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Introduction 

This supporting information includes two sections that support the analysis. The introduction of the techniques is used to 

support the Methodology section in the main manuscript. The Results section is used to supplement the Results section in the main 

manuscript.
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1 Techniques 

1.1 SCE-UA algorithm 

The shuffled complex evolution approach (SCE-UA), as an effective global optimization method, is a commonly used algorithm, 

because it is open source and was the first algorithm aimed specifically at calibrating hydrological models (Khakbaz and 

Kazeminezhad, 2012; Eckhardt and Arnold, 2001; Duan et al., 1994; Sorooshian et al., 1993). The technical details about the SCE-

UA can be shown in the flowchart (see Figure S1) (Duan et al., 1994). In the SCE-UA, the upper limit of the objective function 

evaluation is set to 10,000 times. 

The stopping criteria are applied to prevent premature termination, while also avoiding unnecessary computations. There are three 

stopping criteria in SCE-UA. (1) The maximum number of function evaluations has been reached; this means that the optimization 

algorithm may not converge at the end of the run. (2) The population has prematurely converged to a pre-specified small geometric 

range, which indicates that the global convergence has failed to local optima. The method has failed to a zone that it thinks is not 

amongst the best. It cannot know that it is in a global optimum. (3) The improvement of the best point in the last loops is less than 

the specified threshold. It indicates that global convergence has been achieved. More details on the SCE-UA are provided in the 

supporting information (section 1.1). Certain stopping criteria of the global optimization algorithm lead to possible failure in 

finding the global optimum, which may lead to abnormal or unreasonable optimal parameters. Namely, the optimized parameters 

cannot effectively characterize the physical systems of the hydrological models (or catchment response behavior). 

 

Figure S1. The flowchart of the SCE-UA algorithm (Duan et al., 1992, 1993, 1994). 

1.2 Fitness landscape 

A potent metaphor in global optimization is the fitness landscape (Aldrich, 1997). In evolutionary biology, fitness landscapes have 

been developed to visualize the relationship between the genotypes or phenotypes in a given population and their corresponding 

reproduction probability (Wright, 1932; Kauffman, 1993; Dawkins, 1997; Gavrilets, 2004). The idea of such visualizations goes 
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back to Wright (1932), who used level contours diagrams in order to outline the effects of selection, mutation, and crossover on 

the capabilities of populations to escape local optimal configurations. The evolutionary algorithm research community has widely 

adopted the fitness landscapes as a relation between individuals and their objective values (Mitchell, 1998). 

1.3 Violin plot 

A violin plot is a combination of a Box Plot and a Density Plot showing more details of data distribution. As shown in Figure S2, 

the thick black bar in the center represents the interquartile range. The white dot represents the median. The thin black line is 

extended from the thick black bar and represents the 95% confidence intervals. On each side of the thin black line is a kernel 

density estimation to show the distribution shape of the data. Wider sections of the violin plot represent a higher probability that 

members of the population will take on the given value; the skinnier sections represent a lower probability (Hintze and Nelson, 

1998). The violin plots can exactly show the kernel density distribution, avoiding the overlapping traditional density plot occur to 

become difficult to identify. Moreover, unlike bar graphs with means and error bars, violin plots contain all data points, which 

makes them an excellent tool to visualize samples of small sizes. Violin plots are perfectly appropriate even if the data do not 

conform to normal distribution. They work well to visualize both quantitative and qualitative data. 

 

Figure S2. Anatomy of a violin plot. 

1.4 Parallel coordinates 

The theory of parallel coordinates has been developed rigorously, and its point-line duality has been successively generalized to 

higher dimensions (Heer et al., 2010; Shenghui and Mueller, 2015). In order to show a set of points in an n-dimensional space, a 

backdrop is drawn consisting of n parallel lines, typically vertical and equally spaced. That is, a point in n-dimensional space is 

represented as a polyline with vertices on the parallel axes. Each axis corresponds to a variable, and each data item, having values 

for all variables, is represented as a series of line segments intersecting the axes at the corresponding values (Zhou and Weiskopf, 

2018). An excellent complication of current research on parallel coordinates can be found in the state-of-the-art report by Heinrich 

and Weiskopf (2013). 

1.5 Maximal information coefficient (MIC) 

The MIC was proposed by Reshe et al. (2011) and did not rely on the distributional assumptions of the datasets. This measurement 

approach captures extensive mutual information of the variables for functional and non-functional relationships. For functional 

relationships, the MIC algorithm provides a score that is roughly equivalent to the coefficient of determination (𝑅2) of the datasets. 

However, its statistical power reduced in detecting the associations in setting with a low sample size (Heller et al., 2012). 
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1.6 HYMOD model structure 

For illustration purposes, the HYMOD model (Moore, 1985; Wagener et al., 2001; Vrugt et al., 2002; Yadav et al., 2007; de Vos 

et al., 2010; Pathiraja et al., 2018), with a simple and commonly used lumped model structure, is utilized. The HYMOD model 

consists of a simple rainfall excess model based on the probability-distributed moisture store, which characterizes the catchment 

storage as a Pareto distribution of buckets of varying depth as the soil moisture accounting component. It routes through three 

parallel tanks for quick flow and a tank for slow flow and required five adjustable parameters: 𝐻𝑈𝑍, 𝐵, 𝛼, 𝐾𝑞 and 𝐾𝑠. 𝑋𝐻𝑈𝑍 and 

𝑋𝐶𝑈𝑍 are state variables characterizing the upper soil moisture content;  𝐸 is actual evapotranspiration which is calculated by 

linear correlations between the soil moisture state and the potential evapotranspiration; 𝑒𝑓𝑓𝑃 is effective precipitation; 𝑂𝑉 is 

excess precipitation to routing module generated from overflow of soil moisture accounting component; See Moore (1985) for a 

detailed description of the soil moisture accounting model; 𝑋𝑞1, 𝑋𝑞2, 𝑋𝑞3 and 𝑋𝑠 are the state variables of the individual tanks of 

the routing module; 𝑄𝑞 and 𝑄𝑠 are the flow values generated from the quick- and slow-flow tanks, respectively. 

2 Results 

 

Figure S3. Evolutionary processes of dynamic parameters in the individual parameter spaces in the Mumahe basin. 
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Figure S4. Evolutionary processes of dynamic parameters in the individual parameter spaces in the Xunhe basin. 
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Figure S5. Evolutionary processes of dynamic parameters in multi-parameter space in the Mumahe basin. 
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Figure S6. Evolutionary processes of dynamic parameters in multi-parameter space in the Xunhe basin. 
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Figure S7. Evolutionary processes of dynamic parameters with magnified details on the axes in multi-parameter space in the Mumahe basin. 
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Figure S8. Evolutionary processes of dynamic parameters with magnified details on the axes in multi-parameter space in the Xunhe basin.
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