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Abstract. In mountain regions, validation and local correction of gridded precipitation datasets (GPDs) are pre-requisites for 

glacio-hydrological simulations. However, insufficient observed data and glacial involvement make it a complicated task in 10 

glacierized watersheds. To diagnose the potential problems in GPDs from multiple perspectives and provide directions for 

their correction, a Tri-approach framework, consisting of statistical analysis, physical diagnosis, and practical simulation, is 

proposed. Truc-Budyko theory is introduced into this framework, which can identify the actual under- or over-estimation of 

GPDs based on watershed water-energy balance, diagnose their possible causes, and provide directions for local correction. 

This framework was applied to the glacierized Upper Indus Basin (UIB) for evaluating GPDs, including APHRODITE, 15 

CFSR, PGMFD, TRMM, and HAR, against adjusted observed precipitation (OBS), specific runoff, and glacier mass balance 

over varying periods during 1951−2017. The Spatial Processes in HYdrology (SPHY) model was used to simulate the 

hydrology and glacier changes (2001−2007). The results suggest that (a) patterns of inter- and intra-annual variations of OBS 

precipitation were better captured by APHRODITE (CC >0.6), but it was underestimated (-40%), (b) UIB was characterized 

as “Leaky” catchment based on overestimated CFSR (106%) and HAR (77%), indicating positive glacier storage changes 20 

(0.37 and 0.21 m w.e. yr-1, respectively). In contrast, UIB was characterized as “Gaining” watershed for remaining 

underestimated datasets, indicating negative storage changes (-0.42 to -0.34 m w.e. yr-1). (c) For constant mass balance, the 

simulated runoff was overestimated in SPHY_CFSR (66%) and SPHY_HAR (53%), whereas it was underestimated for 

SPHY_APHRODITE (-41%), SPHY_PGMFD (-26%), and SPHY_TRMM (-33%). It highlights that evaluated GPDs could 

not generally meet the requirements of the rational output of glacier mass balance and streamflow concurrently. The physical 25 

diagnosis directs local correction based on under- and over-estimation. The practical simulation explores the extent of 

expected uncertainties in intra/inter-annual characteristics of glacio-hydrology. 

1 Introduction 

Hydrological simulation is almost inevitably used to develop policies and pro-active remediation and mitigation of the 

challenges caused by climate change and its impacts on river basins nowadays (Immerzeel et al., 2020; Pritchard, 2019). The 30 
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uncertainties in the hydrological simulation results may affect the understanding and management strategies of the water 

resources, and so, the millions of people who are dependent on these resources for hydropower generation, domestic, 

industries, agriculture needs, and maintaining the ecological systems (Huss and Hock, 2018; Luo et al., 2018; Singh et al., 

2016; Viviroli et al., 2007). Precipitation is the main input to the hydrological models, and the availability of accurate 

precipitation data is the pre-requisite of efficient simulation and reliable results in any catchment (Koutsouris et al., 2016; 35 

Tong et al., 2014). Meanwhile, it is a fact that observed precipitation data are usually insufficient or even unavailable for 

effective hydrological simulation, especially in the high elevation zones and where glaciers exist. Fortunately, to overcome 

the problem of data scarcity and distribution biasness, scientists have developed gridded precipitation datasets (GPDs) using 

observed, reanalysis, or remote sensing data or a combination of them (Dee et al., 2011; Harris et al., 2014; Huffman and 

Bolvin, 2015; Maussion et al., 2014; Saha et al., 2010; Yatagai et al., 2012). These datasets provide continuous coverage of 40 

land, usually span from the 1960s up today with daily time step, and thus provide an opportunity for driving the hydrological 

simulation in the data scare watersheds. 

The accuracy of GPDs is subjected to certain uncertainties due to their methods of development, sources, spatial, and 

temporal resolution coverage (Sun et al., 2018). Each kind of dataset has its own advantages and limitations. For example, 

relatively high accuracy in rain gauge observations, whereas, at the same time, uneven and insufficient distribution of 45 

meteorological networks is a limitation in such datasets (Ji et al., 2020; Salio et al., 2015; Woldemeskel et al., 2013). The 

reanalysis output-based datasets have advantageous in their high spatial and temporal resolutions, but they have limitations 

linked to a high level of uncertainties due to the issues in input data and methods adopted in reanalysis (Knutti and Sedláček, 

2012). Similarly, satellite-based datasets are advantageous in their resolution, but they are limited due to uncertainties caused 

by the sensors and algorithms used to retrieve and estimate precipitation, respectively (Sorooshian et al., 2011). Regional 50 

studies showed the benefits of higher resolution in terms of better topographic representation, and the issues of 

representation caused by the regional weather phenomenon and station density (Faiz et al., 2018; Isotta et al., 2015). Source-

specific assessments showed that reanalysis datasets failed to represent quite a lot of weather patterns (Bosilovich et al., 

2008), and satellite observation-based datasets were found restricted under cloud-covered conditions (Kidd et al., 2012). 

Hence, the inherent issues in GPDs (Sun et al., 2018; Yao et al., 2020) make the selection of an appropriate input dataset 55 

very hard for specific hydrological applications, and thus, priori-evaluation of GPDs is necessary for hydrological simulation. 

Evaluation of the GPDs is performed generally with regard to the following aspects, intra- and inter-annual variation patterns 

(Yao et al., 2020) and water balance at multiple temporal and spatial scales. For a glacierized watershed, mass gaining from 

the precipitation or melt release as additional water input to streamflow (Shafeeque et al., 2019) makes the water balance 

check more complicated. 60 

The temporal distribution patterns of the GPDs are usually evaluated against the rain gauge data series (Ali et al., 2017; 

Anjum et al., 2018; Blacutt et al., 2015; Henn et al., 2018; Hu and Chen, 2018; Hu et al., 2016; Hussain et al., 2017; Romilly 

and Gebremichael, 2011). This is the most popular and widely accepted evaluation approach reported in open publications. 

Arguments also arise from this evaluation approach. The observation data might have already been used in the rain gauge 
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based GPDs. In this case, the data from corresponding grid cells may match the rain gauge data very well. On the other hand, 65 

this approach cannot be performed in the high elevation zone, where the rain gauges are usually unavailable. In fact, the 

station observations cannot capture the strong gradients in multiple local factors in mountainous regions, and that makes it 

hard to analyze and understand the spatiotemporal variations in hydroclimatic regimes (Lutz et al., 2014). The mountain 

areas are facing challenges in observed precipitation, primarily due to a small number and unevenly distributed 

meteorological stations (Salio et al., 2015). Moreover, low altitude meteorological stations cannot represent a significant 70 

amount of precipitation at higher elevations (Dahri et al., 2018), which is expected to have a strong effect on the complex 

glacio-hydrometeorological systems. Besides, the limited gauge numbers usually are not enough for evaluating the GPDs 

with regard to the watershed water balance. 

Using the available GPDs to drive the hydrological simulation is another way of evaluating the GPDs in both temporal-

spatial distributions and water balance (Tong et al., 2014). The detailed hydrological simulation outputs provide rich 75 

information for evaluating the GPDs and diagnosing potential problems. This is the most powerful way, yet the most 

complicated task to fulfill. It requires the specific knowledge of hydrological model and application, simulation setup on the 

basis of a huge amount of watershed simulation data, model parameterization (Ragettli and Pellicciotti, 2012), and capacity 

for output analysis. When this approach is applied to a glacierized watershed, knowledge of glacier changes, and glacio-

hydrological processes are required. Data scarcity in the glacierized regions, changes in glacier storage, and glacial melt as 80 

an additional input to streamflow (Wang et al., 2018) make the GPD evaluation complicated. 

Although the discharge measurements are more authentic than precipitation in snow-fed or glacierized river basins (Henn et 

al., 2015; Kretzschmar et al., 2015) and used to evaluate the watershed balance in a direct way, studies indicated that 

observed precipitation is insufficient to sustain the hydrological and glacier systems in mountain regions (Immerzeel et al., 

2015), and thus, cannot represent the real amount of precipitation in a glacierized river basin as well.  85 

Glacier mass change is a key issue in checking the performance of GPDs via the watershed water balance. On the one hand, 

part of precipitation may fall as snow and, part of the snow may turn into glacier ice eventually. The stored precipitation in 

solid-state moves with glacier and may melt at its lower end with time delay over the years (Cuffey and Paterson, 2010). The 

meltwater goes into streamflow as an additional water source (Shafeeque et al., 2019). The state change of precipitation ice - 

meltwater can only be evaluated through the glacio-hydrological simulations, which is usually a complicated task to do. 90 

Truc-Budyko theory (Budyko, 1974; Truc, 1954) deals with water and energy at the watershed and annual scale (Coron et al., 

2015; Valéry et al., 2010). It connects the annual streamflow to the precipitation and evapotranspiration in a formula, and 

thus, provides a simple method to evaluate the annual precipitation by the observed streamflow. It is usually applied with an 

assumption that the annual change in watershed storage is neglected. 

Provided that glacial storage change has involved in the water balance, it can be detected by the Truc-Budyko theory. When 95 

watershed water storage change is neglected, (a) Q must not be negative (i.e., Q ≥ 0), (b) Q must not be less than the 

difference between precipitation and potential evapotranspiration (i.e., Q ≥ P – ETp), and (c) Q must be less than the 

available precipitation (i.e., Q ≤ P) (Andréassian and Perrin, 2012). When glacier storage changes and meltwater releases to 
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streamflow, the relationship among precipitation, evapotranspiration, and streamflow will go beyond the principles 

mentioned above. The potential problems of GPDs and the involvement of glaciers can thus be detected.  100 

 A Tri-approach is proposed in the current study, which is a combination of (1) statistical validation—comparisons of GPDs 

against the observed precipitation based on climatology (2) physical diagnosis—assessing physical realism of GPDs to 

represent a plausible water-energy balance, and (3) practical simulation—based on the simulation of hydrology and glacier 

changes using glacio-hydrological models. The purpose of this framework is to provide a way of evaluating a GPD from 

multiple perspectives, diagnose the potential problems in it, and suggest the directions for its local correction. 105 

The Tri-approach is applied as a case study in the glacierized Upper Indus Basin (UIB), which is located in a high elevation 

zone and covered by extensive glaciers (Bajracharya and Shrestha, 2011).  

Some popular GPDs, such as APHRODITE, CFSR, HAR, PGMFD, and TRMM, are evaluated in UIB using the proposed 

Tri-approach as an example application. Performance of these datasets is evaluated by answering: (a) How do the GPDs 

perform against the observed precipitation? (b) Can the GPDs represent the real water-energy balance (physical realism)? 110 

and (c) Can GPDs simulate the rational outputs of hydrology and glacier changes in glacierized catchments simultaneously? 

Based on the evaluation, suggestions to further corrections to these datasets are made. 

2 Materials and Methods  

2.1 Study area 

Upper Indus Basin (UIB) covers an area of more than 173,000 km2 shared among China, India, and Pakistan (31−37°N and 115 

72−82°E). About 50% area of UIB lies within Pakistan. UIB hosts the eastern Hindukush, western Himalaya, and Karakoram 

mountain ranges (Inman, 2010; Khan et al., 2015; Mukhopadhyay and Khan, 2014). The hydroclimatic characteristics of 

different spatial sub-regions of UIB are different from each other. Westerlies and summer monsoon precipitation systems 

(Figure 1a) are responsible for the annual precipitation in UIB; however, the effect and contributions of both sources differ 

temporally and spatially. The total number of glaciers is about 12,000, having more than 15,000 km2 glacier area with glacier 120 

area ratio (GAR) of about 9% (Bajracharya and Shrestha, 2011) (Figure 1c). The percent snow-covered area of UIB varies 

from more than 10 to 70% (Hasson et al., 2014), In UIB, the snow cover has distinct seasonal patterns with maximum snow 

in spring and a minimum in summer (Gurung et al., 2017). It is difficult to treat the UIB as a single unit because of the 

influence of multiple climatic systems as well as unique interactions among the cryosphere, atmosphere, and hydrosphere 

(Palazzi et al., 2013). Therefore, in this study, UIB was divided into three sub-regions based on their spatial location in the 125 

three major mountain ranges: Himalaya, Hindukush, and Karakorum ([ and Figure 1b). 

[Table 1] 

[Figure 1] 
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2.2 Data collection and preparation 130 

The details of hydrology, climate, soil, land use, DEM, glacier mass balance, and reanalysis datasets are provided in [. 

Annual average observed discharge varied between 140–2431 m3/sec at the given hydrological stations (Figure 1e). The 

average annual temperature was 5.3 ºC in the entire domain of UIB for 1985−2014. The average annual minimum and 

maximum temperature was -0.98 ºC and 11.58 ºC, respectively (Supplementary Fig. S1). 

[Table 2] 135 

The basic wrangling, analysis, and extraction of GPDs were done using Climate Data Operators (CDO v1.9.7) package 

(https://code.mpimet.mpg.de/projects/cdo), GIS 10.2, and R (https://www.r-project.org). The spatial fields for adjusted 

observed precipitation (OBS) were generated by interpolating and resampling the point observations. The OBS and GPDs 

were resampled at a common resolution of 0.25º×0.25º. A simple resampling technique ‘nearest neighbor’ was used to 

resample the datasets at 0.25º×0.25º resolution. 140 

2.2.1 Evapotranspiration calculation 

The ETp was calculated based on the Hargreaves method (Hargreaves and Samani, 1985) using Drought Indices Calculator 

(DrinC V1.7) software (Tigkas et al., 2014). The calculated ETp was between 795 mm yr-1 to 1015 mm yr-1, with an average 

of 907 mm yr-1 ([). The highest values were in the Hindukush, while the lowest in the Karakorum sub-region.  

The choice of the formula is very critical in calculating ETp (Zhou et al., 2020) because it can affect the rest of the analysis; 145 

therefore, it is essential to validate calculated ETp. For validating the calculated ETp and calculating the actual 

evapotranspiration (ETa), reference ETp data (Supplementary Fig. S2a) was also extracted from Global Reference Evapo-

Transpiration (Global-ET0) at 1km resolution over the period 1970−2000 (Antonio and Zomer, 2018), available at the 

CGIAR-CSI GeoPortal. In this product, the potential evapotranspiration data was estimated based on the FAO Penman-

Monteith method. The actual evapotranspiration data (Supplementary Fig. S2b) was extracted from Esri_hydro “average 150 

annual actual evapotranspiration” derived by the researchers at the University of Montana based on the data from MOD16 

Global Evapotranspiration Product (ESRI, 2019). The ETa was estimated using the following relationship: 

𝐸𝑇𝑎 =  ( 
𝐸𝑇𝑎𝑀

𝐸𝑇𝑝𝑀
⁄ ) × 𝐸𝑇𝑝   

 (1) 

Here, ETa represents the estimated actual evapotranspiration, 𝐸𝑇𝑎𝑀
 is the actual evapotranspiration based on Esri_hydro 

“average annual actual evapotranspiration”, 𝐸𝑇𝑝𝑀
 is the potential evapotranspiration based on Global Reference Evapo-

Transpiration, and ETp is calculated evapotranspiration. The ETa was less than 𝐸𝑇𝑎𝑀
 by -17% to -4% in sub-regions and -155 

averagely -11% in entire UIB ([). 

[Figure 2] 
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2.2.2 Precipitation adjustment 

Observed precipitation encounters with several uncertainties including undercatch snow, wind effect on snow redistribution, 

catchment located on the leeward side (e.g., Himalaya sub-region), low station density, uneven distribution of observation 160 

network, and variations in overlapping periods for all the meteorological stations. The problem of low density and uneven 

distribution of meteorological stations is huge, common, and unavoidable in most of the alpine regions (Isotta et al., 2015; 

Liu et al., 2019), while the undercatch and measurement errors may also be amplified during different seasons (Rasmussen et 

al., 2012). Furthermore, the elevation of UIB ranges between ~300−8569 masl; however, the meteorological stations are 

located below ~5000 masl with an average elevation of 3100 m (Figure 1b). Hence, there are no observed data at above 5000 165 

masl, which is an unavoidable limitation in this region (Winiger et al., 2005). Previous studies (Basist et al., 1994; 

Bookhagen and Burbank, 2006; Hu et al., 2015; Immerzeel et al., 2015; Johansson and Chen, 2003; Yoon et al., 2019) have 

proven that precipitation is largely affected by topography, and this correlation is due to vertical deflection of moist winds 

aloft, the hindrance or modification of low pressure and frontal systems, and the promotion of local convection currents (Roe, 

2005). So, the low elevation meteorological stations might not represent the higher elevation precipitation; therefore, using 170 

such station data for performance evaluation may induce uncertainty in the analyzed results. A number of previous studies in 

the region have corrected the precipitation using different reverse modeling approaches (Dahri et al., 2018; Immerzeel et al., 

2015). In the current study, observed precipitation is adjusted for the selected station based on the corrected precipitation in 

Dahri et al. (2018). The interpolated observed precipitation was resampled at 0.25º×0.25º resolution based on the ‘nearest 

neighbor resampling technique’ for comparison purposes. The adjusted precipitation was higher by 73% than the uncorrected 175 

observed precipitation in UIB ([a). The average annual adjusted precipitation was 540±180 mm yr-1 from 1951−2017 in UIB. 

The spatial distribution of adjusted precipitation in UIB is presented in [b. 

[Figure 3] 

2.3 The Tri-Approach framework 

The Tri-approach framework includes three approaches: (a) statistical performance evaluation of GPDs against OBS for 180 

investigating the ability of GPDs to represent the climatology, (b) testing the physical realism of GPDs to represent the 

plausible water-energy balance based on a hydrological alternative of Truc-Budyko theory, and (c) practical simulation using 

hydrological models to investigate the rationality of simulated hydrology and glacier changes. A schematic diagram of Tri-

approach is provided in [a. 

[Figure 4] 185 

2.3.1 Statistical analysis 

The statistical analysis is based on the comparisons between GPDs and OBS precipitation using different statistical indices. 

The analysis was performed to identify the differences among the GPDs in representing the patterns of monthly and seasonal 

distribution and inter-annual variations of OBS precipitation. The statistical indices include correlation coefficient (CC) ((2), 
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percent bias (PBIAS) ((3), root means square error (RMSE) ( (4), and standard deviation (SD) ((5). The similarity in spatial 190 

or temporal patterns between two datasets can be indicated by CC, the absolute mean difference between two datasets can be 

measured by RMSE, the systematic under- or over-estimation of a dataset can be shown by PBIAS. SD can measure the 

spread of data about the mean value. All of these statistical parameters were calculated as follows: 

𝐶𝐶 =
∑ (𝑃𝑖

𝑜𝑏𝑠−𝑃𝑚𝑒𝑎𝑛
𝑜𝑏𝑠 )(𝑃𝑖

𝑔𝑑
−𝑃𝑚𝑒𝑎𝑛

𝑔𝑑
)𝑛

1

√∑ (𝑃𝑖
𝑜𝑏𝑠−𝑃𝑚𝑒𝑎𝑛

𝑜𝑏𝑠 )𝑛
1

2
√∑ (𝑃𝑖

𝑔𝑑
−𝑃𝑚𝑒𝑎𝑛

𝑔𝑑
)𝑛

1

2
  

(2) 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑃𝑖

𝑔𝑑
−𝑃𝑖

𝑜𝑏𝑠)𝑛
1

∑ (𝑃𝑖
𝑜𝑏𝑠)𝑛

1
 × 100  

(3) 

𝑅𝑀𝑆𝐸 = √∑ (𝑃𝑖
𝑜𝑏𝑠−𝑃𝑖

𝑔𝑑
)

2
𝑛
1

𝑛
  

 (4) 

𝑆𝐷 = √
1

𝑛−1
∑ (𝑃𝑖 − 𝑃̅)2𝑛

𝑖=1   

(5) 

Here, 𝑃𝑖 is the ith observation for the precipitation (superscript ‘obs’ and ‘gd’ represents OBS and GPD, respectively), 𝑃𝑚𝑒𝑎𝑛
𝑜𝑏𝑠  

is the mean of observed precipitation, 𝑃𝑚𝑒𝑎𝑛
𝑔𝑑

 is the mean value for the precipitation in GPDs, and n is the total number of 195 

values in the corresponding dataset.  

The precipitation data was available varying from 1951 to 2017 for different datasets ([) and OBS precipitation 

(Supplementary Table S1). The climatology was derived for Himalaya, Hindukush, and Karakorum sub-regions using all the 

available data for each rescaled dataset. The spatial distribution of GPD and OBS precipitation was explored based on annual 

average precipitation in sub-regions of UIB. Temporal distribution of OBS and GPDs precipitation was explored at monthly, 200 

seasonal, and annual time scales in sub-regions of UIB. The trend analysis of the OBS and GPDs was performed based on 

the Mann-Kendall test, which has been widely used for non-parametric analysis in hydrometeorological studies (Hirsch et al., 

1991). Sen’s non-parametric method (Sen, 1968) was used to estimate the slope value (Supplementary Information). The 

annual cycle was divided into four seasons: (a) March, April, and May (MAM)—Spring, (b) June, July, and August (JJA)—

Summer, (c) September, October, and November (SON)—Autumn, and (d) December, January, and February (DJF)—205 

Winter. It is important to mention that in some of the previous studies, only two seasons were considered to represent the 

seasonal precipitation, i.e., winter (usually Oct−Mar) and summer (Jul–Sep) season, e.g., (Dahri et al., 2016; Hewitt, 2007). 

The annual average precipitation for each dataset was compared with OBS precipitation for the corresponding overlapped 

period in sub-regions of UIB. Taylor’s diagram (Taylor, 2001) was used to express the comparison results graphically. 

ETCCDI indices (Peterson, 2005) are generally used to analyze the extreme precipitation characteristics in GPDs (Nastos et 210 

al., 2013). In this study, four ETCCDI, including consecutive dry days (CDD), consecutive wet days (CWD), precipitation 
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due to extremely wet days (R99pTOT), and simple precipitation intensity index (SDII), were selected to compare the 

performance of GPDs in representing the precipitation extremes. CDD is the maximum length of dry spells with 

precipitation <1mm, CWD is the maximum length of wet spells with precipitation >1mm, R99pTOT is the annual total 

precipitation when daily wet day amount >99th percentile, and SDII is the mean precipitation amount on wet days. 215 

RClimDex software package (https://github.com/ECCC-CDAS/RClimDex) was used to calculate ETCCDI. The average 

values of ETCCDI for GPDs were compared with those for OBS in sub-regions of UIB. 

2.3.2 Physical diagnosis 

The physical diagnosis was performed to identify the actual over- and under-estimation of the GPDs at watershed and annual 

scales based on the water-energy balance of the watershed. The hydrological alternative of the Truc-Budyko plot was used to 220 

diagnose the GPD for reproducing a plausible water-energy balance. First, the water-input was compared with the water-

output in the sub-regions of UIB. To do so, the precipitation from selected datasets was compared with the specific runoff to 

assess the quantitative relationship between the specific runoff and precipitation in different datasets, including OBS at 

monthly and annual scales. Then, a non-dimensional representation of physical water-energy balance was applied to estimate 

the actual under- or over-estimation in the glacierized catchment. The most widely used type of representation is proposed 225 

by Truc (1954) and Budyko (1974). Finally, the water balance equation of a glacierized catchment was used to estimate the 

change in glacier storage for each dataset. 

In this study, the physical realism of each precipitation dataset was verified using a hydrological alternative of a non-

dimensional Truc-Budyko plot (Andréassian and Perrin, 2012). In this approach, the realistic closure of water-energy 

balance was tested using precipitation from each dataset. Long-term water yield or runoff coefficient (Q/P) was plotted as a 230 

function of long-term aridity-index (P/ETp) (Coron et al., 2015; Valéry et al., 2010), i.e., 

𝑄
𝑃⁄ = 𝑓 (𝑃

𝐸𝑇𝑝
⁄ )  

(6) 

Here, Q, P, and ETp represent specific runoff, precipitation, and evapotranspiration in a catchment, respectively. Plotting 

aridity-index on the x-axis also allows focusing on the wettest and driest catchments based on input precipitation (wetter 

catchment corresponds to higher P/ETp value). The physical interpretation of this hydrological representation is based on 

three assumptions: (1) Q ≥ 0, (2) Q ≥ P – ETp, and (3) Q ≤ P ([b). All three limits are based on the water balance equation of 235 

a water-tight (conservative) catchment. The water balance equation for a conservative catchment can be written as follows: 

𝑃 = 𝑄 + 𝛼𝐸𝑇𝑝              (where α ≤  1)  
(7) 

The point (representing a catchment—different positions in the plot for different precipitation datasets), which falls within 

the feasible domain is considered as realistic or “True” catchment ([b). The feasible domain is an area below or equal to the 

https://doi.org/10.5194/hess-2020-194
Preprint. Discussion started: 26 June 2020
c© Author(s) 2020. CC BY 4.0 License.



9 

 

water limit and above or equal to the energy limit. If a data point falls above the water limit (i.e., Q > P) or below the energy 

limit, then it is called “Gaining” or “Leaky” catchment, respectively (Andréassian and Perrin, 2012). 240 

When a glacierized catchment falls in the “Gaining” zone (Q > P) ([b) based on the water-energy balance, it implies that 

there must be an additional water term that contributes to total runoff. The meltwater contributions to total runoff highlight 

that higher precipitation is required to sustain such glacier systems in glacierized catchments. Hence, the precipitation in that 

GPD is underestimated as compared to the actual water-input in a glacierized catchment. In the case of “Leaky” catchment 

(Fig. 2b), when the runoff is less than the available energy, it implies that a part of total runoff is missing from the water 245 

balance or the precipitation is overestimated. In glacierized catchments, the missing water can be stored in the form of a 

positive glacier mass balance. Therefore, playing with the rational output of mass balance and streamflow can lead to the 

corrected precipitation, which would be sufficient for sustaining both water and mass balance. 

In glacierized catchments, the simplest water balance equation can be written as: 

∆S/∆t = 𝑃 − (𝑄 + 𝐸𝑇𝑎) + 𝑀𝐵  
(8) 

Here, ETa and MB represent actual evapotranspiration and mass balance in the watershed, respectively. The imbalance in (8 250 

is the change in storage (∆S). When ∆S = 0, the catchment is the perfect “True” catchment. The “True” catchment can have a 

slight positive or negative change in storage depending on the quality of observed mass balance and ETa. However, the 

“Gaining” catchments always have a negative change in storage (∆S < 0), and the “Leaky” catchments always have positive 

changes in storage (∆S > 0). The negative change in storage results in the melting of glaciers and contributing additional 

water to total runoff. Whereas, positive change in storage represents advancing glaciers in a catchment where heavy 255 

precipitation falls in solid form and stored in the form of glaciers. 

2.3.3 Practical simulation 

The practical simulation is used to ensure that GPDs are capable of producing a balanced output of streamflow and glacier 

changes at the same time. The observed glacier, snow cover, and hydrology data are used to calibrate the glacio-hydrological 

model, and then the simulated results of runoff and mass balance are analyzed for rationality in a glacierized catchment. The 260 

Spatial Processes in HYdrology (SPHY) model (Terink et al., 2015) was used for the practical validation of the ability of all 

the precipitation datasets to simulate hydrology and glacier changes. The SPHY model is a fully distributed, leaky bucket 

type hydrologic model. It has been developed using key components of HydroS (Droogers and Immerzeel, 2010), PCR-

GLOPWB (Bierkens and van Beek, 2009), SWAT (Arnold et al., 1998), HimSim (Immerzeel et al., 2012), and SWAP (Van 

Dam et al., 1997). The SPHY model is a raster-based glacio-hydrological model, and it has been used in different glacierized 265 

regions. The primary advantage of the SPHY model is its glacier module, which can distinguish between the clean ice and 

debris-covered glaciers. The debris-covered glacier area is ~18% (Khan et al., 2015), and debris-covered glaciers can affect 
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the overall meltwater contributions (Gardelle et al., 2012; Kaab et al., 2012; Khan et al., 2015). The SPHY model allows 

assigning different degree-day factors for the two to differentiate between their melt rates. 

In the SPHY model, total runoff is a sum of four possible components: glacier runoff, snow runoff, baseflow runoff, and rain 270 

runoff. 

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑠𝑛𝑜𝑤 + 𝑅𝑔𝑙𝑎𝑐𝑖𝑒𝑟 + 𝑅𝑟𝑎𝑖𝑛 + 𝑅𝑏𝑎𝑠𝑒𝑓𝑙𝑜𝑤  
 (9) 

Here, R represents the runoff (mm) for a unit time step. The glacier runoff is composed of supraglacial snowmelt, ice melt, 

and direct rain on ice runoff. As the SPHY model is based on grid cell spatial discretization, sub-grid parameterization is 

used to differentiate glacier cover, i.e., clean and debris-covered glacier fraction within a grid cell using a debris cover mask 

starting from lower elevations. The dynamic snow and soil water storage are solved within the remaining fraction of the grid 275 

cell. The detailed description of the SPHY model is referred to Terink et al. (2015). Here, a brief description of snow and 

glacier runoff generation is provided. 

Based on the threshold temperature, precipitation is differentiated into rain or snowfall (P = Snow, when Tavg ≤ Tthreshold). 

Snowmelt is calculated using degree-day model (Hock, 2003) as follows: 

𝑀𝑠𝑛𝑜𝑤𝑃𝑜𝑡 = {
𝑇𝑎𝑣𝑔 × 𝐷𝐷𝐹𝑠𝑛𝑜𝑤   ;  𝑤ℎ𝑒𝑛 𝑇𝑎𝑣𝑔 > 0

0                             ;  𝑤ℎ𝑒𝑛  𝑇𝑎𝑣𝑔 ≤ 0
}  

(10) 

𝑀𝑠𝑛𝑜𝑤𝐴𝑐𝑡 = min (𝑀𝑠𝑛𝑜𝑤𝑃𝑜𝑡𝑡
,  ∆𝑆𝑛𝑜𝑤𝑡−1)  

(11) 

Here, MsnowPot is the potential snowmelt (mm), and the actual snowmelt (MsnowAct) (mm) is calculated using the snow storage 280 

of the previous day (∆Snowt-1). DDFsnow (mm ºC-1 day-1) is the degree-day factor for snow, and it is a calibration parameter. 

The snow runoff is generated when the melting point is below the air temperature, and melted snow cannot be refrozen 

within the snowpack. The snow runoff is the balance of actual snowmelt, liquid precipitation, and the refrozen meltwater. 

𝑅𝑠𝑛𝑜𝑤 = 𝑀𝑠𝑛𝑜𝑤𝐴𝑐𝑡 + 𝑃𝑙𝑖𝑞𝑢𝑖𝑑 − 𝑀𝑟𝑒𝑓𝑟𝑜𝑧𝑒𝑛  
(12) 

The glacier melt is calculated by differentiating clean and debris-covered glaciers because both categories have different 

melt rates (Reid et al., 2012). Degree-day model (Hock, 2003) was adopted to calculate the melt as follows: 285 

𝑀𝑔𝑙𝑎𝑐𝑖𝑒𝑟𝐶𝐼 = {
𝑇𝑎𝑣𝑔 × 𝐷𝐷𝐹𝑔𝑙𝑎𝑐𝑖𝑒𝑟𝐶𝐼 × 𝐹𝑔𝑙𝑎𝑐𝑖𝑒𝑟𝐶𝐼   ; 𝑤ℎ𝑒𝑛 𝑇𝑎𝑣𝑔 > 0

0                                                           ; 𝑤ℎ𝑒𝑛 𝑇𝑎𝑣𝑔 ≤ 0
}   

(13) 

𝑀𝑔𝑙𝑎𝑐𝑖𝑒𝑟𝐷𝐶 = {
𝑇𝑎𝑣𝑔 × 𝐷𝐷𝐹𝑔𝑙𝑎𝑐𝑖𝑒𝑟𝐷𝐶 × 𝐹𝑔𝑙𝑎𝑐𝑖𝑒𝑟𝐷𝐶   ; 𝑤ℎ𝑒𝑛 𝑇𝑎𝑣𝑔 > 0

0                                                             ; 𝑤ℎ𝑒𝑛 𝑇𝑎𝑣𝑔 ≤ 0
}  

(14) 
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Here, MglacierCI and MglacierDC is the daily glacier melt from clean ice and debris-covered glaciers, respectively; FglacierCI and 

FglacierDC is the fraction of debris-free and debris-covered glaciers, respectively; DDFglacierCI (mm ºC-1 day-1) and DDFglacierDC 

(mm ºC-1 day-1) is the degree-day factor for debris-free and debris-covered glaciers, respectively. The total glacier melt 

within a grid cell (MglacierT) is calculated by multiplying the total glacier fraction (Fglacier) with the sum of daily glacier melt 

from debris-free and debris-covered glaciers as follows: 290 

𝑀𝑔𝑙𝑎𝑐𝑖𝑒𝑟𝑇 = (𝑀𝑔𝑙𝑎𝑐𝑖𝑒𝑟𝐶𝐼 + 𝑀𝑔𝑙𝑎𝑐𝑖𝑒𝑟𝐷𝐶) × 𝐹𝑔𝑙𝑎𝑐𝑖𝑒𝑟  
(15) 

The glacier runoff (Rglacier) is calculated as a product of glacier runoff factor (GRF—a calibration parameter used to allow the 

percolation) multiplied by total glacier melt within a grid cell as follows: 

𝑅𝑔𝑙𝑎𝑐𝑖𝑒𝑟 = 𝑀𝑔𝑙𝑎𝑐𝑖𝑒𝑟𝑇 × 𝐺𝑅𝐹  
(16) 

The remaining meltwater percolates into soil layers and recharges groundwater, which after baseflow recession days 

(BFdays—a calibration parameter), is added up in total runoff as baseflow (Terink et al., 2015).  

The model was forced for 2001−2007 with a one-year warm-up period at a daily time step and spatial resolution of 1-km. 295 

Initially, the model was calibrated and validated for OBS precipitation over 2002−2004 and 2005−2007 in UIB, respectively. 

A three-fold multi-objective calibration is adopted to avoid the issues of equifinality caused by the glacier compensation 

effect.  

In the first step, the degree-day factors for clean ice and debris-covered glaciers were optimized ([) based on the area-

weighted mean glacier mass balance. The observed mass balance data were extracted from the literature. The mass balance 300 

in the SPHY model was taken as the accumulation in the form of solid precipitation on the grid cell with glacier fraction and 

adjacent grid cells with a slope steeper than 0.2 (Immerzeel et al., 2015). Then, the parameters related to snow were 

calibrated based on the snow extent in the basin. The average monthly snow cover was compared with MODIS snow cover, 

which was averaged over for every month from the MODIS 8-day product. In the third step, the parameters related to 

baseflow and routing were calibrated based on observed daily runoff at Besham Qila gauge station. 305 

After parameterizing the base SPHY project, six SPHY projects were developed using the calibrated set of sensitive 

parameters for each precipitation dataset in the entire domain of UIB. All SPHY projects had the same datasets and all other 

specifications, except precipitation data. To assess the rationality of simulated glacio-hydrological results, either runoff or 

the mass balance should be identical among all the SPHY projects. Therefore, the SPHY projects based on GPDs were re-

tuned for glacier and snow parameters to achieve a similar average mass balance for all the SPHY projects. The rationality 310 

between the glacio-hydrological outputs was investigated. Comparisons among the simulated glacio-hydrology for each 

SPHY project were made for hydrological performance at daily scale. The inter-annual variations in total runoff and mass 

balance and PBAIS with observed runoff were investigated. The contributions of total runoff components were also 

compared among the outputs of six SPHY projects. 
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[Table 3] 315 

3 Results 

3.1 Statistical validation based on climatology 

The first component in the Tri-approach framework is the statistical comparisons among the abilities of GPDs in 

representing the climatology of OBS precipitation. The GPDs were compared against OBS over the varying periods from 

1951 to 2017 to evaluate their spatiotemporal performance. In all the GPDs, the northeast part of UIB had low precipitation 320 

compared to the other parts, whereas the southwest part with minimum average elevation had the maximum amount of 

precipitation ([a). Spatial distribution patterns in CFSR and HAR were in resemblance with that of OBS; however, the 

amount of precipitation was overestimated. In UIB, average annual precipitation was found 323±99 mm yr-1, 1115±419 mm 

yr-1, 955±218 mm yr-1, 410±84 mm yr-1, and 342±86 mm yr-1 for APHRO, CFSR, HAR, PGMFD, and TRMM over varying 

periods from 1951 to 2017, respectively. The trend analysis of OBS precipitation data showed a significant positive trend in 325 

all sub-regions, except the Hindukush (Supplementary Table S3). Mann-Kendall test statistics revealed that all the GPDs 

showed random trends in UIB.  

[Figure 5] 

The evaluation results of the GPDs are graphically presented using Taylor’s diagrams in sub-regions and UIB ([). The 

proximal distance and position on correlation bars represent the performance. The CC for CFSR was the lowest (<0.2), 330 

whereas the highest values of bias (106%) in UIB ([). The performance of HAR to represent the inter-annual variations of 

OBS was also unsatisfactory due to higher bias (77%) and lower correlation. The performance of APHRO to represent the 

pattern of annual variations was identified as the better in UIB with a higher correlation (CC > 0.6) ([); however, it was 

underestimated by -50% in UIB ([). 

[Figure 6] 335 

[Table 4] 

The annual precipitation cycle is represented using the hyetographs for each dataset in three sub-regions at the monthly time 

scale ([a). The annual cycle of OBS precipitation had a bi-modal hyetograph, where the first peak occurred in April and 

second in August in all sub-regions. The monthly distribution of area-weighted precipitation indicated a bi-modal weather 

system in UIB. The annual precipitation distribution pattern was associated with the westerlies and Indian monsoon in winter 340 

and summer, respectively. The first peak of the OBS precipitation is due to the westerlies as most of the precipitation occurs 

in the winter and spring seasons in solid form. On the other hand, the second peak is due to the summer monsoons in the 

region. Most datasets capture the second peak of OBS precipitation in the Himalaya sub-region, while the first peak was 

mimicked by most of the datasets in Hindukush and Karakorum sub-regions. This highlights that the GPDs can represent the 

influence of westerlies up to some extent in Karakorum and Hindukush sub-regions, and monsoon in Himalaya. However, 345 

the precipitation amount is underestimated in APHRO, TRMM, and PGMFD; whereas, it is overestimated in CFSR and 
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HAR as compared to the OBS. APHRO performed better (CC > 0.8) in representing the patterns of monthly distribution of 

OBS (Supplementary Fig. S5). 

The seasonal distribution of precipitation was explored and compared for the winter, spring, summer, and autumn seasons in 

sub-regions of UIB ([b). The most part (61%) of annual OBS occurred in the winter and spring season in UIB. In sub-regions, 350 

Himalaya, Hindukush, and Karakorum, 63%, 62%, and 56% of annual precipitation occurred in winter and spring ([b). Some 

of the previous studies combined the two seasons and labeled it as winter precipitation. Averagely, the winter and spring 

season precipitation was overestimated by CFSR and HAR by 13% and 22%, respectively, whereas, it was underestimated 

by APHRO (-23%), PGMFD (-7%), and TRMM (-17%) as compared to the OBS in UIB. This highlights that mostly 

westerlies influenced the distribution of annual precipitation in UIB. 355 

[Figure 7] 

The average values of precipitation extremes in OBS and GPDs based on selected ETCCDI are presented in [. CDD based 

on APHRO was the highest in Himalaya and Karakorum sub-region, while CDD based on TRMM was the highest in 

Hindukush. Among the GPDs, the lowest CDD values were for CFSR in all the sub-regions. Average values of CDD for 

OBS, APHRO, CFSR, HAR, PGMFD, and TRMM were 30±20 days, 52±27 days, 22±6 days, 26±7 days, 46±25 days, and 360 

45±18 days in all sub-regions, respectively. It showed that the average duration of dry spells CDDs in APHRO, PGMFD, 

and TRMM was overestimated, and it was underestimated in CFSR and HAR as compared to that in OBS. On the contrary, 

the maximum length of wet spells was found the longest for CFSR, while the lowest for APHRO. The average values for 

CWD for OBS, APHRO, CFSR, HAR, PGMFD, and TRMM were 10±4 days, 6±2 days, 22±13 days, 13±5 days, 8±3 days, 

and 8±4 days in UIB, respectively. The highest value for R99pTOT was for OBS averagely, and all GPDs were 365 

underestimated for this ETCCDI compared to OBS. Among the GPDs, CFSR had the highest value for R99pTOT, whereas 

APHRO had the lowest. The SDII values for HAR, CFSR, and PGMFD were greater than the OBS, whereas APHRO and 

TRMM showed smaller values. The greatest SDII was for HAR dataset. 

[Figure 8] 

3.2 Physical validation based on the water-energy balance 370 

3.2.1 Precipitation versus specific runoff 

First, the monthly specific runoff was compared to the monthly area-weighted region-wise precipitation. It was found that 

the intra-annual distribution of specific runoff was quite different from that of precipitation ([). The comparisons among the 

datasets were made using the runoff coefficients (Q/P) for each month. The values of runoff coefficients greater than one 

(Q/P > 1) means that runoff is higher than the precipitation. Based on the values of runoff coefficients, it was noted that the 375 

runoff peaks occurred during Dec-Apr in all sub-regions ([) because most of the precipitation fall in winter and spring 

seasons ([). The runoff coefficients in the Hindukush were lower than those in Himalaya and Karakorum sub-regions for all 

datasets. Such a relationship between the runoff and precipitation is because the winter and spring precipitation occurs 

mostly in solid form as snow and remains there until it starts melting and contributes to late-spring and early-summer flows. 
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The accumulation of snow during winter and melting of snow and glaciers during summer creates the difference between the 380 

distribution of precipitation and specific runoff. 

[Figure 9] 

Water-year precipitation totals based on all the selected datasets were compared with annual runoff in the Himalaya, 

Hindukush, and Karakorum over varying periods from 1983 to 2010, depending on the data availability and the overlapped 

period of the respective dataset and sub-region ([). Considerable differences were spotted among the datasets when 385 

compared with the runoff in sub-regions. The water-year total precipitation was identified lesser than the runoff in the 

Hindukush and Karakorum sub-region for APHRO, PGMFD, and TRMM. The correlation between annual runoff and 

precipitation was significant and satisfactory for APHRO, PGMFD, and TRMM in the Himalaya sub-region. Overall, 

TRMM and PGMFD showed good and significant correlation with annual runoff in UIB (0.68 and 0.54, respectively); 

however, they were lesser as compared to the annual runoff. The impact of the Indian summer monsoon probably played a 390 

significant role in greater precipitation totals in the Himalaya sub-region. 

[Figure 10] 

3.2.2 Physical realism to reproduce plausible water balance 

The physical realism of each dataset to represent the water balance in each region was tested and plotted based on a 

hydrological alternative of the Truc-Budyko plot ([). The aridity index (P/ETp) and runoff coefficient (Q/P) were plotted on 395 

the x-axis and y-axis, respectively. Each point represents a catchment, and the colors differentiate among different datasets. 

The catchments fallen within the feasible domain were considered as physically realistic or “True” catchments. In “True” 

catchments, precipitation was enough to reproduce the water balance; however, this amount of precipitation may or may not 

be sufficient to represent the mass balance in glacierized catchments. 

The points above P/Q = 1 line or under the energy limit (right side of theoretical Budyko line) were considered physically 400 

unrealistic. Most of the points were above the Q/P = 1 line for OBS and other gridded datasets except CFSR. These points 

represent the “Gaining” catchments. In gaining catchments, precipitation was not sufficient to close the water balance. The 

points out of the energy limit (i.e., Q < P-ETp) were characterized as “Leaky” catchments, i.e., runoff deficit was greater than 

the potential evapotranspiration, in our case, HAR and CFSR represent the Hindukush, Karakorum, and average of entire 

UIB as “Leaky” ([). Such behavior and possible deviations can be explained by potential errors and uncertainties in observed 405 

runoff and calculated ETp in the study area. Moreover, the theoretical Budyko curve (energy limit) is usually different for 

glacierized basins because of an additional water term in water balance from glacier melting. Based on the aridity-index 

values, CFSR and HAR were identified to make the whole study area extremely wet. 

In the “Gaining” catchments, which break the water limit (Q > P), additional water term is added to the water balance. This 

additional water is contributed by glacier melt in the glacierized catchments, and such behavior of the catchment results in a 410 

negative change in glacier storage (∆S < 0). For example, in the Himalaya sub-region, all the datasets except CFSR were 

“Gaining”, and meltwater contributed to the total runoff.  On the other hand, in the “Leaky” catchments, which break the 
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energy limit (Q < P-ETp), some quantity of water is missing in the water balance. This missing water is stored in the form of 

positive glacier storage (∆S < 0). For example, CFSR and HAR made Hindukush and Karakorum sub-regions and entire UIB 

domain as “Leaky”, where missing water from the water balance may result in advancing glaciers.  415 

[Figure 11] 

The physical diagnosis modified from the Truc-Budyko theory with the addition of mass balance can provide quantitative 

information of change in glacier storage for different precipitation datasets. The change in glacier storage based on OBS, 

APHRO, CFSR, HAR, PGMFD, and TRMM was ranging between -0.20 m w.e. y-1, -0.42 m w.e. y-1, 0.37 m w.e. y-1, 0.21 m 

w.e. y-1, -0.34 m w.e. y-1, -0.40 m w.e. y-1 in UIB, respectively ([). CFSR and HAR showed a positive change in storage for 420 

all the regions except Himalaya, where all datasets generated negative changes in storage. In Himalaya, CFSR resulted in a 

slightly negative change in storage, i.e., -0.06 m w.e. y-1, which is because it was in the feasible domain. It is important to 

note that the datasets which represent “Gaining” catchments showed negative changes, i.e., OBS, APHRO, TRMM, PGMFD 

in storage because glacier melt contributed to total runoff in these catchments, resulting in the mass loss. CFSR and HAR 

datasets represent “Leaky” catchment behavior for Hindukush and Karakorum sub-regions as well as entire UIB ([ and [), 425 

and thus, resulted in positive glacier storage change because of overestimated precipitation. 

[Figure 12] 

3.3 Practical validation based on simulated hydrology and glacier changes 

This section provides the results of glacio-hydrological simulations based on the SPHY model to testify the ability of GPDs 

to generate the rational output of streamflow and glacier changes. These results may find the problems of temporal 430 

distribution, water balance, and involvement of glaciers, as found in previous sections. 

The degree-day factors for debris-covered and debris-free glaciers were calibrated based on the observed mass balance data. 

The degree-day factor for snow, water storage capacity, and threshold temperature were calibrated using MODIS snow cover 

data in UIB. The baseflow and routing related parameters were calibrated using observed runoff data at Besham Qila 

hydrological gauge station. The calibrated degree-day factors ([) fall within the range of observed degree-day factors in the 435 

Karakorum mountains (Zhang et al., 2006). 

The average simulated mass balance was -0.17 m w.e. yr-1 ([), which was in a very good agreement with the mass balance 

derived in previous studies (Brun et al., 2017; Gardelle et al., 2013; Kääb et al., 2012; Kääb et al., 2015; Muhammad et al., 

2019). 

[Figure 13] 440 

The calibration of the snow-related parameters was performed based on snow cover variations in UIB. An excellent 

performance (R2 = 0.93) was achieved using the MODIS data as observed snow cover and compared with the simulated 

snow cover in UIB ([). The simulated snow cover based on the SPHY model varies between 23% and 74% of the total basin 

area over 2002−2007 in UIB. The simulated snow cover is in well match with the MODIS snow cover in the UIB (b). 

Previous studies indicated the minimum snow cover as less than 10% using MODIS data (Hasson et al., 2014). The 445 
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difference in values with our study is due to the study area size and selected period for the evaluations. They included the 

Jhelum and Kabul basins in their evaluations, where minimum snow cover is used to reduce up to less than 5% of the total 

basin area. The simulated snow cover is in a good match with a previous study in the region (Lutz et al., 2016). 

[Figure 14] 

The SPHY model was calibrated and validated for the baseflow, routing, and surface runoff based on the observed 450 

streamflow data in the UIB. The calibration results (2002−2004) show an excellent performance (R2 = 0.89) of the model at 

a daily time step ([a-b). The validation results (2002−2004) highlight excellent performance as well (R2 = 0.91) ([c-d) based 

on the criteria suggested by Moriasi et al. (2007). The simulated flows during calibration and validation were slightly 

overestimated by 3.9% and 3.8%, respectively. 

[Figure 15] 455 

Six SPHY projects were set up in UIB using similar datasets except for precipitation, while one precipitation dataset was 

used to force one project. The annual simulated total runoff was underestimated for all the datasets except CFSR and HAR in 

UIB from 2002−2007 ([a). The values of the correlation coefficient for calibrated SPHY projects ranged from > 0.80 to 0.95 

in UIB from 2002−2007 ([b). The average annual total runoff was 467±42 mm yr-1, 263±23 mm yr-1, 743±71 mm yr-1, 

684±76 mm yr-1, 330±34 mm yr-1, 299±33 mm yr-1 for SPHY_OBS, SPHY_APHRO, SPHY_CFSR, SPHY_HAR, 460 

SPHY_PGMFD, and SPHY_TRMM from 2002−2007 in UIB, respectively ([c). The average runoff in SPHY_CFSR and 

SPHY_HAR was greater than that of SPHY_OBS, whereas SPHY_OBS, and SPHY_PGMFD, and SPHY_TRMM had 

comparatively lower runoff. The PBIAS of annual runoff simulated by SPHY_OBS, SPHY_APHRO, SPHY_CFSR, 

SPHY_HAR, SPHY_PGMFD, and SPHY_TRMM with the observed annual specific runoff was 4%, -41%, 66%, 53%, -

26%, -33% from 2002−2007 in UIB, respectively. The highest positive PBIAS was noted for SPHY_CFSR followed by 465 

SPHY_HAR, whereas the maximum negative PBIAS was noticed for the SPHY_APHRO project ([d). 

[Figure 16] 

To assess the rationality in the simulated glacio-hydrology in UIB for different precipitation datasets, the SPHY projects 

were calibrated to produce similar average mass balance as in the base calibrated model (i.e., SPHY_OBS). In UIB, the 

simulated mass balance by SPHY_OBS, SPHY_APHRO, SPHY_CFSR, SPHY_HAR, SPHY_PGMFD, and SPHY_TRMM 470 

was -0.17±0.17 m w.e. y-1, -0.17±0.21 m w.e. y-1, -0.17±0.48 m w.e. y-1, -0.17±0.56 m w.e. y-1, -0.17±0.18 m w.e. y-1, and -

0.17±0.10 m w.e. y-1 for 2002−2007, respectively ([e). It highlights that when the simulated mass balance is calibrated for 

the observed mass balance in the basin, the simulated runoff breaks the rationality of glacio-hydrological outputs. In such 

cases, simulated runoff is either over- or under-estimated as compared to the observed runoff in the basin. In the current 

study, SPHY_CFSR and SPHY_HAR simulated overestimated runoff, whereas SPHY_APHRO, SPHY_PGMFD, and 475 

SPHY_TRMM generated underestimated runoff as compared to the observed runoff in UIB ([d). 

In UIB, the total runoff was contributed first by snow runoff in the late spring to early summer, and then glacier runoff 

started contributing to generate maximum flows in summer. Meanwhile, summer monsoon also played a role in producing 
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peak values of total runoff during summer ([). Baseflow joined the total runoff having a recession of more than three and a 

half months ([) after percolation during the melting season, in addition to the running baseflow runoff. At annual scale, the 480 

glacier runoff, snow runoff, baseflow runoff, and rainfall-runoff contributed to total runoff ranging between 44−49%, 

30−35%, 14−20%, and 3−5%, respectively, simulated based on six SPHY projects, which were forced using OBS and GPDs 

([a).  

For all the SPHY projects, the snow runoff contributions were the highest in the spring season, while the glacier 

contributions were highest in the summer. In the spring season, the snow runoff contributions were 48%, 64%, 56%, 59%, 485 

65%, and 67% to the total runoff simulated under SPHY_OBS, SPHY_APHRO, SPHY_CFSR, SPHY_HAR, 

SPHY_PGMFD, and SPHY_TRMM during 2002-2007 over UIB, respectively ([b). It was noted that all the simulated snow 

runoff contributions based on GPDs were higher than those by SPHY_OBS. Similarly, in the summer season, for 

SPHY_OBS, SPHY_APHRO, SPHY_CFSR, SPHY_HAR, SPHY_PGMFD, and SPHY_TRMM, 51%, 62%, 59%, 55%, 

61%, and 58% runoff was contributed by glacier runoff in UIB, respectively ([b). Again, the simulated glacier runoff 490 

contributions during the summer season were higher for the GPDs compared to the OBS. It is also important to mention that 

the combined amount of contributed water by glacier and snow runoff during summer and spring season were higher for 

CFSR (69%) and HAR (53%) as compared to OBS, whereas these were lower in the case of APHRO (-44%), PGMFD (-

27%), and TRMM (-35%) ([b). It also highlights the irrational behavior of hydrological outputs as contributions from 

meltwater were overestimated for overestimated GPDs and underestimated for underestimated GPDs while keeping the mass 495 

balance constant.  

[Figure 17] 

4 Discussions 

In this study, a Tri-approach framework is proposed to diagnose the potential issues in GPDs from multiple perspectives. 

This framework can identify the actual under- or over-estimation of GPDs on the basis of watershed water and energy 500 

balance, diagnose their possible causes, and provides directions for local correction. The approach was applied in UIB as a 

case study. It has the ability to investigate climatology, water-energy balance, and rationality of simulated hydrology and 

glacier changes in a mountain glacierized watershed. 

4.1 Ability to diagnose the problems in representing climatology 

The statistical analysis component in the Tri-approach framework basically helps to investigate the performance of GPDs in 505 

representing the observed climatology. This component focuses on the monthly and seasonal distribution and inter-annual 

variations and precipitation extremes in GPDs. The comprehensive diagnosis of GPDs in representing observed climatology 

would be very useful for temporal correction of GPDs and analyzing the expected uncertainties in simulated glacio-

hydrologic outputs. This statistical approach is more common and has been applied in multiple previous studies to evaluate 
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the performance of GPDs. However, the authenticity of such statistical evaluation is questionable when the observed data is 510 

insufficient or of inferior quality due to the uneven distribution of meteorological stations, which is the case in high elevation 

glacierized river basin. In the current study, the observed precipitation data were adjusted using the corrected precipitation in 

UIB. The adjusted precipitation is 73% greater than the uncorrected precipitation. 

The GPDs have differences in their spatiotemporal resolutions, covered time span, and underlying methodologies (Sun et al., 

2018); therefore, in this study, the GPDs based on various sources and different methods were selected for analysis (i.e., 515 

reanalysis—CFSR, observed interpolation—APHRO, the combination of reanalysis and observed interpolations—PGMFD, 

satellite observations—TRMM, and downscaled model output—HAR). 

The spatial and temporal distribution of mean annual GPDs’ precipitation shows diverse differences in magnitudes and 

patterns when compared with OBS ([-8). APHRO performed better to represent the patterns in interannual variations (CC > 

0.6) ([); however, it was highly underestimated (-40%) ([). The bimodal annual cycle of OBS precipitation ([) indicates a 520 

multi-sourced weather system in UIB, which is influenced by westerlies during the Winter and Spring seasons, whereas 

monsoon impacts the distribution during the summer season. In previous studies, researchers have explained the bimodal 

weather system in this region (Dahri et al., 2016; Hasson et al., 2017). UIB receives >60% of total annual precipitation 

during the winter and spring seasons ([b), which is in good agreement with the arguments of Hewitt (2007) that 67% of total 

annual precipitation occurs during the winter (Oct-Mar) in this region. The winter and spring precipitation were 525 

underestimated in APHRO (-23%), TRMM (-17%), PGMFD (-7%), whereas it was overestimated in HAR (22%) and CFSR 

(13%). The duration of dry spells (CDD) greater for APHRO, PGMFD, and TRMM and shorter for CFSR and HAR than the 

OBS, whereas the opposite was true for wet spells (CWD) in UIB. CFSR and HAR had the highest values for R99pTOT 

among the GPDs, while SDII was the heist for HAR. APHRO showed the lowest values for R99pTOT and SDII among the 

GPDs in UIB ([). Overall, the reanalysis GPDs had higher values for maxima of precipitation extremes, whereas the opposite 530 

was true for the interpolation-based and satellite GPDs in glacierized UIB. This is in good agreement with the conclusions of 

Nastos et al. (2013) that satellite dataset TRMM underestimates the R99pTOT at higher elevation regions. 

Reanalysis datasets, i.e., CFSR and HAR, show overestimation in all the sub-regions, whereas observation-based APHRO 

and satellite-based TRMM show underestimations ([-7). Similar concluding remarks were made by different researchers for 

reanalysis, interpolated, and satellite-based datasets, for example, Liu et al. (2018), Liu et al. (2018), Yao et al. (2020), Ji et 535 

al. (2020), and Dahri et al. (2016). The reanalysis datasets account for both solid and liquid precipitation more consistently, 

which may explain their overestimation in high mountain glacierized regions (Blacutt et al., 2015), whereas observation 

interpolated and satellite estimations based datasets have difficulties in detecting the snowfall (Rasmussen et al., 2012; Wang 

et al., 2013). It is important to note that continuous biases and changes in both models and observing systems can introduce 

fake trends and variability into reanalysis outputs (Bengtsson, 2004); therefore, trends and variabilities from reanalysis 540 

datasets should be treated carefully for hydrological applications. 

Although GPDs have captured the monthly distribution patterns of OBS precipitation ([), these datasets show significant 

differences in their monthly, seasonal, and annual magnitudes ([). Moreover, the large under- and over-estimations for the 
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gridded datasets over elevational profile may have been caused by the dynamic climatic system (Pang et al., 2014), 

precipitation dependency on altitude (Immerzeel et al., 2015; Wortmann et al., 2018) and the approaches used to generate 545 

these datasets (Harris et al., 2014; Huffman et al., 2010; Saha et al., 2010). The reason for the better representation of OBS 

climatology by the APHRO dataset is the use of observed data in its generation; however, the precipitation at ungauged 

elevation ranges is not extrapolated in APHRO dataset (Ji et al., 2020; Yatagai et al., 2012), which would affect its 

application in mountain glacierized catchments. 

It must be noted that these findings over the selected glacierized mountain sub-regions may allow for a performance 550 

assessment of the presented datasets in general for glacierized alpine regions. It is essential to highlight that most datasets are 

not independent of each other, as most of them include the same station observations directly or assimilate them in some way. 

This is, however, a common problem in comparison studies, which cannot be avoided. 

4.2 Ability to diagnose the problems in representing the water-energy balance 

The introduction of the Truc-Budyko theory into the Tri-approach framework is useful to identify the actual under- or over-555 

estimation of GPDs on the basis of watershed water and energy balance, diagnose their possible causes, and provides 

directions for local correction. 

The physical diagnosis makes sure that a GPD represents a plausible water-energy balance in a glacierized catchment. The 

water limit helps to identify the additional water term in the water balance or missing water-input. This gives directions to 

correct the underestimated GPDs based on the rational water and mass balance in a glacierized catchment. For example, 560 

APHRO, TRMM, and PGMFD are out of water limit ([), and the missing amount of precipitation in these datasets may be 

the undercatch and undetected solid precipitation at higher elevations (Rasmussen et al., 2012). If such datasets are being 

used in hydrological simulations, they would result in a highly negative mass balance in the long term and simulate 

implausible conditions in the glacierized catchment. These datasets are insufficient to close the realistic water-energy 

balance in a glacierized watershed. The simulated hydrology using these datasets is underestimated in glacierized catchments 565 

([d). On the other hand, for example, CFSR and HAR are mostly out of energy limit ([), and the overestimated water-input 

will result in higher storage ([), and it may simulate implausible positive mass balance conditions in glacio-hydrological 

modeling. However, the higher inter-annual variations in these GPDs ([b) make the inter-annual variations in simulated mass 

balance very high ([e). The under- or over-estimated GPDs can be corrected based on the rational output of streamflow and 

glacier changes in a glacierized catchment.    570 

The physical diagnosis of GPDs in UIB indicates that GPDs may not reproduce the true water balance, and most of them 

might be unsuitable for hydrological applications in such glacierized catchments. Similar concerns were highlighted by 

Dahri et al. (2016), who performed an evaluation of GPDs and concluded that these are not suitable to force the hydrological 

models in UIB. The runoff peak lags about four months behind the precipitation peak in the Himalaya, Hindukush, and 

Karakorum sub-regions ([). The distribution of runoff and precipitation in such a manner highlights the higher solid 575 

precipitation in winter and the dominance of meltwater contributions during the summer season in UIB. Similar arguments 
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have been made by several researchers in the region, e.g., (Hewitt, 2007; Khan et al., 2015; Lutz et al., 2016; Mukhopadhyay 

and Khan, 2014). The annual runoff is higher than precipitation for APHRO, TRMM, and PGMFD averagely ([), which 

highlights that these datasets would cause a negative change in glacier storage as additional meltwater term may be needed 

to compensate the water balance in the region, which is the case in UIB (Immerzeel et al., 2015). 580 

The physical diagnosis component in Tri-approach also helps in detecting the possible effects of meltwater on the changes in 

glacier storage based on the water-energy and mass balance. The problems in GPDs can be diagnosed by analyzing the 

physical factors involving in these effects. The physical diagnosis identifies the “True”, “Gaining”, and “Leaky” catchments 

based on the water-input into the catchment. UIB was identified as “Gaining” catchment based on APHRO, PGMFD, and 

TRMM, whereas it was “Leaky” based on CFSR and HAR ([). There are three possible reasons for the case of “Gaining” 585 

catchment: (a) additional water contribution from glacier melt (characterized by a negative change in glacier storage in [), 

which is the case in UIB (Immerzeel et al., 2015), (b) underestimated precipitation (Valéry et al., 2010), which is true for 

APHRO, PGMFD, and TRMM in UIB ([) and (c) errors in runoff measurements (Andréassian and Perrin, 2012). 

Underestimation of precipitation and additional water term in water balance is evident from the conclusions of previous 

studies in UIB (Dahri et al., 2016; Immerzeel et al., 2015; Lutz et al., 2014). Similarly, Rasmussen et al. (2012) found that 590 

the chances of snow undercatch might be as high as 20−50% in high altitude mountainous areas, which is the case in UIB, 

especially, in the Hindukush and Karakorum sub-regions. The possibilities of runoff measurement errors have been warned 

in different studies in the region (Mukhopadhyay and Khan, 2014). 

On the other hand, for the “Leaky” catchments, there might be four reasons in addition to discharge measurement errors 

(underestimation): (a) errors in the estimation of ETp (underestimation; [), (b) overestimated precipitation, which is the case 595 

for CFSR and HAR ([), (c) higher infiltration or local aquifer recharge, or (d) underground water flow towards another 

aquifer (Andréassian and Perrin, 2012). The impact of inter-catchment groundwater flow on the behavior of “Leaky” 

catchments has been analyzed in France by Le Moine et al. (2007), who suggest that underground water affects the overall 

water balance. However, in UIB, the most probable reason for “Leaky” catchment behavior under CFSR and HAR is the 

overestimation of precipitation in these datasets ([; [; [). The bed is rocky, and vegetation is very low in UIB, such conditions 600 

strengthening the conclusion of overestimated CFSR and HAR precipitation. Several researchers (Blacutt et al., 2015; Liu et 

al., 2018; Silva et al., 2011) have provided evidence for overestimated CFSR precipitation in different parts of the world. 

The actual over- and under-estimations identified based on physical diagnosis provides the basis to kick-off the correction 

process of GPDs. The violations of water and energy limits by GPDs give an idea of the impacts of meltwater contributions 

and glacier mass storage in the catchment, and thus, to adopt the proper correction technique. 605 

4.3 Ability to investigate the rational output of simulated hydrology and glacier changes 

The practical simulation component in the Tri-approach framework investigates the rationality of simulated hydrology and 

glacier changes, and it ensures the ability of a GPD to represent the balanced outputs of glacier changes and streamflow 

simultaneously. When the GPDs are underestimated, for example, APHRO, TRMM, and PGMFD ([; [; [), they are 
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insufficient to reproduce the hydrology and mass balance at the same time. Adjusting one of them during the calibration 610 

process would cause underestimations in the other in simulated results ([). When the GPDs are overestimated, for example, 

CFSR and HAR in the case study ([; [; [), they may overestimate at least one of the simulated streamflow or glacier mass 

balance ([), whereas, the opposite is true for the underestimated GPDs. The main reason for such results is that the amount of 

precipitation in these datasets is underestimated as compared to the observed runoff ([), and most of them are unable to 

represent the realistic water-energy balance in UIB ([). Hence, the uncertainties in the simulated outputs of glacio-615 

hydrological applications can be identified using the Tri-approach framework.  

The quantitative investigation outputs of the Tri-approach framework ([; [) are useful for the correction of GPD and multi-

parameter calibration during glacio-hydrological simulations. The practical simulation, in combination with the statistical 

and physical diagnosis, helps in investigating the inter- and intra-annual variations based on a rational balance between 

hydrology and glacier changes ([). The Tri-approach framework helps to avoid the risk of equifinality as it provides 620 

directions for the multi-parameter calibration based on the quantitative outputs of diagnosis of water-input and output in a 

glacierized watershed ([). The underestimated precipitation may be compensated with other water balance components, e.g., 

evapotranspiration, snow, or glacier melt (Ragettli and Pellicciotti, 2012; Schaefli, 2005; Shafeeque et al., 2019). A false 

calibration parameter set would enhance the simulated meltwater to reduce the BIAS between simulated and observed runoff 

(Ragettli and Pellicciotti, 2012; Wang et al., 2018). For example, in the case of the SPHY model forced by APHRO, 625 

PGMFD, and TRMM precipitation datasets ([) to enhance the simulated runoff, a higher negative mass balance would result. 

However, keeping the average mass balance closer to observed mass balance data ([) eliminated the risk of equifinality and 

avoided the glacier compensation effect. At the same time, it was confirmed that combined contributions of snow and glacier 

melt during the spring and summer seasons were higher (69% and 53%) for overestimated GPDs (CFSR and HAR, 

respectively) and lower (-44%, -27%, and -35%) for underestimated GPDs (APHRO, PGMFD, and TRMM, respectively) as 630 

compared to that of OBS ([). If an underestimated precipitation dataset is generating sufficient runoff in a glacio-

hydrological simulation, then it is for sure that the glaciers are compensating that amount of runoff. Therefore, the simulated 

results in such a situation are questionable. 

Based on the quantitative results of the current study, it is concluded that GPDs generally cannot reproduce the rational 

output of glacier changes and hydrology in glacierized catchments. Therefore, it is recommended to correct the GPDs based 635 

on the local mass and water balance in glacierized catchments before any hydrological application. 

4.4 Uncertainties 

The application of the Tri-approach in diagnosing the GPD for glacio-hydrological simulations in mountain regions can be 

influenced by uncertainties. A denser observation station network is required, especially at the higher elevations, to reduce 

the uncertainties in the observed datasets for hydrological simulations (Li et al., 2020; Liu et al., 2019). This is crucial for the 640 

southeastern parts of the UIB that are characterized by low station density (Figure 1). Similarly, the observed runoff might 

also be affected due to random and measurement errors. Inconsistencies in the measurements and overlapped measuring 
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periods for different hydrological stations amplify the overall uncertainty in the data. Besides, the runoff and precipitation 

have different peak-occurring timings due to multi-sourced precipitation systems (Dahri et al., 2016) with a maximum 

proportion of precipitation in the winter and spring seasons (Hewitt, 2007) contrasting to a maximum runoff in the summer 645 

season (Mukhopadhyay and Khan, 2014). The availability of glacier data can also be a limitation and cause a certain amount 

of uncertainty in the Tri-approach results. The limitations associated with the observed datasets are the unavoidable common 

issue in glacierized regions. 

The use of non-dimensional hydrological representation is suitable and advantageous because physical data like runoff, 

evapotranspiration, and precipitation are frequently measured or calculated in any watershed (Andréassian and Perrin, 2012). 650 

However, the evapotranspiration data are mostly unavailable since more parameters are required to calculate it. The 

calculated ETp values are slightly lower (average -11%) than Glabal-ET0 data, which used Penman-Monteith method. It is in 

line with the conclusions of Zhou et al. (2020), who concluded that ETp calculated by Hargreaves method is lower than that 

by Penman-Monteith method. The methods applied to calculate ETp may affect the overall representation of the hydrological 

alternative of the Truc-Budyko plot. It has been argued that the energy limit may also depend to some extent on the chosen 655 

ETp formula (Coron et al., 2015), which may ignore most climatic parameters and use the only temperature data in the 

current study. This may be the explanation for slightly negative mass balance for CFSR in the Himalaya sub-region and 

average OBS in UIB ([) even these were in the feasible domain and represent “True” catchments ([). Besides, estimated ETa 

([) might also affect the final changes in glacier storage based on the physical diagnosis. 

In the SPHY model, the glaciers are considered as melting surfaces, which cover a grid cell partly or entirely. Moreover, a 660 

grid cell can have multiple parts of different glaciers, and it treats them as a single unit within that grid cell. Although the 

complex glacier processes cannot be resolved explicitly using the SPHY model; however, melting surfaces at a reasonable 

resolution serves the purpose of this study.  

4.5 Implications of Tri-approach 

The Tri-approach is very useful for the selection of most suitable GPD for glacio-hydrological applications in any 665 

glacierized catchment. In glacierized catchments, it is a common understanding that GPDs need correction before any 

hydrological application. However, a preliminary evaluation of these GPDs is mandatory not only based on climatology but 

also water-energy and mass balance before any correction. The Tri-approach can provide basic directions for the correction 

factors based on climatology, plausible water-energy balance, and glacier changes simultaneously, and thus, assist in 

adopting the proper local correction of GPDs. Several researchers corrected the GPDs in different glacierized catchments 670 

based on climatology (Dahri et al., 2016), conceptual water balance (Khan and Koch, 2018), and vertical gradients and mass 

balance distribution (Immerzeel et al., 2015; Wortmann et al., 2018). It is important to note that correction may also induce 

uncertainty in simulated results based on the technique applied. The corrected GPDs can also be verified using the Tri-

approach framework. Meanwhile, if there is no option for the correction of GPDs, then one must choose the best data 

representing the water-energy and mass balance in glacierized mountain regions. Besides, the Tri-approach detects the key 675 
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limitations of GPDs, and thus, helps to identify the expected uncertainties in the outcomes of glacio-hydrological simulations, 

for example, under- or over-estimations in simulated hydrology, variations in intra- and inter-annual distribution of 

streamflow and mass balance, deviations from a concurrent rational output of streamflow and glacier change, among the 

others. The analysis of change in glacier storage is critically important because precipitation patterns can also be influenced 

by changes in glaciers (Ren et al., 2020). The understandings developed using the Tri-approach framework are effective for 680 

the data generators and algorithm developers to improve their work keeping in mind the application demands for real time 

scenarios. 

5 Conclusions 

The Tri-approach framework evaluates the GPDs statistically, physically, and practically. Application in the UIB confirms 

that it is plausible in the glacierized watershed where rain gauge data are scarce. The approach has the ability to investigate 685 

climatology, water-energy balance, change in glacier storage, and rationality of simulated hydrology and glacier changes in 

mountain glacierized watersheds. 

The statistical validation identifies the potential problems in the temporal distribution of the datasets, e.g., APHRO 

represents the monthly and seasonal distributions and interannual variations (CC > 0.6) but is underestimated. On the other 

hand, CFSR and HAR are overestimated and do not represent the inter-annual variations in UIB (CC ≤ 0.3). Reanalysis 690 

based GPDs are generally overestimated (77%−106%), whereas, observation and satellite-based GPDs are underestimated (-

41% to -24%). The underestimated GPDs would result in an underestimated hydrology when applied in hydrological 

simulations. The wet and dry duration spells were generally longer for overestimated and underestimated GPDs, respectively. 

The physical diagnosis based on Truc-Budyko theory identifies that APHRO, TRMM, and PGMFD datasets make the 

catchments “Gaining”, indicating an additional water term in water balance due to glacier melting, which results in negative 695 

glacier storage (-0.42 to -0.34 m w.e. yr-1). On the other hand, CFSR and HAR make the catchments “Leaky”, highlighting a 

positive change in glacier storage (0.37 and 0.21 m w.e. yr-1, respectively). The actual under- and over-estimation based on 

physical diagnosis provides the basic directions for local correction of GPDs in glacierized mountain regions. The “Gaining” 

catchments (characterized with underestimated precipitation) need more input-water (higher precipitation) to sustain water 

and mass balance concurrently, whereas, “Leaky” catchments (characterized with overestimated precipitation) need lesser 700 

input-water to reproduce the plausible water-energy and mass balance in a glacierized catchment simultaneously. 

The glacio-hydrological simulation confirms the findings of statistical and physical diagnosis that GPDs are generally unable 

to represent the actual water-energy and mass balance in glacierized catchments. The selected GPDs generally cannot fulfill 

the requirements of the rational output of streamflow and glacier mass balance concurrently in glacierized catchments. It 

provides quantitative directions based on under- and over-estimations in simulated streamflow and glacier mass balance for 705 

local correction of GPDs for glacio-hydrological simulations in mountain regions. 
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6 Data availability 

For hydrometeorological and mass balance data availability, detailed links/references are provided in Table 2. The source 

code/software of SPHY model, CDO, and DrinC are available at given links: SPHY (https://github.com/WilcoTerink/SPHY); 

CDO (https://code.mpimet.mpg.de/projects/cdo); DrinC (https://drought-software.com/download/). 710 

7 Author contributions 

MS and YL jointly developed the concept and methodology of the study. MS performed the computations and the analysis 

for the case study. MS wrote the first draft of the manuscript. YL edited the current version of the manuscript. 

8 Competing interests 

The authors declare that they have no conflict of interest. 715 

9 Acknowledgment 

The research work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant 

XDA20060301) and National Natural Science Foundation China (NSFC Grant 41761144075). We are grateful to the Water 

and Power Development Authority (WAPDA) and Pakistan Meteorological Department (PMD) for providing observed 

meteorological and hydrological data in Upper Indus Basin. The first author is very thankful to the CAS-TWAS President’s 720 

Fellowship Program (http://www.fellowship.cas.cn/dms/) for providing financial support for his PhD. 

10 References 

Ali, A. et al., 2017. Evaluation and Comparison of TRMM Multi-Satellite Precipitation Products With Reference to Rain 

Gauge Observations in Hunza River Basin, Karakoram Range, Northern Pakistan. Sustainability, 9(11): 1954-1972. 

DOI:10.3390/su9111954 725 

Andréassian, V., Perrin, C., 2012. On the ambiguous interpretation of the Turc-Budyko nondimensional graph. Water 

Resources Research, 48(10): W10601. DOI:10.1029/2012wr012532 

Anjum, M.N. et al., 2018. Performance evaluation of latest integrated multi-satellite retrievals for Global Precipitation 

Measurement (IMERG) over the northern highlands of Pakistan. Atmospheric Research, 205(October 2017): 134-

146. DOI:10.1016/j.atmosres.2018.02.010 730 

Antonio, T., Zomer, R.J., 2018. Global Aridity Index and Potential Evapo-Transpiration (ET0) Climate Database v2. CGIAR 

Consortium for Spatial Information (CGIAR-CSI). Published online, available from the CGIAR-CSI GeoPortal at 

https://cgiarcsi.community.  

Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998. Large area hydrologic modeling and assesment Part I: 

Model development. JAWRA Journal of the American Water Resources Association, 34(1): 73-89. 735 

DOI:10.1111/j.1752-1688.1998.tb05961.x 

https://doi.org/10.5194/hess-2020-194
Preprint. Discussion started: 26 June 2020
c© Author(s) 2020. CC BY 4.0 License.



25 

 

Bajracharya, S.R., Shrestha, B., 2011. The Status of Glaciers in the Hindu Kush–Himalayan Region. International Centre for 

Integrated Mountain Development GPO Box 3226, Kathmandu, Nepal, Kathmandu, Nepal, 127-127 pp.  

Basist, A., Bell, G.D., Meentemeyer, V., 1994. Statistical Relationships between Topography and Precipitation Patterns. 

Journal of Climate, 7(9): 1305-1315. DOI:10.1175/1520-0442(1994)007<1305:SRBTAP>2.0.CO;2 740 

Bengtsson, L., 2004. Can climate trends be calculated from reanalysis data? Journal of Geophysical Research, 109(D11). 

DOI:10.1029/2004jd004536 

Bierkens, M.F.P., van Beek, L.P.H., 2009. Seasonal Predictability of European Discharge: NAO and Hydrological Response 

Time. Journal of Hydrometeorology, 10(4): 953-968. DOI:10.1175/2009JHM1034.1 

Blacutt, L.A., Herdies, D.L., de Gonçalves, L.G.G., Vila, D.A., Andrade, M., 2015. Precipitation comparison for the CFSR, 745 

MERRA, TRMM3B42 and Combined Scheme datasets in Bolivia. Atmospheric Research, 163: 117-131. 

DOI:10.1016/j.atmosres.2015.02.002 

Bookhagen, B., Burbank, D.W., 2006. Topography, relief, and TRMM-derived rainfall variations along the Himalaya. 

Geophysical Research Letters, 33(8): L08405. DOI:10.1029/2006gl026037 

Bosilovich, M.G., Chen, J., Robertson, F.R., Adler, R.F., 2008. Evaluation of Global Precipitation in Reanalyses. Journal of 750 

Applied Meteorology and Climatology, 47(9): 2279-2299. DOI:10.1175/2008jamc1921.1 

Brun, F., Berthier, E., Wagnon, P., Kääb, A., Treichler, D., 2017. A spatially resolved estimate of High Mountain Asia 

glacier mass balances from 2000 to 2016. Nature Geoscience, 10(9): 668-673. DOI:10.1038/ngeo2999 

Budyko, M.I., 1974. Climate and life. International geophysics series. Academic Press, New York.  

Coron, L., Andréassian, V., Perrin, C., Le Moine, N., 2015. Graphical tools based on Turc-Budyko plots to detect changes in 755 

catchment behaviour. Hydrological Sciences Journal, 60(7-8): 1394-1407. DOI:10.1080/02626667.2014.964245 

Cuffey, K.M., Paterson, W.S.B., 2010. The Physics of Glaciers, 2. Geofourm, Butterworth-Heinemann (Elsevier), 

Burlington, USA, 1-683 pp.  

Dahri, Z.H. et al., 2016. An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin. Science 

of The Total Environment, 548-549: 289-306. DOI:10.1016/j.scitotenv.2016.01.001 760 

Dahri, Z.H. et al., 2018. Adjustment of measurement errors to reconcile precipitation distribution in the high-altitude Indus 

basin. International Journal of Climatology, 38(10): 3842-3860. DOI:10.1002/joc.5539 

Dee, D.P. et al., 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. 

Quarterly Journal of the Royal Meteorological Society, 137(656): 553-597. DOI:10.1002/qj.828 

Droogers, P., Immerzeel, W., 2010. Wat is het beste model? H20, 43(4): 38-40.  765 

ESRI, U.o.M.N.T.S.G., 2019. Average annual actual evapotranspiration in mm/year. ESRI.  

Faiz, M.A. et al., 2018. How accurate are the performances of gridded precipitation data products over Northeast China? 

Atmospheric Research, 211(May): 12-20. DOI:10.1016/j.atmosres.2018.05.006 

Gardelle, J., Berthier, E., Arnaud, Y., 2012. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nature 

Geoscience, 5(5): 322-325. DOI:10.1038/ngeo1450 770 

Gardelle, J., Berthier, E., Arnaud, Y., Kääb, A., 2013. Region-wide glacier mass balances over the Pamir-Karakoram-

Himalaya during 1999&amp;ndash;2011. The Cryosphere, 7(4): 1263-1286. DOI:10.5194/tc-7-1263-2013 

Gurung, D.R. et al., 2017. Climate and topographic controls on snow cover dynamics in the Hindu Kush Himalaya. 

International Journal of Climatology, 37(10): 3873-3882. DOI:10.1002/joc.4961 

Hargreaves, G.H., Samani, Z.A., 1985. Reference Crop Evapotranspiration from Temperature. Transaction of ASAE 1(2): 775 

96-99.  

Harris, I., Jones, P.D., Osborn, T.J., Lister, D.H., 2014. Updated high-resolution grids of monthly climatic observations - the 

CRU TS3.10 Dataset. International Journal of Climatology, 34(3): 623-642. DOI:10.1002/joc.3711 

Hasson, S., Böhner, J., Lucarini, V., 2017. Prevailing climatic trends and runoff response from Hindukush–Karakoram–

Himalaya, upper Indus Basin. Earth System Dynamics, 8(2): 337-355. DOI:10.5194/esd-8-337-2017 780 

Hasson, S. et al., 2014. Early 21st century snow cover state over the western river basins of the Indus River system. 

Hydrology and Earth System Sciences, 18(10): 4077-4100. DOI:10.5194/hess-18-4077-2014 

Henn, B., Clark, M.P., Kavetski, D., Lundquist, J.D., 2015. Estimating mountain basin‐mean precipitation from streamflow 

using B ayesian inference. Water Resources Research, 51(10): 8012-8033. DOI:10.1002/2014wr016736 

Henn, B., Newman, A.J., Livneh, B., Daly, C., Lundquist, J.D., 2018. An assessment of differences in gridded precipitation 785 

datasets in complex terrain. Journal of Hydrology, 556: 1205-1219. DOI:10.1016/j.jhydrol.2017.03.008 

https://doi.org/10.5194/hess-2020-194
Preprint. Discussion started: 26 June 2020
c© Author(s) 2020. CC BY 4.0 License.



26 

 

Hewitt, K., 2007. Tributary glacier surges: an exceptional concentration at Panmah Glacier, Karakoram Himalaya. Journal of 

Glaciology, 53(181): 181-188. DOI:10.3189/172756507782202829 

Hirsch, R.M., Alexander, R.B., Smith, R.A., 1991. Selection of methods for the detection and estimation of trends in water 

quality. Water Resources Research, 27(5): 803-813. DOI:10.1029/91WR00259 790 

Hock, R., 2003. Temperature index melt modelling in mountain areas. Journal of Hydrology, 282(1-4): 104-115. 

DOI:10.1016/S0022-1694(03)00257-9 

Hu, Z., Chen, D., 2018. Evaluation of three global gridded precipitation data sets in central Asia based on rain gauge 

observations. (February): 1-19. DOI:10.1002/joc.5510 

Hu, Z., Hu, Q., Zhang, C., Chen, X., Li, Q., 2016. Evaluation of reanalysis, spatially interpolated and satellite remotely 795 

sensed precipitation data sets in central Asia. Journal of Geophysical Research: Atmospheres, 121(10): 5648-5663. 

DOI:10.1002/2016jd024781 

Hu, Z. et al., 2015. Climate changes in temperature and precipitation extremes in an alpine grassland of Central Asia. 

Theoretical and Applied Climatology, 126(3-4): 519-531. DOI:10.1007/s00704-015-1568-x 

Huffman, G.J., Adler, R.F., Bolvin, D.T., Nelkin, E.J., 2010. The TRMM Multi-satellite Precipitation Analysis (TMPA). 800 

DOI:10.1007/978-90-481-2915-7_1 

Huffman, G.J., Bolvin, D.T., 2015. TRMM and Other Data Precipitation Data Set Documentation. TRMM 3B42_3B43 

documentation(April): 1-44. DOI:10.1162/LEON_r_00463 

Huss, M., Hock, R., 2018. Global-scale hydrological response to future glacier mass loss. Nature Climate Change, 8(2): 135-

140. DOI:10.1038/s41558-017-0049-x 805 

Hussain, S. et al., 2017. Evaluation of gridded precipitation data in the Hindu Kush–Karakoram–Himalaya mountainous area. 

Hydrological Sciences Journal, 62(14): 2393-2405. DOI:10.1080/02626667.2017.1384548 

Immerzeel, W.W. et al., 2020. Importance and vulnerability of the world’s water towers. Nature, 577(7790): 364-369. 

DOI:10.1038/s41586-019-1822-y 

Immerzeel, W.W., van Beek, L.P.H., Konz, M., Shrestha, A.B., Bierkens, M.F.P., 2012. Hydrological response to climate 810 

change in a glacierized catchment in the Himalayas. Climatic Change, 110(3-4): 721-736. DOI:10.1007/s10584-

011-0143-4 

Immerzeel, W.W., Wanders, N., Lutz, A.F., Shea, J.M., Bierkens, M.F.P., 2015. Reconciling high-altitude precipitation in 

the upper Indus basin with glacier mass balances and runoff. Hydrology and Earth System Sciences, 19(11): 4673-

4687. DOI:10.5194/hess-19-4673-2015 815 

Inman, M., 2010. Settling the science on Himalayan glaciers. Nature Reports Climate Change(1003): 28-30. 

DOI:10.1038/climate.2010.19 

Isotta, F.A., Vogel, R., Frei, C., 2015. Evaluation of European regional reanalyses and downscalings for precipitation in the 

Alpine region. Meteorologische Zeitschrift, 24(1): 15-37. DOI:10.1127/metz/2014/0584 

Ji, X. et al., 2020. Evaluation of bias correction methods for APHRODITE data to improve hydrologic simulation in a large 820 

Himalayan basin. Atmospheric Research, 242(September 2019): 104964-104964. 

DOI:10.1016/j.atmosres.2020.104964 

Johansson, B., Chen, D., 2003. The influence of wind and topography on precipitation distribution in Sweden: statistical 

analysis and modelling. International Journal of Climatology, 23(12): 1523-1535. DOI:10.1002/joc.951 

Kaab, A., Berthier, E., Nuth, C., Gardelle, J., Arnaud, Y., 2012. Contrasting patterns of early twenty-first-century glacier 825 

mass change in the Himalayas. Nature, 488(7412): 495-8. DOI:10.1038/nature11324 

Kääb, A., Berthier, E., Nuth, C., Gardelle, J., Arnaud, Y., 2012. Contrasting patterns of early twenty-first-century glacier 

mass change in the Himalayas. Nature, 488(7412): 495-498. DOI:10.1038/nature11324 

Kääb, A., Treichler, D., Nuth, C., Berthier, E., 2015. Brief Communication: Contending estimates of 2003&amp;ndash;2008 

glacier mass balance over the Pamir–Karakoram–Himalaya. The Cryosphere, 9(2): 557-564. DOI:10.5194/tc-9-557-830 

2015 

Khan, A., Koch, M., 2018. Correction and Informed Regionalization of Precipitation Data in a High Mountainous Region 

(Upper Indus Basin) and Its Effect on SWAT-Modelled Discharge. Water, 10(11): 1557-1557. 

DOI:10.3390/w10111557 

https://doi.org/10.5194/hess-2020-194
Preprint. Discussion started: 26 June 2020
c© Author(s) 2020. CC BY 4.0 License.



27 

 

Khan, A., Naz, B.S., Bowling, L.C., 2015. Separating snow, clean and debris covered ice in the Upper Indus Basin, 835 

Hindukush-Karakoram-Himalayas, using Landsat images between 1998 and 2002. Journal of Hydrology, 521: 46-

64. DOI:10.1016/j.jhydrol.2014.11.048 

Kidd, C. et al., 2012. Intercomparison of High-Resolution Precipitation Products over Northwest Europe. Journal of 

Hydrometeorology, 13(1): 67-83. DOI:10.1175/jhm-d-11-042.1 

Knutti, R., Sedláček, J., 2012. Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate 840 

Change, 3: 369. DOI:10.1038/nclimate1716 

https://www.nature.com/articles/nclimate1716#supplementary-information 

Koutsouris, A.J., Chen, D., Lyon, S.W., 2016. Comparing global precipitation data sets in eastern Africa: A case study of 

Kilombero Valley, Tanzania. International Journal of Climatology, 36(4): 2000-2014. DOI:10.1002/joc.4476 

Kretzschmar, A., Tych, W., Chappell, N.A., Beven, K.J., 2015. Reversing hydrology: quantifying the temporal aggregation 845 

effect of catchment rainfall estimation using sub-hourly data. Hydrology Research. DOI:10.2166/nh.2015.076 

Le Moine, N., Andréassian, V., Perrin, C., Michel, C., 2007. How can rainfall-runoff models handle intercatchment 

groundwater flows? Theoretical study based on 1040 French catchments. Water Resources Research, 43(6). 

DOI:10.1029/2006wr005608 

Li, X., Chen, Y., Wang, H., Zhang, Y., 2020. Assessment of GPM IMERG and radar quantitative precipitation estimation 850 

(QPE) products using dense rain gauge observations in the Guangdong-Hong Kong-Macao Greater Bay Area, 

China. Atmospheric Research, 236(135): 104834-104834. DOI:10.1016/j.atmosres.2019.104834 

Liu, J. et al., 2019. Evaluation and comparison of CHIRPS and MSWEP daily-precipitation products in the Qinghai-Tibet 

Plateau during the period of 1981–2015. Atmospheric Research, 230(July): 104634-104634. 

DOI:10.1016/j.atmosres.2019.104634 855 

Liu, J., Shanguan, D., Liu, S., Ding, Y., 2018. Evaluation and Hydrological Simulation of CMADS and CFSR Reanalysis 

Datasets in the Qinghai-Tibet Plateau. Water, 10(4). DOI:10.3390/w10040513 

Luo, Y. et al., 2018. Contrasting streamflow regimes induced by melting glaciers across the Tien Shan – Pamir – North 

Karakoram. Scientific Reports, 8(1). DOI:10.1038/s41598-018-34829-2 

Lutz, A.F., Immerzeel, W.W., Kraaijenbrink, P.D.A., Shrestha, A.B., Bierkens, M.F.P., 2016. Climate Change Impacts on 860 

the Upper Indus Hydrology: Sources, Shifts and Extremes. PLOS ONE, 11(11): e0165630-e0165630. 

DOI:10.1371/journal.pone.0165630 

Lutz, A.F., Immerzeel, W.W., Shrestha, A.B., Bierkens, M.F.P., 2014. Consistent increase in High Asia's runoff due to 

increasing glacier melt and precipitation. Nature Climate Change, 4(7): 587-592. DOI:10.1038/nclimate2237 

Maussion, F. et al., 2014. Precipitation Seasonality and Variability over the Tibetan Plateau as Resolved by the High Asia 865 

Reanalysis*. Journal of Climate, 27(5): 1910-1927. DOI:10.1175/JCLI-D-13-00282.1 

Moriasi, D.N. et al., 2007. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed 

Simulations. Transactions of the ASABE, 50(3): 885-900. DOI:10.13031/2013.23153 

Muhammad, S., Tian, L., Khan, A., 2019. Early twenty-first century glacier mass losses in the Indus Basin constrained by 

density assumptions. Journal of Hydrology, 574(March): 467-475. DOI:10.1016/j.jhydrol.2019.04.057 870 

Mukhopadhyay, B., Khan, A., 2014. A quantitative assessment of the genetic sources of the hydrologic flow regimes in 

Upper Indus Basin and its significance in a changing climate. Journal of Hydrology, 509: 549-572. 

DOI:10.1016/j.jhydrol.2013.11.059 

Nastos, P.T., Kapsomenakis, J., Douvis, K.C., 2013. Analysis of precipitation extremes based on satellite and high-resolution 

gridded data set over Mediterranean basin. Atmospheric Research, 131: 46-59. 875 

DOI:10.1016/j.atmosres.2013.04.009 

Palazzi, E., von Hardenberg, J., Provenzale, A., 2013. Precipitation in the Hindu-Kush Karakoram Himalaya: Observations 

and future scenarios. Journal of Geophysical Research: Atmospheres, 118(1): 85-100. DOI:10.1029/2012JD018697 

Pang, H., Hou, S., Kaspari, S., Mayewski, P.A., 2014. Influence of regional precipitation patterns on stable isotopes in ice 

cores from the central Himalayas. The Cryosphere, 8(1): 289-301. DOI:10.5194/tc-8-289-2014 880 

Peterson, T.C., 2005. Climate change indices. World Meteorological Organization Bulletin, 54(2): 83-86. DOI:WMO, Rep. 

WCDMP-47,WMO-TD 1071 

Pritchard, H.D., 2019. Asia's shrinking glaciers protect large populations from drought stress. Nature, 569(7758): 649-654. 

DOI:10.1038/s41586-019-1240-1 

https://doi.org/10.5194/hess-2020-194
Preprint. Discussion started: 26 June 2020
c© Author(s) 2020. CC BY 4.0 License.



28 

 

Ragettli, S., Pellicciotti, F., 2012. Calibration of a physically based, spatially distributed hydrological model in a glacierized 885 

basin: On the use of knowledge from glaciometeorological processes to constrain model parameters. Water 

Resources Research, 48(3). DOI:10.1029/2011WR010559 

Rasmussen, R. et al., 2012. How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. 

Bulletin of the American Meteorological Society, 93(6): 811-829. DOI:10.1175/BAMS-D-11-00052.1 

Reid, T.D., Carenzo, M., Pellicciotti, F., Brock, B.W., 2012. Including debris cover effects in a distributed model of glacier 890 

ablation. J. Geophys. Res., 117: 1-15.  

Ren, L., Duan, K., Xin, R., 2020. Impact of future loss of glaciers on precipitation pattern: A case study from south-eastern 

Tibetan Plateau. Atmospheric Research, 242(January): 104984-104984. DOI:10.1016/j.atmosres.2020.104984 

Roe, G.H., 2005. Orographic Precipitation. Annual Review of Earth and Planetary Sciences, 33(1): 645-671. 

DOI:10.1146/annurev.earth.33.092203.122541 895 

Romilly, T.G., Gebremichael, M., 2011. Evaluation of satellite rainfall estimates over Ethiopian river basins. Hydrology and 

Earth System Sciences, 15(5): 1505-1514. DOI:10.5194/hess-15-1505-2011 

Saha, S. et al., 2010. The NCEP Climate Forecast System Reanalysis. Bulletin of the American Meteorological Society, 

91(8): 1015-1058. DOI:10.1175/2010BAMS3001.1 

Salio, P., Hobouchian, M.P., García Skabar, Y., Vila, D., 2015. Evaluation of high-resolution satellite precipitation estimates 900 

over southern South America using a dense rain gauge network. Atmospheric Research, 163: 146-161. 

DOI:https://doi.org/10.1016/j.atmosres.2014.11.017 

Schaefli, B., 2005. Quantification of modelling uncertainties in climate change impact studies on water resources: 

Application to a glacier-fed hydropower production system in the Swiss Alps. Thèse: 1-219. DOI:10.5075/EPFL-

THESIS-3225 905 

Sen, P.K., 1968. Estimates of the Regression Coefficient Based on Kendall's Tau. Journal of the American Statistical 

Association, 63(324): 1379-1389. DOI:10.1080/01621459.1968.10480934 

Shafeeque, M., Luo, Y., Wang, X., Sun, L., 2019. Altitudinal Distribution of Meltwater and Its Effects on Glacio‐Hydrology 

in Glacierized Catchments, Central Asia. JAWRA Journal of the American Water Resources Association: 1752-

1688.12805. DOI:10.1111/1752-1688.12805 910 

Silva, V.B.S., Kousky, V.E., Higgins, R.W., 2011. Daily precipitation statistics for South America: An intercomparison 

between NCEP reanalyses and observations. Journal of Hydrometeorology, 12(1): 101-117. 

DOI:10.1175/2010JHM1303.1 

Singh, S. et al., 2016. Changing climate and glacio-hydrology in Indian Himalayan Region: a review. Wiley Interdisciplinary 

Reviews: Climate Change, 7(3): 393-410. DOI:10.1002/wcc.393 915 

Sorooshian, S. et al., 2011. Advanced Concepts on Remote Sensing of Precipitation at Multiple Scales. Bulletin of the 

American Meteorological Society, 92(10): 1353-1357. DOI:10.1175/2011bams3158.1 

Sun, Q. et al., 2018. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Reviews 

of Geophysics, 56(1): 79-107. DOI:10.1002/2017RG000574 

Taylor, K.E., 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical 920 

Research: Atmospheres, 106(D7): 7183-7192. DOI:10.1029/2000JD900719 

Terink, W., Lutz, A.F., Simons, G.W.H., Immerzeel, W.W., Droogers, P., 2015. SPHY v2.0: Spatial Processes in HYdrology. 

Geoscientific Model Development, 8(7): 2009-2034. DOI:10.5194/gmd-8-2009-2015 

Tigkas, D., Vangelis, H., Tsakiris, G., 2014. DrinC: a software for drought analysis based on drought indices. Earth Science 

Informatics, 8(3): 697-709. DOI:10.1007/s12145-014-0178-y 925 

Tong, K., Su, F., Yang, D., Hao, Z., 2014. Evaluation of satellite precipitation retrievals and their potential utilities in 

hydrologic modeling over the Tibetan Plateau. JOURNAL OF HYDROLOGY, 519: 423-437. 

DOI:10.1016/j.jhydrol.2014.07.044 

Truc, L., 1954. Le bilan d’eau des sols: Relations entre les precipitations, l’evaporation et l’ecoulement. Annales 

Agronomiques, 5: 491-595.  930 

Valéry, A., Andréassian, V., Perrin, C., 2010. Regionalization of precipitation and air temperature over high-altitude 

catchments – learning from outliers. Hydrological Sciences Journal, 55(6): 928-940. 

DOI:10.1080/02626667.2010.504676 

https://doi.org/10.5194/hess-2020-194
Preprint. Discussion started: 26 June 2020
c© Author(s) 2020. CC BY 4.0 License.



29 

 

Van Dam, J.C. et al., 1997. Theory of SWAP version 2.0; Simulation of water flow, solute transport and plant growth in the 

soil-water-atmosphere-plant environment, DLO Winand Staring Centre.  935 

Viviroli, D., Dürr, H.H., Messerli, B., Meybeck, M., Weingartner, R., 2007. Mountains of the world, water towers for 

humanity: Typology, mapping, and global significance. Water Resources Research, 43(7). 

DOI:10.1029/2006wr005653 

Wang, X., Zhang, Y., Luo, Y., Sun, L., Shafeeque, M., 2018. Combined use of volume-area and volume-length scaling 

relationships in glacio-hydrological simulation. Hydrology Research, 49(6): 1753-1772. DOI:10.2166/nh.2018.137 940 

Wang, Y., Liu, G., Seo, E.K., Fu, Y., 2013. Liquid water in snowing clouds: Implications for satellite remote sensing of 

snowfall. Atmospheric Research, 131: 60-72. DOI:10.1016/j.atmosres.2012.06.008 

Winiger, M., Gumpert, M., Yamout, H., 2005. Karakorum-Hindukush-western Himalaya: Assessing high-altitude water 

resources. Hydrological Processes, 19(12): 2329-2338. DOI:10.1002/hyp.5887 

Woldemeskel, F.M., Sivakumar, B., Sharma, A., 2013. Merging gauge and satellite rainfall with specification of associated 945 

uncertainty across Australia. Journal of Hydrology, 499: 167-176. 

DOI:https://doi.org/10.1016/j.jhydrol.2013.06.039 

Wortmann, M., Bolch, T., Menz, C., Tong, J., Krysanova, V., 2018. Comparison and Correction of High-Mountain 

Precipitation Data Based on Glacio-Hydrological Modeling in the Tarim River Headwaters (High Asia). Journal of 

Hydrometeorology, 19(5): 777-801. DOI:10.1175/JHM-D-17-0106.1 950 

Yao, J. et al., 2020. Evaluation of multiple gridded precipitation datasets for the arid region of northwestern China. 

Atmospheric Research, 236(December 2019): 104818-104818. DOI:10.1016/j.atmosres.2019.104818 

Yatagai, A. et al., 2012. APHRODITE: Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a 

Dense Network of Rain Gauges. Bulletin of the American Meteorological Society, 93(9): 1401-1415. 

DOI:10.1175/BAMS-D-11-00122.1 955 

Yoon, Y. et al., 2019. Evaluating the uncertainty of terrestrial water budget components over high mountain Asia. Frontiers 

in Earth Science, 7(May). DOI:10.3389/feart.2019.00120 

Zhang, Y., Liu, S., Ding, Y., 2006. Observed degree-day factors and their spatial variation on glaciers in western China. 

Annals of Glaciology, 43: 301-306. DOI:10.3189/172756406781811952 

Zhou, J. et al., 2020. Choice of potential evapotranspiration formulas influences drought assessment: A case study in China. 960 

Atmospheric Research: 104979-104979. DOI:10.1016/j.atmosres.2020.104979 

https://doi.org/10.5194/hess-2020-194
Preprint. Discussion started: 26 June 2020
c© Author(s) 2020. CC BY 4.0 License.



30 

 

11 Tables 

Table 1. Study area details. Location of hydrological and meteorological stations are depicted in Figure 1. The adjusted 

precipitation is presented in [. 965 

Sub-Region 
Area 

(km2) 

Elevation 

Max (masl) 

Elevation 

Min 

(masl) 

Elevation 

Mean 

(masl) 

Specific runoff 

calculation 

Runoff 

(mm/yr) 
Met. Stations 

Annual 

adjusted 

OBS Prcp. 

(mm/yr) 

Himalaya 

(HMLA) 
75335 8069 639 4760 

Kharmong/Area + 

Astore/Area 
688 

Astore, Burzil, 

Deosai, Rama, 

Rattu, Qinghe 

598 

Hindukush 

(HNDKSH) 
36445 8012 317 3118 

(Bisham Qila - Bunji + 

Gilgit-Astore-

Kharmong)/Area 

621 

 

Bunji, Gupis, 

Shendure, 

Ushkore, Yasin, 

Zani Pass 

551 

Karakorum 

(KRKRM) 
61656 8569 952 4738 

(Bunji - Kharmong - 

Gilgit)/Area 
590 

 

Gilgit, Hushey, 

Khunjrab, 

Naltar, Skardu, 

Ziarat 

466 

Upper Indus 

Basin (UIB) 
173,435 8569 317 4406 Bisham Qila 450 All 540 
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Table 2. Details of data used in the current paper. 

Name Description Agency Reference/Link 

Observed climate 

Precipitation and Temperature at 

18 stations (1951–2015) (Figure 

1d; Table S1) 

WAPDA, PMD, 

and CMDSN 

http://www.wapda.gov.pk/ 

http://www.pmd.gov.pk/en/ 

http://data.cma.cn/ 

Hydrology Data 

Discharge at significant stations 

(1969−2010) 

(Figure 1e; Table S2) 

WAPDA 

http://www.wapda.gov.pk/index.p

hp/component/content/article?id=

54 

Potential and Actual ET 

Global Reference Evapo-

Transpiration (Global-ET0); 

Esri_hydro “average annual actual 

evapotranspiration” 

CGIAR-CSI 

GeoPortal; 

ESRI 

Antonio and Zomer (2018); ESRI 

(2019) 

Land use and land cover data 
Globcover land cover maps 

(Figure S3) 

European Space 

Agency 
(Arino et al., 2012) 

Soil data 

Harmonized World Soil Database 

(HWSD V1.2) 

(Figure S4) 

Food and 

Agriculture 

Organization (FAO) 

of the United 

Nations 

http://www.fao.org/soils-

portal/soil-survey/soil-maps-and-

databases/harmonized-world-soil-

database-v12/en// 

Precipitation - Highly-Resolved 

Observational Data Integration 

Towards Evaluation (APHRODITE; 

hereafter APHRO) 

~25 km (~0.25 degree); Asia; 

Daily; (1951−2007); Interpolated 

Meteorological 

Research Institute 

Japan 

Yatagai et al. (2012) 

Climate Forecast System Reanalysis 

(CFSR) 

~30 Km (~0.3 Degree); Global; 

Daily; 

(1979−2014); 

Reanalysis 

National Center for 

Environmental 

Prediction 

Saha et al. (2010) 

The High Asia Refined analysis 

(HAR) 

10 Km, 30 Km; High Asia; Daily; 

(2001−2013); Downscaled 

Reanalysis 

Technischen 

Universität (TU) 

Berlin 

Maussion et al. (2014) 

Princeton Global Meteorological 

Forcing Dataset for Land Surface 

Modeling (PGMFD) 

~25 km (~0.25 degree); Global; 

Daily (1961−2016): 

Reanalysis and Observation 

Princeton 

University 
Sheffield et al. (2006) 

Tropical Rainfall Measuring Mission 

(TRMM) 3B42 V.7 

~25 km (~0.25 degree); Global; 

Daily (1998−2017); Remote 

Sensing 

National 

Aeronautics and 

Space 

Administration 

(NASA) 

Huffman et al. (2010); Huffman 

and Bolvin (2015) 

Mass balance data 

West Himalaya, East and Central 

Karakorum, Hindukush 

(~2003-2009) 

For selected areas and glaciers 

Literature 

(-0.45±0.13 m w.e. 

yr-1 to +0.11±0.14 

m w.e. yr-1) 

Average = -0.173 m 

w.e. yr-1 

Brun et al. (2017); Gardelle et al. 

(2013); Kaab et al. (2012); Kääb 

et al. (2015); Muhammad et al. 

(2019) 
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Table 3. Calibrated parameters for the SPHY model in UIB. 

Parameter Description Initial range Calibrated value 

DDFglacierCI Degree day factor debris-free glaciers (mm ºC-1 day-1) 1.5−9.0 5.0±0.5 

DDFglacierDC Degree day factor debris-covered glaciers (mm ºC-1 day-1) 1.5−9.0 4.0±0.5 

DDFsnow Degree day factor snow (mm ºC-1 day-1) 1.5−9.0 3.5±1.0 

SnowSC Water storage capacity of snowpack (mm mm-1) 0.2−0.8 0.5 

αGW Baseflow recession constant 0.001−1.0 0.05 

BFdays baseflow recession days (days) 90−150 110 

kx Routing recession coefficient 0.5−0.99 0.85 

GRF Glacier runoff fraction 0−1 0.80 

Tthreshold Threshold temperature (ºC) 0-3.0 1.5±0.5 

TLR Temperature lapse rate (°C m-1) -0.0098 to -0.0050 -0.0065 

 

Table 4. PBIAS (%) in annual precipitation of GPDs against OBS over varying periods from 1951-2017 in UIB. 970 

Region HMLA HNDKSH KRKRM UIB 

APHRO -69% 10% -62% -40% 

CFSR 61% 146% 145% 106% 

HAR -2% 118% 132% 77% 

PGMFD -38% 9% -44% -24% 

TRMM -53% -2% -56% -37% 
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12 Figures 

 

Figure 1. (a) Precipitation sources trajectories—westerlies and monsoon. The background layer contains the Countries and 

Shaded Relief layers from the Natural Earth dataset (http://www.naturalearthdata.com/downloads/). (b) The geographic location 975 
of Upper Indus Basin (UIB) and elevation, Digital Elevation Model (DEM) obtained from the U.S. Geological Survey 

(http://www.usgs.gov), box plots representing the elevations of glaciers, meteorological and hydrological stations, (c) glaciers 

(Bajracharya and Shrestha, 2011) and glacier area ratio (GAR) in each sub-region (d) location of meteorological stations, and (e) 

location of hydrological stations and mean discharge at hydrological stations in UIB. Here, KRKRM = Karakorum, HNDKSH = 

Hindukush, and HMLA = Himalaya. 980 
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Figure 2. Values of potential evapotranspiration and actual evapotranspiration. The extracted values are based on the Global 

Reference Evapo-Transpiration (Global-ET0) and Esri_hydro “average annual actual evapotranspiration”. The calculated values 

are obtained using DrinC (Hargreaves method) and  (1. 
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 985 

Figure 3. (a) The average annual observed and adjusted precipitation at selected stations. (b) Spatial distribution of adjusted 

precipitation in UIB. 
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Figure 4. (a) Schematic diagram of the Tri-Approach framework. (b) Schematic representation of the hydrological alternative of 

the Truc-Budyko plot. The dots represent catchments. The position of catchments would be different for different precipitation 990 
datasets. Here P = precipitation; Q = Runoff, ETp = potential evapotranspiration. 
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Figure 5. Spatial distribution of precipitation based on the selected GPDs in UIB. The temporal distribution of annual 

precipitation in different regions of UIB from 1951-2017. 
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 995 

Figure 6. Graphical representation of performance evaluation of selected GPDs in different regions of UIB at the annual scale. 
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Figure 7. Distribution of precipitation in sub-regions of UIB at (a) monthly and (b) seasonal scales based on different datasets. 
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Figure 8. Selected ETCCDI values for comparing the precipitation extremes in all the datasets over UIB. 1000 
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Figure 9. Comparison between the specific runoff and precipitation (Q/P = runoff coefficient) based on OBS and selected GPDs at 

the monthly scale. The black dashed horizontal line represents the line Q/P = 1. 
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Figure 10. Comparison between annual specific runoff and precipitation for OBS and selected GPDs in UIB. 1005 
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Figure 11. Truc-Budyko plot representing the water-energy balance in UIB. 

https://doi.org/10.5194/hess-2020-194
Preprint. Discussion started: 26 June 2020
c© Author(s) 2020. CC BY 4.0 License.



44 

 

 

Figure 12. Glacier storage change based on the water-energy and mass balance in different sub-regions of UIB. 
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 1010 

Figure 13. Calibration of SPHY model based on glacier mass balance. (a) Simulated mass balance based on the calibrated SPHY 

model in UIB for 2002-2007 and (b) comparison of simulated glacier mass balance against the literature-based glacier mass 

balance in UIB (~2003-2009). 
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Figure 14. Calibration of SPHY model based on the snow cover data. (a & c) Maximum snow cover extent in March based on 1015 
MODIS and SPHY, respectively. (b & d) Maximum snow cover extent in August based on MODIS and SPHY, respectively. (e-f) 

Comparison between the snow cover based on MODIS and SPHY at an 8-day time scale. 
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Figure 15. Calibration of SPHY model based on specific runoff at daily time scale in UIB. (a-c) Calibration results for simulated 

runoff versus observed runoff (2002-2004). (c-d) Validation results for simulated runoff versus observed runoff (2005-2007). The 1020 
table shows the goodness of fit results. 
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Figure 16. (a) Simulated daily runoff based on selected GPDs for 2002-2007 in UIB. (b) Taylor’s diagram to represent the 

performance of SPHY projects to simulate daily runoff. (c) Average annual simulated runoff. (d) PBIAS for a simulated annual 

runoff against the observed runoff in UIB. (e) Simulated glacier mass balance for SPHY projects based on different precipitation 1025 
datasets. 
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Figure 17. (a) Monthly distributions of runoff components for different SPHY projects in UIB. The Pi-Charts represent the annual 

contributions of runoff components to total runoff. (b) Distribution of runoff components at the seasonal scale. 
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