading (Huang 2018). 

● Stationarity: The statistical relationship between the IF value and the inundation status of pixels 
must not change over time. A threat to the stationarity assumption might emerge, for instance if 
erosion or sedimentation processes substantially alter the near-shore bathymetry of the lake.  

● Homogeneity: The statistical relationship between the IF value of pixels and their inundation 
status must be homogeneous in space. This assumption is necessary for the IF-inundation status 
relationship estimated for unmasked pixels to be transferred and applied to mask pixels. This 
could be violated in situations when the lake bathymetry contains multiple depressions and the 
lake separates into multiple water bodies as water levels fall. 

 
L156-198 
2.2.1 Numerical Experiments 
We use numerical experiments to evaluate the sensitivity of the gap-filling approach to deviations from its 
four fundamental assumptions. The experiments use 430 monthly ternary classification images (wet, dry, 
masked) obtained from Pekel er al. (2016) for Choke Canyon Reservoir (TX) between March 1984 and 
December 2019. Note that the experiment hinges on the controlled addition of random classification 
errors, and is not materially affected by the specific location chosen as a baseline. The numerical 
experiment then proceeds as follows: 

1.  A fraction $F_1$ of unmasked pixels in each image is randomly selected and masked.  
2. A fraction $F_2$ of the remaining unmasked pixels in each image is then (independently) 

randomly selected and flipped, i.e. recast as `wet' if they are `dry' and vice versa. 
3. The gap-filling algorithm is then carried out using the appropriate combinations of images from 

steps 1 and 2 (see below) to construct the IF raster and the training dataset.  
4. The predicted inundation status (`wet' or `dry') of the pixels masked in step 1 are compared to 

their original status. The proportion of masked pixels that are misclassified in the gap-filling 
process is recorded as gap-filling error. We finally compute the mean gap-filling error across 
images and its 95% empirical confidence interval. 



 

We carried out the following experiments to simulate deviations from each of the four assumptions (see 
Code and data availability below): 
 

● Classification accuracy: We simulate the effects of (i) over-detection of cloud and (ii) 
under-detection of clouds or misclassification of land as water (and vice versa) by respectively (i) 
varying the fraction $F_1$ of unmask pixels in step 1 and (ii) varying the fraction $F_2$ of 
'flipped' pixels in step 2. We simulate the combined effect of both types of errors by considering 
combinations of $F_1$ and $F_2$.  

● Independence: We evaluate the effect of a correlation between the IF value of the pixels and 
their inundation status by comparing the outcome of two experiments. In the first (baseline) 
experiment, the pixels flipped in step 2 are independently drawn for each image. In the second 
(alternative) experiment, the pixels flipped in step 2 are drawn once and do not vary across 
images. Because the flipped pixels are persistently wrongly classified in the alternative 
experiment, we expect a persistent bias to emerge in the relationship between IF and inundation 
status estimated by the supervised classifier. This, in turn, will lead to a larger gap-filling error 
compared to the baseline experiment. We measure the effect of a non-independent inundation 
status as the difference between the gap-filling errors associated with the alternative and baseline 
experiments.  

● Stationarity:. We simulate the effect of an IF-inundation status relationship that evolves over 
time by only introducing errors in the images used to construct the IF-raster. We introduce 
persistent errors in step 2 by flipping the same pixels on all images, which we then use to 
construct the IF raster. However, we use the outcome of step 1 (the unflipped images) as training 
data when carrying out the supervised classification in step 3. This represents the situation where 
an outdated (here, noisy) IF is being used to classify contemporaneous observations. The larger 
the percentage of pixels flipped, the 'noisier' the IF and thus the less representative it is of the 
actual IF of the training images. Under these conditions, the simulated gap-filling errors represent 
the effect of violating the stationarity assumption. 

● Homogeneity. We simulate the effect of a spatially heterogeneous IF-inundation status 
relationship by introducing a persistent error in the training data but not in the images used to 
construct the IF raster. Under these conditions, the relationship between the IF value and the 
inundation status that prevails for the unflipped pixels will be inverted for the flipped pixels. This 
portrays a situation where an arbitrary subset of pixels with a given IF value will tend to be wet 
whenever the remaining pixels with the same IF value are dry, as can emerge for example in a 
wetlandscape where water bodies are governed by the same hydrologic drivers when connected 
and different drivers when disconnected (e.g., drainage vs. seepage). In that context, the fraction 
$F_2$ of pixels flipped represent the degree of heterogeneity of the landscape (i.e. 50% means 
that half the pixels are governed by an inverted IF-flooding status relationship) 

 
L. 243-279 
3.1. Numerical Validation 
Results of the numerical experiments are presented in Figure 3. Panel A displays gap-filling errors for 
various combinations of $F_1$ (pixels masked) and $F_2$ (pixels flipped). The former ($F_1$) 
represents the effect of the supervised classifier being provided with `too little' information in the sense 
that the cloud detector overestimates cloud coverage. Results in Figure 3A suggest that this has a modest 



 

effect on gap-filling errors as long as the remaining (unmasked) pixels are correctly classified as water or 
land. Introducing even modest levels of classification errors in the unmasked pixels (e.g, $F_2=5-10\%$ 
of unmasked pixels are flipped) can cause the gap-filling error to blow up for high levels of $F_1$. In 
other words, for sufficiently high cloud cover or small lake size, the accuracy of the approach becomes 
highly sensitive to classification errors, which occurs in the example when more than 75% of the lake is 
masked. Given that the lake in the synthetic analysis is $\sim 1km^2$, precautions should be taken when 
lakes are covered by excessive clouds or lakes are sufficiently small such that unmasked pixels cover less 
than 25 ha (or roughly 17 x 17 Landsat pixels). 
 
These classification errors are further investigated in Figure 3B. Of note is that gap filling errors arising 
from water-land classification errors (Figure 3B) are generally larger than those arising from an 
overestimation of cloud cover (Figure 3A). This suggests that the gap filling approach works best 
combined with an overly eager cloud detection algorithm that tends to overestimate (rather than 
underestimate) cloud cover. Importantly, Figure 3B also suggests that the gap-filling approach is 
generally robust to faulty water-land classification in input images. Introducing classification errors into 
up to $F_2=30\%$ of unmasked pixels of each image causes gap-filling errors in less than 10\% of the 
control pixels. For context, a value of $F_2=50\%$ would represent the situation where wet and dry 
pixels are perfectly randomly distributed throughout the image (white noise). An $F_2$ value larger than 
50\% reintroduces some signal; in particular $F_2=100\%$ has the same information as $F_2=0$, but 
with all 'wet' and 'dry' pixels being swapped. The numerical experiment also allows to assess the pathway 
through which input classification errors affect gap filling performances. Specifically, the supervised 
classification is affected by (i) errors in the IF raster used as a predictor of inundation status for all 
images, and by (ii) errors in the individual images used by the classifying as training. We investigate the 
relative importance of these two pathways by using the `flipped' images from step 2 (see Section 2.2) to 
either construct the IF raster \emph{or} serve as training data for the classifier; unflipped images from 
step 1 are then used to fulfill the other task. Results in Figure 3B suggests that the gap filling algorithm is 
more sensitive to classification errors in its training data (blue) than to errors in its IF raster (green).  
 
Results in Figure 3C indicate the sensitivity of the gap filling approach to deviations from each of its four 
underlying assumptions. The approach is most sensitive to errors in the detection of water and land in the 
input ternary imagery, although diversions from all four assumptions have a generally modest effect on 
gap-filling errors. As in Figure 3B, gap-filling errors remain below 10\% for up to 30\% of pixels flipped 
(note that red symbols in Fig 3B and 3C have an identical meaning). For higher levels of deviations 
(>30\% of pixels flipped), deviations from the independence (blue) and homogeneity (green) assumptions 
have comparable effects, which is both lower than that of classification errors (red) and higher than that of 
non-stationarities (purple). Note that the experiments used to evaluate stationarity and homogeneity 
assumptions are similar to the experiments to distinguish the IF-errors from training errors on Figure 3B, 
with the important distinction that the errors introduced to evaluate the assumptions are persistent in space 
(i.e. they are not independently drawn for each input image). The negative values in the gap filling errors 
obtained for the independence experiment (blue) arise from image-by-image subtraction of classification 
errors that is included in the experiment (see Section 2.2): for particular images, the gap filling error 
obtained from independently drawn classification errors is ostensibly larger than that obtained from 
persistent classification errors.  
 



 

 
L. 304-363 
4. Discussion 
Results from the numerical experiments suggest that the performance of the gap-filling algorithm is 
generally robust to deviations from its four underlying assumptions. However, the analysis also showed 
that performance can be strongly impacted if these deviations are substantial enough. Therefore, the 
propensity of these four deviations to emerge in practice is an important question to consider when 
validating the proposed approach. 

● Classification Accuracy: Despite its widespread use, the identification of clouds and water based 
on spectral indices entails inherent limitations. For example, challenges in distinguishing open 
water pixels from cloud or topographic shadows, or from snow-covered land, based on their 
MNDWI value have been reported in the literature (see e.g., Zhang et al., 2015; Huang et al., 
2018b) and encountered in our analysis (Figure 1E). However, the lack of direct \emph{in situ} 
observations of lake extents and the highly local nature of the error source (e.g., topography, 
snow cover) makes it challenging to estimate their general prevalence. Instead, we find it helpful 
to characterize classification errors as having two distinct and alternative effects. On the one 
hand, misclassification of either land or water as clouds, for instance due to an overly eager cloud 
detector, will decrease the amount of input information (too little information). On the other hand, 
misclassification of water (or land) as land (or water) will introduce an error into the input 
information (wrong information). This situation can emerge from an overly cautious cloud 
detector, where undetected clouds are then arbitrarily classified as either water or land. Results 
from the numerical experiments suggest that wrong input information has a much larger effect on 
the gap-filling performance than too little input information (compare red symbols in Figures 3A 
and B). This insight is corroborated by comparing two sets of lakes from the case studies. The 
approach performed well for the two small lakes in Texas (Horde Creek and Mackenzie reservoir, 
$\sim 1km^2$ each), where the semi-arid climate and the flat topography are not prone to water 
classification error, but their small size limits the number of input pixels (\emph{too little} 
information). In contrast, the two lakes in upstate New York (Schoharie and Cannonsville 
reservoirs) have more input pixels but the cold climate and mountainous terrain introduce errors 
in the unsupervised classification of water and land (wrong information). There, the gap filling 
algorithm performed markedly worse, particularly in winter when snow and ice are prevalent. 
These results illustrate a key limitation of the approach, that gap-filling accuracy is constrained by 
the accuracy of the input ternary imagery. They also suggest that the approach is more compatible 
with an overly eager cloud detector: by overestimating cloud cover the input imagery will err in 
favor of providing too little (rather than wrong) information, which has a smaller effect on the 
accuracy of the gap filling algorithm. The benefits of an over-eager cloud detection algorithm will 
be limited when unmasked pixels cover a sufficiently small area (roughly 20-30 ha), at which 
point accuracy becomes highly sensitive to wrong information. 

 
 

● Independence: A threat to the independence requirement may emerge if the inundation status of 
a pixel determines its cloud coverage. For instance, fog can be produced by the micro-climatic 
conditions associated with open water (Koravcin et al., 2014). We test whether threats to the 
independence assumptions emerged in our case studies by comparing the inundation frequency of 



 

pixels during cloudless days, with their inundation frequency estimated for all days. The former 
corresponds to the IF value from Equation (1). The latter was determined computing the 
estimated IF values of pixels after gap-filling, which includes cloudy days. We sampled 4000 
pixels with IF values between (and excluding) $0$ and $1$ for both images (before and after 
gap-filling). We then ranked the pixels according to their IF value for each image. The 
independence assumption implies that the pixel rank is not affected by its cloud coverage status: a 
pixel with a higher inundation frequency than another for a subset of observations that had 
cloudless conditions should also have a higher inundation frequency if the full sample of 
observations (cloudless and cloudy) is considered. Results, shown in Fig. 6 (Top), suggest that the 
ranking of inundation frequency does not depend on cloud coverage. In other words, the 
independence assumption does not appear to be threatened in the considered lake. Note that 
non-random cloud coverage will only affect classification output if it concerns pixels near shores 
(i.e. where $0<IF<1$). This excludes permanently inundated pixels, which are predominantly 
affected by fog-over-water (Koravcin et al., 2014).  

● Stationarity: We used a split sample approach to determine whether the relationship between IF 
and the inundation status of pixels remains constant over time. Two IF images were constructed 
using the first (1998-2009) and second (2010-2020) half of the available Landsat 7 images. The 
inundation frequencies given by the first and second IF images were then collected for a random 
sample of 5000 pixels with $IF\in]0,1[$ on both images. The sampled pixels were then ranked 
according to their IF value for each image. The stationary assumption implies that the rank of the 
pixels does not vary between the two observation periods: If bathymetry did not change, a pixel 
that is more often inundated than another pixel during the 1998-2009 period should still be more 
often inundated during the 2010-2020 period. Results on Fig. 6 (Bottom) suggest that the effect of 
bathymetric change on the classification outcome is negligible. Note that classification outcomes 
are only affected by bathymetric changes that concern those pixels that lie within the range of 
variability of water extent. This excludes pixels that are permanently covered (IF=1), where 
bathymetry may be most affected by sedimentation processes.  

● Homogeneity: The homogeneity assumption implies that the relationship between the historical 
inundation frequency of a pixel and their current inundation status does not vary in space. In other 
words, pixels that are historically more often inundated will be more likely inundated on any 
given day. This assumption clearly holds for the non-disjoint bodies of water that are considered 
in this study, but may not apply to bodies of water that fragment upon drainage (Figure 7). There, 
the gap filling algorithm should be applied independently for each homogeneous region. The need 
to identify homogeneous regions a priori in fragmenting lakes and more complex wetlandscapes 
is an important limitation of the approach. 

 
-That there may be more limitations to the approach – due to environmental conditions – than discussed in 
the current manuscript: Again, I would encourage a thoughtful discussion of environmental conditions 
that may limit this approach, taking into account many of the points raised by the reviewers (e.g., 
topographic shading). 
 
Response 
Thanks for your comment. We now explicitly discuss the limitation of the approach in the discussion (L 
326-329 and 359-363) and conclusion (L 371-381) sections, based on our analysis of the four 



 

fundamental assumptions of the approach. Specifically, two key limitations stand out. First, detection 
errors in the input imagery are the most salient limitation of the approach and include the cloud detection 
and topographic shading issues described by the reviewers. We assess the relative effect of different types 
of detection errors and provide practical avenues to mitigate them (e.g., erring towards an excessively 
eager cloud detector). Second the method requires the a-priori delineation of regions where the 
relationship between the inundation frequency and inundation status of pixels is homogeneous. This 
condition is trivial to satisfy for individual lakes but may limit the scalability of the approach for 
hydrologically complex regions (e.g., fragmenting lakes and complex wetlandscapes). 
 
Text Modifications 
L326-329 
These results illustrate a key limitation of the approach, that gap-filling accuracy is constrained by the 
accuracy of the input ternary imagery. They also suggest that the approach is more compatible with an 
overly eager cloud detector: by overestimating cloud cover the input imagery will err in favor of 
providing too little (rather than wrong) information, which has a smaller effect on the accuracy of the gap 
filling algorithm. 
 
L359-363 
This assumption clearly holds for the non-disjoint bodies of water that are considered in this study, but 
may not apply to bodies of water that fragment upon drainage (Figure 7). There, the gap filling algorithm 
should be applied independently for each homogeneous region. The need to identify homogeneous 
regions a priori in fragmenting lakes and more complex wetlandscapes is an important limitation of the 
approach. 
 
L371-381 
However, the analyses also outlined two important limitations of the approach. First, the approach is 
sensitive to classification errors in the input imagery, particularly in small lakes. Misclassification of the 
output binary classes (here wet/dry) have a stronger impact on performance than misidentification of 
masked pixels (here clouds) and the effect is exacerbated when unmasked lakes pixels fall below 25 ha 
(roughly 17 x 17 Landsat pixels). This further implies that the approach might not perform well in 
locations where circumstances (topographic shading, cloud shading, snow/ice, etc) makes it difficult to 
reliably distinguish water from clouds and land using multispectral imagery. In contrast, the method 
appears generally robust to situations where a limited number of input classified pixels are available for 
training (e.g., small lakes or high cloud coverage). These two observations imply that the approach is 
preferably combined with a cloud detector that tends to overestimate cloud coverage. Second, the 
approach requires the a priori identification of homogeneous regions, where the relationship between the 
inundation frequency and inundation status of pixels is unique. This requirement limits the scalability of 
the approach in complex wetlandscapes, where the relationship might vary through space.  
 
Both reviewers also had a few minor comments that would improve the manuscript. In particular, the 
introduction is missing a scope in the final paragraph (noted by Reviewer 1). In addition, the figures were 
challenging to read, particularly axis labels, legends, and symbols. I encourage the authors to revisit all 
figures to ensure that they are readable. 
 



 

Response 
Thanks for your comment. We revised the figures to make the text legible and rewrote the introduction in 
a way that (we hope) clearly states the scope of the paper.  
 
I request that the authors incorporate their proposed revisions into the discussion paper for re-review. 
 
 
Referee #1  
 
General Comments 
Mullen and Muller present a new method for producing time series of water extent in large, 
rapidly-changing and ecologically/culturally/economically important lakes. They use a novel approach 
implemented in Google Earth Engine (GEE) and validate their results against existing historical data, 
finding their method to work well, except when scenes contain snow/ice. Overall, the method is robust 
and the writing and figures in the manuscript are generally clear. However, I have several major concerns 
with the paper, chiefly related to the discussion of the method’s limitations and the situation of this paper 
within the broader literature, described below. There are also several typos, missing commas/parentheses 
and some incomplete sentences in the manuscript. I am not certain I caught all the errors, so I suggest the 
authors carefully edit the paper again before submitting a revised version.  
 
Response 
We thank the reviewer for their thorough and helpful review. We interpret the reviewers’ comments as 
requiring (i) a more thorough discussion of the specific contribution of this manuscript in the context of 
the large literature on remotely sensed water detection, and (ii) a more careful analysis on the limitations 
of the approach. We address the reviewer’s first point with a substantial rewrite of the introduction where 
we cast the proposed approach as addressing a gap filling challenge that is specific (and essential) to the 
type of high frequency historic reconstruction that we seek to achieve. We address the reviewer’s second 
point by adding a set of numerical experiments exploring the sensitivity of the approach to different types 
of classification errors in the input data (i.e. pixels misclassified classified as water or land, or water and 
land pixels mistakenly classified as clouds), which we believe are the main limitation of our approach. 
We also added three lakes in the validation analysis to illustrate the application of the method in a small 
(~1km2) lake and in a mountainous/snowy setting.  
 
 
 
Major Comments:  
1. I would have thought that the specific cloud masking method could have a significant effect on the 
results, yet the cloud masking is only described in the SI and not given much attention in the manuscript. 
More discussion of the cloud masking method is needed in the main text. Furthermore, I would also 
suggest additional analysis and discussion about how the choice of a certain cloud-masking algorithm 
may or may not affect the results. For example, questions that I feel need to be addressed include what 
percent of pixels are cloudy/poor quality? How does this vary by lake/by year? Do lakes with greater 
cloudiness exhibit higher error than lakes with lower cloudiness?  
 



 

Response 
We agree with the reviewer that cloud detection is an important prerequisite to our approach that merits 
further investigation. Our revised validation approach focuses on the four fundamental assumptions of the 
algorithm: input classification accuracy, stationarity, independence and heterogeneity (see L 125-144 of 
the revised manuscript). Questions associated with cloud cover and cloud detection mentioned in your 
comment relate to the first assumption by specifically affecting the amount of information fed into the 
supervised classifier. The revised discussion section focuses in part on this dependence and specifically 
discussed the effect of cloud detection on performance (L 315-331). This discussion is supported by two 
added analyses: 
 

- Empirical analysis: For each lake, we added a scatterplot with the prediction error on the lake area 
plotted against the percentage of cloud cover. Results show that, across lakes, the prediction error 
does not increase significantly with cloudliness for the particular cloud masking algorithm that we 
use.  

 
- Numerical experiment: We use numerical experiments to explore the sensitivity of our approach 

to the accuracy of cloud detection more generally. To investigate the effect of an overly eager 
cloud detection that tends to overestimate cloud cover, we changed a number of randomly 
selected (land and water) pixels of each image to cloud, and evaluate the method’s ability to 
determine their original class (water or land). To investigate the effect of an algorithm that fails to 
fully capture (i.e., underestimates) clouds or cloud shadows, we “flipped” a number of randomly 
selected pixels from water to land (and vice versa) between the supervised and unsupervised 
classification steps of our algorithm. This emulates the fact that undetected cloud (or shadow) 
pixels might be misclassified as land or water. We then assess the effect of this misclassification 
on the method’s ability to predict the class of clouded pixels. We find that our approach is robust 
to the former but sensitive to the latter type of error. The approach is therefore more compatible 
with an overly eager cloud detection algorithm, rather than an overly cautious one. 

 
Text modifications 

● Added scatterplots of errors vs. cloudiness for the validation lakes on Figs 4, 5 and S1 of the 
revised manuscript. 

● Added Figure 3 and Sections 2.2 and 3.1 describing the numerical experiments and their results. 
● An added discussion (Section 4) on the effect of classification errors and cloud detection on the 

gap-filling accuracy. 
● Modified conclusion (Section 5) to explicitly discuss the practical limitations of the method, 

including with regard to cloud cover and detection. 
 
2. The authors test their method over a small number of lakes – only 6 in total. But given the global 
availability of Landsat data, and the plethora of studies examining regional to-global scale variability in 
surface water extent using Landsat/GEE (see comment #3), analyzing over only 6 lakes seems to me like 
a very small sample size. I encourage the authors to consider adding additional lakes to the analysis, 
perhaps with different environmental conditions such as in areas with high topography/high latitude (see 
comment #4). 
 



 

Response 
While we agree with the reviewer that a larger sample size would be ideal, a persistent challenge that we 
ran into was to find reliable in situ observations of lake extents that matches the monthly frequency and 
multi-decadal observation periods that we are targeting. Oftentimes we would find lake elevation time 
series but no reliable elevation-area relationships to obtain lake extents. Short of having a large sample of 
validation lakes, the revised manuscript uses a combination of targeted case studies and numerical 
experiments to investigate key limitations of our approach. Specifically, in response to comment #3 
below, we now emphasize that our approach serves as a gap-filling algorithm, which purpose is to 
determine the class (water or land) of masked (cloud) pixels. We hypothesize that two main issues 
associated with the accuracy of the input classified imagery can affect the accuracy of the gap-filling 
method: (i) too little information is provided in the input imagery or (ii) wrong information is contained in 
the input imagery or inundation frequency raster. 
 
In the revised manuscript, we investigate these two limitations (too little information and wrong 
information) in two ways: 
 

1. We use the numerical experiments described above to investigate the effect of (i) too little 
(randomly masked pixels) and (ii) wrong (randomly flipped pixels) information.  

2. We add three validation lakes to illustrate the effect of each limitation. Two small (~1km) lakes in 
Texas illustrate the effect of having too little information (i.e. a small number of available pixels). 
The other lake in upstate New York illustrates the effect of having wrong information, as the cold 
climate and mountainous terrain introduce errors in the unsupervised classification of clouds, 
water and land.  

 
Both analyses suggest that the proposed method is more directly limited by wrong information, rather 
than too little information. This is consistent with the discussion on cloud masking of the previous 
comment. An overly eager cloud detection algorithm will err in favor of providing too little (rather than 
wrong) information and have a smaller effect on prediction performance. 
 
Text modifications 

- Three validation lakes added to Figures 4 and S1.  
- An added Figure 3 and methods (Section 2.2) and result (Section 3.1)  sections describing the 

numerical experiments and their result. 
- Added Figure 3 and Sections 2.2 and 3.1 describing the numerical experiments and their results. 
- An added discussion (Section 4) on the effect of classification errors and cloud detection on the 

gap-filling accuracy. 
 
 
4b  Relatedly, the authors should also consider adding discussion about the implementation of the method 
and the ease of running it – i.e. is the method computationally slow and therefore would be challenging to 
run over large areas or could this be reasonably run over, say, hundreds of large reservoirs?  
 
Response 



 

With regards to implementation and scaling, the “simplicity” of the gap-filling approach and its reliance 
on readily available machine learning techniques makes it fully compatible with Google Earth Engine. 
We see this as one of the key advantages of the approach, which can then leverage the scalability and 
portability of the Earth Engine platform. However, an important limit to scalability is the need to comply 
with the homogeneity assumption of the approach (see L191-199). This requires the ex ante identification 
of regions where the relationship between the historical inundation frequency and their current flooding 
status is homogeneous. While not a problem for the monitoring of distinct lakes, this requirement might 
be challenging to satisfy in hydrologically complex landscape such as wetland and water bodies that 
fragment when being drained. This limitation is now extensively discussed in the Discussion (Section 4, 
L353-359) and Conclusion (Section 5, L374-376) sections. We also added permanent links to working 
Earth Engine scripts of all analyses for readers to evaluate for themselves the practicality of implementing 
the method (L382-385). 
 
Text modifications 

● Added Sections 2.2 and 3.1 describing a numerical experiment to assess the robustness of the 
approach to violations of the homogeneity assumption.  

● Modified Sections 4 and 5 to discuss practical cases of violations of the homogeneity assumptions 
and implications for the scalability of the approach.  

 
3. This manuscript requires additional discussion of how this method fits in with the (very large) literature 
on monitoring lake extent using optical satellite imagery. The manuscript makes little mention of the 
work of Pekel et al. Nature, (2016), who map global variability in water extent using Landsat and GEE, or 
regional studies such as Zou et al. PNAS, (2018) or Wang et al., Nature Geoscience, (2018), or even the 
large literature on reservoir monitoring using MODIS or other optical sensors (e.g. Gao et al., Water 
Resources Research, 2012). While I do appreciate that this method is designed to produce highly accurate 
time series for individual lakes which is different than the goals of many of these other studies, I feel 
more discussion is needed to distinguish specifically how this method is an advance compared to this 
previous work and particularly, what specific scientific questions this approach could answer that other 
approaches could not. 
 
Response 
The reviewer raises a good point and we edited the introduction to better describe the scope of the paper 
and its place with respect to previous work. In particular, we now reframe the general challenge of 
reconstructing historical time series of lake extent as a two-step problem. Only the second step is 
addressed by the proposed approach, although its sensitivity to errors from the first step are fully 
investigated in the revised manuscript (see comments 1 and 2 above).  
 
1. The first step concerns the detection of land, water and clouds using multispectral imagery. This is a 

well studied problem that is generally well addressed, although well-known issues arise under specific 
circumstances. Improving the detection water, cloud and land from a pixel’s spectral signature is 
beyond the scope of this paper and we refer to the appropriate literature in the revised manuscript. 

 
2. The second step of the problem is in essence a gap-filling challenge, where pixels classified as clouds 

during the first step must be reclassified as water or land. Pekel’s(2016) dataset is unique by 



 

providing monthly high resolution global water cover grids going back to the 1980’s based on 
Landsat imagery, thus addressing step 1 above. However, masked (cloudy) pixels are left 
unclassified, leading to a significant underestimation of lake water extents (see Zhao and Gao 2018, 
GRL). The approach proposed in the manuscript seeks to address this specific issue and infer the 
classification status of mask landsat pixels. Its novelty, compared to previous work addressing the 
same issue, is its unique use of supervised classification to leverage historic inundation frequency (see 
response to comment #1 from reviewer 2).  

 
Text modification:  

● Modified manuscript title and abstract to reflect its new scope 
● Rewritten introduction to reflect the points made in our response above 

 
 
 4. Relatedly, I also feel this manuscript is lacking some discussion about limitations and specific 
applications. The discussion about the different assumptions of the method is good; however, I was left 
wondering more specifically where this method might work and where it might fail. For example, would 
this method work in areas of high topography/high latitudes where topographic shadowing is an issue? 
What is the smallest lake this method would work on? Is there a relationship between 
cloudiness/size/error? I would also advise more discussion about what might have caused the outlier 
points removed in the time series analysis.  
 
Response 
We thank the reviewer for their comment and hope that the new result section about the approach’s 
sensitivity to classification errors in the input imagery (Section 3.1) will address their concerns. Many of 
the questions asked by the reviewer in their comment boil down to the effect of pixel misclassification 
(or, more fundamentally, to too little or wrong information) on the method’s ability to re-classify as land 
or water the pixels that were previously identified as clouds. The new analyses in the revised manuscript 
(comments 1-2 above) show that the method is robust to the former (too little information) but can be 
sensitive to the latter (wrong information).  
 
In practice, this means that the method will not perform well in locations where circumstances 
(topographic shading, cloud shading, snow/ice, etc) makes it difficult to reliably distinguish water from 
clouds and land using multispectral imagery. In contrast, the method is likely to be generally robust to 
application to smaller lake sizes, despite a limited number of unmasked pixels available to train the 
supervised classification. However, performance is contingent on the assumptions that (i) the location of 
cloud and water pixels are statistically independent and (ii) that lake bathymetry does not change over 
time. In the original manuscript we posited that these assumptions are less likely satisfied in small lakes. 
However, we find no evidence of that in our extended analysis in the revised manuscript, so the 
hypothesized relationship between lake size and performance is dropped in the revised manuscript.  
 
Text modification:  

 
- Modified discussion section (Section 4) focusing on the effect of classification errors on 

gap-filling performance (L 308-331). 



 

- Modified conclusion section (Section 5) discussing the practical implications of these effects on 
the applicability of the method (L 367-374) 

 
 
 
 
 
Specific Comments:  
Response 
We thank the reviewer for their detailed specific comments, which we think generally improve the 
readability of the manuscript. We will address all comments in the revised manuscript, provided that they 
still apply (i.e. if the referred text was not already modified to address a major comment). 
 
L1: “The empirical attribution of ’past’ rapid hydrologic change” L15: change “when applicable” to 
“where available”  
 
L15: I would advise adding a sentence at the end of the abstract stating the importance/broader 
significance of your findings, instead of just stating that your method works 
 
 L18: In my opinion, the first few sentences of the paper are weak. I would suggest rewriting slightly (i.e. 
“Despite their importance, many lakes are undergoing rapid change. . .” makes little sense – the 
importance of lakes doesn’t necessarily mean that lakes will not or should not undergo rapid change). 
Since “rapidly changing” is a key part of the manuscript, I would also suggest defining what you mean by 
rapid change paper since the time scale implied by “rapid” can vary based on the reader’s background. 
 
 L27: This sentence (“By providing”) should start the next paragraph, not sit at the end of this one as it 
interrupts the flow  
 
L31: The paragraph starts by talking about monitoring surface water extent, but then discusses radar 
altimeters before moving back to extent. I would suggest restructuring this paragraph, or at least the first 
sentence of it, as the current structure is confusing  
 
L83: I suggest adding a sentence or two to the final paragraph of the introduction stating something like 
“we test this method over XX lakes, analyze its accuracy and demonstrate its utility” just to provide 
readers with a better road map for the manuscript  
 
L86: I would call this first step something like “Masking” instead of pre-processing (see major comment 
#1 above).  
 
Figure 1: I like this figure, but think it could be improved slightly by increasing the size of the image 
panels and decreasing the size of the arrows and white space. The image panels are hard to see in places 
and there’s plenty of white space so it should be straightforward to make them a bit larger and easier to 
see.  
 



 

L149: The sentence starting with “Indeed, visual inspection of satellite. . .” is unclear. I think what the 
authors are stating is that the area-elevation curves do not match the satellite-observed area, but this 
section could be clarified.  
 
Figure 3: Please make the x and y labels and the symbols themselves much larger, it is nearly impossible 
to read the figure at this scale.  
 
L181: “The analysis suggests. . .” this is not a complete sentence, please edit Figure 5: Please make x and 
y labels larger  
 
L229: change phrase starting with “if shadows. . .” to “shadows covering dry land in the vicinity of the 
lake may cause an overestimation of the surface area of the lake”  
 
L225-234: Does the cloud masking method remove cloud shadows?  
 
L225-234: Is the influence of topographic shadowing examined? Topographic shadowing, particularly in 
the NY lake (in winter) could influence classification accuracy (and would not be a randomly distributed 
error). Even if most of the lakes specifically examined here occur in the tropics or in areas with 
little-to-no surrounding topography, topographic shadowing issues would likely impact the applicability 
of this method in other areas and therefore should be discussed  
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Referee #2  
 
In this study, the authors developed a hybrid remote sensing algorithm to estimate the time series of water 
surface areas over several lakes with rapid changes. The major novelty of this paper is that the proposed 
algorithm is still workable when the remote sensing images are partially covered by clouds/low-quality 
pixels. To enhance the capability of working under cloud condition, the authors first utilized unsupervised 
algorithm to classify pixels with high quality and then create a high-confidence inundation frequency (IF) 
image. Next, the supervised algorithm and the IF image were used to interpret masked pixels. The 
validation results against in situ observations indicate that the algorithm is able to monitor water surface 
changes with a high accuracy. This paper is well-written and easy to follow. However, there are several 
major concerns related to the following aspects: (1) incomplete literature review (2) the applicability of 
the algorithm and (3) the design of the validation.  
 
Response 
We thank the reviewer for the positive comments and hope that our responses to their comments below, 
and the associated modifications to the manuscript have addressed their three specific concerns.  
 
(1)Some efforts have been made to monitor surface water on global scale using remote sensing. It is not 
only necessary to acknowledge those work in this paper, but also meaningful to highlight the difference. 
For example, Pekel et al. (2016) developed a global water map by applying Machine Learning algorithm 
to Landsat images. Khandelwal et al. (2017) developed a method to monitor global lakes using MODIS 
images. Very similar to this paper, Zhao and Gao (2018) used an automatic approach to correct the 
contaminated images for assessment of reservoir surface area dynamics over 6,817 global reservoirs. 
They used the water occurrence map derived by Pekel et al. (2016) to correct the pixels with low quality, 
which is very close to the idea of IF image in this paper.  
 
Response 
We thank the reviewer for their suggestions and have rewritten the introduction to address it (also in 
response to comment 3 from reviewer 1). In the new introduction we provide an extensive review of the 
literature (now specifically referring to the mentioned studies, among others), and clarify our contribution 
as specifically addressing the problem of retrieving classification information from masked pixels. We 
agree with the reviewer that the approach from Zhao and Gao (Z&G), which we were not aware of, 
addresses the same problem with a comparable method, although with important differences. Z&G is 
indeed similar to the proposed approach in that it leverages historical inundation frequency information to 
infer the flooding status of masked pixels. Both approaches rely on the assumption that all masked pixels 
with inundation frequency above a certain threshold should be designated as flooded. However, the two 
approaches differ in the way they define this threshold, which varies from image to image depending on 



 

the current level of the lake. Z&G use a heuristic approach based on the shape of the histogram of 
unmasked flooded pixels to determine the threshold. In contrast, our approach relies on machine learning 
(supervised classification) to leverage the relationship between the inundation frequency and current 
status of all unmasked pixels: flooded and unflooded. By relying on statistical relationships embedded 
within each image, rather than on arbitrary heuristic rules that are not able to vary across images, the 
proposed approach is more flexible and less reliant on user input. We now explicitly refer to Z&G in the 
introduction, along with the other approaches that we are aware of that address the same challenge (e.g., 
Avisse et al 2017 and Khandelwal et al 2017, which both rely on a DEM, and Schwatke 2019), and clarify 
the specific contribution of the proposed approach. 
 
Text modification: 
Rewritten introduction to reflect the points made in our response above 
 
2)The applicability of the algorithm needs to be further demonstrated given the fact only a few lakes were 
tested in this study. Besides this, all the selected lakes are very large considering the 30-m spatial 
resolution of Landsat. And the majority of the global lakes are much smaller than 1 km2. It would be 
interesting to add a section discussing the performance of the algorithm over small lakes. We can find the 
lowest accuracy was obtained over the smallest lake in this study which raises a question - if the accuracy 
goes down when the size of lakes decreases. 
 
Response 
We agree with the reviewer that the (apparent) relationship between lake size and prediction accuracy in 
the original manuscript merited further analysis. In the original manuscript, we posited that the 
independence and stationarity requirements of the approach are less likely to hold for lakes. However, this 
hypothesis was dropped in the revised manuscript because additional analyses (both empirical and 
numerical) provide no evidence to support it: 
 
(i) Empirical Analysis: We added two validation lakes in the revised manuscript, which size (~1km2) is 
much smaller than the previously considered lakes. The gap filling algorithm performed well on both 
added lakes, which are located in a flat and semi-arid region in Texas. This suggests that the poorer 
performance on the smallest lake in the original manuscript (Cannonsville reservoir, NY) was due to local 
topography and climate,  rather than its size.  (Unfortunately, while most global lakes are indeed smaller 
than 1km2, very few have openly available in-situ data of their surface area at the frequency and coverage 
period considered in this study.)  
 
(ii) Numerical Experiment: We also conduct a numerical experiment in which we explore multiple ways 
in which the accuracy of our approach will be affected, representing a variety of classification and 
practical challenges. The method was quite sensitive to classification errors in the input imagery (e.g., 
clouds misclassified as water, water misclassified as land, etc), which we interpret as indicative of its 
limitation in situations where circumstances (topography, climate) makes it difficult to systematically 
identify water on the input multispectral imagery. These effects might have confounded the effect of lake 
size in the original manuscript, as previously argued (empirical analysis). Conversely, we find that the 
method’s ability to predict the class (water or land) of the artificially masked images is robust to an 
increasingly large fraction of masked images -- within certain limits described below.  



 

 
Small lakes, in particular, will be affected both by the limited amount of information to conduct the 
training for gap-filling as well as the fact that edge pixels will be mixed water and land, and as lakes 
decrease in size the relative proportion of edge pixels increases. Both of these issues are addressed in our 
synthetic analysis of the 1 km2 lake in which we increased the proportion of masked pixels (up to 90%) 
and consider the effects of inaccurate classification (this latter effect can be considered a proxy for the 
increasing proportion of lake edge pixels and misclassification around the edge). When the area of 
unmasked pixels is sufficiently large (> 25 ha), the gap-filling accuracy is generally robust to variations in 
cloud cover or lake size. However, when the the area of unmasked pixels drops below 25 ha, gap-filling 
accuracy becomes highly sensitive to classification accuracy and the number of unmasked pixels. 
 
 
Together, these results suggest that water detection is the primary limitation for large lakes, and that lake 
size (and fraction of the lake that is masked) stands as an additional limitation when the unmasked area 
becomes sufficiently small (roughly below 25 ha in our synthetic analysis).. 
 
Text modification:  

 
- Added validation lakes in Figure 4 and S1 
- Added sections describing the numerical experiments (Section 2.2) and their results (Section 3.1) 
- Added discussion section on the effect of classification errors on gap-filling performance 

(L308-331). The respective effects of  “too little” information due to cloudiness, an overly eager 
cloud detection method or a smaller lake size, or of “wrong information due to water-land 
classification errors are specifically discussed, as well as the interaction between the two for small 
lakes. 

 
(3)To validate the results, the authors compared all remotely sensed water extents with in situ 
observations. However, one of the highlights of the proposed approach is to interpret the masked pixels. 
So I am wondering how the algorithm performs during the cloudy season when lots of pixels are masked.  
 
 
Response 
We thank the reviewer for their suggestion, and have added to the revised manuscript a figure for each 
validation lake representing lake extent estimation error against  cloudiness. We find that errors are not 
significantly correlated to the extent of cloud cover if clouds are appropriately detected., This finding is in 
line with our interpretation that the approach is robust to having too little (small or heavily clouded lakes), 
information in the input imagery. However, our numerical experiment also indicates that errors are 
correlated to the prevalence of wrong information (misclassification of water or land) in the input 
imagery. This indicates that overly greedy cloud/shadow masking algorithms will yield better results 
compared with algorithms that underpredict cloud/shadow pixels. This also entails that challenges will 
arise when many cloud pixels are difficult to detect (e.g., waspy clouds or cloud edges). 
 
 
 



 

Text modification 
● Added scatterplots of errors vs. cloudiness in Figures 4, 5 and S2. 
● Added discussion section on the effect of “too little” information due to cloudiness (L308-331). 

 
Other specific comments:  
Thank you for your comments, which we will be sure to address in the revised manuscript. 
 
(1) Line24, miss a space in ‘consequenceof’.  
(2) It would be better to increase the font size for all figures. 
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