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Abstract. Grain size analysis is the key to understand the
sediment dynamics of river systems. We propose GRAINet,
a data-driven approach to analyze grain size distributions
of entire gravel bars based on georeferenced UAV images.
A convolutional neural network is trained to regress grain5

size distributions as well as the characteristic mean diameter
from raw images. GRAINet allows the holistic analysis of en-
tire gravel bars, resulting in (i) high-resolution estimates and
maps of the spatial grain size distribution at large scale, and
(ii) robust grading curves for entire gravel bars. To collect10

an extensive training dataset of 1,491 samples, we introduce
digital line sampling as a new annotation strategy. Our eval-
uation on 25 gravel bars along six different rivers in Switzer-
land yields high accuracy: The resulting maps of mean di-
ameters have a mean absolute error (MAE) of 1.1cm, with15

no bias. Robust grading curves for entire gravel bars can be
extracted if representative training data is available. At the
gravel bar level the MAE of the predicted mean diameter is
even reduced to 0.3cm, for bars with mean diameters ranging
from 1.3cm to 29.3cm. Extensive experiments were carried20

out to study the quality of the digital line samples, the gener-
alization capability of GRAINet to new locations, the model
performance w.r.t. human labeling noise, the limitations of
the current model, and the potential of GRAINet to analyze
images with low resolutions.25
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1 Introduction

Understanding the hydrological and geomorphological pro-
cesses of rivers is crucial for their sustainable development,

so as to mitigate the risk of extreme flood events and to pre- 30

serve the biodiversity in aquatic habitats. Grain size data of
gravel- and cobble-bed streams is key to advance the under-
standing and modelling of such processes (Bunte and Abt,
2001). The fluvial morphology of the majority of the world’s
streams is heavily affected by human activity and construc- 35

tion along the river (Grill et al., 2019). Human interventions
like gravel extractions, sediment retention basins in the up-
per catchments, hydro power plants, dams, or channels re-
duce the bedload and lead to surface armouring, clogging
of the bed, and latent erosion (Surian and Rinaldi, 2003; Si- 40

mon and Rinaldi, 2006; Poeppl et al., 2017; Gregory, 2019).
Consequently, the natural alteration of the river bed is hin-
dered, eventually deteriorating habitats and potential spawn-
ing grounds. Moreover, the process of bedload transport can
cause bed or bank erosion, the destruction of engineering 45

structures (e.g., due to bridge scours) or increased flooding
due to deposits in the channel that amplify the impact of se-
vere floods (Badoux et al., 2014). What makes modelling of
fluvial morphology challenging are the mutual dependencies
between the flow field, grain size, its movement and the ge- 50

ometry of the channel bed and banks. While channel shape
and roughness define the flow field, the flow moves sedi-
ments — depending on their size — and the bed is altered
by erosion and deposition. This mutually reinforcing system
makes understanding channel form and process hard. Trans- 55

port calculations in numerical models are thus still based on
empirical formulas (Nelson et al., 2016).

One important key indicator for modelling sediment dy-
namics of a river system is the grading curve of the sedi-
ment. Depending on the complexity of the model, the grain 60

size distribution is either described by its characteristic di-
ameters (e.g., the mean diameter dm defined by Meyer-Peter
and Müller, 1948) or by the fractions of the grading curve
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(fractional transport, Habersack et al., 2011). The grain size
of the river bed is crucial because it defines the roughness
of the channel as well as the incipient motion of the sedi-
ment (Bunte and Abt, 2001). Thus, knowledge of the grain
size distribution is essential to specify flood protection mea-5

sures, to asses bed stability, to classify aquatic habitats, and
to evaluate geological deposits (Habersack et al., 2011). Col-
lecting the required calibration data to describe the com-
position of a river bed is time-consuming and costly, since
it varies strongly along the downstream of a river (Surian,10

2002; Bunte and Abt, 2001) and even locally within individ-
ual gravel bars (Babej et al., 2016; Rice and Church, 2010).
Traditional mechanical sieving to classify sediments (Krum-
bein et al., 1938; Bunte and Abt, 2001) requires a substan-
tial amount of skilled labour, and the whole process of dig-15

ging, transport, and sieving is time-consuming, costly, and
destructive. Consequently, it is rarely implemented in prac-
tice. An alternative way of sampling sediment is surface sam-
pling along transects or on regular grid. We refer to Bunte
and Abt (2001) for a detailed overview of traditional sam-20

pling strategies. A simplified, efficient approach that collects
sparse data samples in the field is the line sampling analysis
of Fehr (1987), the quasi-gold standard in practice today.1

This procedure of surface sampling is commonly referred to
as pebble counts along transects (Bunte and Abt, 2001). Yet,25

this approach is still very time-consuming and, worse, poten-
tially inaccurate and subjective (Bunte and Abt, 2001; De-
tert and Weitbrecht, 2012). Moreover, in-situ data collection
requires physical access and cannot adequately sample inac-
cessible parts of the bed, such as gravel bar islands (Bunte30

and Abt, 2001).
An obvious idea to accelerate data acquisition is to esti-

mate grain size distribution from images. So-called photo-
sieving methods that manually measure gravel sizes from
ground level images (Adams, 1979; Ibbeken and Schleyer,35

1986) were first proposed in the late 1970s. While the accu-
racy of measuring the size of individual grains may be com-
promised compared to field sampling, manual image-based
sampling brings many advantages in terms of transparency,
reproducibility, and efficiency. Since it is non-destructive,40

multiple operators can label the exact same location. Much
research tried to automatically estimate grain size distribu-
tions from ground level images (Butler et al., 2001; Rubin,
2004; Graham et al., 2005; Verdú et al., 2005; Detert and
Weitbrecht, 2012; Buscombe, 2013; Spada et al., 2018; Bus-45

combe, 2019; Purinton and Bookhagen, 2019). On the con-
trary, relatively little research has addressed the automatic
mapping of grain sizes from images at larger scale (Carbon-
neau et al., 2004, 2005; Black et al., 2014; de Haas et al.,
2014; Carbonneau et al., 2018; Woodget et al., 2018; Zettler-50

Mann and Fonstad, 2020), needed for practical impact. Mon-
itoring of river systems over time suffers from biases intro-

1To the best of our knowledge, this includes at least the German-
speaking countries: Switzerland, Germany, and Austria.

duced by different operators in the field (Wohl et al., 1996).
Hence, objective, automatic methods for large scale grain
size analysis offer great potential for consistent monitoring 55

over time.
Other researchers have proposed to analyze 3D-data ac-

quired with terrestrial or airborne LiDAR, or through pho-
togrammetric stereo matching (Brasington et al., 2012;
Vázquez-Tarrío et al., 2017; Wu et al., 2018; Huang et al., 60

2018). However, working with 3D-data introduces much
more overhead in data processing compared to 2D-imagery.
Moreover, terrestrial data acquisition lacks flexibility and
scalability, while airborne LiDAR remains costly (at least
until it can be recorded with consumer-grade UAVs). Pho- 65

togrammetric 3D-reconstruction is limited by the reduced
resolution of the reconstructed point clouds (relative to that
of the original images), which suppresses smaller grains.
Woodget et al. (2018) have shown that, for small grain sizes,
image-based texture analysis is beneficial over roughness- 70

based methods.
While automatic grain size estimation from ground-level

images is more efficient than traditional field measurements
(Wolman, 1954; Fehr, 1987; Bunte and Abt, 2001), it is com-
monly less accurate and scaling to large regions is hard. 75

Threshold-based image analysis for explicit gravel detection
and measurements is affected by lighting variations and thus
requires much manual parameter tuning. In contrast, statisti-
cal approaches avoid explicit detection of grains and empir-
ically correlate image content with the grain size measure- 80

ment. Although these data-driven approaches are promising,
their predictive accuracy and generalization to new scenes
(e.g., airborne imagery at country-scale) is currently limited
by hand-designed features and small training datasets.

In this paper, we propose a novel approach based on con- 85

volutional neural networks (CNN) that efficiently maps grain
size distributions over entire gravel bars, using georeferenced
and orthorectified images acquired with a low-cost UAV. Not
only allows our generic approach to estimate the full grain
size distribution at each location in the orthophoto, but also 90

to estimate characteristic grain sizes directly using the same
model architecture (Fig 1). Since it is hard to collect suf-
ficiently large amounts of labeled training data for hydro-
logical tasks (Shen et al., 2018), we introduce digital line
sampling as a new, efficient annotation strategy.2 Our CNN 95

avoids explicit detection of individual objects (grains) and
predicts the grain size distribution or derived variables di-
rectly from the raw images. This strategy is robust against
partial object occlusions and allows for accurate predic-
tions even with coarse image resolution, where the individ- 100

ual small grains are not visible by the naked eye. A common
characteristic of most research in this domain is that grain

2It is worth noting that the annotation strategy and the CNN are
not tightly coupled. Since the CNN is agnostic, it could be trained
on grain size data created with different sampling strategies to meet
other national standards.
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Figure 1. Illustration of the two final products generated with GRAINet on the river Rhone. Left: Map of the spatial distribution of charac-
teristic grain sizes (here dm). Right: Grading curve for the entire gravel bar population, by averaging the predicted curves of individual line
samples.

size is estimated in pixels (Carbonneau et al., 2018). Typi-
cally, the image scale is determined by recording a scale bar
in each image, which is used to convert the grain size into
metric units (e.g., Detert and Weitbrecht, 2012), but limits
large-scale application. In contrast, our approach estimates5

grain sizes directly in metric units from orthorectified and
georeferenced UAV images.

We evaluate the performance of our method and its robust-
ness to new, unseen locations with different imaging con-
ditions (e.g., weather, lighting, shadows) and environmen-10

tal factors (e.g., wet grains, algae covering) through cross-
validation on a set of 25 gravel bars. Like Shen et al. (2018),
we see great potential of deep learning techniques in hydrol-
ogy and hope that our research constitutes a further step to-
wards its widespread adoption. To summarize, our presented15

approach includes the following contributions:

– End-to-end estimation of the full grain size distribution
at particular locations in the orthophoto, over areas of
1.25m×0.5m.

– Robust mapping of grain size distribution over entire20

gravel bars.

– Generic approach to map characteristic grain sizes with
the same model architecture.

– Mapping of mean diameters dm below 1.5cm.

– Robust estimation of dm, for arbitrary ground sampling25

distances up to 2cm.

2 Related Work

In this section, we review related work on automated grain
size estimation from images. We refer the reader to Piégay

et al. (2019) for a comprehensive overview of remote sensing 30

approaches on rivers and fluvial geomorphology. Previous re-
search can be classified into traditional image processing and
statistical approaches.

Traditional image processing, also referred to as object-
based approaches (e.g. Carbonneau et al., 2018), has been ap- 35

plied to segment individual grains and measure their sizes, by
fitting an ellipse and reporting the length of its minor axis as
the grain size (Butler et al., 2001; Sime and Ferguson, 2003;
Graham et al., 2005, 2010; Detert and Weitbrecht, 2012; Pur-
inton and Bookhagen, 2019). Detert and Weitbrecht (2012) 40

presented BASEGRAIN, a MATLAB-based object detection
software tool for granulometric analysis of ground-level, top-
view images of fluvial, non-cohesive gravel beds. The gravel
segmentation process includes gray-scale thresholding, edge
detection, and a watershed transformation. Despite this au- 45

tomated image analysis, extensive manual parameter tuning
is often necessary, which hinders the automatic application
to large and diverse sets of images. Recently Purinton and
Bookhagen (2019) introduced a python tool called Pebble-
Counts as a successor of BASEGRAIN replacing the water- 50

shed approach with k-means clustering.
Statistical approaches aim to overcome limitations of

object-centered approaches by relying on global image statis-
tics. Image texture (Carbonneau et al., 2004; Verdú et al.,
2005), auto-correlation (Rubin, 2004; Buscombe and Mas- 55

selink, 2009), wavelet-transformations (Buscombe, 2013),
or 2D spectral decomposition (Buscombe et al., 2010) are
used to estimate the characteristic grain sizes like the mean
(dm) and median (d50) grain diameters. Alternatively, one
can regress specific percentiles of the grading curve individ- 60

ually (Black et al., 2014; Buscombe, 2013, 2019).
Buscombe (2019) proposed a framework called SediNet,

based on CNNs, to estimate grain sizes as well as shapes
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from images. Overall, the used dataset of 409 manually la-
beled sediment images was halved into training and test por-
tions, and CNNs were trained from scratch, despite the small
amount of data.3

In contrast to previous work, we view the frequency or5

volume distribution of grain sizes as a probability distribu-
tion (of sampling a certain size), and fit our model by min-
imising the discrepancy between the predicted and ground
truth distributions. Our method is inspired by Sharma et al.
(2020) who proposed HistoNet to count objects in images10

(soldier fly larvae and cancer cells) and to predict absolute
size distributions of these objects directly, without any ex-
plicit object detection. The authors show that end-to-end es-
timation of object size distributions outperforms baselines
using explicit object segmentation (in their case with Mask-15

RCNN, He et al., 2017). Even though Sharma et al. (2020)
avoid explicit instance segmentation, the training process is
supervised with a so-called count map derived from a pixel-
accurate object mask, which indicates object sizes and loca-
tions in the image. In contrast, our approach requires neither20

a pixel-accurate object mask nor a count map for training,
which are both laborious to annotate manually. Instead, the
CNN is trained by simply regressing the grain size distribu-
tion end-to-end. Labeling of new training data becomes much
more efficient, because we no longer need to acquire pixel-25

accurate object labels. Our model learns to estimate object
size frequencies by looking at large image patches, without
access to explicit object counts or locations.

3 Data

We collected a dataset of 1,491 digitised line samples ac-30

quired from a total of 25 different gravel bars on six Swiss
rivers (see Table C1 in the appendix for further details). We
name gravel bar locations with the river name and the dis-
tance from the river mouth in kilometers.4 All gravel bars
are located on the northern side of the Alps, except for two35

sites at the river Rhone (Fig. 2). All investigated rivers are
gravel rivers with gradients of 0.01-1.5%, with the major-
ity (20 sites) having gradients <1.0%. The river width at the
investigated sites varies between 50m and 110m, whereby
Emme km 005.5 and Emme km 006.5 correspond to the nar-40

rowest sites and Reuss km 017.2 represents the widest one.
One example image tile from each of the 25 sites is shown

in Fig. 3. This collection qualitatively highlights the great
variety of grain sizes, distributions, and lighting conditions
(e.g., shadows, hard and soft light due to different weather45

3While not clearly explained in Buscombe (2019), the results
seem to suffer from overfitting, due to a flaw in the experimen-
tal setup. Our review of the published source code revealed that
the stopping criterion for the training uses the test data, leading to
overly optimistic numbers.

4With the exception of location Emme - , a gravel pile outside
the channel.

Figure 2. Overview map with the 25 ground truth locations of the
investigated gravel bars in Switzerland.

conditions). The total amount of digital line samples col-
lected per site varies between 4 (Reuss km 021.4) und 212
(Kl. Emme km 030.3), depending on the spatial extent and
the variability of grain sizes within the gravel bar.

3.1 UAV imagery 50

We acquired images with an off-the-shelf consumer UAV,
namely the DJI PHANTOM 4 PRO. Its camera has a 20
Mega-pixel CMOS sensor (5472×3648 pixels) and a nomi-
nal focal length of 24mm (35mm format equivalent).5 Flight
missions were planned using the flight planner Pix4D cap- 55

ture.6 Images were taken on a single grid, where adjacent
images have an overlap of 80%. To achieve a ground sam-
pling distance of ≈0.25cm, the flying height was set to 10m
above the gravel bar. This pixel resolution allows the human
annotator to identify individual grains as small as 1cm. Fur- 60

thermore, to avoid motion blur in the images, the drone was
flown at low speed. We generated georeferenced orthophotos
with AgiSoft PhotoScan Professional.7

The accuracy of the image scale has a direct effect on the
grain size measurement from georeferenced images (Carbon- 65

neau et al., 2018). To assure that our digital line samples are
not affected by image scale errors, we compare them with
corresponding line samples in the field and observe good
agreement. Note that absolute georeferencing is not crucial
for this study. Because ground truth is directly derived from 70

the orthorectified images, potential absolute georeferencing
errors do not affect the processing.

3.2 Annotation strategy

We introduce a new annotation strategy (Fig. 4), called digi-
tal line sampling, to label grain sizes in orthorectified images. 75

5dji.com/ch/phantom-4-pro (2020-03-23)
6pix4d.com (2020-04-04)
7agisoft.com (2020-04-04)

https://www.dji.com/ch/phantom-4-pro
https://www.pix4d.com/de/produkt/pix4dcapture
https://www.agisoft.com/
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Figure 3. Example image tiles (1.25m × 0.5m) with 0.25cm
ground sampling distance. Each of the 25 example tiles is taken
from a different gravel bar.

To allow for a quick adoption of our proposed approach, we
closely follow the popular line sampling field method intro-
duced originally by Fehr (1987). Instead of measuring grains
in the field, we carry out measurements in images. First, or-
thorectified images are tiled into rectangular image patches 5

with a fixed size of 1.25m × 0.5m. We align the major axis
with the major river flow, either north-south or east-west.
A human annotator manually draws polygons of 100–150
grains along the center line of a tile (Fig. 4 a) which takes
10-15 minutes per sample on average. We asked annotators 10

to imagine the outline of partially occluded grains if justi-
fiable. Afterwards, the minor axis of all annotated grains is
measured by automatically fitting a minimum bounding rect-
angle around the polygons (Fig. 4 b). Grain sizes are quna-
tized into 21 bins as shown in Fig. 5, which leads to a relative 15

frequency distribution of grain sizes (Fig. 4 c). Line samples
are first converted to a quasi-sieve throughput (Fig. 4 d) by
weighting each bin with the weight wb = dmb

α (Fehr, 1987),
where dmb is the mean diameter per bin and α is set to 2 (as-
suming no surface armouring). Usually undersampled finer 20

fractions are predicted by a Fuller distribution, which results
in the final grading curve (Fig. 4 e). This grading curve can
either be directly used for fractional bedload simulations, or
to derive characteristic grain sizes corresponding to the per-
centiles of the grading curve (Fig. 4 f). These are needed, for 25

instance, to calculate the single grain bedload transport ca-
pacity (d50, d65, dm), to determine the flow resistance (dm,
d90), and to describe the degree of surface armouring (d30,
d90; Habersack et al., 2011).

Our annotation strategy has several advantages. First, dig- 30

ital line sampling is the one-to-one counterpart of the current
state-of-the-art in the digital domain. Second, the labeling
process is more convenient, as it can be carried out remotely
and with arbitrary breaks. Third, image-based line sampling
is repeatable and reproducible. Multiple experts can label 35

the exact same location, which makes it possible to com-
pute standard deviations and quantify the uncertainty of the
ground truth. Finally, digital line sampling allows one to col-
lect vast amount of training data, which is crucial for the
performance of CNNs. For modern machine learning tech- 40

niques, data quantity is often more important than quality, as
shown for example in Van Horn et al. (2015). As it is com-
mon machine learning terminology, we use the term ground
truth to refer to the hand-annotated digital line samples that
are used to train and evaluate our model. 45

3.3 Ground truth

In total, >180,000 grains over a wide range of sizes have
been labeled manually (Fig. 5). Individual grain sizes range
from 0.5cm to approx. 40cm. The major mode of individ-
ual grain sizes is between 1 and 2cm and the minor mode 50

between 4 and 6cm. Mean diameters dm per site vary be-
tween 1.3cm (Aare km 178.0) and 29.3cm (Gr. Entle km
002.0) with a global mean of all 1,491 annotated line sam-
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Figure 4. Overview of the line sampling procedure. (a) Digital line sample with 100–150 grains, (b) Automatic extraction of the b-axis,
(c) Relative frequency distribution of grain sizes, (d) Relative volume distribution, (e) Grading curve, (f) Characteristic grain sizes (e.g. dm)

ples at 6.2cm and a global median at 5.3cm. The distribution
of the mean diameters dm (Fig. 5, right) follows a bi-modal
distribution as well. The major mode is around 4cm and the
minor mode around 8cm. We treat all samples the same and
do not further distinguish between shapes when training our5

CNN model for estimating the size distribution, such that
the learned model is universal and applicable to all types of
gravel bars. Furthermore, to train a robust CNN, we not only
collect easy (clean) samples, but also challenging cases with
natural disturbances such as grass, leaves, moss, mud, water,10

and ice.

4 Method

Many hydrological parameters are continuous by nature and
can be estimated via regression. Neural networks are generic
machine learning algorithms that can perform both classifi-15

cation and regression. In the following, we discuss details
of our methodology for regressing grain size distributions of
entire gravel bars from UAV images.

4.1 Image preprocessing

Before feeding image tiles to the CNN, we apply a few stan-20

dard pre-processing steps. To simplify the implicit encoding
of the metric scale into the CNN output, the ground sam-
pling distance (GSD) of the image tiles is unified to 0.25cm.
The expected resolution of a 1.25m x 0.5m tile after the re-
sampling is 500 × 200 pixels. Inaccuracies may arise due to25

rounding effects from the prior cropping. For simplicity, the
tile size is cropped to 500 × 200 pixels. Additionally, hori-
zontal tiles are flipped to be vertical.

Finally, following best practice for neural networks, we
normalize the intensities of the RGB channels to be stan-30

dard normal distributed with mean 0 and standard deviation
1, which leads to faster convergence of gradient-based opti-
mization (LeCun et al., 2012). It is important to note that any
statistics used for pre-processing must be computed solely

from the training data, and then applied unaltered to the train- 35

ing, validation, and test sets.

4.2 Regression of grain size distributions with
GRAINet

Our CNN architecure, which we call GRAINet, regresses
grain size distributions and their characteristic grain sizes di- 40

rectly from UAV imagery. CNNs are generic machine learn-
ing algorithms that learn to extract texture and spectral fea-
tures from raw images to solve a specific image interpreta-
tion task. A CNN consists of several convolutional (CONV)
layers that apply a set of linear image filter kernels to their 45

input. Each filter transforms the input into a feature map by
discrete convolution, i.e., the output is the dot product (scalar
product) between the filter values and a sliding window of the
inputs. After this linear operation, non-linear activation func-
tions are applied element-wise to yield powerful non-linear 50

models. The resulting activation maps are forwarded as input
to the next layer. In contrast to traditional image processing,
the parameters of filter kernels (weights) are learned from
training data. Each filter kernel ranges over all input chan-
nels fin and has a size of w×w× fin, where w defines the 55

kernel width. While a kernel width of 3 is the minimum width
required to learn textural features, 1×1 filters are also useful
to learn the linear combination of activations from the pre-
ceding layer.

A popular technique to improve convergence is batch nor- 60

malization (Ioffe and Szegedy, 2015), i.e., re-normalizing the
responses within a batch after every layer. Besides better gra-
dient propagation, this also amplifies the non-linearity (e.g.
in combination with the standard ReLU activation function).

Our proposed GRAINet is based on state-of-the-art resid- 65

ual blocks introduced by He et al. (2016). An illustration of
our GRAINet architecture is presented in the appendix in
Fig. B1. Every residual block transforms its input using three
convolutional layers, each including a batch normalization
and a ReLU activation. The first and last convolutional layers 70

consist of 1× 1× fin filters (CONV 1×1) while the second
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Figure 5. Overview of the ground truth data. Left: Average of the 1,491 relative frequency distributions, Right: Histogram of the respective
characteristic mean diameter dm. The solid red line corresponds to the mean dm and the dashed red lines to mean ± std.

layer has 3× 3× fin filters (CONV 3×3). Beside this series
of transformations the input signal is also forwarded through
a shortcut, a so called residual connection and added to the
output of the residual block. This shortcut allows the training
signal to propagate better through the network. Every second5

block has a step size (stride) of 2, so as to gradually reduce
the spatial resolution of the input image and thereby increase
the receptive field of the network.

We tested different network depths (i.e. number of blocks
/ layers) and found the following architecture to work best:10

GRAINet consists of a single 3×3 "entry" CONV layer fol-
lowed by six residual blocks and a 1×1 CONV layer that
generates B final activation maps. These activation maps are
reduced to a one-dimensional vector of lengthB using global
average pooling, which computes the average value per acti-15

vation map. If the final target output is a scalar (i.e. a charac-
teristic grain size like the dm) B is set to 1. To predict a full
grain size distribution, B equals the number of bins of the
discretized distribution. Finally, the vector is passed through
a softmax activation function. The output of that operation20

can be interpreted as a probability distribution o er grain size
bins, since the softmax scales the raw network output such
that all vector elements lie in the intervall [0,1] and sum up
to one. 8 The total number of parameters of this network ar-
chitecture is 1.6 million, which is rather lean compared to25

modern image analysis networks that often have>20 million
parameters.

4.2.1 CNN output targets

As CNNs are modular learning machines, the same CNN
architecture can be used to predict different outputs. As al-30

8In contrast to Sharma et al. (2020) we estimate relative instead
of absolute distributions. While they show that the L1-loss and the
KL-divergence can be combined to capture scale and shape of the
distribution, respectively, we simply fix the scale of the predicted
distribution with a softmax before the output.

ready described, we can predict either discrete (relative) dis-
tributions, or scalars such as a characteristic grain size. We
thus train GRAINet to directly predict the outputs proposed
by Fehr (1987) at intermediate steps (Fig. 4):

(i) relative frequency distribution (frequency) 35

(ii) relative volume distribution (volume)

(iii) characteristic mean diameter (dm).

4.2.2 Model learning

Depending on the target type (probability distribution or
scalar), we choose a suitable loss function (i.e., error metric; 40

Sect. 4.3) that is minimized by iteratively updating the train-
able network parameters. We initialize network weights ran-
domly and optimize with standard mini-batch stochastic gra-
dient descent (SGD). During each forward pass the CNN is
applied to a batch (subset) of the training samples. Based on 45

these predictions, the difference to ground truth is computed
with the loss function, which provides the supervision signal.
To know in which direction the weights should be updated,
the partial derivative of the loss function is computed w.r.t.
every weight in the network. By applying the chain rule for 50

derivatives, this gradient is back-propagated through the net-
work from the prediction to the input (backward pass). The
weights are updated with small steps in negative gradient di-
rection. A hyper-parameter called the learning rate controls
the step size. In the training process, this procedure is re- 55

peated iteratively, drawing random batches from the training
data. One training epoch is finished once all samples of the
training dataset have been fed to the model (at least) once.

We use the ADAM optimizer (Kingma and Ba, 2014) for
training, which is a popular adaptive version of standard 60

SGD. ADAM adaptively attenuates high gradients and am-
plifies low gradients by normalizing the global learning rate
with a running average for each trainable parameter. Note
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that SGD acts as a strong regularizer, as the small batches
only roughly approximate the true gradient over the full train-
ing dataset. This allows training neural networks with mil-
lions of parameters.

To enhance the diversity of the training data, many tech-5

niques for image data augmentation have been proposed,
which simulate natural variations of the data. We employ ran-
domly horizontal and vertical flipping of the input images.
This makes the model more robust and, in particular, avoids
overfitting to certain sun angles with their associated shadow10

directions.

4.3 Loss functions and error metrics

Various error metrics exist to compare ground truth distri-
butions to predicted distributions. Here, we focus on three
popular and intuitive metrics that perform best for our task:15

the Earth mover’s distance (short EMD; also known as
the Wasserstein metric), the Kullback-Leibler divergence
(KLD), and the Intersection over Union (IoU; also known
as the Jaccard index).

The Earth mover’s distance (Eq. 1) views two probability20

density functions (PDF) p and q as two piles of earth with dif-
ferent shapes and describes the minimum amount of "work"
that is required to turn one pile into the other. This "work"
is measured as the amount of moved earth (probability mass)
multiplied by its transported distance. In the one-dimensional25

case, the Earth mover’s distance can be implemented as the
integral of absolute error between the two respective cumu-
lative density functions (CDF) P and Q of the distributions
(Ramdas et al., 2017). Furthermore, for discrete distributions,
the integral simplifies to a sum over B bins.30

EMD(P,Q) =

B∑
b=1

|P (b)−Q(b)| (1)

Alternatively, the Kullback-Leibler divergence (Eq. 2) is
widely used in machine learning because minimizing the for-
ward KLD is equivalent to minimizing the negative likeli-
hood or the cross-entropy (up to a constant). It should be35

noted though that Kullback-Leibler divergence is not sym-
metric. For a supervised approach the forward KLD is used,
where p denotes the true distribution and q the predicted dis-
tribution. This error metric only accounts for errors in the
bins that actually contain a ground truth probability mass40

p(b)>0. Errors in empty ground truth bins do not contribute
to the forward KLD. Therefore, optimizing the forward KLD
has a mean-preserving behaviour. In contrast, the reverse
KLD is mode-preserving. Note that the KLD only accounts
for errors in bins containing ground truth probability mass.45

Thus, the overestimation of empty bins does not directly con-
tribute to the error metric, but as we treat the grain size distri-

bution as a probability distribution, this displaced probability
mass is missing in the bins that are taken into account.9

DKL(p ‖ q) =
B∑
b=1

p(b) log

(
p(b)

q(b)

)
(2) 50

In contrast to the EMD and KLD, the Intersection over Union
(Eq. 3) is an intuitive error metric that is maximized and
ranges between 0 and 1. While it is often used in object de-
tection or semantic segmentation tasks, it allows to compare
two 1D-probability distributions as follows: 55

IoU(p,q) =

∑B
b=1min(p(b), q(b))∑B
b=1max(p(b), q(b))

. (3)

During the training process the loss function (Eq. 4) simply
averages the respective error metric over all samples within a
training batch. To evaluate performance, we average the error
over the unseen test dataset: 60

L=
1

N

N∑
i=1

D (yi,f(xi)) , (4)

where D corresponds to the error metric, f denotes the CNN
model, N the number of samples, xi the input image tile,
yi the ground truth PDF or CDF, and f(xi) the predicted
distribution, respectively. 65

To optimize and evaluate CNN variants that directly pre-
dict scalar values (like for example GRAINet, which directly
predicts the mean diameter dm) we investigate two loss func-
tions: the mean absolute error (MAE, also known as L1-loss,
Eq. 5), and the mean squared error (MSE, also known as L2- 70

loss, Eq. 6).

MAE =
1

N

N∑
i=1

|f(xi)− yi| (5)

MSE =
1

N

N∑
i=1

(
f(xi)− yi

)2
. (6)

Furthermore, we evaluate the model bias with the mean error 75

(ME):

ME =
1

N

N∑
i=1

f(xi)− yi, (7)

where a positive mean error indicates that the prediction is
greater than the ground truth.

9For completeness, we note that there is a smoothed and sym-
metric (but less popular) variant of the KLD, the Jensen-Shannon
divergence.
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4.4 Evaluation strategy

The trained GRAINet is quantitatively and qualitatively eval-
uated on a holdout test set, i.e., a portion of the dataset that
was not seen during training. We analyze error cases and
identify limitations of the proposed approach. Finally, with5

our image-based annotation strategy multiple experts can la-
bel the same sample, which we exploit to relate the model
performance to the variation between human expert annota-
tions.

4.4.1 Ten-fold cross-validation10

To avoid any train-test split bias, we randomly shuffle the full
dataset and create 10 disjoint subsets, such that each sample
is contained only in a single subset. Each of these subsets
is used once as the hold-out test set, while the remaining 9
subsets are used for training GRAINet. The validation set is15

created by randomly holding out 10% of the training data,
and used to monitor model performance during training and
to tune hyper-parameters. Results on all 10 folds are com-
bined to report overall model performance.

4.4.2 Geographical cross-validation20

Whether or not a model is useful in practice strongly depends
on its capability to generalize across a wide range of scenes
unseen during training. Modern CNNs have millions of pa-
rameters and in combination with their non-linear properties,
these models have high capacity. Thus, if not properly regu-25

larized or if trained on a too small dataset, CNNs can poten-
tially memorize spurious correlations specific to the training
locations which would result in poor generalization to un-
seen data. We are particularly interested if the proposed ap-
proach can be applied to a new (unseen) gravel bar. In order30

to validate if GRAINet can generalize to unseen river beds we
perform geographical cross-validation. All images of a spe-
cific gravel bar are held out in turn and used to test the model
trained on the remaining sites.

4.4.3 Comparison to human performance35

The predictive accuracy of machine learning models depend
on the quality of the labels used for training. In fact, label
noise that would lead to inferior performance of the model
is introduced partially by the labeling method itself. Grain
annotation in images is somewhat subjective and thus dif-40

fers across different annotators. The advantage of our digital
line sampling approach is that multiple experts can perform
the labeling at the exact same location, which is infeasible if
done in-situ because line sampling is disruptive and cannot
be repeated. We perform experiments to answer two ques-45

tions. First, what is the variation of multiple human annota-
tions? Second, can the CNN learn a proper model, despite
the inevitable presence of some label noise? We randomly
selected 17 image tiles that are labeled by five skilled oper-

ators, who are familiar with traditional line sampling in the 50

field.

4.5 Final products

On one hand, by combining the output of GRAINet trained to
either predict the frequency or the volume distribution with
the approach proposed by Fehr (1987), we can obtain the 55

grading curve (cumulative volume distribution) as well as
the characteristic grain sizes (e.g., dm). On the other hand,
GRAINet can also be trained to directly predict character-
istic grain sizes. The characteristic grain size dm is only
one example of how the proposed CNN architecture can be 60

adapted to predict specific aggregate parameters. Ultimately,
the GRAINet architecture allows one to predict grain size
distributions or characteristic grain sizes densely for entire
gravel bars, with high spatial resolution and at large scale,
which makes the (subjective) choice of sampling locations 65

redundant. These predictions can be further used to create
two kinds of products, illustrated in Fig. 1:

1. Dense high-resolution maps of the spatial distribution
of characteristic grain sizes.

2. Grading curves for entire gravel bars, by averaging the 70

grading curves at individual line samples.

4.6 Experimental setup

For all experiments the data is separated into three disjoint
sets, a training set to learn the model parameters; a validation
set to tune hyper-parameters and to determine when to stop 75

training to avoid overfitting; and a test set used only to assess
the performance of the final model.

The initial learning rate is empirically set to 0.0003 and
each batch contains 8 image tiles, which is the maximum
possible within the 8 GB memory limit of our GPU (Nvidia 80

GTX 1080). While we run all experiments for 150 epochs for
convenience, the final model weights are not defined by the
last epoch, but taken from the epoch with the lowest valida-
tion loss. An individual experiment takes less than 4 hours
to train. Due to the extensive cross-validation, we parallelize 85

across multiple GPUs to run the experiments in reasonable
time.

5 Experimental results

Our proposed GRAINet approach is quantitatively evalu-
ated with 1,491 digital line samples collected on orthorec- 90

tified images from 25 gravel bars located along six rivers in
Switzerland (Sect. 3). We first analyze the quality of the col-
lected ground truth data by comparing our digital line sam-
ples with field measurements. We then evaluate the perfor-
mance of GRAINet for estimating the three different outputs: 95

(i) relative frequency distribution (frequency)
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(ii) relative volume distribution (volume)

(iii) characteristic mean diameter (dm)

In order to get an empirical upper bound for the achievable
accuracy, we compare the performance of GRAINet with the
variation of repeated manual annotations. All reported results5

correspond to random 10-fold cross-validation, unless spec-
ified otherwise. In addition, we analyze the generalization
capability of all three GRAINet models with the described
geographical cross-validation procedure and investigate the
error cases to understand the limitations of the proposed data-10

driven approach. Finally, as our CNN does not explicitly de-
tect individual grains, we investigate the possibility to esti-
mate grain sizes from lower image resolutions.

5.1 Quality of ground truth data

We evaluate the quality of the ground truth data in two ways.15

First, the digital line samples are compared with state-of-the-
art in-situ line samples from field measurements. Second, the
label uncertainty is studied by comparing repeated annota-
tions by multiple skilled operators.

5.1.1 Comparison to field measurements20

From 22 out of the 25 gravel bars, two to three field measure-
ments from experienced experts were available (see Fig. 6).
These field samples were measured according to the line
sampling proposed by Fehr (1987). To compare the digital
and in-situ line samples, we derive the dm values and com-25

pare them at the gravel bar level, because the field measure-
ments are only geo-localized to that level. Some field mea-
surements were accomplished a few days apart from the UAV
surveys. We expect grain size distributions to remain un-
changed, as no significant flood event occurred during that30

time. Figure 6 indicates that the field-measured dm is always
within the range of the values derived from the digital line
samples. Furthermore, the mean of the field samples agrees
well with the mean of the digital samples. Comparing the
mean dm derived from field and digital line samples across35

the 22 bars results in a mean absolute error of 0.9cm and in a
mean error (bias) of -0.3cm, which means that the digital dm
is on average slightly lower than the dm derived from field
samples. The wide range of the digital line samples empha-
sizes that the the choice of a single line sample in the field40

is very crucial and that it requires a lot of expertise to chose
a few locations that yield a meaningful sample of the en-
tire gravel bar population. Considering that the field samples
are unavoidably affected by the selected location and also by
operator bias (Wohl et al., 1996), we conclude that within45

reasonable expectations the digital line samples are in good
agreement with field samples and constitute representative
ground truth data. Nevertheless, to better understand the dif-
ference between digital line sampling and field sampling, a
new dataset should be created in the future, where field sam-50

ples are precisely geolocated to allow a direct comparison at
the tile level.

5.1.2 Label uncertainty from repeated annotations

We compute statistics of three to five repeated annotations
of 17 randomly selected image tiles (see Table D1 in the ap- 55

pendix) to analyze the (dis-)agreement between human an-
notators. The standard deviation of dm across different an-
notators varies between 0.1cm (Aare km 172.2) and 2.0cm
(Rhone km 083.3), the average standard deviation is 0.5cm.
Although these 17 samples are too few to compute reliable 60

statistics, we get an intuition for the uncertainty of the digital
line samples. Figure 7 shows two different annotations for
the same image tile, to demonstrate the variation introduced
by the subjective selection of valid grains. While the distri-
bution in the upper annotation (in green) contains a larger 65

fraction of smaller grains following closely the center line,
the lower annotation (in blue) contains a larger fraction of
larger grains, including some further away from the center
line.

Recall that this comparison of multiple annotators is only 70

possible because digital line sampling is non-destructive. In
contrast, even though variations of similar magnitude are
expected in the field, a quantitative analysis is not easily
possible. Nevertheless, Wohl et al. (1996) found that sedi-
ment samples are biased by the operator. Although CNNs are 75

known to be able to handle a significant amount of label noise
if trained on large datasets (Van Horn et al., 2015), the uncer-
tainty of the manual ground truth annotations is also present
in the test data and therefore represents a lower bound for
the performance of the automated method. Therefore, while 80

we do not expect the label noise to degrade the CNN train-
ing process, we do not expect root mean square errors below
0.5 cm due to the apparent label noise in the test data.

5.2 Estimation of grain size distributions

As explained in Sect. 3.2, the process of obtaining a grad- 85

ing curve according to Fehr (1987) involves several empir-
ical steps (Fig. 4). In this processing pipeline, the relative
frequency distribution can be regarded as the initial measure-
ment. However, as the choice of the proper CNN target is a
priori not clear, we investigate the two options to estimate (i) 90

the relative frequency distribution and (ii) the relative volume
distribution. In the latter version, the CNN implicitly learns
the conversion from frequency to fraction weighted quasi-
sieve throughput, making that processing step obsolete. We
experiment with three loss functions to train GRAINet for the 95

estimation of discrete target distributions: the Earth mover’s
distance (EMD), the Kullback-Leibler divergence (KLD),
and the Intersection over Union (IoU). For each trained
model all three metrics are reported in Table 1. The stan-
dard deviation quantifies the performance variations across 100

the 10 random data splits. Theoretically, one would expect
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Figure 6. Comparison of digital line samples with 22 in-situ line samples collected in the field.

Figure 7. Repeated annotations of the same tile by two experts.

the best performance under a given error metric D from the
model trained to optimize that same metric, i.e. the best per-
formance per column should be observed on the diagonals in
the two Tables. Note that each error measure lives in its own
space, numbers are not comparable across columns.5

5.2.1 Regressing the relative frequency distribution

When estimating the relative frequency distribution, all three
loss functions yield rather similar mean performance, in all
three error metrics (Table 1 (a)). The lowest KLD (mean of
0.13) and the highest IoU (mean of 0.73) are achieved by10

optimizing the respective loss function, whereas the lowest
EMD is also achieved by optimizing the IoU. However, all
variations are within one standard deviation. The KLD is
slightly more sensitive than the other loss functions, with
the largest relative difference (0.13 vs. 0.16) corresponding15

to a 23% increase. All standard deviations are one order of

magnitude smaller than the mean, meaning that the reported
performance is not significantly affected by the specific splits
into training and test sets.

5.2.2 Regressing the relative volume distribution 20

The regression performance for the relative volume distribu-
tion is presented in Table 1 (b). Here, the best mean perfor-
mance is indeed always achieved by optimizing the respec-
tive loss function. The relative performance gap under the
KLD error metric increases to 250%, with 0.32 when trained 25

with the KLD loss vs. 0.80 with the IoU loss. Also the stan-
dard deviation of the KLD between cross-validation folds ex-
hibits a marked increase.

5.2.3 Performance depending on the GRAINet
regression target 30

In comparison to the values reported in Table 1 (a), the KLD
on the volume seems to be even more sensitive regarding the
choice of the optimized loss function. Furthermore, all error
metrics are worse when estimating the volume instead of the
frequency distribution: the best EMD increases from 0.42 to 35

0.65, the KLD from 0.13 to 0.32, and the best IoU decreases
from 0.73 to 0.61.

Looking at the difference between the frequency and the
volume distribution, we see a general shift of the probabil-
ity mass to right-hand side of the distributions, which is 40

clearly visible in Fig. 8 c, f. While the frequency is gener-
ally smoothly decreasing to zero probability mass towards
the larger grain size fractions of the distribution, the volume
has a very sharp jump at the last bin (Fig. 8 c, f), where the
largest grain — often only a single one (Fig 9 b, f) — has 45

been measured.
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EMD (↓) KLD (↓) IoU (↑)

L
os

s
EMD 0.43 0.15 0.72

(0.03) (0.02) (0.01)
KLD 0.44 0.13 0.72

(0.05) (0.01) (0.01)
IoU 0.42 0.16 0.73

(0.04) (0.03) (0.01)

(a)

EMD (↓) KLD (↓) IoU (↑)

L
os

s

EMD 0.65 0.79 0.61
(0.03) (0.24) (0.01)

KLD 0.68 0.32 0.60
(0.05) (0.02) (0.01)

IoU 0.69 0.80 0.61
(0.05) (0.19) (0.01)

(b)

Table 1. Results for GRAINet regressing (a) the relative frequency distribution and (b) the relative volume distribution. Mean and standard
deviation (in parenthesis) for the random 10-fold cross validation. The rows correspond to the CNN models trained with the respective loss
function. Arrows indicate if the error metric is minimized (↓, lower is better) or maximized (↑, higher is better).
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Figure 8. Example image tiles where the GRAINet regression of the relative frequency and volume distribution yields good performance.

Figure 8 displays examples of various lighting conditions
and grain size distributions, where GRAINet yields a good
performance for both targets. On the other hand, the error
cases in Fig. 9 represent the limitations of the model. While
e.g. extreme lighting conditions deteriorate the performance5

on both targets similarly (Fig 9 a), the rare radiometry caused

by moss (Fig 9 d) has a stronger effect on the volume predic-
tion.

Comparing the predictions with the ground truth distribu-
tions in Fig. 9, the GRAINet predictions seem to be generally 10

smoother for both frequency and volume. More specifically,
the predicted distributions have longer tails (Fig 9a, c, e) and
closed gaps of empty bins (Fig. 9f).
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Figure 9. Error cases where the GRAINet regression of the relative frequency and volume distribution fails.

In combination with the smoother output of the CNN, the
sharp jump in the volume distribution could be an explanation
for the generally worse approximation of the volume com-
pared to the frequency.

5.2.4 Learned global texture features5

To investigate to what degree the texture features learned
by the CNN are interpretable w.r.t. grain sizes, we visual-
ize the activation maps of the last convolution layer, before
the global average pooling, in Fig. 10. In that layer of the
CNN there is one activation map per grain size bin, and those10

maps serve as a basis for regressing the relative frequencies.
Therefore, each of these 21 activation maps corresponds to a
specific bin of grain sizes, with bin 0 for the smallest grains
and bin 20 for the largest ones. Light colours denote low ac-
tivation, darker red denotes higher activation. To harmonize15

the activations to a common scale [0, 1] for visualisation, we
pass the maps through a softmax over bins. This can be in-
terpreted as a probability distribution over grain size bins at
each pixel of the downsampled patch. The resulting activa-

tion maps in Fig. 10 exhibit plausible patterns, with smaller 20

grains activating the corresponding, lower bin numbers.

5.2.5 Grading curves for entire gravel bars

We compute grading curves from the predicted relative fre-
quency and volume distributions as described in Sect. 3.2.
Furthermore, we average the individual curves to obtain a 25

single grading curve per gravel bar. We show example grad-
ing curves obtained with the three different loss functions
in Fig. 11. The top row shows a distribution of rather fine
grains while the bottom row represents a gravel bar of coarse
grains. Regarding the fine gravel bar (Fig. 11, top), the dif- 30

ference between the three loss functions is hard to observe.
Yet, there is a tendency of overestimating the coarse fraction
if optimizing for KLD. However, only KLD can reproduce
the grading curve of the coarse gravel bar reasonably well
(Fig. 11, bottom). Overall, the experiments indicate that the 35

KLD loss yields best performance for all three error met-
rics. Thus, to assess the effect of the target choice (frequency
vs. volume) on the final grading curves of all 25 gravel bars,
we use the GRAINet trained with the KLD loss (Fig. 12).
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Figure 10. Activation maps after the last convolutional layer for two examples. Each of 21 maps corresponds to a specific histogram bin of
the grain size distribution, where bin 0 corresponds to the smallest, bin 20 to the largest grains. Light colours are low activation, darker red
denotes higher activation.

Both models approximate the ground truth curves well and
are able to reproduce various shapes (e.g., Aare km 171.2 vs.
Reuss km 001.3) . However, the grading curves derived from
the predicted frequency distribution (dashed curves) tend to
overestimate higher percentiles (e.g. Aare km 171.0).5

This qualitative comparison indicates that regressing the
volume distribution with GRAINet yields slightly better grad-
ing curves than for the frequency distribution. If computing
the grading curve from the predicted frequency distribution,
small errors in the bins with larger grains are propagated and10

amplified in a non-linear way due to the fraction weighted
transformation described in Sect. 3.2. In contrast, the volume
distribution already includes this non-linear transformation
and consequently errors are smaller.

5.3 Estimation of characteristic grain sizes15

Characteristic grain sizes can either be derived from the pre-
dicted distributions or GRAINet can be trained to directly

predict variables like the mean diameter dm as scalar out-
puts.

5.3.1 Regressing the mean diameter dm 20

We again analyze the effect of different loss functions,
namely the mean squared error (MSE) and the mean ab-
solute error (MAE) when training GRAINet to estimate dm
end-to-end, see Table 2. Note that minimising MSE is equiv-
alent to minimising the root mean square error (RMSE). Op- 25

timizing for MAE achieves slightly lower errors under both
metrics (3.04cm2, respectively 0.99cm). However, optimiz-
ing for MAE results in significantly stronger bias, with a
ME of −0.11cm (underestimation), compared to 0.02cm for
the MSE. As for practical applications a low bias is consid- 30

ered more important, we use GRAINet trained with the MSE
loss for further comparisons. This yields a MAE of 1.1cm
(18%), respectively an RMSE of 1.7cm (27%). Analog to
Buscombe (2013), the corresponding normalized errors in
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Figure 11. Grading curves resulting from optimizing different loss
functions (from left to right: EMD, KLD, IoU) for two example
gravel bars, namely Gr. Entle km 002.0 (top) and Reuss km 001.6
(bottom).

MSE (↓) MAE (↓) ME (0)

L
os

s

MSE 3.05 1.05 0.02
(1.03) (0.13) (0.18)

MAE 3.04 0.99 −0.11
(1.03) (0.12) (0.25)

Table 2. Results for GRAINet regressing the mean diameter
dm [cm]. Mean and standard deviation (in parenthesis) for the ran-
dom 10-fold cross validation. The rows correspond to the CNN
models trained with the respective loss function. While both MSE
and MAE are minimized (↓), the ME is optimal with zero bias (0).

parenthesis are computed by dividing through the overall
mean dm of 6.2cm (Fig. 5).

5.3.2 Performance for different regression targets

If our target quantity is the dm, we now have different strate-
gies. The classical multi-step approach would be to measure5

frequencies, convert them to volumes, and derive the dm
from those. Instead of estimating the frequency, we could
also directly estimate volumes, or predict the dm directly
from the image data. Which approach works best? Based on
the results shown so far (Table 1 and 2), we compare the10

dm derived from frequency and volume distributions (trained
with KLD) to the end-to-end prediction of dm (trained with
MSE), see Fig. 13. Regardless of the GRAINet target, the ME
lies within +/- 0.7cm, the MAE is smaller than 1.5cm, and
the absolute dispersion increases with increasing dm. With15

ground truth dm values ranging from 1.3cm to 29.3cm, only
the end-to-end dm prediction covers the full range down to
1.3cm and up to 24cm. In contrast, the smallest dm de-

rived from the predicted frequency and volume distribution
are 2.9cm and 2.3cm, respectively. I.e.,dm-values <3.0cm 20

tend to be overestimated when derived from intermediate his-
tograms. This is mainly due to unfavourable error propaga-
tion, as slight overestimates of the larger fractions are am-
plified into more serious overestimates of the characteristic
mean diameter dm. While the dm derived from the volume 25

prediction yields a comparable MAE of 0.7cm for ground
truth dm <3cm, only the end-to-end regression is able to pre-
dict extreme small, but apparently rare, values (Fig. 14). The
end-to-end dm regression yields a MAE of 0.9cm for dm-
values between 3 and 10cm and 2.2cm for values >10cm. 30

We conclude that end-to-end regression of dm performs
best. It achieves the lowest overall MAE (<1.1cm) and at the
same time it is able to correctly recover dm below 3.0cm.

5.3.3 Mean dm for entire gravel bars

Robust estimates of characteristic grain sizes (e.g., dm, d50, 35

etc.) for entire gravel bars or a cross-sections are impor-
tant to support large scale analysis of grain size characteris-
tics along gravel-bed rivers (Rice and Church, 1998; Surian,
2002; Carbonneau et al., 2005). To assess the performance of
GRAINet for this purpose, the GRAINet end-to-end dm pre- 40

dictions are averaged over each gravel bar and compared with
the respective mean dm of the digital line samples (Fig. 15).
The performance averaged over all 25 gravel bars results in
a MAE of 0.3cm and a ME of 0.1cm. The error is <1cm
for all gravel bars, even for the bars at the River Gr. Entle 45

and Rhone, which have a mean ground truth dm >10cm (Ta-
ble C1). For 13 gravel bars the error is below ±0.2cm.

5.3.4 Comparison to human performance

The average standard deviation σ of dm from repeated dig-
ital line samples accounts for 0.5cm (see Sect. 5.1) for 17 50

randomly selected tiles. In comparison, regressing dm with
GRAINet yields a root mean square error (RMSE) of 1.7cm,
of which ≈30% can be explained by the label noise in the
test data. We illustrate the performance of GRAINet versus
human performance in Fig. 16. The predicted dm-values lie 55

within 1σ for 9 tiles (53%), and within 2σ for 12 tiles (70%).

5.3.5 High-resolution grain size maps

GRAINet offers the possibility to predict and map character-
istic grain sizes densely for entire gravel bars with high reso-
lution (1.25m×0.5m). Three example maps are presented in 60

Fig. 17. The mean ground truth dm per gravel bar varies be-
tween 3.0cm (Reuss km 012.0, top), 3.3cm (Aare km 171.0,
center), and >10cm (Gr. Entle km 002.1, bottom). For all
three examples the river flows northwards.

Obviously, the map created with GRAINet offers full cov- 65

erage of the entire gravel bar, whereas digital line samples
deliver only a sparse map. Not only do we see that GRAINet
successfully predicts the spatial distribution of the dm in the
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Figure 12. Grading curves of the 25 gravel bars, estimated with random 10-fold cross-validation.
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truth dm on the horizontal axis and predicted dm on the vertical axis.
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Figure 14. Mean absolute error of the predicted dm for three dm-
categories: <3cm, 3–10cm, and >10cm

ground truth, it also reveals spatial patterns at a finer resolu-
tion.

Hence, GRAINet enables not only the assessment of dif-
ference between gravel bars but also the spatial variability
and heterogeneity of dm-values within a single gravel bar.5

Despite a similar mean dm of approximately 3cm, the spa-
tial layout differs greatly between Reuss (top) and Aare (cen-
ter), which becomes clear when looking at dense maps of the
complete gravel bars. Such sorting effects are not observable
in the third example of Gr. Entle.10

5.4 Generalization across gravel bars

We study the generalization capability of GRAINet to an un-
seen gravel bar with geographical cross-validation for re-
gressing the grain size distribution and dm. Note that we can-
not completely isolate the effect of unseen grain size distri-15

butions from the influence of unseen imaging conditions, as
each gravel bar was captured in a separate survey.

5.4.1 Grading curves

Grading curves for all 25 gravel bars are given in Fig. 18.
A qualitative comparison to Fig. 12 shows the effect of not20

seeing a single sample of the respective gravel bar during the
training. The grading curves derived from the predicted fre-
quency distribution seem to be less robust and overestimation
of higher percentiles is increased for more than 50% of all
gravel bars. Exceptions are Gr. Entle km 002.0 and Rhone km25

083.3, where all percentiles are underestimated. As no strik-
ing differences are visible for about 20 gravel bars, we can
say that the grading curves derived from the predicted vol-
ume distribution generalize (still) well in 80% of the cases.

5.4.2 Mean diameter dm 30

We also study the generalization regarding the estimation
of the dm (Fig. 19 and Fig. E1). The MAE of the random
splits is <1cm for 18 bars and <2cm for 24 bars. When
GRAINet is tested on unseen gravel bars (geographical cross-
validation), the MAE does generally increase leading to only 35

15 bars <1cm and 19 <2cm. We observe the largest per-
formance drop for Aare km 156.7, where the MAE increases
from 1.4cm (random 10-fold cross-validation) to 6cm (geo-
graphical cross-validation). On this particular gravel bar, sev-
eral tiles contain some wet and even flooded grains. Although 40

the refraction of the shallow water could in principle change
the apparent grain size, it is most likely not the main reason
for the poor generalization. Rather, the model has simply not
learned the radiometric characteristics of wet grains, as there
aren’t any among the samples from the other bars, used for 45

training.

5.5 Effect of the image resolution

GRAINet does not explicitly detect individual grains, but
learns to identify global texture patterns. It thus seems fea-
sible to apply GRAINet to images of lower resolution, where 50

individual grains would no longer be recognizable by a hu-
man annotator (see example in Fig. 20). To simulate that sit-
uation, we bilinearly downsample the original image reso-
lution of 0.25cm by factors 2, 4, 8, 16, 32, and 40, corre-
sponding to pixel sizes of 0.5, 1.0, 2.0, 4.0, 8.0, and 10.0cm, 55

respectively. The CNN model is then trained and evaluated
at each resolution separately. When regressing frequency or
volume distribution, the performance decreases rather con-
tinuously with decreasing resolution (Fig. F1 in the ap-
pendix). Interestingly, the performance for regressing dm 60

with GRAINet drops only after downsampling with factor 16
(4cm resolution) to a MAE of 1.4cm and reaches a MAE
of 1.9cm at factor 40 (10cm resolution) (Fig. 21). Corre-
sponding dm scatter plots are shown in Fig. F2, where dis-
persion grows with coarser resolution. Avoiding the explicit 65

detection of individual grains with the proposed regression
approach has great potential and allows us to make reason-
able predictions of dm even at lower image resolutions, and
to adapt the resolution to the accuracy requirements of the
application. In contrast to Carbonneau (2005), our GRAINet 70

is able to predict mean diameters smaller than the ground
sampling distance (Fig. F2), taking a big step towards grain
size mapping beyond the image resolution. We believe that,
in principle, GRAINet could even be used to process airborne
imagery from country-wide flight campaigns, depending on 75

the accuracy requirements of the application.

6 Discussion

We have shown that GRAINet is able to estimate the full grain
size distribution at particular locations in the orthophoto.



18 N. Lang et al.: GRAINet: Mapping grain size distributions in river beds from UAV images

A
ar

e
k
m

04
0.

8

A
ar

e
k
m

14
9.

4

A
ar

e
k
m

14
9.

5

A
ar

e
k
m

15
6.

0

A
ar

e
k
m

15
6.

7

A
ar

e
k
m

17
1.

0

A
ar

e
k
m

17
2.

2

A
ar

e
k
m

17
8.

0

E
m

m
e

-

E
m

m
e

k
m

00
5.

5

E
m

m
e

k
m

00
6.

5

E
m

m
e

k
m

01
5.

0

G
r.

E
n
tl

e
k
m

00
2.

0

G
r.

E
n
tl

e
k
m

00
2.

1

K
l.

E
m

m
e

k
m

03
0.

3

R
eu

ss
k
m

00
0.

8

R
eu

ss
k
m

00
1.

3

R
eu

ss
k
m

00
1.

6

R
eu

ss
k
m

01
2.

0

R
eu

ss
k
m

01
7.

2

R
eu

ss
k
m

02
1.

2

R
eu

ss
k
m

02
1.

4

R
eu

ss
k
m

02
2.

1

R
h

on
e

k
m

08
3.

3

R
h

on
e

k
m

11
4.

0

−1.0
−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8
1.0

E
rr

or
[c

m
]

Figure 15. Error of the mean dm per gravel bar derived from the GRAINet end-to-end dm predictions.
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Figure 16. Variation of dm annotated by three to five different hu-
man experts, compared to end-to-end dm regression of GRAINet.

Hence, we can derive the mean grading curve of entire gravel
bars. The same architecture can also be trained to densely
map the spatial distribution of the dm.

6.1 Manual component of the presented approach

Obviously, creating a large, manually labeled training dataset5

is time-consuming, a property our CNN shares with other
supervised machine learning methods. However, at test time

the proposed approach requires no parameter tuning by the
user, a considerable advantage for large-scale applications,
where traditional image processing pipelines struggle, since 10

they are fairly sensitive to varying imaging conditions. Semi-
automatic image labeling with the support of traditional im-
age processing tools (Detert and Weitbrecht, 2012; Purin-
ton and Bookhagen, 2019) might be an alternative way to
speed up this annotation process. However, one would have 15

to carefully avoid systematic algorithmic biases in the semi-
automatic procedure, otherwise the CNN will almost cer-
tainly learn to faithfully reproduce those biases. Manual
(re)labeling would still be required to prevent the CNN from
replicating the systematic biases and failures of the rule- 20

based system, but could be limited to challenging samples.
Similarly, systematic behaviours of specific annotators may
also be learned by the model. Ideally, training data should
thus be generated by different skilled annotators.

The CNN predictions for a full orthophoto are masked 25

manually to the gravel bars. Our CNN is only trained on
gravel images and did not see any purely non-gravel images
patches with, e.g., vegetation, sand, or water. Consequently
such inputs lie far outside the training distribution and re-
sult in arbitrary predictions that need to be masked out by 30

the user. The network could also be trained to ignore sam-
ples with land cover other than gravel, but this is beyond the
scope of the present paper. It could be added in the future to
further reduce manual work.

6.2 Geographical generalization 35

We present experiments to evaluate the generalization of our
approach to new locations, i.e. unseen gravel bars. In this
setup, the data is exploited best, allowing the CNN to learn
features invariant to the imaging conditions by providing 24
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Figure 17. Maps of the characteristic mean diameter dm, Hand-labeled ground truth, i.e. digital line samples (left) and GRAINet end-to-end
dm predictions (right). Gravel bars (top to bottom): Reuss km 012.0, Aare km 171.0, and Grosse Entle km 002.1. The background is a gray
scale version of the input UAV image.
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Figure 18. Grading curves of the 25 gravel bars, estimated with geographical cross-validation.
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Figure 19. Mean absolute error of the GRAINet end-to-end dm regression per gravel bar (random – and geographical cross-validation).
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Figure 20. Example image tile resampled to lower resolutions. Left
to right: full resolution of 0.25cm and tested downsampling factors:
2, 4, 8, 16, 32, 40 corresponding to: 0.5, 1.0, 2.0, 4.0, 8.0, 10.0cm.
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Figure 21. Performance of GRAINet dm regression with different
image resolutions (trained with MSE loss).

different training orthophotos in each experiment. That ex-
perimental setup is valid to investigate geographical gener-
alization, since there is no strong correlation between bars
from the same river. An alternative experiment would be to
hold-out all bars from a specific river for testing. This might5

be necessary in some geographical conditions with slowly
varying river properties to avoid any misinterpretation and
overly optimistic results. We have compared the average per-
formance drop in the generalization experiment between five
gravel bars on individual river reaches, i.e., bars that are sep-10

arated by tributaries with new input of sediment, against all
bars. Both groups yield comparable performance drops. We
conclude, within our dataset, seeing bars from the same river
during training does not lead to over-optimistic results (see
Fig. H1). Generalization is mainly affected by unique local15

environmental factors (e.g. wet stones, algae covering) that
were not seen during training. Thus, in our case, we favour
the former to maximize the number of training samples as
well as the number of drone surveys with varying imaging
conditions and local environmental factors.20

The per bar generalization experiment is furthermore jus-
tified by the fact that the characteristics of the investigated
gravel bars vary greatly along the same river, both quantita-
tively (mean dm, dm range in Table C1) and qualitatively (see
appendix Fig. G1, where tiles are grouped by river name).25

Not only is this due to the distance between the bars, but
also due to the changing slope and the varying river bed
widths in mountain environments (Reuss, Aare, Emme). Fur-
thermore, the bars are geographically separated through trib-

utaries (Aare, Rhone), leading to a drastic increase in the 30

catchment areas between the bars. E.g., at the river Rhone
the catchment area is more than doubled from 982km2 (at
km 083.3) to 2485km2 (at km 114.0). Additionally, the sedi-
ment transport is affected by dams at the rivers Aare, Rhone,
and Reuss. Finally, the characteristics may also be artificially 35

altered, as it is nowadays common in Central Europe to re-
plenish gravels of 2-3cm to create spawning grounds for fish.
For instance, the grain size distribution at the bar Reuss km
022.1 (and probably km 012.0) is very likely affected by such
a targeted replenishment of sediment. 40

If we were to hold out, say, the whole river Aare, we would
not only substantially reduce the number of training sam-
ples, but also the diversity of imaging conditions. In fact,
within our experimental setup we already present one hold-
one-river-out experiment for the river Kl. Emme, from which 45

only one bar is included in our dataset. Even though this
bar contains the largest number of digital line samples, its
estimated grain size distribution fits rather well in the geo-
graphical cross-validation experiment (see Fig. 18). The ob-
served performance drop between the random and geograph- 50

ical cross-validation experiment for individual bars in Fig. 19
is rather explained by coarse gravel bars with a large mean
dm and a wide dm range. Seeing bars from the same river
during training and testing does not seem to have an effect
(for instance, Aare). 55

Ultimately, it is important to keep in mind that data-driven
approaches, like the one proposed, will only give reasonable
estimates if the test data approximately matches the train-
ing data distribution. It will not perform well for out-of-
distribution (OOD) samples. Detecting such OOD samples 60

is an open problem and an active research direction.

6.3 Comparison to previous work

While, existing statistical approaches are limited to output
characteristic grain sizes (dm, d50), to the best of our knowl-
edge, GRAINet is the first data-driven approach that is able 65

to regress a full, local grain size distribution at each location
in an orthophoto. We are neither aware of any previous work
that evaluates grain size estimation over entire gravel bars in
river beds, nor of a comparable study regarding geographical
generalization. 70

Nevertheless, we present a generic learning approach, i.e.
the same architecture can also be trained to directly pre-
dict other desired grain size metrics derived from the dis-
tribution, such as the mean diameter dm. Due to the end-to-
end learning, our proposed CNN approach is able to extract 75

global texture features that are informative about grain size
beyond the image resolution, and thus beyond the sensitivity
of human photo-interpretation or traditional image process-
ing that relies on local image gradients to delineate individ-
ual grains. Even the latest work of Purinton and Bookhagen 80

(2019) can only detect individual grains that have a b-axis
20× the ground sampling distance. Also previous statistical
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approaches based on global image texture (Carbonneau et al.,
2004) are limited by the input resolution and can only predict
the median diameter d50 down to 3cm at a comparable spa-
tial resolution of 1m. Hence, we believe that our approach
advances the state of the art.5

A direct quantitative comparison to previous work with
different application focus and different data is only possi-
ble to a limited extent. E.g., Buscombe (2013) evaluate on a
mixed dataset with samples from rivers, natural beach, and
continental shelf sediments and report normalized mean ab-10

solute errors of the estimated percentiles ranging from 10 to
29%. In comparison, our dm regression yields a normalized
mean absolute error of 18%.

6.4 Advantages and limitations of the approach

Our CNN-based approach makes it possible to robustly es-15

timate grain size distributions and characteristic mean diam-
eters from raw images. By analyzing global image features,
GRAINet avoids the explicit detection of individual grains,
which makes the model more efficient and leads to a ro-
bust performance, even with lower image resolutions. The20

proposed approach enables the automatic analysis of entire
gravel bars without destructive measures and with reasonable
effort.

Advantages are manifold. First, results are objective and
reproducible, as they are not influenced by a subjectively25

chosen sampling location and grain selection. Second, the
resulting curves and dm represent the whole variability of
grains of a gravel bar and thus the disproportionately high
effect of single coarse grains on the curve and on dm can
be reduced. Consequently, the derived mean curves and its30

characteristic grain sizes can be considered representative.
Our experiments highlight some limitations due to the

limited sample size for training. While 10-fold cross-fold
validation yields very satisfying results, the poorer perfor-
mance of the geographical cross-validation reveals that col-35

lecting and annotating sufficiently large and varied train-
ing sets is essential. Unseen unique local environmental fac-
tors such as wet stones or algae covering caused perfor-
mance drops in the generalization experiment. However, if
the model has seen a few of these samples (random cross-40

validation) the performance is more robust against such dis-
turbances. Additionally, the performance of GRAINet dete-
riorates for very coarser gravel bars, as indicated by the er-
ror metrics of the distributions as well as for dm. The lower
performance is caused by larger variability and by the high45

impact of individual, large grains, as well as by the unbal-
anced data distribution (only 14% of the digital line samples
have a dm >10cm). Application of GRAINet, trained with
our dataset, is thus not always satisfactory for coarse, un-
seen gravel bars. In order to improve results and extend po-50

tential applications fields, further digital line samples from
additional UAV surveys should be collected.

Finally, the best performance has been achieved with high-
resolution imagery taken at 10 m flying altitude. At this al-
titude it takes approximately 15 minutes to cover an area of 55

one hectare with a DJI PHANTOM 4 PRO (that has a max.
flight time of approx. 30 min per battery). It would be advan-
tageous to reduce the flight time per area by flying at higher
altitudes. As our resolution study on artificially downsam-
pled images shows, the CNN may yield satisfactory perfor- 60

mance on images with 1–2 cm resolution corresponding to
40–80 m flying altitude. While this is a promising result, it
remains to be tested on images taken at such flying altitudes.
We expect that retraining the model with high altitude image-
label pairs will lead to similar performance as in the artificial 65

case.

6.5 Potential applications

The presented GRAINet method can be applied to all rivers
that fulfil the following conditions: dry gravel bars (meaning
low water conditions, as grains in deeper water cannot be an- 70

alyzed) and no obstacles in the flight area (especially trees
along the rivers can cause occlusions). Despite these limita-
tions, we are convinced that our results confirm the large po-
tential of UAV surveys in combination with CNNs for grain
size analysis. There are several applications which become 75

possible with GRAINet in a quality that was hitherto not
achievable. Perhaps the greatest asset is the creation of dense,
spatially explicit, geo-referenced maps of dm. Not only can
they help to understand spatial sorting effects of bedload
transport processes, they can also be used to calibrate two- 80

or even three-dimensional fractional transport models. In ad-
dition, the variability of dm within a gravel bar can provide
important information regarding the bedload regime and the
ecological value of the river (e.g., as aquatic habitat). For ex-
ample, a lack of variability in the finer grain sizes is a clear 85

sign for bed armouring and thus an important indicator for a
bedload deficit. Consequently, the maps of dm are ideal for
large-scale monitoring in space and time, since they open up
the possibility to study entire bars or river branches at vir-
tually no additional cost. Our automatic approach handles 90

all samples consistently and allows for unbiased monitor-
ing over long times, as there is no variation due to chang-
ing operators (Wohl et al., 1996). Furthermore, the ability to
estimate mean diameters from lower image resolutions (up
to 2cm ground sampling distance) will allow to cover even 95

larger regions flying the UAV at higher altitudes. Due to the
high resolution of the resulting maps and distribution esti-
mates, local effects on bars can be investigated. Ultimately,
this could allow hydrologists to explore new research direc-
tions that advance the understanding of fluvial geomorphol- 100

ogy. While spatially explicit data may lead to an improved
calibration of numerical models, we may gain new insights
into how spatial heterogeneity affects the sediment transport
capacity as well as the aquatic biodiversity.
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7 Conclusions and future work

We have presented GRAINet, a data-driven approach cen-
tered on deep learning to analyze grain size distributions
from georeferenced UAV images with a convolutional neu-
ral network. In an experimental evaluation with 1,491 digital5

line samples, the method achieves an accuracy that makes it
relevant for several practical applications. The new possibil-
ity to carry out holistic analyses of entire gravel bars over-
comes the limitations of sparse field sampling approaches
(e.g. line sampling by Fehr (1987)), which is cumbersome10

and prone to subjective biases.
As CNNs are generic machine learning models, they of-

fer great flexibility to directly predict other variables, like
for example the ratio d84/d16 or other specific percentiles
(Buscombe, 2019). In fact, it might be promising to design15

a multitask approach, in order to exploit the correlations and
synergies between different variables and parametrizations
describing the same grain size distribution. Obviously, col-
lecting more training data can be expected to benefit the gen-
eralization performance of GRAINet. Data annotation could20

potentially be supported with active learning (e.g. Settles,
2009), where the model is gradually updated and interme-
diate predictions guide the selection of the most informa-
tive samples that should be labeled to further improve the
model. Another technically interesting direction to explore is25

domain adaptation, in order to exploit unlabeled image data
as a source of information and improve the generalization to
a new domain with potentially different characteristics (i.e.,
new gravel bars).

Code and data availability. The code with a demonstration on a 30

subset of the data is available on: github.com/langnico/GRAINet.
Due to licensing restrictions, the complete dataset may only be
used for research purposes and can be requested by contacting an-
drea.irniger@hzp.ch.
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Appendix B: CNN architecture illustration
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Figure B1. Illustration of the convolutional neural network architecture. Left: Full architecture where F = (F1,F2,F3) denotes the number
of filters of the three convolutional layers within the residual blocks. The number of outputs B corresponds to the estimated histogram bins.
To estimate a scalar (e.g. mean diameter) this B can be set to one. Right: The respective residual blocks. The ConvBlock has a learnable
skip connection and is used when the number of output features is not equal to the number of input features. If constant, the IdentityBlock
forwards the input.



N. Lang et al.: GRAINet: Mapping grain size distributions in river beds from UAV images 27

Appendix C: Overview of investigated gravel bars

Gravel bar name Slope Bed width Annual mean runoff Num. labels Mean dm Min dm Max dm Range dm
[%] [m] [m3/s] [-] [cm] [cm] [cm] [cm]

Aare km 040.8 0.02 75 221 114 3.5 1.7 8.5 6.8
Aare km 149.4 0.07 100 172 30 3.6 1.9 5.4 3.6
Aare km 149.5 0.07 100 172 12 5.2 4.2 7.8 3.6
Aare km 156.0 0.02 75 122 5 4.1 3.2 5.5 2.2
Aare km 156.7 0.02 75 122 40 4.5 1.6 15.9 14.3
Aare km 171.0 0.12 60 122 42 3.3 1.5 5.3 3.8
Aare km 172.2 0.12 60 122 60 2.9 1.7 4.4 2.8
Aare km 178.0 0.12 60 122 32 2.7 1.3 5.0 3.8
Emme km - - - - 14 7.9 6.3 9.5 3.2
Emme km 005.5 0.46 50 14 190 4.7 2.0 8.0 6.0
Emme km 006.5 0.46 50 14 116 4.6 2.5 7.7 5.2
Emme km 015.0 0.59 75 14 78 4.8 2.9 8.9 6.0
Grosse Entle km 002.0 1.50 60 2.5 76 13.4 6.0 29.3 23.4
Grosse Entle km 002.1 1.50 60 2.5 90 10.5 4.9 22.3 17.4
Kleine Emme km 030.3 1.40 63 6.2 212 8.8 3.7 24.1 20.5
Reuss km 000.8 0.14 70 140 22 7.8 6.3 9.8 3.5
Reuss km 001.3 0.14 70 140 16 7.3 5.0 10.3 5.3
Reuss km 001.6 0.14 70 140 22 8.6 6.8 10.8 4.0
Reuss km 012.0 0.17 80 140 34 3.0 1.5 4.5 3.0
Reuss km 017.2 0.19 110 140 66 6.6 3.8 11.0 7.2
Reuss km 021.2 0.18 60 140 6 4.5 3.9 4.8 1.0
Reuss km 021.4 0.18 60 140 4 3.9 3.3 4.1 0.8
Reuss km 022.1 0.18 60 140 30 3.7 2.1 6.4 4.4
Rhone km 083.3 1.50 100 110 74 11.4 4.7 19.0 14.3
Rhone km 114.0 0.18 60 42 106 3.6 1.7 7.7 6.0

Table C1. Overview of the 25 investigated gravel bars. From left to right: Slope and bed width of the river at this location with the corre-
sponding annual mean water runoff. Number of annotated image tiles (digital line samples). Ground truth statistics of the characteristic mean
diameter dm.
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Appendix D: Repeated human annotation

Image tile name Mean Standard deviation Min Max Range

Aare km 040.8 5.3 0.5 4.6 6.0 1.4
Aare km 156.0 3.4 0.2 3.2 3.8 0.5
Aare km 149.5 6.1 0.1 5.9 6.3 0.4
Aare km 172.2 3.1 0.1 3.0 3.2 0.2
Aare km 171.0 2.1 0.4 1.5 2.6 1.1
Aare km 178.0 3.3 0.1 3.1 3.5 0.3
Emme km 005.5 5.0 0.3 4.8 5.6 0.8
Emme km 006.5 4.4 0.3 3.9 4.9 1.0
Emme km 015.0 4.2 0.2 4.0 4.5 0.5
Grosse Entle km 002.0 6.6 0.4 6.2 7.3 1.1
Grosse Entle km 002.1 7.3 0.6 6.4 8.2 1.7
Kleine Emme km 030.3 6.9 0.6 6.3 8.0 1.6
Reuss km 022.1 6.6 0.4 6.1 7.1 1.1
Rhone km 083.3 11.3 2.0 7.4 12.8 5.4
Rhone km 114.0 a 6.5 0.8 5.8 7.8 2.0
Rhone km 114.0 b 4.6 0.6 3.8 5.3 1.5
Rhone km 114.0 c 2.9 0.2 2.7 3.3 0.6

Table D1. Statistics of the mean diameter dm [cm] from three to five human annotations for 17 randomly selected image tiles.
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Appendix E: Generalization across gravel bars
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Figure E1. Mean error (bias) of the GRAINet end-to-end dm regression per gravel bar (random – and geographical cross-validation).. A
positive error implies that the GRAINet prediction was higher than the ground truth.
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Appendix F: Resolution study
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Figure F1. Resolution study for GRAINet regressing the relative frequency distribution (left) and regressing the relative volume distribution
(right) by optimizing the KLD loss.
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Figure F2. Scatter plots of GRAINet dm regression with different image resolutions (trained with MSE loss).
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Appendix G: Tiles grouped by river name
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Figure G1. Tiles grouped by river name. The examples illustrate the variability between different bars on the along the same river.
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Appendix H: Generalization performance per gravel bar
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Figure H1. Generalization performance per gravel bar. Increase of mean absolute error (MAE) from the random cross-validation to the
geographical generalization experiment for the GRAINet end-to-end dm regression. A positive value means that the generalization experiment
has a higher error. Gravel bars on individual river reaches (i.e., separated by tributaries) are depicted in gray.


