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Abstract. With the increasing frequency and severity of fire there is an increasing desire to better manage fuels and minimize, as

much as possible, the impacts of fire on soils and other natural resources. Piling and/or burning slash is one method of managing

fuels and reducing the risk and consequences of wildfire, but the repercussions to the soil, although very localized, can be

significant and often irreversible. In an effort to provide a tool to better understand the impact of fire on soils, this study outlines

the improvements to and the in-situ validation of a non-equilibrium model for simulating the coupled interactions and transport5

of heat, moisture and water vapor during fires. Improvements to the model eliminate two important (but heretofore universally

overlooked) inconsistencies: one that describes the relationship between evaporation and condensation in the parameterization

of the non-equilibrium vapor source term and the other, is the incorrect use of the apparent thermal conductivity in the soil heat

flow equation. The first of these enhanced the stability and performance of the model. The second is an important improvement

in the model’s physical realism, but had less of an impact on the model’s performance and stability than the first. The model10

validation uses (in-situ temperature, soil moisture, and heat flux) data obtained in a 2004 experimental slash pile burn. Important

temperature dependent corrections to the instruments used for measuring soil heat flux and moisture are also discussed and

assessed. Despite any possible ambiguities in the calibration the sensors or the simplicity of the parameterization of the surface

heating function, the difficulties and complexities of formulating the upper boundary condition, and the obvious complexities

of the dynamic response of the soil’s temperature and heat flux, the model produced at least a very credible, if not surprisingly15

good, simulation of the observed data. This study then continues with a discussion and sensitivity analysis of some important

feedbacks (some of which are well known and others that are more hypothetical) that are not included in the present (or

any extant) model, but undoubtedly are dynamically influencing the physical properties of the soil in-situ during the fire and

thereby modulating the behavior of the soil temperature and moisture. This manuscript concludes with a list of possible future

observational and modeling studies and how they would advance the research and findings discussed here.20
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1 Introduction

Fire has been a largely beneficial part of the landscape in most areas of the world for millenia (Harrison et al. , 2010). But,

over the past few decades fire has increased significantly in frequency, extent and severity to the point that it now poses25

substantial risks to most of the world’s wildlands and forested ecosystems and the goods and services they provide (e.g.,

Kasischke and Turetsky (2006); Mortiz et al. (2012); Abatzogloua and Williams (2016); Stambaugh et al. (2018); San-

Miguel-Ayanz et al. (2019)). Consequently, there is an increased desire to reduce wildfire risk by better management of fuels,

to mitigate the consequences of fire by improving management methods and to promote the recovery of soils and vegetation

after fire (e.g., Millar et al. (2007); McCaffrey et al. (2015); Vallejo and Alloza (2015); Schoennagel et al. (2017); Dey and30

Schweitzer (2018)). Unfortunately for soils, managing fuels often takes the form of biomass burning (i.e., prescribed burns),

the consequences of which for the affected area can be as bad as or even worse than wildfire. Therefore, to achieve any of

these desired outcomes for managing the ecological effects of fire it is necessary to improve our understanding of the impacts

that fire and extreme heating can have on soils. An important and extremely useful tool in this effort is better models of soil

heating during fires. Here I summarize the changes made to the HMV-Model (Massman , 2015) and assess the improvements35

they made to the model’s performance by comparing modeled and observed (in situ) soil temperatures, heat fluxes and changes

soil moisture during an slash pile burn (Massman et al. , 2008).

The HMV-model is a 1-d (soil depth) model with three time-dependent predictive variables: temperature = TK (K) or T

(C), soil water potential = ψ (Jkg−1) (where ψ < 0 and is relatable to volumetric soil moisture θ (m3m−3) through a water

retention curve), and soil vapor = ρv (kgm−3). At any specific depth, the model assumes thermal equilibrium between the40

soil matrix, the soil vapor, and the soil moisture. However, it is termed a ‘non-equilibrium’ model because it does not assume

a priori that the soil moisture and soil vapor are in equilibrium, contrary to the equilibrium approach that has been the basis

of virtually all models of coupled heat and moisture flow in soils since Philip and de Vries (1957) and de Vries (1958).

Although the equilibrium assumption has led to many insights into the nature of soil heat and moisture transport processes in

the last six decades, it must fail at some point as the soil dries out for the simple reason that it is difficult to maintain vapor in45

equilibrium with soil moisture when there is little to no soil moisture (Novak (2012); Massman (2015)). In the case of rapid

soil heating and drying during fires (Massman , 2015) further indicates that at the drying front, where local soil evaporation

rates are highest, θ and ρv are forced out of equilibrium as soil moisture rapidly decreases and the soil vapor rapidly increases.

Novak (2019) also demonstrates (under less extreme conditions than during fires) that the greatest departure from equilibrium

occurs at the drying front. The equilibrium model cannot capture this evaporative disequilibrium, which may explain why50

soil evaporation is better modeled with a non-equilibrium approach (Smits et al. (2011); Ouedraogo et al. (2013); Massman

(2015); Borujerdi et al. (2019)). In fact, the most important change/improvement in the HMV-model (detailed in the next

section) is in the parameterization of the vapor source term = Sv (kgm−3s−1), which is the essence of the non-equilibrium

approach and its ability to capture the evaporative disequilibrium. As with its predecessor (Massman , 2015), the present vapor

source term is formulated on the basis of the Hertz-Knudsen Equation, which Trautz et al. (2015) have suggested better55

describes evaporation than other non-equilibrium models of Sv . Nonetheless, all extant models of Sv have overlooked (and
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therefore include) an implicit and incorrect assumption about soil evaporation that is addressed and corrected in the present

study.

The following section also discusses other changes to the HMV-model, including: (a) eliminating the use of the apparent soil

thermal conductivity in the soil heat flow equation (also further discussed and justified in the Appendix) and (b) improving the60

parameterization of the surface energy balance and the upper (soil surface) boundary condition (including the development of

a generic soil heating function for use with prescribed burns or wildfires). In addition, this study also discusses the subtleties

and difficulties of formulating a universal surface energy balance for soil heating by fire. The third section reviews the site,

soils and data of the experimental slash pile burn and the fourth section compares the observations with the model simulations

and explores some of the consequences (to the simulations) of some dynamic feedbacks and interactions between the fire and65

soil physical properties. The fifth section discusses possible future directions for modeling and observational studies. The final

section summarizes this study.

2 Model Description

Similar to version 1 of the HMV-model (Massman , 2015), the present version employs a linearized Crank-Nicolson finite

difference scheme and was coded and run using MatLab version 2017b. This manuscript also uses the same notation and the70

same functional parameterizations for the supporting thermodynamic and physical variables as Massman (2015). For this

study details concerning these functional parameterizations will be summarized as necessary for clarity and to update with new

information or data. Otherwise many details covered by Massman (2015) will not be repeated here. The remainder of this

section discusses the physical fundamentals of the changes made to the HMV-model.

2.1 Conservation of Mass and Energy75

The HMV-Model is composed of the three conservation equations: the conservation of energy (or maybe more properly the

conservation of enthalpy), the conservation of soil liquid water and the conservation of soil water vapor. The conservation of

energy is

Cs
∂T

∂t
− ∂

∂z

[
λs
∂T

∂z

]
=−LvSv +WSw ≡−L∗vSv (1)

where Cs (Jm−3K−1) is the volumetric specific heat of the soil, such that Cs = Cs(T,θ) is a function of both temperature80

and volumetric soil moisture; t (s) is time; z (m) is soil depth; λs (Wm−1K−1) is soil thermal conductivity, such that λs =

λs(T,θ,ρv); Lv = Lv(TK) (Jkg−1) is the enthalpy of vaporization and −LvSv represents the change in enthalpy associated

with evaporation/condensation; Sv = Sv(TK ,θ,ψ,ρv) is the source term for water vapor and is discussed in more detail in the

following section; and WSw is the change in enthalpy associated with the heat of wetting (also termed the heat of immersion),

where W (Jkg−1) is the heat of wetting and Sw (kgm−3s−1) is the source term for water liquid or equivalently the sink term85

for water vapor, i.e., Sw ≡−Sv . W is discussed by de Vries (1958) and for the present purposes W can be interpreted as
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that additional enthalpy of vaporization that is required to break the electrostatic bonds between molecular water and the soil

mineral surfaces. In general the wetting reaction is exothermic, i.e., W > 0 and a function of temperature (Grant (2003);

Prunty and Bell (2005)). Massman (2012) investigated the effects of temperature on ψ and W , but found that it had little

impact on the modeling results. For this study the HMV-model follows Campbell et al. (1995) and assumes that W =−ψ and90

ignores any temperature dependencies of ψ and W . Note that W is only significant at high temperatures (as Lv→ 0) and for

extremely dry soil (as −ψ→∞). Finally with this identification for W and the above identity between Sw and Sv , it follows

that L∗v ≡ Lv −ψ.

The conservation of liquid water is

ρw
∂θ

∂t
− ρw

∂

∂z

[
Kn

∂ψn
∂z

+KH −Vθ,surf
]

=−Sv (2)95

where ρw = ρw(TK) (kgm−3) is the density of liquid water; ψn (dimensionless) is the non-dimensional form of ψ, i.e.,

ψn = ψ/ψ∗, where ψ∗ =−106 Jkg−1 is the nominal soil water potential of oven-dried soil ((Campbell et al. , 1995)). (Note

ψn is used interchangeably with ψ throughout this manuscript.) Kn =Kn(TK ,ψn,θ) (m2s−1) is the hydraulic diffusivity;

KH =KH(TK ,ψn,θ) (ms−1) is the hydraulic conductivity; and Vθ,surf = Vθ,surf (TK ,θ) (ms−1) is the velocity of liquid

water associated with surface diffusion of water. The hydraulic conductivity functions, Kn(TK ,ψn,θ) and KH(TK ,ψn,θ), are100

given as follows:

Kn =
KIKR ρw

µw
ψ∗ and KH =

KIKR ρw
µw

g (3)

where µw = µw(TK) (Pas) is the viscosity of water; g = 9.81 ms−2 is the acceleration due to gravity; KI (m2) is the intrinsic

permeability of the soil here assumed to be constant and uniform throughout the soil profile, but does, in fact, vary with the

concentration and type of solutes in soil water, (e.g., Lutz and Kemper , 1959); and KR =KR(θ,ψn,TK) (dimensionless) is105

the relative hydraulic conductivity (used to describe capillary flow in soils). The model for intrinsic permeability is taken from

Bear (1972) and is KI = (6.17× 10−4)d2g; where dg (m) is the mean or ‘effective’ soil particle diameter. Note that switching

variables from ψ < 0, to ψn produces ψn > 0 and Kn < 0. The present model considers only capillary flow and will ignore

film flow, because like Massman (2015) film flow did not really impact the model’s performance.

The conservation of water vapor is110

∂(η− θ)ρv
∂t

− ∂

∂z

[
Dve

∂ρv
∂z
− (η− θ)uvlρv

]
= Sv (4)

where η (m3m−3) is the total soil porosity, assumed to be temporally constant and spatially uniform, and (η− θ) is the soil’s

air filled porosity; and Dve =Dve(TK ,ψ,ρv) (m2s−1) is the (equivalent) molecular diffusivity associated with the diffusive

transport of water vapor in the soil’s air-filled pore space, where Dve includes the enhancement factor developed by Campbell
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et al. (1995) and detailed in Massman (2012); and uvl (ms−1) is the advective velocity induced by the change in volume115

associated with the rapid volitalization of soil moisture, which is given as follows:

∂uvl
∂z

=
Sv

(η− θ)ρv
(5)

The final model equations result by preserving Equation (4) and eliminating Sv from Equations (1) and (2), such that

Equation (1) is replaced with

Cs
∂T

∂t
− ∂

∂z

[
λs
∂T

∂z

]
−L∗vρw

(
∂θ

∂t
− ∂

∂z

[
Kn

∂ψn
∂z

+KH −Vθ,surf
])

= 0 (6)120

and Equation (2) is replaced with

ρw
∂θ

∂t
− ρw

∂

∂z

[
Kn

∂ψn
∂z

+KH −Vθ,surf
]

+
∂(η− θ)ρv

∂t
+

∂

∂z

[
Dve

∂ρv
∂z
− (η− θ)uvlρv

]
= 0 (7)

2.2 Improvements in Non-equilibrium Vapor Source Term

Massman (2015, Equation(10)) adapted the Hertz-Knudsen Equation to develop the following formulation for the vapor source

term, Sv ,125

Sv = S∗Awa

√
RTK
Mw

(
Keρv,eq −Kcρv

)
(8)

where S∗ is an empirical dimensionless parameter, which is “tuned" as necessary to ensure model stability; Awa (m2m−3

or m−1) is the volume-normalized soil water-air interfacial surface area, which Massman (2015) parameterized as Awa =

Awa(θ); R = 8.314 Jmol−1K−1 is the universal gas constant; Mw = 0.01802 kgmol−1 is the molar mass of water vapor; Ke
(dimensionless) is the mass accommodation (or evaporation) coefficient, which Massman (2015) sets ≡ 1; Kc =Kc(TK ,ψn)130

(dimensionless) is the thermal accommodation (or condensation) coefficient, which Massman (2015) parameterizes as a

physicochemical (Arrhenius) function: Kc(TK ,ψn) = e
Eav−Mwψ

R

(
1
TK
− 1
TK,in

)
, where Eav −Mwψ (Jmol−1) is an empirical

surface condensation/evaporation activation energy for which Eav ≈ 30− 40 kJmol−1 was determined empirically and TK,in

is the initial soil temperature; and ρv,eq (kgm−3) is the equilibrium vapor density, defined as ρv,eq = awρv,sat(TK) where

aw = e
Mwψ∗
RTK

ψn is the dimensionless water activity, modeled here with the Kelvin Equation, and ρv,sat(TK) (kgm−3) is the135

saturated vapor density, which is a function only of TK .

But the model of Sv embodied by Equation (8) assumes that the interfacial surfaces appropriate to evaporation and condensa-

tion are the same, i.e., thatAwa is the same for both evaporation
(√

RTK/MwKeρv,eq
)

and condensation
(√

RTK/MwKcρv
)

.

In general this is not a priori the case unless one assumes that soil moisture (θ) never drops below the point at which the soil’s in-

terfacial surface area is completely covered by a thin film or mono-layer of liquid water (e.g., Novak , 2019). But it is physically140
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more realistic, at least for very dry soils (which are likely to occur during fires), to assume that condensation can occur even

in the absence of liquid water. Otherwise models of Sv would impose a physically unrealistic constraint on non-equilibrium

models of heat and moisture flow in dry soils.

The new version of the non-equilibrium model parameterizes Sv as follows:

Sv = S∗

√
RTK
Mw

(
Awa(θ)ρv,eq −Awa,dryKcρv

)
(9)145

where Ke ≡ 1 has been retained as has the original formulation for Awa (Massman , 2015):

Awa(θ) = Sw(1−Sw)a1 + a2[Sw(1−Sw)]a3 (10)

where Sw = θ/η is the soil water saturation and a1 = 50 (rather than the original value of 40), a2 = 0.003, and a3 = 1/8.

This particular value for the parameter a1 was chosen so that the maximum value of Awa occurs at Sw ≈ 0.02 (= 1/a1), and is

assumed to be where the soil surfaces are covered by a mono-layer of water (Brusseau et al, , 2006).Awa,dry ≡Awa(θ) as long150

as Sw > 1/a1, and Awa,dry ≡max(Awa) whenever Sw ≤ 1/a1. In other words, Awa,dry differs from Awa whenever the soil

moisture is so low that the soil particle surfaces are covered by, at most, a mono-layer of water. Empirical “tuning" of S∗ and

Eav after implementing the other changes yielded S∗ = 0.1 and Eav = 10 kJmol−1. Together these changes to Sv improved

the model’s stability and robustness, as well as, it’s fidelity to the observed soil moisture during the 2004 burn (detailed later).

2.3 Corrections and Improvements in Soil Thermal Conductivity155

The present model of λs retains (a) the general structure of the original Campbell-de Vries model for thermal conductivity

(see Campbell et al. (1994), de Vries (1963) and Massman (2012)) and (b) the additional Bauer term associated with the

high-temperature thermal (infrared) radiant energy transfer within the soil pore space (Bauer , 1993). That is

λs =
kwθλw(TK ,ρw) + ka[η− θ]λ∗a(θ,TK ,ρv) + km[1− η]λm

kwθ+ ka[η− θ] + km[1− η]
+ 3.8σN2RpT

3
K (11)

where kw, ka, and km (dimensionless) are the Campbell et al. (1994) generalized formulations of the de Vries (1963)160

weighting factors; λw(TK ,ρw) (Wm−1K−1) is the thermal conductivity of liquid water; λ∗a(θ,TK ,ρv) (Wm−1K−1) is the

apparent thermal conductivity of moist air, which is the sum of the true thermal conductivity of moist air, λa(θ,TK ,ρv)

(Wm−1K−1) and the term, λ∗v(θ,TK ,ρv) (Wm−1K−1), which embodies the effects of latent heat transfer or “the effect of the

vapor distillation due to temperature gradients" (de Vries (1958); Appendix A of the present study); λm (Wm−1K−1) is the

thermal conductivity of the mineral components of the soil; σ (Wm−2K−4) is the Stefan-Boltzmann constant; N =N(θ) =165

1 + θ/(3η) (dimensionless) is the pore gas index of refraction; and Rp (m) is the soil’s pore space volumetric radius. The first

term on the right hand side of Equation (11) is the Campbell-de Vries model and the second is the Bauer term.
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The weighting factors, kw, ka, and km all have the same general form (Campbell et al. , 1994):

k∗ = k∗(θ,T ) =
1

3

[
2

1 + (λ∗
λf
− 1)ga

+
1

1 + (λ∗
λf
− 1)(1− 2ga)

]
(12)

where the subscript ∗ refers to water (w), air (a), or mineral (m); ga is the de Vries (1963) shape factor, an empirically170

determined model parameter. In general ga ≈ 0.1 (Campbell et al. , 1994). λf = λf (θ,T ) is a weighted mixture of the thermal

conductivities of air and water:

λf (θ,T ) = λa(θ,T,ρv) + fw(θ,T )[λw(T )−λa(θ,T,ρv)] (13)

and

fw(θ,T ) =
1

1 + ( θ
θw

)−qw(T )
(14)175

where qw(TK) is a dimensionless parameter that describes the water content at which water begins to influence λs. It is defined

as qw(TK) = qw0(TK/303)2 with qw0 another empirically determined parameter. ga and qw0 are important for the present

study because they are an important part of the sensitivity analysis (discussed in a later section) that explores the interactions

between the fire and the soil physical properties.

Three changes have been made to this original formulation. First, λ∗v is no longer included because to do so is to double180

count the vapor “distillation" (de Vries , 1958) term that accounts for the influence that evaporation, transport and conden-

sation of water vapor can have on the apparent thermal conductivity (Appendix A). In other words as shown in Appendix

A, both equilibrium and non-equilibrium models of soil heating include the vapor distillation term, either explicitly through

the conservation of mass of water vapor (non-equilibrium models) or implicitly through the conservation of mass of liquid

water (equilibrium models). Consequently, it is unnecessary and redundant to include λ∗v in Equation (11). Second, λm now in-185

cludes an explicit temperature dependency of the form λm = λm(TK) = λm0(8exp(−0.008(TK −300))+3)/11; where λm0

(Wm−1K−1) is basically an adjustable parameter. The results for α-quartz (α referring to a specific crystalline structure of

quartz) from (Yoon et al. , 2004, Figure 4) suggests that it is reasonable to expect that λm0 ≤ 15 Wm−1K−1. The temperature

function (8exp(−0.008(TK − 300)) + 3)/11 was chosen to emulate the approximately 70% decrease in the thermal conduc-

tivity of α-quartz (here used as a substitute for sand quartz) between about 300 K and 600 K shown by Kanamori et al. (1968)190

and Yoon et al. (2004). Third, Rp is now estimated as Rp = 0.408dg
√

(ρp/ρb)− 1 from Arya et al. (1999); where dg (m) is

the mean or “effective" soil particle diameter, ρp (Mgm−3) is the particle density (which can usually be assumed to be about

2.65 Mgm−3 and ρb (Mgm−3) is the soil bulk density. This formulation for Rp yields more physically realistic estimates of

Rp (i.e., 5 µm≤Rp ≤ 200 µm for the soils tested in this study) than the default value of 1000 µm used in the previous version

of the HMV-model. It also suggests that the thermal infrared contribution to the soil thermal conductivity is negligible in most195

soils, even during fires.
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2.4 Evaluation of changes to Sv and λs

Assessing the consequences of these alterations to the source term and soil thermal conductivity to the model’s performance

was done using the laboratory data of Campbell et al. (1995) and by comparing the simulations with the changes to Sv and

λs to those shown in Massman (2015). The results indicated that (a) the model’s ability to faithfully reproduce the data were200

very similar to those in Massman (2015) and (b) the model’s stability was significantly improved. The reason for (b) is (almost

exclusively attributable to) the change in Sv and is very much a positive benefit to the model. The changes to λs, did require

some adjustments to the values of some of the other parameters included in the model for λs, but these were minimal and not

particularly significant. For the sake of brevity, none of these comparisons are included in this study.

2.5 Complexities and Challenges205

2.5.1 Surface Heating, Surface Energy Balance and Upper Boundary Condition

The forcing function is the energy that is input to the soil at its surface, denoted here by QF (t) (Wm−2). How that energy

is divided between net infrared heat loss, convective heat loss, evaporation, and soil conductive heating is expressed by the

surface energy balance and the upper boundary conditions. Although relatively simple in concept, in practice, for application

to fires the forcing function, the surface energy balance and the upper boundary all are at best difficult to formulate precisely210

and at worst potentially a fiction. For example, in the case of a wildfire or soil heating within a few meters outside the physical

perimeter of a slash pile surface forcing is primarily radiant energy. See Fig.2 of Massman et al. (2010a) for an example of this

second case. On the other hand, when burning material makes direct contact with the soil, it is reasonable to assume that the

forcing at the soil surface is more likely to be conduction rather than radiant energy. Beneath a slash pile burn surface forcing

may be combination of radiation and conduction, it may change over time as the pile burns, as the ash accumulates and, at215

later stages of the burn, as the pile collapses. In the case of a moving fire front, the forcing can be highly variable. Radiant

energy is clearly a major driver, but in addition, thermal instabilities drive circulations ahead and behind the fire that input

energy into the soil when these circulations force hot air into contact with the soil, which in turn causes direct ignition of soil

biomass ahead of the flame front (Finney et al. , 2015; Pearce et al. , 2019; Linn , 2019). As the fire front passes the forcing

is likely to be a combination of conduction and radiation and possibly convection. Whereas after the fire front conduction is220

the major forcing in areas covered with burning biomass, and radiant energy and possibly convection in areas free of burning

biomass. Finally, in the case of burning duff, forcing is likely to be solely conductive in nature; but complications arise because

in this situation duff is a highly porous burning insulator. Parameterizing the forcing in this case is problematic because of the

extremely limited (empirical and theoretical) knowledge concerning burning duff.

Massman (2015) assessed the performance of the previous version of the HMV-model against the laboratory data of Camp-225

bell et al. (1995), which more or less dictated the following forcing function: QF (t) =QFmax(1− exp(−t/τ)); where τ (s)

and QFmax (Wm−2) are adjustable parameters that describe the rate of rise of the forcing function (τ ) and its stead state
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asymptotic (maximal) value QFmax. This study uses the following modified form of the BFD curve (Barnett , 2002) as the

forcing function

QF (t) =QFin + (QFmax−QFin)e−α(ln(t/tm))2 (15)230

where e−α(ln(t/tm))2 is the modified BFD-curve; tm (s) is the time at which the maximum forcing occurs, andα (dimensionless)

= 2ln(10)/(sinh−1[0.5td/tm]) and td (s) is the time interval between when the forcing first reaches 1% of its maximum and

when it has decayed to 1% of its maximum. QFmax, tm and td are adjustable input parameters to the model that define the

forcing function, much the same way that QFmax and τ are for the Campbell et al. (1995) forcing function. QFin (Wm−2),

on the other hand, is not an adjustable input parameter. It is determined from other considerations of the soil surface energy235

balance and is define later. The boundary conditions for temperature and vapor pressure, ev (Pa), have similar functional forms

as Equation (15): Va = Vin+Vmaxe
−α(ln(t/tm))2 ; where Va refers to the ambient atmospheric temperature (Ta) or vapor pres-

sure (ρv,a) at the soil surface and the subscript ‘in’ refers to the initial value of that variable (taken from observations near

the time and location of the fire). Vmax is an adjustable model input parameter ‘tuned’ so that the model matches (as much as

possible) the soil observational data and (if necessary) to help ensure model stability. The vapor density boundary condition is240

derived from these latter two boundary conditions using the ideal gas law. The upper boundary condition on soil moisture is

(∂θ/∂z)0 = 0 and is discussed further in Massman (2015).

The energy balance at the soil surface used with the present study is slightly different from either Massman (2012) or

Massman (2015). Here it is expressed as

ε0(θ0)QF (t) = ε0(θ0)σ
[
T 4
K0− εa(ρva)T 4

Ka

]
+ ρacpaCH [T0−Ta] +L∗v0E0 +G0 (16)245

where the ‘0’ subscript refers to soil surface and the term on the left hand side of this equation is the energy absorbed by the

soil (and assumes that absorptivity and emissivity of the soil are the same) and the first term on the right hand side is the net

infrared heat loss, the second is the convective heat loss, the third is rate of evaporation, and the last is the soil conductive heat;

ε0(θ0) is the soil emissivity and is a function of the soil moisture, θ0; σ = 5.67× 10−8 Wm−2K−4 is the Stefan-Boltzmann

constant; εa(ρva) is the emissivity of the ambient atmosphere exposed to the soil surface during the fire and is a function of the250

ambient vapor density ρva following the ‘clear sky’ parameterization of Brutsaert (1984, Equation (6.18)); ρa = ρa(TK0) =

1.29(Pa/PST )(TST /TK0) (kgm−3) is the mass density of the ambient air at the soil surface temperature, TK0, where Pa

(Pa) is the ambient pressure (at the time and location of the fire and is a model input variable) and PST = 101325 Pa and

TST = 273.15 K are the standard atmospheric pressure and temperature; CH = 0.032 (ms−1) is the transfer coefficient for

convective heat from the surface (see Massman (2012) or Massman (2015)). Ta = Ta(t) (C), or equivalently TKa = TKa(t)255

(K), is the ambient temperature somewhere above the soil surface (upper boundary condition); L∗v0E0 (Wm−2) is the rate of

soil water evaporation; E0 (kgm−2s−1) is the evaporative mass flux at the surface; and G0 (Wm−2) is the soil conductive heat
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flux and the upper boundary condition for the modeled soil temperatures, Equation (6). E0 is parameterized as the sum of a

diffusional component and an advective component (Massman , 2012):

E0 = CEhs0 [ρv0− ρva(t)] +CUuvl0ρv0 (17)260

where CE (ms−1) and CU (dimensionless) are adjustable model transfer coefficients, which were determined empirically to

maximize E0 without destabilizing the model. CU = 0.125 is associated with the jet of volitalized air emanating from the soil

with velocity uvl0 and CE = 10−4 ms−1. The surface humidity, hs0 (dimensionless), is assumed to be the same as aw0, the

water activity at the surface.

Although Equation (16) provides a complete accounting of the energy exchange between the atmosphere and the soil, there265

are two key issues that need to be addressed when initializing the model for applications to fires. The first was mentioned earlier,

i.e., under a burning slash pile or a soil covered (partially or completely) with an ash layer it is not clear what the infrared and

convective heat environments really are or what role they may play in the soil energy balance. This issue is relevant here

because the data used in this study was obtained under a burning slash pile and it is addressed in the present study in a later

section on sensitivity analysis by comparing model simulations with and without the IR and convective heat terms. Removing270

these later two terms from Equation (16) yields the following simplified version of the soil surface energy balance:

ε0(θ0)QF (t) = L∗v0E0 +G0 (18)

The second issue is basically a feature of all forcing functions. In the case of the BFD-curve, tm ≥ 0.5 hr is always true

and because a typical model time step is between 1 and 4 s, there will always an initial period between a few minutes to

several tens of minutes long where the simulated burning time t� tm. During this “ramp-up" period QF ≈QFin. The choice275

of QFin depends on whether Equation (16) or Equation (18) is used. In the case of Equation (18), QFin = 0. In this case

the soil conductive heat flux becomes G0 =−L∗v0E0, and because the source term and the evaporation rates are very nearly

at equilibrium (i.e., Sv ≈ 0 and E0 ≈ 0) during this ramp-up, it follows that G0 ≈ 0 and that ∂T/∂t≈ 0. (Note: the soil is

initialized to be isothermal at the temperature obtained at the soil surface just before initiating the burn.) But for Equation (16),

the full surface energy balance equation, this equilibrium condition does not occur during the ramp-up ifQFin = 0, because the280

net IR term in Equation (16) is not initially in equilibrium. This is true despite initializing Ta = T0. WithoutQFin Equation (16)

reduces to G0 ≈−ε0(θ0)σT 4
K0(1− εa(ρva))< 0, which induces a transient in the solution that causes the soil temperature to

drop slightly (i.e., ∂T/∂t < 0). But assigningQFin ≈ σT 4
K0(1−εa(ρva)) eliminates this transient and ensures thatG0 ≈ 0 and

∂T/∂t≈ 0 during the ramp-up time. Several other methods were tested for eliminating this unrealistic solution, but the present

approach proved to be the least intrusive and best way to prevent this initial transient. Note: this initial period of disequilibrium285

in the surface energy balance is not unique to the modified BFD curve. It also occurred with other forcing functions that were

tested (e.g., Blagojević and Pešić , 2011) as well as with the Campbell forcing function used in Massman (2012) and Massman

(2015).
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2.5.2 The Lower Boundary Condition and Initial Conditions

The lower boundary condition is the same “pass through" or “extrapolative" boundary condition that was used in Massman290

(2012) and Massman (2015), i.e., the second derivative, ∂2/∂z2, of the 3 model variables = 0. But for the present study

(which is devoted to wildfires and slash pile burns, rather than the laboratory experiments of Campbell et al. (1995)), the

lower boundary is placed at 0.60 m below the surface (well below 0.20 m used in these previous studies). This pass through

boundary condition is used because for field-based applications the lower boundary condition will never be known (or knowable

without extraordinary effort before hand) so it must be fairly general and placed at a depth where it will not influence the295

model predictions within the upper few centimeters of soil too much. The advective velocity, uvl, requires only one boundary

condition, see Equation (5), and is uvl = 0 at the bottom boundary.

The initial conditions for soil temperature and moisture are taken from measurements made just before igniting slash pile.

The soil temperature is assumed to be uniform throughout the vertical domain and is taken to be the observed soil surface

temperature. The initial soil vapor pressure is estimated to be about 40% of the saturation vapor pressure at the initial soil300

temperature. The ideal gas law is then used to estimate the initial soil vapor density profile. The initial soil water potential is

obtained from the soil moisture data using the water retention curve, discussed next.

2.6 The Water Retention Curve

Unlike the previous studies (Massman (2012), Massman (2015)), which employed soils for which the water retention curve

was unavailable, the present study does employ a water retention curve appropriate to the soils at the site of the experimental305

burn (Manitou Experimental Forest: MEF). Figure 1 shows the WRCs for pre-burn (red) and post-burn (black) soils the MEF

burn site. Note: both pre- and post-burn soils are included in this study because they are part of the model sensitivity analysis.

The data shown in this figure were provided by Butters (2009) and were obtained from a 2008 burn study performed at a site

about 60 m away from the 2004 burn discussed in this study. The data were fit with the Fredlund and Xing (1994) model:

θ/η = Sw =

(
1− ln(1 + aψn)

ln(1 + a)

)(
ln(e+ (bψn)n)

)−m
(19)310

where a > 0, b > 0, n > 0, and m> 0 are fitting parameters, e is Euler’s Number, and the total porosity η was established

beforehand such that ηpre ≈ 0.51 and ηpost ≈ 0.45. These values of η correspond to the following values of soil bulk density:

ρb,pre = 1.30 Mgm−3 and ρb,post = 1.46 Mgm−3. This change in bulk density is revisited in the model sensitivity analysis.

Although the Fredlund-Xing model provided the best fit to the data, other models of the WRC were fit to the observations.

For the HMV-model the choice of WRC is important. The Fredlund-Xing model did provide the best fit to the data and its315

impact on model performance was judged the best of the models tested. Other models for the WRC that were tested include

the Campbell-Shiozawa model (Campbell and Shiozawa , 1992), which was used in both Massman (2012) and Massman

(2015), the van Genuchten model (van Genuchten , 1980), and the Groenevelt-Grant model (Groenevelt and Grant , 2004). For

the purposes of model performance, the key difference between Fredlund-Xing model, Equation (19) and Campbell-Shiozawa
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model, and (the class of models represented here by) the van Genuchten and the Groenevelt-Grant models is the WRC’s320

description and mathematical behavior when the soil is extremely or completely dry. Under these conditions Equation (19)

when θ ≈ 0 the soil water potential remains bounded, i.e., ψ ≈−106 Jkg−1. But with the van Genuchten and the Groenevelt-

Grant models a completely dry soil is impossible to achieve because θ = 0 can only occur when ψ =−∞. But in the HMV-

model an unbounded function for the WRC does result in the degradation in model performance, some loss of physical realism

in the simulation of soil moisture, and can introduce model instabilities.325

On the other hand, using a WRC that remains bounded produces a logical inconsistency when used with the Kelvin Equation

to describe water activity and the equilibrium vapor density. This issue plagued earlier modeling attempts (Massman , 2012,

2015). In the case of Massman (2012), when θ = 0, ψ =−106 Jkg−1 and ∂ψ/∂t= 0. But as long as the temperature keeps

rising, ∂T/∂t > 0, it follows that ∂ρv,eq/∂t > 0. For the equilibrium model (ρv ≡ ρv,eq) this means that when the soil moisture

is completely evaporated and the soil is dry, the model autonomously creates water vapor. In the case of Massman (2015),330

the same inconsistency produces a source term that does not allow condensation to occur (i.e., Sv < 0) on the surface of a soil

particle that is completely dry. It is this issue that lead to the improved parameterization of Sv embodied in Equation (9) of the

present study.

2.7 The Hydraulic Functions

The hydraulic functions, Kn and KH , are both basically determined by KR, as discussed above (Equation (3)). Like Massman335

(2015) the present study employs the Assouline model Assouline (2001) for KR, except here KR does not include a residual

soil moisture term. Therefore,

KR(θ) =

(
1−

[
1−

(
θ

η

) 1
mk

]mk)nk
(20)

wheremk and nk are parameters (0<mk < 1, and nk > 1) that are adjusted or tuned to ensure that the present model produces

a reasonable and physically realistic simulation of the observed soil moisture dynamics during the fire. Unfortunately, there are340

no data available to determine KR for the soil at the MEF burn site.

3 Manitou Experimental Forest: Burn Site and Instrumentation

Much of the general description of climate and physical characteristics of Manitou Experimental Forest and the burn site have

been published previously (Massman and Frank , 2004; Massman et al. , 2006). Nonetheless, for the present purposes they do

bear repeating.345

3.1 General Site and Soil Description

The burn experiment is located within MEF (39◦ 04′ N and 105◦ 04′ W), a dry montane ponderosa pine (Pinus ponderosa)

forest in the central Rocky Mountains about 45 km west of Colorado Springs, CO, USA. MEF has a mean elevation of about

12



2400 m ASL and an annual mean temperature of about 5 C. The annual precipitation is about 400 mm. Soils within MEF

tend to have low available water holding capacity and moderately high permeability. The dominant parent materials of the soils350

within MEF are primarily Pikes Peak granite and secondarily weathered red arkostic sandstone.

The area surrounding the burn site is a large grassy opening that had been created in the surrounding ponderosa pine forest in

2001 when several trees were cut in an effort to reduce the amount of mistletoe in the area. The vegetation within this opening

is predominantly grasses, forbs, and shrubs (including some non-native invasives). At the time of the experiment (fall 2003

- spring 2004) this opening was covered primarily by senescent bunchgrasses. The soil within the general area of the burn355

pile is a deep (> 1.0 m), fine-loamy, mixed, frigid, Pachic Argiustoll and is typical of soils throughout this experimental area.

Soils within the burn area are Pendant cobbly loam and range between 60-65% sand, 20-25% silt, and 10-15% clay with bulk

densities that usually increase with depth (Massman et al. , 2008) and range between 1.1 and 1.5 Mgm−3. Soil organic material

comprises about 1-2% of the soil by volume. Previous grazing and mechanical harvesting throughout the area has resulted in a

moderately disturbed soil.360

3.2 The Slash Pile Burn: Description and Instrumentation

The burn site instrumentation was installed in August 2003 at two control plots and two slash plots (under the center and the

edge of the slash pile). Data include soil temperatures, soil moisture, soil heat flux, and soil CO2 at several soil depths. All

these in situ sensors and their associated connectors and cables were buried several centimeters deep and connected to data

loggers (CR23X data logger: Campbell Scientific; Logan, UT, USA) via a 27 m trench that had been back-filled to protect the365

data communications from the heat of the fire. The slash pile (located at 3.11439◦ N and 105.10284◦ W) was mechanically

constructed in March of 2004 and measured about 42 m in circumference, about 6 m in height, and covered an elliptically

shaped area of about 130 m2. The fuel loading was estimated to be between 450 and 600 kgm−2. The burn was initiated a few

minutes after 10:00 am MDT on April 26, 2004. Figure 2 shows the burning slash pile shortly after the fire was initiated and the

deployment of the data loggers, CO2 pumps and analyzers, and the supporting infrastructure. Note: although the soil CO2 data370

and the data from the edge of the pile are somewhat peripheral to this study, they are included here because they offer some

important insights into some of the assumptions underlying the present model, as is discussed in a later section. Otherwise the

measured soil temperatures, soil moisture and soil heat fluxes are compared to the model’s predictions and thereby assess and

validate the model’s performance.

3.2.1 Soil Temperature375

Soil temperatures were measured with thermocouples (Omega Engineering; Stamford, CT, USA) and sampled every two

minutes during the fire and for the week following the day the fire was initiated. To insure electrical isolation all thermocouple

junctions were coated with epoxy (Omegabond 101) prior to insertion into the soil. Thermocouples were placed at the soil

surface (0.00 m) and at 0.02, 0.05, 0.10, 0.15, 0.20, and 0.50 m depths. The four uppermost sensors, including the soil surface,

were K-type (rated to 704 C), the J-type (rated to 260 C) was used at 0.15 m, and the bottom two depths were T-type (rated to380

100 C).
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3.3 Soil Heat Flux

The soil heat fluxes were measured at three depths (0.02 m, 010 m, 0.20 m) under the center of the pile with a high-temperature

probe (HFT) with an aluma core and an exterior ceramic glaze (Thermonetics Corporation, La Jolla, CA). They were also

sampled at the same rate and time as the soil thermocouples. These high temperature HFTs are rated to 775 C and have a385

nominal sensitivity between 1250 and 1750 Wm−2mV−1. These HFTs were attached to a data logger by a cromel extension

wire (Omega Engineering TFCH-020, rated to 260 C).

Because these high temperature HFTs are exposed to such a wide range of temperatures (potentially anywhere between about

-10 and 700 C) it is important to account for the effects of temperature on the sensors’ thermal conductivity and calibration

factors. Details concerning the calibration factor are discussed by Massman and Frank (2004) and need not be repeated here.390

But the details concerning the thermal conductivity of these HFTs are very relevant here and need highlighting. The thermal

conductivity of these HFTs, λp (Wm−1K−1), is λp = 0.7+0.003T (where T is degrees Celsius). Knowledge of λp is important

to correct for the discrepancy between the true soil heat flux, Gsoil (Wm−2), and the measured soil heat flux, Gm, that results

whenever λp differs from the soil’s thermal conductivity, λs, (Philip , 1961; Sauer et al. , 2003; Tong et al. , 2019). This

relationship, known as Philip’s correction, is given as395

Gsoil = [1−βr(1− ε−1)]Gm (21)

where β is a dimensionless factor related to sensor shape (β = 1.31 for the square HFTs), r is the sensor’s aspect ratio, i.e.,

the ratio of the sensor’s thickness to its horizontal length (r = 0.19 for the HFTs), and ε−1 = λs/λp. If a sensor is perfectly

matched to its soil environment, then λp = λs, Gm =Gsoil, and there would be no need to correct for this discrepancy. But,

in general, this is unlikely to occur very often at normal daytime or nighttime soil temperatures and so is, therefore, even less400

likely during a fire. But this correction also requires in situ knowledge of λs, which was not (and probably could never have

been) measured during the fire. So the model’s predicted λs is used in Equation (21). As a consequence, the model’s predicted

Gsoil will be evaluated against the measured heat flux, Gm, with and without the Philip correction.

3.4 Soil Moisture and CO2

All soil moisture and CO2 data were measured at 0.05 and 0.15 m depths at both the center and edge position under the slash405

pile. They were both sampled every half hour for the week during and after the burn. Soil moisture was measured using a

specially designed high-temperature TDR (Zostrich Geotechnical; Pullman, WA, USA). The design of this particular probe is

fairly standard, but the material used to house the steel needles and the connectors attaching them to the coaxial (data/signal)

cables had a much higher melting temperature than normal. Additionally, those external portions of the coaxial cables that

were likely to be exposed to high temperatures were wrapped in silicon tape. The calibration factor for this TDR is temperature410

dependent and is discussed in more detail in the Appendix of Massman et al. (2010a). Like with the soil heat flux, the model’s

predictions will be evaluated against the TDR measurements with and without the temperature dependent calibration factor.
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Soil CO2 was measured by drawing a continuous sample for approximately 0.5 minutes through 3/8-inch (id) decabond tubing

into a LI-820 (LI-COR Inc.; Lincoln, NE, USA) that was housed several m from the slash pile, as shown in Figure 2.

4 Model Performance and Sensitivity Analysis415

4.1 Surface Energy Balance

Figures 3 and 4 show the details of the surface energy balance for Equation (16), the model’s upper boundary condition that

includes the sensible heat and the net infrared terms. Included in Figure 3 is the forcing function, QF (t), which shows the

shape of the BFD-curve. Figure 5 shows the surface energy balance for Equation (18), which excludes the sensible heat and

the net infrared terms. Comparing Figures 4 and 5 suggests that, once tuned appropriately, either formulation of the surface420

energy balance will give very similar simulations of the evaporative flux, L∗v0E0. Likewise during the period of soil heating

(i.e., when G0 > 0), both formulations give similar and reasonable simulations for G0. But the simplified model of the surface

energy balance, Equation (18), does not capture (and in fact cannot capture) G0 during the period when the soil is cooling (i.e.,

when G0 < 0, which starts at about 22 hrs in Figures 3 and 4). Without the possibility of radiative and convective cooling of

the surface, Equation (18) does not reproduce G0 < 0.425

Another important aspect about the surface energy balance that Equation (18) does not capture as well as Equation (16) is

the time lag between the maximum in soil heat flux and the maximum in soil temperature. At 0.02 m depth the observed time

lag is about 5 hours. Predictions of the time lag with the full surface energy balance, Equation (16), agree almost exactly with

observed time lag. But the simplified model predicts a time lag of about 4.6 hrs. This difference in the time lags is not the

result of the different choices of tm, td or QFmax between the two models of the surface energy balance. Rather Equation (18)430

inherently constrains the soil heat flux more strongly than Equation (16).

These apparent limitations of the simplified surface energy balance, Equation (18), do not lessen the argument that it may be

appropriate for some slash pile burns. Rather these present comparisons suggest that a hybrid of Equations (18) and (16) may

be more appropriate. Such a hybrid would employ Equation (18) in the early part of the burn (before significant loss of mass

from the slash pile due to combustion) and Equation (16) later after the fire intensity has peaked (i.e., sometime after td) when435

the soil surface or possibly an ash surface is more exposed to the ambient environment.

Other than these two discrepancies the two forms of the surface energy balance give very similar simulations for soil temper-

ature, moisture and other model variables. Nevertheless, because the full surface energy balance provides the more physically

realistic simulation it will be used throughout the remainder of this study.

4.2 Soil Temperature440

The principal aim of this model is to simulate reasonable and realistic soil temperatures during fires. The comparison between

modeled and observed soil temperatures, shown in Figure 6, suggests that the HMV-model with the current set of ‘tuned’

parameters is reasonably good at this task. Nonetheless, a careful examination of the features of this figure shows some slight
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discrepancies in the model’s performance: (1) the model does not capture the early temperature rise beginning at about 4 hrs,

(2) nor does it capture the secondary maximum temperature at about 20 hrs, (3) it appears to overestimate the maximum 2445

cm soil temperatures (at about 21 hrs), and (4) the soil appears to cool off faster than observed (most obvious after about 28

hrs). Discrepancies (1) and (2) are not unexpected because it is impossible for a simple forcing function like the BFD-curve

and Equation (15) to produce an exact or even a nearly exact simulation of the observed temperature dynamics during a fire.

Any real physical surface forcing will always be far more (dynamically) complex than the BFD-curve, nor could it be easily

generalized from one fire to the next. The (relatively significant) overestimation of the 2 cm soil temperatures is not fully450

understood, but it may be a consequence of mis-measurement of the installation depth of the soil temperature sensors. Half

of the (approximately) 60 C over-prediction can be accounted for if the sensor was installed at 2.6 cm rather than 2 cm. It is

also possible that λs possess greater vertical structure than is included in the model. Finally the issue involving the difference

between the observed and modeled rates of cooling, discrepancy (4), seems to be characteristic of all model simulations, not

just the simulation shown in Figure 6. Some of this is undoubtedly related to the simple shape of the BFD-curve (forcing455

function) and the constraints it imposes on the upper boundary conditions. Another likely contributing factor to (4) (as well as

the other 3 issues) is the ash layer that formed during the fire. A month after the fire, the ash layer measured between 0.5 and

8 cm deep within the burn area and was about 2 cm deep over the area where the sensors were buried. Because the ash layer

would have insulated the soil surface, it would have acted to slow the rate of cooling as the fire died out.

4.3 Soil Heat Flux460

Comparisons between measured and modeled heat fluxes, Figure 7, are an independent check of the mathematical structure and

tuning parameters of the surface forcing function, QF (t). For this study QF (t) was tuned primarily for soil temperatures and

secondarily for soil heat flux. Figure 7 compares the observed heat fluxes (blue color-filled area and symbols) to the modeled

heat fluxes (solid lines). The upper boundary of the (2 cm) blue color-filled region is the heat flux measured by the heat flux

plate without the Philip correction. The lower boundary of this region is the measured heat flux with the Philip correction,465

indicating that for this experiment the Philip correction reduced the amplitude of the uncorrected flux. The Philip correction is

not shown for the two lower heat flux measurements (symbols) because it made virtually no change to the uncorrected fluxes.

In general, the model does appear to capture many features of the observations. Of particular interest is that the amplitude of

the modeled heat flux more closely agrees well with the Philip-corrected heat flux, providing confidence in both the model’s

performance and the quality of the soil heat flux data. On the other hand, the modeled heat flux peaks several hours before the470

measured heat fluxes do. Without significantly increasing the complexity of the forcing function and the concomitant tuning

effort, it is (at best) unlikely (if possible at all) to improve much on the model’s ability to reproduce the observed temperature

and heat flux data for this burn.

4.4 Soil Moisture

The modeled soil moisture is shown as a function of time in both Figures 8 and 9 for the same depths (and color-coding) as475

shown for temperature in Figure 6. Included on each figure is the soil moisture measured at 5 cm (red) and 15 cm (magenta)

16



depths; but Figure 8 includes the temperature-corrected calibration of the soil moisture probe, whereas Figure 9 does not. The

red (5 cm) stars are interpolated values, which replace values that were flagged by the noise filter as questionable. Nonetheless,

confidence in the fidelity of these interpolated values is high. But confidence in the magenta (15 cm) stars (also interpolated)

is less. Rather interestingly the modeled 5 cm soil moisture agrees better with temperature-corrected soil moisture, whereas480

at 15 cm the model resembles the uncorrected 15 cm soil moisture. Consequently, both figures are included here to show the

importance of the temperature effects on the high-temperature TDR and to provide an estimate on the uncertainty inherent in

these soil moisture measurements.

Figure 10 shows the observed (temperature-corrected) soil moisture versus the observed temperature along with the model’s

solutions of θ vs T (or the model’s θ−T trajectory). Here the model predicts that for depths less than 5 cm the soil moisture485

begins to evaporate (decrease) between 50 C and 90 C and that these initial evaporative temperatures increase deeper into the

soil. Nonetheless, the model suggests that the soil does not dry out completely until temperatures have reached about 200 C.

The observations at 5 cm show a similar pattern to the model, except these observations suggest that the initial evaporation

stage proceeds more slowly and that overall evaporation occurs at a higher temperature. The same observation was made by

Massman (2012) and Massman (2015) regarding the laboratory data of Campbell et al. (1995). Several test simulations were490

performed to see if the model could be made to better emulate the observed θ−T trajectory, including: different formulations

and parameter values for the hydraulic conductivity (KR), different parameter values for the forcing function, QF (t), and

the simplified surface energy boundary condition, Equation (18), different WRCs, variations in the parameters of the source

term, Sv , and removing the enhancement factor from the vapor diffusivity, Dve and Equation (4). Only changes to Sv and Dve

made any significant positive difference to the model’s θ−T trajectory. Changes in either of these model factors can strongly495

influence the amount of vapor within the soil pores, in turn influencing the soil moisture dynamics. This should not be too

surprising in the case of Sv , because Sv is formulated within the present model as a balance between the physical processes

that govern evaporation and condensation to and from soil surfaces, and therefore influences the balance between soil moisture

and soil vapor. In the case of reducing the enhancement factor (i.e., assigning it a value of 1), the resulting decrease in vapor

diffusivity causes the vapor within the soil pores to increases such that it feedbacks to soil moisture via the condensation term500

of Sv (proportional to ρv , Equation (9)), and again influencing the balance between θ and ρv . This exploration of the modeled

and observed θ−T trajectory has yielded some insights into what maintains the long evaporative tail (where some soil moisture

persists well past the boiling point of water), an issue that was less understood in Massman (2012) and Massman (2015).

Taken in total the model’s simulation of soil moisture agrees with the observations fairly well. It is, of course, possible to

improve on the model’s fidelity to the observations by adjusting the hydraulic function (KR) or changing in the heating rates or505

duration and magnitude, QF (t), and most importantly, by changing the values of the parameters of Sv and Dve that influence

soil vapor, ρv; but usually this comes at some expense to the model’s fidelity to the measured soil temperatures. The same issue

was noted in Massman (2012) and Massman (2015). Thus the present choice of model parameters is a compromise between

two or three somewhat conflicting goals: fidelity to the soil’s thermal response to heating by fire and the soil’s moisture and

vapor response.510
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4.5 Dynamic Feedbacks

Fire changes soil and the more intense the fire and the greater amount of soil heating, the greater will be the changes in the

soil. Examples of some of the changes that are relevant to the present study include (a) changes the soil bulk density (Butters

, 2009; Kojima et al. , 2018), which will alter the WRC (figure 1) and hydraulic properties (Tian et al. , 2018), (b) changes to

the thermal conductivity of the soil (Massman et al. , 2008; Kojima et al. , 2018) and the volumetric specific heat (Butters ,515

2009), (c) changes to the heat and vapor fluxes resulting from (a) and (b) (Kojima et al. , 2018), and (d) changes to the soil’s

specific surface area, Awa, and particle surface potentials, which result when the fire induces water repellency in soils (Chen

et al. , 2018). None of the physical/chemical processes causing these phenomena are included in any extant model of soil

heating during fires. Part of the difficulty is that these are dynamic feedbacks occur during fires, consequently they influence

soil heating and moisture transport in-situ during the fire. To give some idea of how these dynamic feedbacks may influence520

the soil heat and moisture transport, this section details the results of a model simulation based on observed or inferred changes

to the bulk density and key thermophysical parameters.

The following model parameters were changed for this sensitivity analysis to feedbacks: soil bulk density increases from

1.30 Mgm−3 to 1.46 Mgm−3 (a 12% increase as per figure 1); the thermal conductivity of the mineral fraction, λm0, increases

from 4.42 WmK−1 to 8 WmK−1, the de Vries shape factor, ga, decreased from 0.123 to 0.06, the Campbell et al. (1994)525

parameter qw0 (which determines when water content starts to influence the soil’s thermal conductivity) decreased from 0.03

to 0.02, the soil’s volumetric specific heat increases by 10% (in accordance with the observations made by Butters (2009)),

the overall soil thermal conductivity, λs, increases by 15%, and finally the source term coefficient, S∗, decreases from 0.1 to

0.08 (specifically chosen to be a 20% decrease). This increase in bulk density yields a concomitant decrease in soil porosity,

η, which is simply carried over in a purely linear fashion to the WRC, the hydraulic function, and the source term, Sv . On its530

own this decrease in η yields an increase in Sv , so S∗ is reduced to compensate for the decrease in Awa suggested by Chen

et al. (2018). It very natural to expect the soil’s thermal conductivity to increase with the increase in bulk density, but the

present model of thermal conductivity does not explicitly include any dependency on ρb. So λs is increased by 15% to accord

with the increase predicted by the model developed by Johansen (1975). Changes to ga and qw0 are intended to capture the

observation (Massman et al. , 2008) that the fire decreased the sensitivity of the soil’s thermal conductivity, λs, to soil moisture,535

(i.e., ∂λs/∂θ decreased as a result of the fire) and increased λs when the soil is dry (θ < 0.08). Decreasing ga and qw0 was the

best way to capture this pair of observations. In addition a decrease in ga was also observed by Smits et al. (2016) for fire-

affected soils. The conductivity of the mineral fraction, λm, was increased to capture the creation of thin, but highly conductive,

coatings of mineral oxides (MnO2 in particular) on the soil particle surfaces during the MEF experimental burn (Massman et

al. , 2010b; Nobles et al. , 2010). Such thin coatings are synthetically created for routine application to nanotechnologies (e.g.,540

O’Brian et al. , 2013).

The base case model simulation (Figs. 6, 7, 8, 9, 10) and the feedback simulation are compared in Figures 11, 12 and 13. The

upper boundaries of the color-filled areas in Figures 11 (temperature) and 12 (heat flux) correspond to the feedback simulation.

Whereas, the lower boundary in Figure 13 (soil volumetric moisture) is associated with the feedback simulation. These com-
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parisons demonstrate that the feedbacks overwhelmingly act to increase the soil temperatures and heat fluxes throughout the545

soil and to significantly increase evaporation and evaporative losses of soil moisture (at least within the upper few centimeters

of soil). However, the change in bulk density alone is responsible for about half of the differences shown in these figures.

Overall though, these last three figures indicate that these dynamic feedbacks are potentially quite significant to the magnitude

and depth of the soil heating. Or paraphrasing somewhat, during a fire soil temperatures are not a direct linear response to the

surface forcing function, rather at any given moment the soil heating feedbacks (non-linearly) upon itself creating conditions550

that allow the heat to penetrate more deeply into the soil and the soil temperatures to exceed what they would have been without

the feedbacks.

5 Improving physical realism: Future observational and modeling studies

Although the HMV-model gives reasonably realistic simulations of soil temperatures and moisture during fires, there are several

enhancements that may further improve its performance and that should be useful to consider for future studies of the soil’s555

response to heating during fires.

(a) Dynamic Feedbacks and Soil Thermal Conductivity. A better physical understanding of the dynamical processes that

govern how extreme heating during fires changes ρb and the development of a model of λs that captures this dynamic. Also

a better formulation of how soil structure influences ga and λs and how soil structure changes during a fire. This issue of

improving model parameterizations of λs is more complex that just including ρb because the observed increase in λs for a dry560

soil was 200-300% (Massman et al. , 2008), which far exceeds the 15-17% predicted by the model of Johansen (1975).

(b) Mass Transport. The present version of the HMV-model assumes an advective transport of water vapor induced by

the rapid volitalization of the soil moisture, uvl and Equation (5). But most formulations of advective transport in soils are

based on Darcy’s law. For application to fire uvl from Darcy’s law would result from the rapidly evolving vapor pressure and

temperature gradients. Additionally it would be worthwhile to include the dry air density, ρd, as a separate model variable.565

Certainly in any real fire the temperature and pressure of the dry air within the soil pore spaces would respond dynamically

to heating. But including ρd as a dynamic variable should yield a more physically realistic simulation of the diffusional and

advective transport of water vapor during the fire. Finally, given the potential for extreme gradients in soil water potential and

temperature during fires, it may also be worthwhile to include the heat transported by the movement of water (e.g., Stallman ,

1965; Pasquale et al. , 2014) in Equation (1). This energy transport term has often been included when modeling the daily cycle570

of energy flow through soils. Because some fires, especially slash pile burns, can continue a week or more, it seems appropriate

to investigate the influence this type of energy transport could have on model solutions.

(c) 2- and 3-Dimensional Effects. There are (at least) two physical processes that cannot be fully represented in a 1-d model:

(i) horizontal heat flux (Ghor) and (ii) possible advective currents (here characterized by an advective velocity uadv) induced in

the soil shortly after the pile is ignited ((Massman et al. , 2010a; Nobles et al. , 2010; Massman et al. , 2010b)). (i) In an earlier575

section mention was made of the second installation of soil sensors at the edge of the pile. These data used in conjunction with

the soil temperature data at the center of the pile it is possible to obtain a crude estimate of the horizontal temperature gradient.
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Then assuming that horizontal and vertical thermal conductivities (at the same depth) are about the same in magnitude, it

is possible to show that Ghor during the fire is approximately 10% of the vertical soil heat flux. This estimate of Ghor was

confirmed with data taken during another experimental burn performed in the fall of 2004, in which the 20 or so temperature580

sensors were placed in a horizontal array that allowed about 20 different horizontal gradients to be compared with about the

same number of vertical gradients. This is relevant to the present study because it may help explain some of the divergence

between modeled and observed soil temperatures and (vertical) heat fluxes and further underscores the nature of the challenges

and empiricism inherent in modeling of soil heating during fires. (ii) Far more important for any further studies is the possibility

of a fire-induced uadv because it appears to be inherently 2- or 3-dimensional in nature and to carry combustion products into585

the soil (Massman et al. , 2010b, figure 4). Such an advective current is hypothesized to have caused the extremely rapid 20-fold

increase in soil CO2 observed to have occurred within the first 30 minutes of the Manitou burn being modeled here (Massman

et al. , 2010a). Consequently, any combustion-produced water vapor will also be transported. If this is the case it would likely

overwhelms uvl and contradict assumptions made about evaporation at the soil surface and the transport of soil water vapor

during (at least) some portion of the burn. It may be possible to just impose uadv in a 1-d model like the HMV-model, but such590

an adjustment should probably be guided by observational studies and experiments designed to establish the existence, nature

and dynamics of uadv .

6 Concluding Summary

This study describes the continuing development, improvement, and validation of the HMV-model, a non-equilibrium model

of the coupled transport of heat, moisture, and water vapor in soils during surface fires. The purpose of the research supporting595

this study is to provide a tool to aid in the management (and reduction, if possible) of the physical and ecological affects

of fire on soils. Key improvements to the model, which noticeably improved its stability and performance, include more

physically realistic parameterizations of the non-equilibrium vapor source term, Sv , and soil thermal conductivity, λs. Integral

to the validation of this model are the development of a general surface heating (forcing) function and the discussions of the

complexities and difficulties regarding formulating the surface (or upper) boundary condition. The model is validated using600

in-situ measurements of soil temperatures, heat flux, and soil moisture obtained during a 2004 experimental burn carried out at

Manitou Experimental Forest (in the central Rocky Mountains of Colorado). Despite any possible ambiguities in the calibration

of the soil moisture and heat flux sensors and given the simplicity of the modeled forcing function and the complexities of the

true forcing that can be inferred from the dynamics of the soil data, the model’s ability to reproduce the observations is at

least reasonable, and maybe even surprisingly good. But as with Massman (2012) and Massman (2015), tuning the model605

parameters requires navigating the somewhat divergent goals of achieving a “best" fit to either the soil temperature observations

or soil moisture observations. Absent to the model are important fire-induced feedbacks, in particular in-situ changes to the

soil’s thermal and hydraulic properties that are inevitable when the fire (as is often observed) causes the soil’s bulk density to

increase. This important dynamic was investigated with a model sensitivity analysis by making logical and credible changes in

the (appropriate) model parameters. The net affect of this feedback is that the heat pulse will propagate much deeper into the610
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soil than it would have otherwise, pointing to the need for further observational and modeling studies of this phenomenon. This

study closes by highlighting other areas of research needed to improve our understanding of and ability to model the physical

processes that occur in soils during fires, including issues involving the transport of both soil moisture and soil vapor during

fires, the potentially very significant 2- or 3-dimensional advective flows in soils induced by fires, and the possibility of 2- or

3-dimensional heat flow.615

Code and data availability. The computer code used in this study was developed using MatLab version 2017b and is publicly available along

with any output data at the Forest Service Research Data Archive https://doi.org/10.2737/RDS-2020-YYYY. Prior to its availability online

the code and any output is freely available from the author.

Appendix A: Soil Apparent Thermal Conductivity

A1 Mass Gradient Diffusional Flux: −Dve∂ρv/∂z620

de Vries (1958) defines the soil’s apparent thermal conductivity, λs,app, as the medium’s thermal conductivity “including the

effect of the vapor distillation due to temperature gradients". But in a modeling context, the use of λs,app has to be treated with

some care because it is inappropriate to externally introduce λs,app into the equation for conservation of energy (employed

universally as part of any model of heat and moisture flow in soils). This appendix develops both an equilibrium and a non-

equilibrium model for λs,app to illuminate its thermodynamic origins and to clarify its proper role in modeling of soil heat and625

moisture flow in soils. Before proceeding, note that all terms relating to advective vapor flow (i.e., uvl) and liquid water flow

(i.e., Kn, KH and Vθ,surf ) can be ignored because they are superfluous for purposes of this appendix.

The basic conservation equations employed in this study are Equations (6), (7) and (4). But there is a valid alternative

expression for Equation (6), which results by combining the conservation of enthalpy, Equation (1), with the conservation of

water vapor, Equation (4), and the equilibrium assumption (ρv = ρv,eq = awρv,sat), and is expressed as630

Cs
∂T

∂t
− ∂

∂z

[
λs
∂T

∂z

]
+L∗v

∂(η− θ)ρv,eq
∂t

−L∗v
∂

∂z

[
Dve

∂ρv,eq
∂z

]
= 0 (A1)

which after some simple mathematical manipulation can also be written as

Cs
∂T

∂t
−L∗vρv,eq

∂θ

∂t
+L∗v(η− θ)

∂ρv,eq
∂t

− ∂

∂z

[
λs
∂T

∂z
+L∗vDve

∂ρv,eq
∂z

]
+Dve

∂ρv,eq
∂z

∂L∗v
∂z

= 0 (A2)

where the last term on the right hand side of this equation accounts for moving L∗v inside the gradient operator ∂/∂z. As

discussed in the main text aw = aw(TK ,ψ) is modeled by the Kelvin Equation, aw = e
Mwψ∗
RTK

ψn , and ρv,sat = ρv,sat(TK), so635
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that ∂ρv,eq/∂t can be expanded in terms of ∂T/∂t and ∂ψn/∂t and ∂ρv,eq/∂z in terms of ∂T/∂z and ∂ψn/∂z. The following

shows ∂ρv,eq/∂z. (Note ∂ρv,eq/∂t can be found by substituting t for z).

∂ρv,eq
∂z

=

[
aw∆sat− aw

(
Mwψ∗ψn
RTK

)
ρv,sat
TK

]
∂T

∂z
+

[
aw

(
Mwψ∗
RTK

)
ρv,sat

]
∂ψn
∂z

(A3)

where ∆sat (kgm−3K−1) is the slope of the saturation vapor curve, dρv,sat/dT , and 7×10−4 <∆sat < 70×10−4 for temper-

atures between about 5 and 60C. Furthermore, unless the soil is extremely dry (ψn ≈ 1)−[(Mwψ∗ψn)/(RTK)][ρv,sat/TK ]�640

∆sat; implying that the second term multiplying the temperature gradient of Equation (A3) can be ignored relative to the first

term for most applications. Otherwise for an extremely dry soil −[(Mwψ∗ψn)/(RTK)][ρv,sat/TK ]≈ 0.5∆sat. Henceforth

∆∗sat ≡∆sat− [(Mwψ∗ψn)/(RTK)][ρv,sat/TK ]. In addition, it is always true that (ψn/TK)∂T/∂z� ∂ψn/∂z, which means

that the rightmost term in Equation (A3) can also be ignored. Therefore, Equation (A3) is now

∂ρv,eq
∂z

= aw∆∗sat
∂T

∂z
(A4)645

Substituting Equation (A4) into Equation (A2) yields

Cs
∂T

∂t
−L∗vρv,eq

∂θ

∂t
− ∂

∂z

[
(λs + awL

∗
vDve∆

∗
sat)

∂T

∂z

]
+Dve

∂ρv,eq
∂z

∂L∗v
∂z

= 0 (A5)

where the term L∗v(η− θ)∂ρv,eq/∂t has been dropped from Equation (A2) because |L∗v(η− θ)∂ρv,eq/∂t| � |Cs∂T/∂t| (al-

though it is a bit tedious to show). Equation (A5) yields the following identification for λs,app:

λs,app = λs + awL
∗
vDve∆

∗
sat = λs +λs,dis (A6)650

where the term describing “the effect of the vapor distillation due to temperature gradients" on the soil’s thermal conductivity is

awL
∗
vDve∆

∗
sat (identified in Equation (A6) as λs,dis). This expression for λs,app is often used as the justification for including

the effects of vapor transfer on λs, i.e., the substitution of λs,app for λs in the equation of conservation of enthalpy in soils

((e.g., Hillel , 2004, Equation (12.24), p. 226) and (Campbell et al. , 1995; Smits et al. , 2011; Massman , 2015)). But as

this appendix shows, in a modeling context, this substitution is usually unnecessary (and inappropriate) because these vapor655

transfer effects are already either directly or indirectly embedded in the equation for conservation of enthalpy.

Next is the introduction of the equilibrium assumption, Equation (A4), into Equation (7). This yields

(ρw − ρv,eq)
∂θ

∂t
+ (η− θ)∂ρv,eq

∂t
+

∂

∂z

[
awDve∆

∗
sat

∂T

∂z

]
= 0 (A7)

or to a very good approximation (which follows from Equation (A7) because ρw� ρv,eq)

ρw
∂θ

∂t
+ (η− θ)∂ρv,eq

∂t
+

∂

∂z

[
awDve∆

∗
sat

∂T

∂z

]
= 0 (A8)660
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Equations (A5) and (A8) now form an equilibrium model with two independent predictive variables (T and θ or ψ) that

describes the coupled heat and moisture flow in soils. This particular model clearly results in and is completely consistent with

the soil’s apparent thermal conductivity, λs,app. On the other hand, there is an equally valid model of this coupled dual-variable

model for which λs,app is not only unnecessary, but it would, in fact, an error to invoke its use with the model.

This other coupled heat and moisture flow model combines the conservation of mass for water (liquid + vapor), Equation665

(A8) above, with the simplified version of the conservation of energy equation, Equation (6), discussed in the development of

the non-equilibrium model. This simplified equation is

Cs
∂T

∂t
− ∂

∂z

[
λs
∂T

∂z

]
−L∗vρw

∂θ

∂t
= 0 (A9)

It is important to reiterate that the paired Equations (A8) and (A5) are as valid a basis for describing coupled heat and

moisture flow in soils as are the paired Equations (A8) and (A9); although Equations (A8) and (A9) are much more extensively670

used. But the conservation of energy equation as expressed with Equation (A9) does not explicitly include “the effect of the

vapor distillation due to temperature gradients" (λs,dis), whereas Equation (A5) does. Rather the effects of distillation of water

vapor are implicit in Equation (A9) because they are included in ∂θ/∂t (via Equation (A8)). Therefore, to substitute λs,app

for λs in Equation (A9) or any θ-based variant of Equation (A9) (as opposed to a ρv-based variant like Equation (A5)) on the

assumption that λs should explicitly include the effects of water distillation, is incorrect because to do so is to double count the675

effects of λs,dis on soil thermal energy transport. This double counting is even more obvious (using the same argument that λs

should include the λs,dis term) when λs,app is substituted for λs in Equation (A5), which already explicitly includes λs,dis.

The non-equilibrium form of λs,app follows from the same general methodology as the equilibrium form does from Equation

(A5). First, combining Equations (1) and (4) and then simplifying yields

Cs
∂T

∂t
−L∗vρv

∂θ

∂t
− ∂

∂z

[
λs
∂T

∂z
−L∗vDve

∂ρv
∂z

]
+Dve

∂ρv
∂z

∂L∗v
∂z

= 0 (A10)680

Next employing the ideal gas law for ρv , i.e., ev = ρvRTK/Mw yields

∂ρv
∂z

=− ρv
TK

∂T

∂z
+

Mw

RTK

∂ev
∂z

(A11)

Finally introducing Equation (A11) into Equation (A10) yields

Cs
∂T

∂t
−L∗vρv

∂θ

∂t
− ∂

∂z

[(
λs +L∗vDve

ρv
TK

)
∂T

∂z
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+

∂
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[(
L∗vDveMw

RTK
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∂ev
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+Dve

∂ρv
∂z

∂L∗v
∂z

= 0 (A12)

where now the non-equilibrium form of λs,dis is L∗vDveρv/TK . For practical applications this is obviously not as convenient685

or as useful as the equilibrium form because λs,dis is now a function of ρv , which for most experimental settings in soils

is difficult (if not impossible) to measure directly. Nonetheless, for the purposes of this appendix, it suffices to show that a
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non-equilibrium model of λs,dis can be defined and that in a modeling context it is just as unnecessary and inappropriate to use

as is the better known equilibrium version of λs,dis.

Summarizing and concluding: The conservation of enthalpy (Equation (1), or one of its many derivatives, e.g., Equations (6),690

(A5), (A9)), is fundamental to all models of heat and moisture flow in soils. All forms of this conservation law also explicitly

include the effects of the phase change of water through the vapor source term, L∗vSv . Therefore, all effects associated with the

distillation of water are a result of Sv . This is true whether discussing an equilibrium or non-equilibrium model. Imposing or

assuming liquid/vapor equilibrium or non-equilibrium has mathematical consequences to how ρv and Sv are parameterized and

can also have indirect influence on the soil’s intrinsic thermal conductivity (λs), because λs is a function of several variables,695

among which are soil volumetric water content and soil vapor density, i.e., λs = λs(θ,ρv, · · ·) (de Vries (1963); Campbell et

al. (1994); Tian et al. (2016)). But within a modeling context there is no justification for substituting the apparent thermal

conductivity, λs,app, for the soil’s intrinsic thermal conductivity, λs, in the equation of conservation of enthalpy, Equation (1).

To do so violates the conservation of enthalpy by effectively double counting λs,dis.

A2 Mass Mixing Ratio Diffusional Flux: −ρaDve∂χv/∂z700

The discussion in this section of the appendix complements the discussion of λapp and λs,dis in A1 above. It does not change

the final outcome or conclusions reached in A1. A2 is included here only to further refine λs,dis. Furthermore, results of this

section are limited to relatively moist soils, for which λs,dis is of greatest interest and significance.

The discussion in A1 above develops λs,app more-or-less along the traditional lines, using the mass gradient form of the

diffusional flux, −Dve∂ρv/∂z. But the diffusional flux is also represented (and sometimes more appropriately represented)705

in terms of the gradient of the mass mixing ratio, i.e., −ρaDve∂χv/∂z; where ρa (kgm−3) is the total (dry air + vapor) soil

gas density and χv (kgkg−1) = ρv/ρa. This section of the appendix shows that for a relatively moist soil (i.e., aw ≈ 1 and

χv,eq ≈ χv,sat) λs,dis developed in A1 above differs between +2.5% (for T ≈ 5 C) and -4.5% (for temperatures T ≈ 60 C)

from that given in Equation (A6). All that this requires is to show how ρa∂χv,eq/∂z generalizes Equation (A4).

From the identity ρa = ρd + ρv,eq , where ρd (kgm−3) is the soil dry air density, it follows that710

ρa
∂χv,eq
∂z

= (ρd + ρv,eq)
∂

∂z

(
ρv,eq

ρd + ρv,eq

)
=
∂ρv,eq
∂z

−χv,eq
∂ (ρd + ρv,eq)

∂z
(A13)

Next, assuming that ρd is an ideal gas it follows that

∂ρd
∂z

=
ρd
pd

∂pd
∂z
− ρd
TK

∂T

∂z
(A14)

Because the pressure gradient term, (ρd/pd)∂pd/∂z, is not relevant for the present purposes (and it is unlikely to contribute

much to ∂ρd/∂z anyway) it can be dropped from Equation (A14). This yields715

ρa
∂χv,eq
∂z

= (1−χv,eq)
∂ρv,eq
∂z

+χv,eq
(ρa− ρv,eq)

TK

∂T

∂z
(A15)
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which after combining with Equation (A4) and some further simplification yields

ρa
∂χv,eq
∂z

= (1−χv,eq)aw
(

∆∗sat +
ρv,sat
TK

)
∂T

∂z
(A16)

from which it follows that

λs,dis = L∗vDveaw(1−χv,eq)
(

∆∗sat +
ρv,sat
TK

)
(A17)720

This last expression indicates that there are two (moderately) compensating terms to λs,dis that do not occur in the diffusional

mass flux form for the apparent thermal conductivity. These are (1−χv,eq) instead of 1 and ∆∗sat+ρv,sat/TK instead of ∆∗sat.

At about 5 C χv ≈ 0.005 and ρv,sat/TK ≈ 0.03∆∗sat. Whereas at 60 C χv ≈ 0.10 and ρv,sat/TK ≈ 0.06∆∗sat. These results

imply that at 5 C Equation (A17) will yield a value for λs,dis that is about 2.5% higher than λs,dis = L∗vDveaw∆∗sat and that

near 60 C Equation (A17) yields a value for λs,dis that is about 4.5% lower. Unless a correction between +2% and -4.5% is725

important for estimating λs,dis, then it seems that the mass mixing ratio formulation for the diffusional mass flux, Equation

(A17), adds very little value to the original formulation, Equation (A6).
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Figure 1. Pre- and post-burn water retention curves at the 2004 Manitou Experimental Forest burn site. Observations were fit with the

Fredlund and Xing (1994) model. The only difference between these two curves is that the total or air-filled porosity is about 0.51 for the

pre-burn (red) and it is about 0.45 for the post-burn (black).
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Figure 2. Layout of the data system and slash pile of the Manitou Experimental Forest 26 April 2004 experimental burn a few minutes after

ignition.
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Figure 3. Soil surface energy balance components for the 26 April 2004 Manitou Experimental Forest burn resulting from the full surface

energy balance model, Equation (16). The parameters for the forcing function, QF (t) or Equation (15), are Qin = 120 Wm−2, QFmax =

18 kWm−2, tm = 13.5 hrs and td = 35 hrs. The Net Forcing is defined as the difference between the radiative terms, i.e., ε0(θ0)QF (t)−

ε0(θ0)σ
[
T 4
K0 − εa(ρva)T

4
Ka

]
, which from Equation (16) is equal to the sum of the three non-radiative terms: ρacpaCH [T0 −Ta]+L

∗
v0E0+

G0. Figure 4 is an expanded version of the Net Forcing and these three energy components.
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Figure 4. Re-plotted from Figure 3 to facilitate comparison with the surface energy terms as simulated with the simplified surface energy

balance, Equation (18), and shown in Figure 5.
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Figure 5. Soil surface energy balance components for the 26 April 2004 Manitou Experimental Forest burn resulting from the simplified

surface energy balance model, Equation (18). The parameters for the forcing function, QF (t) or Equation (15), are Qin = 0 Wm−2, QFmax

= 2.7kWm−2, tm = 9.5 hrs and td = 27.5 hrs. Here the Net Forcing is the sum L∗
v0E0 +G0 because the surface sensible heat flux is not

included as part the simplified surface energy balance.
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Figure 6. Soil temperatures during the 26 April 2004 Manitou Experimental Forest burn: observed data are denoted with symbols and

modeling results (solid lines) are simulated with the full version of the soil surface energy balance, Equation (16).
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Figure 7. Soil heat flux during the 26 April 2004 Manitou Experimental Forest burn: modeled (solid lines) and observed (blue color-filled

area and red and black symbols). The upper boundary of the (2 cm) blue color-filled region is the heat flux measured by the heat flux plate

without the Philip correction (Philip , 1961). The lower boundary of this region is the measured heat flux after applying the Philip correction.

The Philip correction is not shown for the two lower heat flux measurements because it made virtually no difference to these measurements.
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Figure 8. Volumetric soil moisture, after temperature correction to the TDR probe (Massman et al. , 2010a, Appendix A), during the 26

April 2004 Manitou Experimental Forest burn: modeled (solid lines) and observed (symbols). The color coding for depth is the same as that

in Figure 6, but observations of soil moisture are taken only at two depths 5 cm (red) and 15 cm (magenta). The red stars are interpolated

values and appear to be fairly trustworthy. The magenta stars are less trustworthy because the performance of the 15 cm TDR during the

early part of the burn was not completely satisfactory.
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Figure 9. Volumetric soil moisture, without temperature correction to the TDR (Massman et al. , 2010a, Appendix A) during the 26 April

2004 Manitou Experimental Forest burn: modeled (solid lines) and observed (symbols). The color coding for depth is the same as that in

Figure 6, but observations of soil moisture are taken only at two depths 5 cm (red) and 15 cm (magenta). The red stars are interpolated values

and appear to be fairly trustworthy. The magenta stars are less trustworthy because the performance of the 15 cm TDR during the early part

of the burn was not completely satisfactory.
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Figure 10. Modeled and observed θ−T trajectory. Observed data are denoted with symbols and modeling results are solid lines. The

observed volumetric soil moisture has been temperature corrected.
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Figure 11. Potential impacts of dynamic feedbacks on the soil temperatures during the 26 April 2004 Manitou Experimental Forest burn.

Observed data are denoted with symbols and modeling results are solid filled areas. The lower boundary of the solid filled areas corresponds

to the base case simulation and the upper boundary to the feedback simulation.

40



Figure 12. Potential impacts of dynamic feedbacks on the soil heat flux during the 26 April 2004 Manitou Experimental Forest burn. The

observed data are the (2 cm) darker blue color-filled area and red and black symbols. The upper boundary of the observed heat flux includes

the Philip correction; wheras the lower boundary of this region is the measured heat flux after applying the Philip correction. The Philip

correction is not shown for the two lower heat flux measurements because it made virtually no difference to these measurements. The upper

boundary of the light-blue, red and black color-filled areas corresponds to the feedback simulation and the lower boundary to the base case

simulation.
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Figure 13. Potential impacts of dynamic feedbacks on the volumetric soil moisture during the 26 April 2004 Manitou Experimental Forest

burn. Observed data, which has been temperature corrected, are denoted with symbols and modeling results are solid filled areas. The upper

boundary of the solid filled areas corresponds to the base case simulation. The lower boundary to the feedback simulation.
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