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Abstract. Previous studies have shown that the seasonal dynamics of model parameters can compensate for structural defects 10 

of hydrological models and improve the accuracy and robustness of the streamflow forecast to some extent. However, some 

fundamental issues for improving model performance with seasonal dynamic parameters still need to be addressed. In this 

regard, this study is dedicated to 1) proposing a novel framework for seasonal variations of hydrological model parameters to 

improve the model performance, and 2) expanding the discussion on model results and response of seasonal dynamic 

parameters to dynamic characteristics of catchments. The procedure of the framework is developed with (1) extraction of the 15 

dynamic catchment characteristics using current data mining techniques, (2) sub-period calibration operations for seasonal 

dynamic parameters, considering the effects of the significant correlation between the parameters, the number of multiplying 

parameters, and the temporal memory in the model states in two adjacent sub-periods on calibration operations, and (3) multi-

metric assessment of model performance designed for various flow phases. The main findings are 1) the proposed framework 

significantly improved the accuracy and robustness of the model, 2) however, there was generally poor response of seasonal 20 

dynamic parameter set to catchment dynamics. Namely, the dynamic changes of parameters did not follow the dynamics of 

catchment characteristics. Hence, we deepen the discussion on the poor response in terms of (1) the evolutionary processes on 

seasonal dynamic parameters optimized by global optimization, considering that the possible failure in finding the global 

optimum might lead to unreasonable seasonal dynamic parameter values. Moreover, a practical tool for visualizing the 

evolutionary processes of seasonal dynamic parameters was designed using geometry visualization techniques. (2) The strong 25 

correlation between parameters, considering the dynamic changes of one parameter might be intervened by other parameters 

due to their interdependence. Consequently, the poor response of seasonal dynamic parameter set to dynamic catchment 

characteristics may be attributed in part to the possible failure in finding the global optimum and strong correlation between 

parameters. Further analysis also revealed that even though individual parameters cannot respond well to dynamic catchment 

characteristics, and a dynamic parameter set could carry the information extracted from dynamic catchment characteristics and 30 

improve the model performance. 
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1 Introduction 

The absence of some dynamic hydrological processes is one of the common structural defects of hydrological models. For 

example, dynamic components in hydrological models are often oversimplified due to a poor understanding of their physical 

mechanisms (Xiong et al., 2019; Dakhlaoui et al., 2017; Pathiraja et al., 2016). It also manifests that the information of input 

data such as climate data and land-use data could not be fully utilized. However, it is difficult to change the structure of the 5 

process-driven hydrological model. With the development of current data mining technology, one of the effective approaches 

for overcoming the structural inadequacy of hydrological models is to integrate data mining techniques to maximize the 

application of input data (Firat and Güngör, 2008). In these regards, this study devotes to developing an overall framework for 

seasonal variations of hydrological model parameters to overcome the structural inadequacy of models and improve the model 

performance. The proposed framework involves the extraction of dynamic catchment characteristics, effective integration of 10 

extracted information and model calibration, and assessment of model performance. More specifically, it includes the selection 

and generation of hydrometeorological indices, screening for high dimensions of indices, processing of redundant information, 

sensitivity and correlation analysis of parameters, identification of the high dimensions of parameters, operation of the different 

module of models, the changes of state variables and fluxes, performance assessment in different flow phases, and assessing 

the transitivity of optimized dynamic in different periods.  15 

The calibration of hydrological processes in different seasons with unique catchment characteristics is also called sub-period 

calibration. The static parameters are seasonally dynamized. Even though more techniques for dynamics of hydrological model 

parameters have been developed, such as parameters vary in time during model simulations (Motavita et al., 2019; Manfreda 

et al., 2018; Lan et al., 2018, 2020; Fowler et al., 2018), the proposed sub-period calibration effectively integrates into data 

mining techniques to compensate for the structural defects of the traditional hydrological models with static parameters. It can 20 

fully utilize the extracted information of dynamic catchment characteristics and improve the model performance. However, 

some specific issues for the proposed sub-period calibration are still needed to be addressed. (1) How does the potential 

correlation between parameters affect the sub-period calibration? Can the seasonal dynamic of a single parameter with high 

sensitivity or identification effectively improve the simulation performance of hydrological models without considering the 

correlation between parameters? (2) Given that the number of parameters increases exponentially with the number of sub-25 

periods, will simultaneous optimization of the parameter sets in all sub-periods cause the model for crashes? 3) Due to the 

considerable temporal memory in the model states while shifting of the parameter set between two adjacent sub-periods, how 

are the fluxes and state variables in a certain sub-period affected by the previous period? In these regards, five calibration 

operations are designed and compared to address the above issues and the best solution for model calibration with seasonal 

dynamic parameters. 30 

The response of seasonal dynamic parameters to extracted dynamic catchment characteristics is critical to elucidate the 

hydrological model structure and mechanism of model operation. Hence, further discussion is needed regarding the following 

two aspects. (1) The efficient and effective estimations for dynamic seasonal parameters in hydrological models need to use 
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optimization algorithms due to the measurement limits and scale issues (Beven and Kirkby, 1979; Beven et al., 1984; Beven 

and Freer, 2001). However, Zhang et al. (2009) stated that the possible failure in finding the global optimum might lead to 

abnormal or unreasonable optimal parameters, which might be the main reason for the poor response of seasonal dynamic 

parameters to dynamic catchment characteristics (Sorooshian et al., 1993; Vrugt et al., 2005; Zhang et al., 2009). Evolutionary 

algorithms (EAs) are the most well-established class of global optimization algorithms for solving water resources problems 5 

(Maier et al., 2014). In each evolutionary process, four steps, including evaluation, fitness assignment, selection and 

reproduction, are performed. The parameter set with the best objective function value in each evolutionary process loop is 

recorded in the "evolutionary processes". The evolutionary process evolves toward minimizing the objective function values. 

The final optimum is obtained at the end of the run while satisfying the stopping criteria (Gomez, 2019). The fitness landscape, 

as a conceptional and visualization tool, is mainly an illustration of specific settings and states in the evolutionary processes 10 

(Dawkins, 1997; Kauffman, 1993; Mitchell, 1998; Wright, 1932). However, the mapping of the fitness landscape for 

evolutionary processes is a challenge in hydrological model parameter optimization. The main problems include highly 

nonlinear, multimodal, non-convex, irregular, non-continuous, noisy, non-smooth and non-differentiable functions (Vrugt et 

al., 2005; Sorooshian et al., 1993; Gupta et al., 1998; Zhang et al., 2009). Besides, the hydrological simulation is not 

analytically derivable, which also increases the difficulty of the fitness landscape presentation (Maier et al., 2014). Several 15 

measures have been previously developed for characterizing the structure of fitness functions, including the correlation length 

(Weinberger, 1990), objective function surface (Duan et al., 1992,1993, 1994), fitness distance correlation (Jones and Forrest, 

1995), the signal-to-noise ratio in the population sizing equation (Harik et al., 1999), the spatial autocorrelation statistic (Gibbs 

et al., 2004) and a dispersion metric (Arsenault et al., 2014). However, the simple and practical method for hydrological 

modeling with seasonal dynamic parameters still needs to be further explored. As developed in the field of data visualization 20 

techniques, it is given the possibility to apply these state-of-the-art techniques to overcome the limitations of traditional 

techniques and explain new phenomena for the application of hydrological models, as well as to discover new insights (Arora 

and Singh, 2013; Derrac et al., 2014; Piotrowski et al., 2017; Gomez, 2019). In these regards, we developed a novel tool for 

visualizing the evolutionary processes by characterizing the structures of fitness landscapes with possible properties using 

geometry visualization techniques. (2) Moreover, due to the inability of hydrological models to accurately simulate real 25 

catchment situations, the significant correlation of parameters is inevitable (Westra et al., 2014; Klotz et al., 2017; Wang et al., 

2017, 2018). The dynamic changes of one parameter might be intervened by other parameters due to their interdependence. 

This view is also demonstrated by Bárdossy (2007). The auther emphasized that the correlation between parameters in 

hydrological models would interfere the dynamic of one parameter. In this regard, the linear and nonliear correlation is 

quantificationally analyzed to further explore the underlying mechanism of the response of dynamic parameters to catchment 30 

characteristics. 

This study is aimed at proposing a novel framework for seasonal variations of hydrological model parameters to improve the 

model performance, and expanding the discussion on model results and response of parameters to dynamic characteristics of 



4 

 

catchments. The rest of the paper is organized as follows: Section 2 presents data description and analysis of the case study 

experiments; Section 3 presents the methods for seasonal dynamics of hydrological model parameters, including the extraction 

of dynamic catchment chrematistics, calibration operations for seasonal dynamic parameters, and multi-metric assessment of 

model performance; Section 4 presents the case study results; Section 5 discusses the potential causes for the poor response of 

seasonal dynamic parameters to dynamic characteristics of catchments, including evolutionary processes on parameters and 5 

correlation between parameters, as well as outlines directions for future research; Section 6 summarizes the principal 

conclusions of the study. 

2 Data description 

Three basins are applied as an illustration in this study, as shown in Figure 1. The Hanzhong basin with 9,329 km2 is located 

in the junction of the Middle Yangtze basin. The Mumahe basin with 1,224 km2 is characterized by low hills and moderate 10 

slopes. The Xunhe basin with 6,448 km2 is dominated by a complex mountainous landscape, which has high temporal and 

spatial variability of soil moisture. Although the three basins have different rainfall-runoff characteristics, they all are located 

in the monsoon region of the East Asia subtropical zone. It is cold and dry in winter but warm and humid in summer (Lin et 

al., 2010). The seasonal variations of vegetation density and types are contemporaneous (Fang et al., 2002). Significant 

seasonal changes in the climate and land-surface conditions allow for exploring the intra-annual dynamics of the hydrological 15 

processes. Hydrological and climatic data (including daily precipitation, temperature and streamflow data) from 1980 to 1990 

were used. Nearly 73% of the data samples (1980-1987) were used for calibration, and the remainder (1988-1990) was utilized 

to verify the model. Moreover, the hydrometeorological data in the calibration period and the verification period are statistically 

consistent. 
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Figure 1. Locations of the study region. 

3 Methods 

The flowchart of the framework for seasonal dynamics of hydrological model parameters is illustrated in Figure 2 and their 

codes are opened and attached in Supporting Information. 5 

3.1 Extraction of dynamic catchment characteristics 

A set of climatic-land surface indices was provided and preprocessed using the maximal information coefficient (MIC) and 

principal components analysis (PCA). Actually, the indices are specified based on dynamic characteristics on a catchment. 
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days, total pan evaporation, maximum 1-day pan evaporation and minimum 1-day pan evaporation. The land-surface indices 

included antecedent streamflow and runoff coefficient. The definition of the indices is provided in Table A1. Indeed, the 

indices that are independent with streamflow may damage the extraction of dynamic catchment characteristics. Hence, the 

selected indices should be screened first by identifying the degree of correlation between the indices and streamflow. The MIC, 

as a statistical metric, can indicate the linear and nonlinear correlation between the variables (Zhang et al., 2014) and is used 5 

to screen the indices in this study. The detailed introduction of the MIC metric is provided in the Supporting Information. It is 

assumed that the indices have a significant effect on streamflow and are picked up while the MIC value is larger than 0.35. In 

addition, a large amount of redundant information still exists among the screened indices and might damage the availability of 

the extracted information. Hence, PCA is applied to eliminate further the multicollinearity of indices (Ho et al., 2017). 

Hydrological processes clustering, as a bridge, is built between extracted information of dynamic catchment characteristics 10 

and calibration operations of the hydrological model. The specific procedures are as follows. The calibration period is divided 

into 24 sub-annual units. The preprocessed indices in each sub-annual period for all the years are averaged. Two clustering 

operations were performed based on the climatic and land-surface index systems, respectively. Namely, the calibration period 

is partitioned into different sub-periods based on the climatic and land-surface indices, respectively. Notably, the clustering 

results represent the relative differences of the sub-annual periods in a basin rather than absolute differences. Moreover, it was 15 

demonstrated that the model performance was better when two sub-period clustering operations were performed based on 

climate indices and land-surface indices, respectively, instead of one clustering operation according to all indices (Lan et al., 

2018). The reason was that, according to all indices, the unsupervised clustering method might not reasonably identify the 

main characteristics of sub-periods in various systems. For example, two sub-periods with similar climate conditions but not 

land-surface conditions might not be distinguished.  20 

3.2 Calibration operations 

In operation I (a controlled trial), the parameters are static. In operation II, the linear and nonlinear correlation between 

parameters is first investigated using MIC. Then, a simple but useful tool, i.e., a scatter plot (Paruolo et al., 2013), is used for 

identifying the sensitive parameter of hydrological models. Only the sensitive parameter is considered as of potential seasonal 

dynamic parameter, but other parameters are time-invariant. In operation III, simultaneous optimization of the parameter sets 25 

in all sub-periods is performed. In operation IV, only the data from the individual sub-periods are used for minimizing the 

objective function, while the model is run for the whole period (see the calibration operation of Figure 2 in the calibration 

period). For the state variables and fluxes of the hydrological model between two adjacent subperiods, the last values of the 

previous period are the initial values of the later period in the validation period. In operation V (the recommended calibration 

operation), its calibration operation is the same as operation IV. However, the simulated flow data from each sub-period are 30 

combined and compared with the observed flow in the validation period (see the calibration operation of Figure 2 in the 

validation period). 
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The HYMOD model is one of the commonly used lumped rainfall-runoff models (Yadav et al., 2007; de Vos et al., 2010; 

Pathiraja et al., 2018). It mainly includes soil moisture accounting mode (involving parameters Huz, B and alpha) and flow 

routing mode (involving Kq and Ks). It is selected as illustration purposes in this study. The definitions of the five parameters, 

state variables and fluxes are illustrated in Table A2. Its more detailed descriptions are presented in Supporting Information. 

An evolutionary algorithm for seasonal dynamic parameters used in this study is the so-called Shuffled Complex Evolution 5 

from the University of Arizona (SCE-UA) (Duan et al., 1993). Arsenault et al. (2014) demonstrated that SCE-UA performs 

better for hydrological models with low complexity, compared with other global optimization algorithms. Besides, the multiple 

trials are performed to ensure that the results are consistent, preventing the effects of initial values in this study. The objective 

function is defined as the combination of the Nash-Sutcliffe efficiency index (NSE) and its logarithmic transformation (LNSE) 

(Nash and Sutcliffe, 1970; Nijzink et al., 2016). It is expressed as 1 − 0.5 ∙ (NSE + LNSE). The closer the objective function 10 

value is to zero, the better the model performance. In addition, a warm-up period of one year is used in calibration and three 

months in the validation period. The flowchart is illustrated in Figure 2, and its codes are opened and attached in Supporting 

Information. 

3.3 Assessment of model performance 

Simulation performance with seasonal dynamic parameters is assessed using seven performance metrics. The metrics include 15 

NSE, LNSE and a five-segment flow duration curve (5FDC) with the root mean square error (RMSE) (Pfannerstill et al., 2014). 

The NSE is sensitive to peak discharges and LNSE emphasizes low flows. RMSE with FDC is used to assess the model 

performance in the five phrases of streamflow, including very high, high, middle, low and very low flow (Cheng et al., 2012; 

Pokhrel et al., 2012; Yokoo and Sivapalan, 2011). FDC is split into five segments, including below Q5, between Q5 and Q20, 

between Q20 and Q70, between Q70 and Q95, and higher than Q95, i.e., RMSE_Q5, RMSE_Q20, RMSE_Qmid, RMSE_Q70, 20 

RMSE_Q95, as shown in Figure 2. Besides, the differences in these metrics between the calibration period and the validation 

period are used to assess the temporal transferability of parameters (Gharari et al., 2013; Klemeš, 1986). 
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Figure 2. The developed framework for seasonal dynamics of hydrological model parameters. 

4 Results 

The calendar year is divided into four sub-annual periods based on hydrological/climatic similarities, as shown in Figure 3a. 

In this way, the clustering results of the validation period are largely in agreement with the results of the calibration period. 5 

The sub-periods include the dry period, rainfall period I, rainfall period II (wettest period) and rainfall period III. Both the total 

amount and the variance values of all the precipitation series are minimum in the dry period and maximum in the rainfall 

period II. Two normal sub-annual periods (rainfall period I and rainfall period III) have similar climate conditions, but the 

rainfall period III has higher antecedent soil moisture content than in rainfall period I. 

The model performance in five calibration operations is presented in Figure 3b, taking the Hanzhong Basin as an example. 10 

Compared with the operation I (controlled trial), the seasonal dynamics of a single parameter Ks with high sensitivity (see 

Figure 4a) do not significantly improve or decrease model performance in operation II. The result is consistent with Bárdossy 

(2007). The author demonstrated that one dynamic parameter might be compensated for the adjustment of other time-invariant 

parameters during calibration due to the strong correlation between parameters. As a result, the final performance of the model 

with the single dynamic parameter is not significantly improved. Figure 4b verifies that there is a significant linear and 15 

Extraction of dynamic 
catchment characteristics

Calibration operations

Assessment of model 
performance

• Indices are specified with dynamic
catchment characteristics.

• Multiple clustering operations based
on different indices-systems.

Calibration period Validation period

Different sub-periods for objective function

Sub-periods

Calibration period

Clustering operation I

Clustering operation II

Pre-processed using 
MIC and PCA

Climatic and land-surface indices

Linear and nonlinear 
correlation between 

parameters
• Parameter

Q5 Q20 Q70 Q95

FDC

• RMSE_Q5

• RMSE_Q20

• RMSE_Q70

• RMSE_Qmid

• RMSE_Q95

• NSE

• LNSE

Framework Key points

• The effects of the potential correlation
between the parameters on the sub-period

calibration.

• The effects of the number of multiplying
parameters on sub-period calibration.

• The effects of the temporal memory in the
model states between two adjacent

subperiods on sub-period calibration.



9 

 

nonlinear correlation between parameters by MIC coefficients. The calibration in operation III has a seasonal dynamic 

parameter set and continuous model states. However, the multiplying number of parameters indeed leads to the crash of the 

model run, showing the abysmal model performance. In operation IV, the model performance in the validation period is not 

good. The shifting of the parameter set between two adjacent sub-periods may lead to the unreasonable values of model states 

at the junction, and further causing the model for crashes. The result is consistent with Kim and Han (2017). The operation V 5 

with the best model performance in various flow phases is recommended for seasonal dynamic parameters. It is also 

demonstrated that significant improvement in medium flow mainly benefits from the extraction of dynamic land-surface 

information. Namely, the clustering of the rainfall period I and rainfall period III is based on diverse soil moisture content but 

similar climate conditions. Besides, there was better temporal transferability of the dynamic parameters in the calibration and 

validation periods. Evidently, the operation V well utilized the extracted information of dynamic catchment characteristics and 10 

tackling the above critical issues for model calibration. Besides, the simulation performance in four sub-periods of the 

calibration period is shown in Figure 3c. The results show that the model performance is best in the rainfall period II (wettest 

period) and the poorest in the dry period. 

Seasonal dynamic parameter sets in operation V are shown in Figure 3d. The value of Ks (slow-flow routing tanks' rate) is 

lowest in the dry period and highest in the wettest period in all basins. However, other parameters have no regular pattern on 15 

dynamic catchment characteristics. Most of the excess streamflow in the three rainfall periods is diverted to the slow-flow tank 

because the alpha values are close to zero. It means that the slow-flow tanks have a primary effect on the simulations. However, 

the parameter Ks does not reflect the difference between rainfall period I and rainfall period III, which have similar climate 

conditions but not land-surface conditions. In sum, there is generally poor response of seasonal dynamic parameter set to 

dynamic catchment characteristics. 20 
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Figure 3. a) Heat map of sub-period partition. b) Model performance. c) Simulation performance in four sub-periods of the calibration 

period. d) Seasonal dynamic parameter sets. 
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Figure 4. a) Sensitivity analysis results using scatterplots. The horizontal axis represents the sampling points, which are the parameter sets. 

The vertical axis represents their objective function values. b) The linear or nonlinear correlations between the parameters based on MIC 

coefficients. Red denotes the strongest correlation between parameters. 

5 Discussion 5 

The above results showed that the developed framework for seasonal variations of hydrological model parameters significantly 

improves model performance. However, there is generally poor response of dynamic parameter set to catchment dynamics. 

The potential reasons are discussed as follows. 

5.1 Evolutionary processes on parameters 

The intuitive sketches of three-dimensional fitness landscapes with possible properties are illustrated in Figure 5a. The vertical 10 

axis denotes the objective function values and the horizontal axes denote the parameter space. The possible properties with 

increasing difficulty to find global optimum are illustrated as follows: (I) Best case or low variations: an evolutionary process 
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landscapes, such as the "big bowl" shape, can easily guide the algorithm towards the global optimum, while a surface that is 

tough with many local optima may present difficulties (Weise, 2009; Maier et al., 2014; Kallel et al., 1998), the detailed 

information for the fitness landscape is provided in the Supporting Information. 

The evolutionary process of dynamic parameters in individual parameter spaces is investigated (see Figure 5b) using violin 

plots. The violin plots are a tool to visualize the kernel density distribution of the data points (Hintze and Nelson, 1998; Piel 5 

et al., 2010). The anatomy of the violin plot and the associated information can be found in the Supporting Information. We 

use probability distributions of the violin plots to configure the elements of the evolution processes, representing the possible 

properties of the fitness landscapes. The vertical axis of the violin plot denotes parameter values; the horizontal axis denotes 

the probability values. With an adequate parameter space and sufficient density of coverage in individual parameters, the 

thinner distribution type of violin plot indicates that fewer local optimal solutions hamper evolutionary processes. For example, 10 

unimodal distribution is an ideal evolutionary process to estimate the best solution. Conversely, the multimodal or flat 

distribution signifies that the search is indecisive due to the prominent interference from local optima. Namely, the search may 

fail to find a global optimum (Dakhlaoui et al., 2017; Rahnamay Naeini et al., 2018; Vrugt and Beven, 2018). The four types 

of distributions of violin plots (including unimodal, bimodal, multimodal and flat distributions) with increasing the number of 

peaks match the properties' sketches of the fitness landscapes. 15 

The evolutionary process of dynamic parameters in multi-parameter space is investigated regarding the entire parameter set as 

a whole (see Figure 5c). The parallel coordinates are a data visualization technique for multivariate data that is easy to interpret, 

which are applied to configure the evolutionary processes in the multi-parameter space. The polylines describe multivariate 

items that intersect with parallel axes. These parallel axes represent variables that can be used for the analysis of multiple 

properties of a multivariate data set (Heinrich and Weiskopf, 2015; Janetzko et al., 2016; Johansson and Forsell, 2016). More 20 

detailed information on the parallel coordinates is given in the Supporting Information. When used in hydrological models, 

the variables on the dimension axes denote individual parameters. The polylines of the parallel coordinates symbolize the 

parameter sets in all loops of one evolutionary process. The width of the parameter set distribution of the polylines in the 

parallel coordinates is used to assess the ability to find global optimum in the multi-parameter space. The higher the width of 

the parameter set distribution, the more difficult it is to determine the correct direction for the evolutionary process. The 25 

parameter set is challenging to converge to the global optimum. Moreover, the evolutionary process evolves toward minimizing 

the objective function values f(x). Hence, the color changes of parallel coordinates (see Figure 5c) could represent the 

evolutional direction of the fitness landscapes, which is illustrated in Figure 5a (III). The direction of the arrow represents the 

direction of evolution. Also, the violin plot can visualize the probability distribution of each variable (i.e., parameter) along 

the dimension axis (Janetzko et al., 2016) (see Figures 5b and c). Interestingly, in the axis configuration of parallel coordinates, 30 

the envelope of lines between adjacent axes can be spotted to the scatter plot, which represents the relationships between 

parameters. Hence, the linear and nonlinear relationships between variables mapped on adjacent axes can be directly analyzed 

(Vrotsou et al., 2010), as shown in Figure 5d. Moreover, the multi-relational 3D parallel coordinates (Yao and Wu, 2016) (see 
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Figure 5e) is regarded as another approach to exhibit the relationship between any two parameters and explore new phenomena 

for a run of hydrological models in the ongoing research. 
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Figure 5. a) Intuitive sketches of three-dimensional fitness landscapes with possible properties. The vertical axis denotes the objective 

function values and the horizontal axes denote the parameter space. The arrows represent various paths that the population could follow 
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while evolving on the fitness landscape. b) Evolutionary processes in individual parameter spaces using violin plots. The vertical axis of the 

violin plot denotes parameter values; the horizontal axis denotes the probability values. c) Evolutionary processes in multi-parameter space 

using parallel coordinates. These parallel axes represent individual parameters. The polylines describe the parameter set. The evolutionary 

process evolves toward minimizing the objective function values f(x). Hence, the color changes of parallel coordinates could represent the 

evolutional direction of the fitness landscapes. d) Spotting the envelope of lines between adjacent axes to scatter plot. e) Multi-relational 3D 5 
parallel coordinate plots.  

Taking the Hanzhong basin as an example, the results for investigating the evolutionary processes of seasonal dynamic 

parameters in the individual parameter spaces are shown in Figure 6. The parameter 𝐾𝑠 presents the thinner distribution of 

violin plots in all sub-periods, which manifests that its evolutionary processes are disturbed by fewer local optima and less 

hindered. However, the ability to find the global optimum of other parameters is generally poor. The results are consistent with 10 

the response of seasonal dynamic parameters to catchment characteristics shown in Figure 3d. The results in the Mumahe basin 

and Xunhe basin are shown in Figure S3 and Figure S4 in the Supporting Information. The results are similar to those of the 

Hanzhong basin. 

The evolutionary processes of dynamic parameters in multi-parameter space are investigated and shown in Figures 7 and 8. 

Firstly, it is stated that the parameter sets from the first two loops are not investigated because their results have high 15 

uncertainties as to the warm-up of the global optimization algorithm. The direction of the evolutionary processes is analyzed 

according to the color changes of parallel coordinates. The polylines at 𝐾𝑠 search to the final values with the minimum number 

of iterations, i.e., the fastest speed in all sub-periods. However, the polylines at other parameters are fluctuating, i.e., increasing 

and decreasing. It implies that it is difficult to find the right direction to determine the global optimum. In addition, the width 

of the parameter set distribution of the polylines decreases sequentially in the dry period, rainfall period I, rainfall period III 20 

and rainfall period II. The result indicates that the ability to find global optimum is increasing in four sub-periods, which is 

consistent with the simulation performance in four sub-periods (shown in Figure 3c). The results in the Mumahe basin and 

Xunhe basin are similar to the Hanzhong basin and shown in Figures S5-S8 in the Supporting Information. 
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Figure 6. Evolutionary processes of seasonal dynamic parameters in the individual parameter spaces in the Hanzhong basin. 
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Figure 7. Evolutionary processes of seasonal dynamic parameters in multi-parameter space in the Hanzhong basin. 
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Figure 8. Evolutionary processes of seasonal dynamic parameters with magnified details on the axes in multi-parameter space in the 

Hanzhong basin. 
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5.2 Correlation between parameters 

According to the values of MIC shown in Figure 4b, the significant linear and nonlinear correlation MIC existed between 

parameters, which verify the Bárdossy's (2007) view. Namely, the dynamic changes of one parameter might be intervened by 

other parameters due to their interdependence. However, according to the assessment results of model performance, the model 

performance with a seasonal dynamic parameter set has significant improvement. Even though individual parameters cannot 5 

respond well to dynamic catchment characteristics, a dynamic parameter set could carry the information extracted from 

dynamic catchment characteristics and improve the model performance. 

5.3 Limitation 

Still, there are several limitations, and we will address in future studies: (1) More catchments with various characteristics will 

be investigated to explore the impact of spatial variability of watershed features on model performance. (2) Besides seasonal-10 

scale variability, more time scales for dynamic parameters in catchment response, such as annuals-scale variability and long-

term changes, will be further studied. (3) The study uses a 5-parameter model, which is considered as a small parameter space. 

We would explore the higher-dimensional hydrological model using the methodology and procedure demonstrated in the 

ongoing study. (4) The quantifiable metrics to assess the evolutionary processes will be developed. The violin plot uses a 

nonparametric density estimation based on a smooth kernel function with a fixed global radius. The PDF (probability density 15 

function), CDF (cumulative distribution function) values of data can be used to quantify the violin plots in case of uniform, 

multimodal, skewed and clipped data (Yapo et al., 1996). Hence, the mathematical benchmark functions with PDF and CDF 

will be used for assessing the evolutionary processes of dynamic parameters in the next research. In addition, a dispersion 

metric is suggested to evaluate the polylines in the parallel coordinate and the evolutionary processes in the multi-parameter 

space. The metric measures average Euclidian distances, which were normalized to ensure comparability (Arsenault et al., 20 

2014). However, the application of the quantitative evaluation metrics needs a significant amount of experiment, validation, 

analysis and discussion, which cannot all be considered in this study. We will clarify and investigate this critical issue in the 

ongoing study. 

6 Conclusions 

The seasonal dynamic of parameters is one of the practical considerations for compensating structural defects of hydrological 25 

models and improving model performance. In this study, a framework was proposed to extract the dynamic catchment 

characteristics using a series of data mining methods. The information extraction included selection and generation of climate 

and land-use indices, screening of indices, processing of redundant information among indices and clustering of hydrological 

processes based on the indices. The extracted information and model calibration were effectively integrated by sub-period 

calibration operations. The recommended calibration operation considered the sensitivity and correlation of parameters, the 30 
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dimensions of parameters, and considerable temporal memory in the model states between two adjacent subperiods. Multi-

metric assessment of model performance was designed for various flow phases and the temporal transitivity of parameters. 

The study showed that the proposed framework significantly improves the accuracy and robustness of the hydrological model. 

However, there was generally a poor response of seasonal dynamic parameter set to dynamic catchment characteristics. Hence, 

the investigation for this issue was expanded considering the evolutionary processes on seasonal dynamic parameters 5 

optimized by global optimization and the intricate and significant correlation between parameters. Consequently, the poor 

response of seasonal dynamic parameter set to catchment dynamics might be attributed in part to the possible failure in finding 

the global optimum when optimizing the seasonal dynamic parameters and strong correlation between parameters. Even though 

individual parameters could not respond well to dynamic catchment characteristics, a dynamic parameter set could carry the 

information extracted from dynamic catchment characteristics and improve the model performance. In addition, a novel tool 10 

for visualizing the evolutionary processes of seasonal dynamic parameters was designed using geometry visualization 

techniques, which was also regarded as an important tool to understand the model running with dynamic hydrological model 

parameters in the next research. More case studies and applications of hydrological models can be performed in the future. 

They are expected to yield insights into the predictive performance of hydrological models. 

Acknowledgments 15 

This study is financially supported by the Excellent Young Scientist Foundation of NSFC (51822908), the National Natural 

Science Foundation of China (No. 51779279), the National Key R&D Program of China (2017YFC0405900), Open research 

foundation of Dynamics and the associated process control key laboratory in the pearl river estuary of ministry of water 

resources (2017KJ12), Baiqianwan project's young talents plan of special support program in Guangdong Province (42150001), 

and the Research Council of Norway (FRINATEK Project 274310). Digital Elevation Model (DEM) of the study area is 20 

derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global digital elevation model 

(GDEM) with a cell size of 30 × 30 m, which are obtained from https://asterweb.jpl.nasa.gov/. The climatic datasets consist 

of daily rainfall datasets and pan evaporation datasets provided by the China Climatic Data Sharing Service System which are 

obtained from https://data.cma.cn/en. Daily streamflow used to support this paper can be made available for interested readers 

by the corresponding author at linkr@mail.sysu.edu.cn. 25 

Appendix 

Table A1. Climatic-land surface indices. 

Indices Descriptive names Definitions Units 

RT Total precipitation Current half-monthly total precipitation mm 

RX1day Maximum 1-day precipitation Half-monthly highest 1-day precipitation mm 

RX5day Maximum five-day precipitation Half-monthly highest consecutive 5-day precipitation mm 

R25pday Moderate precipitation days Count of days where RR (daily precipitation amount) < 25th percentile days 

mailto:linkr@mail.sysu.edu.cn
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R75pday Heavy precipitation days Count of days where RR ≥75th percentile days 

PET Total pan evaporation Current half-monthly total pan evaporation mm 

PEx Maximum 1-day pan evaporation Half-monthly highest 1-day pan evaporation mm 

PEn Minimum 1-day pan evaporation Half-monthly lowest 1-day pan evaporation mm 

QT-1 Antecedent streamflow Antecedent half-monthly average streamflow m3/s 

C Runoff coefficient Ratio of runoff volume to rainfall volume  

Table A2. Definitions of parameters, state variables and fluxes used in the HYMOD model (Wagener et al., 2001). 

Label Property Range Description 

Huz Parameter 0-1000 [mm] Maximum height of soil moisture accounting tank 

B Parameter 0-1.99 Scaled distribution function shape 

alpha Parameter 0-0.99 Quick/slow split 

Kq Parameter 0-0.99 Quick-flow routing tanks' rate 

Ks Parameter 0-0.99 Slow-flow routing tank's rate 

XHuz State variable [mm] Upper zone soil moisture tank state height 

XCuz State variable [mm] Upper zone soil moisture tank state contents 

Xq State variable [mm] Quick-flow tank states contents 

Xs State variable [mm] Slow-flow tank state contents 

AE Fluxes [mm/day] Actual evapotranspiration flux 

OV Fluxes [mm/day] Precipitation excess flux 

Qq Fluxes [mm/day] Quick-flow flux 

Qs Fluxes [mm/day] Slow-flow flux 

Qsim Fluxes [mm/day] Total streamflow flux 
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