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Dear Dr. Peleg, 

Thank you very much for the thorough assessment of our manuscript and for your invitation to 
resubmit our manuscript to HESS. Following your and the reviewers’ comments, we rewrote the 
introduction to highlight the aim and novel contribution of the study. The main aim is to ‘evaluate 
the extent to which models calibrated according to standard model calibration metrics such as the 
widely-used Kling–Gupta efficiency are able to capture flood spatial coherence and triggering 
mechanisms.’ We specify that ‘we first evaluate how well the different models capture local flood 
events following the current paradigm, secondly we expand the evaluation by analyzing how well the 
models capture spatial flood dependence, and finally we evaluate how the models capture flood 
triggering mechanisms.’ In addition, we added a discussion section that is separate from the results 
section and expands the previous discussion of the results by discussing potential ways of improving 
model performance by developing flood-tailored calibration metrics, proposing spatial calibration 
metrics, identifying model structures representing the most important flood producing mechanisms, 
and investigating input uncertainty. We think that the major changes made to the introduction, 
discussion, and conclusions section help to clarify the storyline. 
Please find our detailed answers to the reviewers’ comments in our point-by-point response below. 

We hope that you find the revised version of our manuscript suitable for publication in HESS. 

On behalf of all co-authors, 

Manuela Brunner 

 

Editor’s decision 
 
Dear Authors, 
 
I have now received the reports of two referees, one (that did not revise the original text) suggested 
major revisions, while the other suggested minor revisions (although her/his comments read to me 
as moderate revisions). Reading the revised manuscript and the comments made by the reviewers, I 
conclude that additional changes to the text are needed before it can be considered for publication 
in HESS. 
 
The main issue that I see here, is that the motivation, objectives and hypotheses of the study are not 
composing a clear storyline. This was already pointed by some of the reviewers in the first round of 
revision. In this study, a single objective function (KGE) is used for the model calibration, and you 
demonstrate that 4 different models are failing to represent the observed floods using this single-
criteria objective function. In the conclusions, you suggested using multi-criteria objective functions 
for the calibration of the models if the focus is on representing flood events. This conclusion is not 
new – many studies in the past used multi-criteria objective functions to calibrate hydrological 
models to simulate floods, likely with a better match than can be obtained with KGE. Why have you 
chosen to calibrate the models using an objective function that is known (or can be expected) to fail 
to simulate flood events to begin with? What multi-criteria objective function/strategy could be used 
to calibrate hydrological models to better represent flood events (what strategies were used in the 
past and how they can be improved)? Will a multi-criteria objective function improves the match to 
flood events, or does some of the models that are presented here will still fail in reproducing flood 
events due to their internal structure? I am missing answers/discussion to these type of questions. 
 
In my view, the introduction, discussion and conclusions sections will require considerable text 
edits to make the story clearer and more appealing to the readers of HESS, maybe also with minor 
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changes to the structure of the text. I will be happy to reconsider the revised paper after major 
revisions. 
Reply: Thank you very much for your clear opinion on how the manuscript can/should be improved. 
We rewrote the introduction to highlight the aim and novelty of the paper. The main aim is to 
‘evaluate the extent to which models calibrated according to standard model calibration metrics such 
as the widely-used Kling–Gupta efficiency are able to capture flood spatial coherence and triggering 
mechanisms’ and the novelty is that ‘we expand the evaluation by analyzing how well the models 
capture spatial flood dependence and how the models capture flood triggering mechanisms.’ We 
focused the study on the Kling-Gupta efficiency metric because it is ‘widely used in flood simulation 
studies (e.g. Hirpa et al., 2018; Huang et al., 2018; Thober et al., 2018; Brunner and Sikorska-Senoner, 
2019; Harrigan et al., 2020) and has been shown to result in more accurate flood peak 
representations than the other widely used individual metric ENS [Mizukami et al., 2019]’.  
With this study, another key aim is to raise awareness that notwithstanding the popularity of the KGE 
calibration metric in recent years, it may not be the best choice if one is interested in floods. This 
outcome may be appreciated by a small portion of the field, but we do not see evidence that it is 
widely appreciated, either from the literature or in the authors’ own interactions with other 
researchers.  There has, on the whole, been much aspirational discussion of more widespread use of 
hydrologic signatures, but there is also a continuing practice of defaulting to the generic KGE or NSE 
for many studies.  These notably include some of the studies by the authors themselves, which in part 
produced these parameter sets.  We added a new discussion section that significantly expands the 
discussion on potential multi-criteria objective functions for flood events, spatial model calibration, 
and the role of model structure in model performance. We think that the rewritten introduction, 
discussion, and conclusions sections convey a clear and useful story to the HESS readership. 
 
 

Reviewer 1 
 
General comments 
 
This study compares the efficiency of three lumped and one distributed models to simulated flood 
magnitude, timing and spatial coherence. The objective function used for calibration is Kling-Gupta 
efficiency (KGE). The results show that models tend to underestimate flood magnitude and not 
always simulate well flood timing. The authors conclude that using KGE for calibration has limited 
reliability for flood hazard assessment.  
In general, the topic fits scope of the journal and will be of interest for the readers. However, the 
manuscript in its current form (after the revision) will still benefit from a more thorough revision. The 
main critical points (in my opinion) are: 
 
1) The formulation and justification of the novel scientific contribution is still not clear. The review of 
previous studies in the Introduction indicates that “…to achieve further improvements in flood peak 
simulations, a broader range of application-specific evaluation metrics is typically required.” (l.29-30, 
l.23-24). I agree with such formulation of current research gaps, but it is not in line with the objective 
function tested in the manuscript. If one would be interested in flood magnitude, timing and spatial 
connectivity, why one should use KGE for calibration? How does it account for such specific 
evaluation metrics, i.e. flood seasonality or spatial coherence? 
Reply: Thank you for highlighting the need to better work out the novelty of our study and to justify 
the use of EKG for model calibration. The main aim is to ‘evaluate the extent to which models 
calibrated according to standard model calibration metrics such as the widely-used Kling-Gupta 
efficiency are able to capture flood spatial coherence and triggering mechanisms’ while the novelty is 
that ‘we expand the evaluation by analyzing how well the models capture spatial flood dependence 
and how the models capture flood triggering mechanisms.’ We focused the study on the Kling-Gupta 
efficiency metric because it is ‘widely used in flood simulation studies (e.g. Hirpa et al., 2018; Huang 
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et al., 2018; Thober et al., 2018; Brunner and Sikorska-Senoner, 2019; Harrigan et al., 2020) and has 
been shown to result in more accurate flood peak representations than the other widely used metric 
ENS [Mizukami et al., 2019]’. We chose EKG for calibration to highlight that the widely used metric 
might not lead to accurate flood simulations as often assumed. The point is exactly that EKG is often 
used as a metric in flood simulation studies despite the fact that it may lead to suboptimal model 
performance with respect to floods. With this study, we want to raise awareness for exactly this issue. 
By raising awareness of this matter, we hope to inspire other researchers to propose alternative 
calibration metrics. In the newly created discussion section, we present ideas on how flood 
simulations could be improved by developing alternative calibration metrics, developing spatial 
calibration metrics, identifying suitable model structures, and improving precipitation input data. 
Modification: p1. l.5-8, p.2 l.27-34 and l.49-54 
 
2) The title is misleading. The main message of the paper, in its current form, is about the value of 
KGE for calibration of hydrologic models (if flood impact assessment is the main purpose). There is no 
assessment how the models describe and simulate different flood generation processes and which 
factors control their performance. So based on presented results it is difficult to interpret to what 
extent and how are the selected models suitable for flood impact assessment. The results are more 
about the accuracy of selected way (i.e. using lumped models, KGE for calibration, etc.). 
Reply: Thank you for pointing out the need for revising the current title to better reflect the main 
message of the study. The revised version goes beyond discussing the value of EKG as a calibration 
metric by also discussing the role of model structure, which is enabled by the comparison of the 
performance of four different models. We chose the following new title: ‘Flood spatial coherence, 
triggers and performance in hydrological simulations:  large-sample evaluation of four streamflow-
calibrated models’, which highlights that the paper is about model evaluation for floods and reflects 
the focus on spatial flood characteristics and the representation of flood drivers. 
Modification: title 
 
3) The significance of the results is not clear. I’m not sure if for practical applications, a lumped model 
will be used or should be recommended. Perhaps a consistent assessment/evaluation of the 
difference between lumped and distributed type of models will be interesting (e.g. for HBV and 
mHM). 
Reply: We agree that a more in-depth discussion of the results was needed in order to highlight their 
significance. We therefore separated the Results section from a newly created Discussion section. In 
this new section, we discuss the findings and propose potential ways of improving flood simulations 
by moving away from standard calibration metrics such as EKG, by identifying suitable model 
structures, and by improving the quality of input precipitation. We agree that an explicit assessment 
of the role of model type (lumped vs. distributed) would be interesting and we think that such an 
assessment is out of scope of this paper. 
Modification: p.12 l.232-p.17 l.329 
 
4) The design of the experiment reads more as a collection of available analyses and not results from 
initially clearly defined research question/hypothesis. I agree with previous reviews that using 
different time periods for calibration and using different model input datasets can have some impact 
on the results and the interpretation of results (including individual catchments) will be more 
consistent if the same data and time periods will be used. The authors claim that both datasets 
describe the observed climate, but are they identical also for individual extreme events? 
Reply: We reworked the introduction to highlight the main aim of the study, i.e. ‘This study evaluates 
the extent to which models calibrated according to standard model calibration metrics such as the 
widely-used Kling--Gupta efficiency are able to capture flood spatial coherence and triggering 
mechanisms’, and stress that ‘we expand the evaluation by analyzing how well the models capture 
spatial flood dependence and how the models capture flood triggering mechanisms.’ To achieve this 
goal, we use simulations generated in previous studies, which serve as a proxy for simulations that 
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would be typically used in research studies on flooding because they used best possible calibration 
settings given past computer and resources availability. We agree that ideally the same precipitation 
input would have been used for all models, which was unfortunately not possible because the 
simulations our study is based on were derived by different authors. The two datasets, however, were 
derived from observed precipitation and temperature, and have been shown to result in similar mean 
daily precipitation fields [Newman et al., 2015]. We therefore consider them similar enough to allow 
for a direct comparison of the model outputs resulting from the different input datasets. 
Modification: p.2 l.49-54 
 

5) The methodology is not rigorously described. It will be very difficult (if even possible) to 
reproduce/repeat the presented analysis (based on given information). Numerous information is 
missing, e.g., how the initial values were set, what were the ranges of calibrated model parameters 
and parameters of automatic calibration algorithm. It will be interesting to present, e.g. in appendix, 
the final model parameters and efficiencies for individual catchments. This will allow to assess the 
interpretation made. 
Reply: Our study seeks to extract information through the pooling of different modeling results.  For 
this, we used streamflow simulations derived in previous studies by Melsen et al. (2018) and 
Mizukami et al. (2019) as described in the Methods section. Thus, we did not have complete control 
over the design of the experiment. As specified in the data availability section, model simulations can 
be obtained by the main authors of these previous studies. Details on the model calibration 
procedures used in these studies can be found in the references. Melsen et al. (2018) provide 
information on the parameter boundaries used in the Sobol-based Latin hypercube sampling in Tables 
C1-C3. Mizukami et al. (2019) did not provide specific parameter ranges in the original paper 
published. We think that providing model parameters for 671 catchments is infeasible even in the 
appendix as this would produce a large amount of additional pages, which in our opinion hardly 
anyone would look at. 

 
6) I think that comparing lumped with distributed models can bring some more interesting results 
than are presented in its current form. What is the impact of lumping on the results? Are the 
differences in model efficiency related to the size of the basin? I would expect that using lumped 
models in larger catchments cannot describe well floods from convective rainfalls. 
Reply: Thank you for suggesting this additional analysis. Figure 1 shown in this review shows flood 
model errors at individual sites for five different catchment size classes. Model performance does not 
seem to depend on catchment size and we can not identify significant differences in outcomes 
between distributed models (mHM) and lumped models (other three models). The fact that we can 
draw similar conclusions from both lumped and distributed models strengthens the argument being 
made.  The lumped/distributed impact questions would be a good topic for a follow on study, though 
there is some literature on that topic already (e.g the Distributed Model Intercomparison Project 
DMIP study: https://www.weather.gov/owp/oh_hrl_distmodel_dmip_draft).   
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Figure 1: Model errors per catchment size class computed over the period 1981-2008: <100 km2 
(green, 93 catchments), >=100 and <250 km2 (yellow, 115), >=250 and <500 km2 (blue, 112), >=500 
and <1000 km2 (pink, 93), and >1000 km2 (violet, 75). Errors are shown for (i) number of events (error 
in number of events), (ii) magnitude (mean relative error in %), and (iii) timing (mean absolute error in 
days) for the four models (1) SAC, (2) HBV, (3) VIC, and (4) mHM. The boxplots are composed of one 
value per catchment belonging to the respective catchment size class. 

 
 
7) As a reader, I would be likely more interested in seeing where (in which catchments and why?) the 
models work well, rather than to conclude that in general they underestimate magnitude or do not 
represent well the timing or spatial patterns. So presenting some deeper analysis of the factors 
controlling the performance will be helpful and interesting. 
Reply: We agree that providing model evaluations for different types of catchments is interesting. We 
therefore perform model evaluations for 5 types of streamflow regimes (see Figure 1) as shown in 
Figures 2, 3, 4, and 7. This regime-specific analysis allows us to conclude that ‘model performance is 
generally worst in catchments with intermittent regimes while it is highest for catchments with a 
strong seasonality such as a melt and New Year's regime.’ We highlight the regime-specific analysis in 
the Methods section by saying: ‘To provide insights with respect to where model performance is 
better/worse, we provide model evaluation results for five different streamflow regime types, which 
have been shown to be distinct in their flood behavior: 1) Intermittent, 2) weak winter, 3) strong 
winter, 4) New Year's, and 5) melt. Catchments with intermittent regimes experience floods mainly in 
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spring and summer, those with weak winter regimes in winter and spring, those with strong winter 
regimes in winter, those with a New Year's regime around New Year, and those with a melt-
dominated regime in spring because of snowmelt.’ 
Modification: p.4 l.95-100 
 
Specific comments 
 
1) Abstract, l.13: “…models calibrated on integrated metrics such as …have limited reliability…”. This 
is a general conclusion which is not supported well with the presented results. I would suggest to 
remove “such as”. I think if one combines flood magnitude, seasonality and spatial coherence into an 
integrated metrics (objective function) for calibration, the results can be different.  
Reply: Thank you for the rephrasing suggestion, which we adopted. 
Modification: p.1 l.16 
 
2) Data. I like the assessment based on large dataset and subsequent split/grouping of results into 
some relevant groups of catchments. It is however not clear how are flood generation processes (e.g. 
flood types) linked with selected groups of regimes? If the objective is about the suitability of models 
to represent floods (magnitude, seasonality, …) it will be interesting to see results for different flood 
generation mechanisms, i.e. how or if the models differ in simulating snowmelt floods, or floods from 
convective rains, etc. 
Reply: Thank you for pointing out to better introduce the regime-specific analysis. We specify in the 
Methods section that ‘To provide insights with respect to where model performance is better/worse, 
we provide model evaluation results for five different streamflow regime types, which have been 
shown to be distinct in their flood behavior: 1) Intermittent, 2) weak winter, 3) strong winter, 4) New 
Year's, and 5) melt (Figure 1; Brunner et al., 2020). Catchments with intermittent regimes experience 
floods mainly in spring and summer, those with weak winter regimes in winter and spring, those with 
strong winter regimes in winter, those with a New Year's regime around New Year, and those with a 
melt-dominated regime in spring related to snowmelt.’ We agree that further distinguishing between 
different flood generation types would be very interesting as well. However, we think that such an 
assessment would be a separate (classification/clustering) study in itself. 
Modification: p.4, l.95-100 
 
3) Forcing. Which version of Daymet is used? Why not to use only one dataset for all the models? 
Reply: We based this study on previously published work, which used best possible calibration 
settings given past computer and resources availability, and scope. These studies used slightly 
different model inputs as described in the Methods section. The two datasets, however, were derived 
from observed precipitation and temperature, and have been shown to result in similar mean daily 
precipitation fields [Newman et al., 2015]. Melsen et al. (2018) used Daymet version 2.1. for their 
simulations with SAC, HBV, and VIC. Recognizing some inconsistencies in the different sources of data, 
we nonetheless felt that extending our analysis to cover the multiple models would make our findings 
more robust.  
 
4) The term “event”: By using term flood event, do you mean day of the flood peak? The same for 
precipitation. Is the event precipitation representing mean daily precipitation for the day of the 
peak? Some flood events (e.g. from snowmelt) can last several days. How sensitive/representative 
are the characteristics extracted only for the day of the peak? 
Reply: Thank you for highlighting the need for clarifying the meaning of the term ‘event’ and for 
specifying how corresponding rainfall, snowmelt, and soil moisture were identified. We specify that 
by a peak-over-threshold flood event, we mean peak discharge, and that precipitation, snowmelt, and 
soil moisture were identified for the day of peak discharge. To identify how sensitive the results 
shown in Figure 5 are to the aggregation level (i.e. 1 day), we performed the same analysis also with 
3-day precipitation and snowmelt sums. The results look almost identical to the ones presented for 
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the 1-day aggregation level. 
Modification: p.6 l.119, p.7 l.160 
 
5) Beta model parameter (l.170). It will be interesting to present model parameters for individual 
catchments, because otherwise the interpretation made reads more as speculation (it is not justified 
by presented results). 
Reply: Thank you for indicating the need to distinguish between results and their discussion. To do so, 
we created a new Discussion section. We moved the statement about the role of the beta parameter 
to this new discussion section to highlight that we use it to interpret the results presented in Figures 3 
and 4. 
Modification: New discussion section (p.12-17) 
 
6) L.218-219. In my opinion HBV model can describe the surface runoff. Conceptual it is represented 
by the outflow from the upper reservoir (describing by k0 model parameter). 
Reply: We think that this statement is correct because [Bergström, 1976] wrote: ‘All versions of the 
HBV-model are lacking components for direct surface runoff, as the water is controlled by the 
conditions in the soil moisture zone before any runoff can be generated.’ 
 

Reviewer 2 
 
The authors responded to most of my concerns, but some issues are left. 
Reply: Thank you very much for taking the time to write this second review. 
 
[1] The title is still problematic. As far as I can tell, there is no "flood impact assessment" performed 
in this study. Why is it in the title? The study assess flood flows, so why is this not the title of the 
paper? Flood impact assessment would require a direct connection to the actual implication of 
flooding, such as flood inundation, damage to houses etc. These aspects are not part of the study, so 
why is the title focusing on this issue?  
And, if the focus is on assessing the value of KGE as calibration metric, then why is this not in the 
title? The title "Evaluating the suitability of hydrological models for flood impact assessments", is still 
much broader than what this very focused study actually does.  
Reply: Thank for pointing out the need to further improve the title. We agree that we are not 
performing a flood impact assessment and that talking about flood simulations instead would be 
more appropriate. We propose the following revised title: ‘Flood spatial coherence, triggers and 
performance in hydrological simulations:  large-sample evaluation of four streamflow-calibrated 
models’, which stresses that this study is about model evaluation and that the focus is on both local 
and spatial flood characteristics. 
Modification: Title 
 
[2] (line 140) The use of split sample schemes should include a reference back to Klemes (1986, HSJ, 
https://www.tandfonline.com/doi/abs/10.1080/02626668609491024 ) who introduced the idea. 
Reply: Thank you for indicating the need to cite the original reference to the split sample testing idea. 
We added the reference to the text. 
Modification: p.2 l.48, p.7 l.154 
 
[4] Section 3.1: I asked previously why HBV results are so poor and I am still confused by it. It would 
be useful for the discussion section of this paper to more closely compare the results obtained here 
to previous studies across the USA. For example, Kollat et al. (2012, WRR, 
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011WR011534) calibrated the HBV model 
across all MOPEX catchments and found Nash Sutcliffe Efficiency values much higher than what 
would be expected based on the results of the current study (see their Figure 9A). Why the 
discrepancy? Kollat et al. (2012) performed extensive MO-calibration whereas the current study used 
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a LHS sampling strategy. So, is part of the result of the current study is due the chosen calibration 
approach? 
Reply: Thank you for indicating this reference. We looked the ENS values presented in Figure 9A of 
Kollat et al. (2012). This figure shows that roughly 50% of the catchments show a ENS value >0.75. If 
we determine the percentage of catchments in our dataset that has EKG (we did not use ENS to identify 
best parameter sets) values >0.75, we get 47%. Similarly, roughly 90% of the catchments in the Kollet 
et al. (2012) study show ENS values above 0.5, the same percentage of catchment that also exceeds 
EKG values of 0.5 in our study. We therefore argue that the model performance of the HBV model used 
in our study is as good as the performance of the model calibrated in the Kollat et al. (2012) study.  
 
[5] Other studies have disaggregated KGE to understand what controls the bias in the KGE terms. E.g. 
Gudmundsson et al. (2012, WRR, 
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011WR010911) found that one 
significant control on water balance error seemed to be precipitation data error – model predictions 
in catchments with significant elevation difference (where at least across Europe, precipitation 
measurements are expect to be less good) were performing poorer. Did the authors find similar 
patterns? Would elevation difference be a good way to see whether rainfall is indeed a likely 
problem for the study catchments in this paper? 
Reply: As suggested, we checked whether model performance in terms of EKG is related to elevation 
(Figure 2 shown in this response to the reviewers). High-elevation catchments have generally better 
performance than low elevation catchments, but present a confounding factor in that higher 
catchments more often experience snow, which has generally a positive influence on model 
calibration. This finding suggests that precipitation errors, which are typically higher in high-elevation 
catchments due to less dense measurement networks, are not the main determinant of model 
performance. 

 
Figure 2: EKG vs. elevation for the four models tested: SAC, HBV, VIC, and mHM. 

 
[3] I am still confused by the authors conclusion that "Our model comparison shows that all flood 
characteristics are not equally well represented by models calibrated with the widely used Kling–
Gupta efficiency metric." – OK, but very likely this is true for any metric given the extensive 
experience with multi-objective model calibration in hydrology, where a regular finding is that any 
single metric produces a focused result. So, what multi-objective strategy do we need to improve this 



9 
 

problem? And what relevant trade-offs exists (e.g. Kollat et al., 2012)? The authors suggest that 
multi-objective calibration is the way forward, in which case a better review of this very rich multi-
objective literature in hydrology would be nice (given that this topic has been explored for over 20 
years). Currently there are only a couple recent references, which do not do the topic justice – even if 
narrowed down to those studies focusing on calibration for flood prediction. 
Reply: Thank you for highlighting the need to expand the discussion on multi-objective calibration 
strategies. We significantly expanded the discussion of multi-objective calibration in the context of 
flood modeling and also added references to the more classical literature on multi-objective 
calibration not necessarily targeted at floods. 
Modification: p.16 l.282-295 
 
The next sentence suggests a much wider conclusion: “The number of floods, flood magnitude, and 
timing are not always well captured by hydrological models in many catchments.” It would be good if 
the authors were to formulate their conclusions more carefully. Given that the authors have a very 
narrow focus in this study (which is fine) – to show that calibrating to KGE does not lead to a good 
reproduction of all flood characteristics – it would be good to formulate their conclusions with a 
similar focus to avoid that others misuse their conclusions. 
Reply: Thank you for pointing out the need to more concisely phrase the conclusions. We changed 
this sentence to: ‘Our model comparison shows that flood characteristics are not always well 
captured in hydrological models developed for research studies – even when the models have been 
calibrated with a calibration metric perceived suitable for flood modeling, the Kling–Gupta efficiency 
metric (EKG).’ 
Modification: p.17 l.331-333 



Flood spatial coherence, triggers and performance in hydrological
simulations: large-sample evaluation of four streamflow-calibrated
models.
Manuela I. Brunner1, Lieke A. Melsen2, Andrew W. Wood1,3, Oldrich Rakovec4,5, Naoki Mizukami1,
Wouter J. M. Knoben6, and Martyn P. Clark6

1Research Applications Laboratory, National Center for Atmospheric Research, Boulder CO, USA
2Hydrology and Quantitative Water Management, Wageningen University, Wageningen, Netherlands
3Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder CO, USA
4Department Computational Hydrosystems, Helmholtz Centre for Environmental Research, Leipzig, Germany
5Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha – Suchdol, Czech Republic
6University of Saskatchewan Coldwater Laboratory, Canmore, Canada

Correspondence: Manuela I. Brunner (manuelab@ucar.edu)

Abstract. Floods cause large damages, especially if they affect large regions. Assessments of current, local and regional flood

hazards and their future changes often involve the use of hydrologic models. A reliable hydrologic model ideally reproduces

both local flood characteristics and spatial aspects of flooding under current and future climate conditions. However, uncer-

tainties in simulated floods can be considerable and yield unreliable hazard and climate change impact assessments. This5

study evaluates the extent to which models calibrated according to standard model calibration metrics such as the widely-used

Kling–Gupta efficiency are able to capture flood spatial coherence and triggering mechanisms. To highlight challenges related

to flood simulations, we investigate how flood timing, magnitude and spatial variability are represented by an ensemble of

hydrological models when calibrated on streamflow using the Kling–Gupta efficiency metric, an increasingly common metric

of hydrologic model performance also in flood-related studies. Specifically, we compare how four well-known models (SAC,10

HBV, VIC, and mHM) represent (1) flood characteristics and their spatial patterns; and (2) how they translate changes in me-

teorologic variables that trigger floods into changes in flood magnitudes. Our results show that both the modeling of local and

spatial flood characteristics is challenging as models underestimate flood magnitude and flood timing is not necessarily well

captured. They further show that changes in precipitation and temperature are not necessarily well translated to changes in

flood flow, which makes local and regional flood hazard assessments even more difficult for future conditions. From a large15

sample of catchments and with multiple models, we conclude that calibration on the integrated Kling–Gupta metric alone is

likely to yield models that have limited reliability in flood hazard assessments, undermining their utility for regional and future

change assessments. We underscore that such assessments can be improved by developing flood-focused, multi-objective and

spatial calibration metrics, by improving flood generating process representation through model structure comparisons, and by

considering uncertainty in precipitation input.20
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1 Introduction

Many studies use a hydrological model driven by present or future meteorological forcing data to derive flood estimates for

current and future conditions. However, data, model structure, and parameter uncertainties can be considerable (Clark et al.,

2016) especially when considering extreme events such as floods (Brunner et al., 2019b; Das and Umamahesh, 2018) and when

considering hydrological change. It is therefore challenging to produce statistically reliable estimates of future changes in flood25

hazard.

A model ideally reproduces different aspects of flooding, including local characteristics such as event magnitude and timing.

To obtain such satisfactory flood simulations, hydrological models are often calibrated using one or several objective functions.

One widely-used metric that is often used in flood studies (e.g. Hundecha and Merz, 2012; Köplin et al., 2014; Vormoor et al.,

2015; Wobus et al., 2017) is the Nash–Sutcliffe efficiency (ENS; Nash and Sutcliffe 1970) because it is considered integrative30

compared to others and focuses attention on high flows. However, ENS is formulated so that its optimal value systematically

underestimates flow variability (Gupta et al., 2009), undermining the ability of a model to reproduce peak flow values. A

related metric, the Kling–Gupta efficiency (EKG; Gupta et al. 2009), is free from this constraint and may improve simulations

of peak flows, especially if the variability related component of the score is emphasized in calibration (Mizukami et al., 2019).

This metric has been frequently used in recent flood modeling studies (e.g. Harrigan et al., 2020; Hirpa et al., 2018; Huang35

et al., 2018; Thober et al., 2018; Brunner and Sikorska, 2018) and seems to be widely accepted as a suitable choice for flood

studies. This may arise from the general practice of developing models for a range of objectives. However, recent studies have

shown that capturing flood magnitude and timing is challenging when such standard calibration metrics are used for parameter

estimation (Lane et al., 2019; Brunner and Sikorska, 2018; Mizukami et al., 2019).

In addition to simulating the timing and magnitude of flow at individual catchments, it is also important to realistically40

reproduce spatial dependencies, i.e. the relationship of flood occurrence across gauging stations (Keef et al., 2013; De Luca

et al., 2017; Berghuijs et al., 2019). An over- or underestimation of spatial dependencies across a network of gauging stations

in regional flood hazard and risk assessments has been shown to under- or overestimate regional damage, respectively (Lamb

et al., 2010; Metin et al., 2020). Prudhomme et al. (2011) have shown for a set of large-scale hydrological models that simulated

high flow episodes are less spatially coherent than observed events. Despite their high relevance for impact, the spatial aspects45

of flooding have often been overlooked in past simulation studies.

Local and spatial flood characteristics should be reliably simulated not only under current but also under future climate con-

ditions. However, models calibrated for current conditions may not be transferable in time (Thirel et al., 2015) partly because

of a sub-optimal representation of flood producing mechanisms. To overcome this transferability problem, the differential split-

sample test has been proposed, where the model is calibrated and validated on two periods with differing climate conditions50

(Klemes, 1986; Seibert, 2003).

In this study, we evaluate the extent to which model calibrated according to the widely-used model calibration metric EKG

are able to capture flood spatial coherence and flood triggering mechanisms. To this end, we first evaluate how well different

hydrological models capture local flood events following the current paradigm, secondly we expand the evaluation by analyz-
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Figure 1. a) Map of the 488 catchments in the conterminous United States belonging to the five regime classes indicated by their gauge

location: 1) Intermittent, 2) weak winter, 3) strong winter, 4) New Year’s, and 5) melt. b) Median regime per regime class (colored lines) and

variability of regimes within a class (one line per catchment, grey) (Brunner et al., 2020b).

ing how well the models capture spatial flood dependence, and finally we evaluate how the models capture flood triggering55

mechanisms. With this thorough evaluation, we assess which aspects of hydrological models may need to be improved if we

want to bring hazard and change impact assessments to a point where we can make more reliable assessments of regional flood

hazard and future changes.

For documenting modeling challenges related to floods, we look at the model output of four widely used hydrological

models (Addor and Melsen, 2019), namely, the Sacramento Soil Moisture Accounting model (SAC-SMA; Burnash et al.,60

1973) combined with SNOW–17 (Anderson, 1973), the Hydrologiska Byråns Vattenbalansavdelning model (HBV; Bergström,

1976), the Variable Infiltration Capacity model (VIC; Liang et al., 1994), and the mesoscale hydrologic model (mHM; Kumar

et al., 2013; Samaniego et al., 2010). Identifying and documenting model weaknesses regarding regional and future flooding

will highlight avenues for future model development and reveal potential deficiencies of a calibration strategy often applied for

research studies on floods.65

2 Data and Methods

To study how local and spatial flood characteristics are reproduced by hydrological models calibrated on streamflow using the

individual calibration metric, EKG, we compare observed to simulated flood event characteristics for a set of 488 catchments

in the conterminous United States that have minimal human impact and catchment areas ranging from 4 to 2000 km2 (Figure

1a) (Newman et al., 2015b). The dataset comprises catchments with a wide range of climate and streamflow characteristics70
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ranging from catchments with intermittent regimes and a very weak seasonality to catchments with a very strong seasonal cycle

under the influence of snow (New Year’s and melt regimes; Figure 1b; Brunner et al. 2020b). Observed streamflow time series

are available from the U.S. Geological Survey (USGS, 2019).

2.1 Model simulations

We use daily streamflow simulations for the period 1981–2008 generated with four well-known hydrological models (Addor75

and Melsen, 2019) offering different model structures and complexity: the lumped SAC model (Figure A1; Burnash et al.,

1973), the lumped HBV model (Figure A2; Bergström, 1976), the lumped version of the VIC model (Figure A3; Liang et al.,

1994), and the grid-based, distributed mesoscale hydrologic model mHM (Figure A4; Kumar et al., 2013; Samaniego et al.,

2010). The model parameters were calibrated on streamflow observations by minimizing EKG by Melsen et al. (2018) using

Sobol-based Latin hypercube sampling (Bratley and Fox, 1988) for SAC, HBV, and VIC and by Mizukami et al. (2019) for80

mHM using multi-scale parameter regionalization where the transfer function parameters were identified using the dynamically

dimensioned search algorithm (Tolson and Shoemaker, 2007). EKG is defined as:

EKG(Q) = 1−
√
[sρ · (ρ− 1)]2 + [sα · (α− 1)]2 + [sβ · (β− 1)]2, (1)

where ρ is the correlation between observed and simulated runoff, α is the standard deviation of the simulated runoff divided

by the standard deviation of observed runoff, and β is the mean of the simulated runoff, divided by the mean of the observed85

runoff. sρ, sα, and sβ are scaling parameters enabling a weighting of different components. When used individually, EKG has

been found to result in a better performance for annual peak flow simulation than the long-standing and related hydrologic

model evaluation metric ENS (Mizukami et al., 2019).

For SAC, Melsen et al. (2018) calibrated and evaluated 18 out of the 35 parameters available in the coupled Snow-17

and SAC-SMA modeling system, for HBV 15 parameters, for VIC 17 parameters, and for mHM Rakovec et al. (2019) and90

Mizukami et al. (2019) calibrated and evaluated up to 48 parameters. All the models were driven with daily, spatially lumped

meteorological forcing data representing current climate conditions: SAC, HBV, and VIC were driven with Daymet meteoro-

logical forcing (1 km resolution; Thornton et al., 2012) and mHM with the forcing by Maurer et al. (2002) (12 km resolution)

both derived from observed precipitation and temperature. SAC, HBV, and VIC were calibrated and evaluated on the period

1985–2008 while mHM was calibrated on the period 1999–2008 and evaluated on the period 1989–1999. After calibration, all95

four models were run for the period 1980–2008 (calendar years), where the period 1980–1981 was here used for spin-up and

therefore discarded from the analysis.

To provide insights with respect to where model performance is better/worse, we provide model evaluation results for five

different streamflow regime types, which have been shown to be distinct in their flood behavior: 1) Intermittent, 2) weak winter,

3) strong winter, 4) New Year’s, and 5) melt (Figure 1; Brunner et al., 2020b). Catchments with intermittent regimes experience100

floods mainly in spring and summer, those with weak winter regimes in winter and spring, those with strong winter regimes
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Figure 2. Model performance in terms of EKG over the period 1981–2008 for the four models SAC (S), HBV (H), VIC (V), and mHM (M)

per hydrological regime: intermittent (114 catchments), weak winter (108), strong winter (176), New Year’s (50), and melt (40). For each

model and regime, three boxplots are shown: all catchments, catchments with EKG > 0.5, and catchments with EKG > 0.7. The percentage

[-] of catchments of a regime class above the corresponding threshold is indicated below the 0 line.

in winter, those with a New Year’s regime around New Year, and those with a melt-dominated regime in spring because of

snowmelt.

Model performance in terms of EKG varies spatially and is related to the hydrological regime (Figure 2). It is overall lowest

for catchments with intermittent regimes and a weak seasonality and highest for catchments with a strong seasonality such105

as a melt and New Year’s regime. However, there is a high within-class variability in model performance. The finding that

intermittent regimes are challenging to model successfully is well known in hydrology and reproduced in many studies, e.g.,

Unduche et al. (2018), who show that hydrological modeling on Prairie watersheds is very complex (Hay et al., 2018). Inter-

mittent regimes may suffer in calibration if they rely solely on correlation-type measures because their day to day variation is

more difficult to reproduce than a more pronounced and regular seasonality. Overall model performance decreases from mHM110

(median EKG 0.69), over SAC (median EKG 0.63) and VIC (median EKG 0.60) to HBV (median EKG 0.52). In addition to

streamflow, we use areal precipitation and simulated soil moisture to explain potential differences in model performance.

2.2 Model evaluation for floods

We compare local and spatial flood characteristics extracted from the observed time series to those of the series simulated

with the four models for the period 1981–2008 for the five streamflow regimes introduced above. Such a comparison enables115
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identification of flood characteristics whose model representation could potentially be improved. To better understand potential

model deficiencies, we look at how models capture flood triggering mechanisms and how they simulate floods under climate

conditions different from the current ones.

2.2.1 Flood event identification

Flood events are identified for each of the five time series (one observed, four simulated) using a peak-over-threshold (POT)120

approach similar to the one used in Brunner et al. (2019a, 2020b). This approach consists of two main steps and results in

two data sets each, which are used for the local and spatial analysis, respectively: (1) POT events (i.e. peak discharges) in

individual catchments and (2) event occurrences across all catchments. In Step 1, independent POT events are identified in the

daily discharge time series of the individual catchments using the 25th percentile of the corresponding time series of annual

maxima as a threshold (Schlef et al., 2019) and by prescribing a minimum time lag of 10 days between events (Diederen et al.,125

2019). This procedure results in a first quartile of 36, a median of 40, and a third quartile of 47 events identified per basin. In

Step 2, a data set consisting of the dates of flood occurrences across all catchments is compiled. This set is converted into a

binary matrix which specifies for each catchment (columns) whether or not it is affected by a specific event (rows). We consider

a catchment to be affected by a certain event if it experiences an event within a window of ± 2 days of that event to take into

account travel times. In addition to a binary matrix of all events, we set up seasonal binary matrices (winter: Dec–Feb, spring:130

Mar-May, summer: June–Aug, fall: Sept–Nov).

2.2.2 Flood characteristics at individual sites

We use the data sets resulting from Step 1, the POT events at individual catchments, to evaluate how well the models reproduce

flood statistics at individual sites. We focus on the total number of events n (actual error: ns−no, where s represents simulations

and o observations), magnitude in terms of mean peak discharge x (relative error: (xs −xo)/xo), and mean timing (absolute135

error: circular statistics suitable for defining central tendencies of variables with a cycle (Burn, 1997)).

2.2.3 Spatial flood dependence

We then use the data sets resulting from Step 2 to evaluate how models reproduce overall and seasonal spatial flood depen-

dence. To do so, we use the connectedness measure introduced by Brunner et al. (2020a), which quantifies the number of

catchments with which a specific catchment co-experiences floods. The number of concurrent flood events for a pair of stations140

is determined based on a data set consisting of the dates of flood occurrences across all catchments. This set is converted into

a binary matrix which specifies for each catchment whether or not it is affected by a certain event. The matrix compiled using

observed streamflow time series contained 1164 events among which 258 occur in winter, 291 in spring, 324 in summer, and

291 in fall. Following the definition used by Brunner et al. (2020a), a catchment is connected to another catchment if they

share a certain number of events. We here used an event threshold of 1% of the total or seasonal number of events to define145
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connectedness (all months: 12 events, seasons: 3 events). We computed actual errors in flood connectedness by subtracting

observed from simulated connectedness over all seasons and per season.

2.2.4 Flood triggers

To explain potential differences in model performance, we look at the relationship of simulated peak discharge with the two

flood triggers precipitation and soil moisture on the day of flood occurrence. We focus on the day of occurrence because time150

of concentration is typically small for small headwater basins (USDA-NRCS, 2010).

2.2.5 Floods under change

In addition to assessing model performance under current climate conditions, we would like to understand potential, additional

challenges arising when interested in future conditions. To do so, we look at how models translate changes in event temper-

ature and precipitation into changes in POT discharge by performing a resampling-based sensitivity analysis. This sensitivity155

analysis aims at evaluating whether a model is still reliable under climate conditions different from the ones used in model

calibration similar to split-sample or differential split-sample calibration/validation schemes (Klemes, 1986; Coron et al., 2012;

Refsgaard et al., 2014; Thirel et al., 2015). To perform this sensitivity analysis, we generate surrogate time series of tempera-

ture, precipitation, and streamflow for each catchment (Wood et al., 2004; Brunner et al., 2020b). To generate these series, we

randomly sample a series of years with replacement in the period 1981–2008 which we use to compose time series consisting160

of the daily values corresponding to these years for each of the three variables. For each of the surrogate series, we again ex-

tract POT flood events using the same procedure as described under Step 1. For each of the extracted events we then determine

temperature and precipitation on the day of peak discharge. We use the sets of peak discharge, event temperature and event

precipitation to compute mean event discharge, temperature, and precipitation, which enables the derivation of a relationship

between mean POT discharge and the two meteorological variables during events. We repeat the resampling n= 500 times to165

derive a relationship between changes in mean event temperature and precipitation and changes in mean POT streamflow. This

resampling experiment results in a response surface of POT discharge spanned by mean event temperature and mean event pre-

cipitation for each catchment. We summarize the results obtained at individual locations by computing horizontal and vertical

sensitivity gradients on these reaction surfaces using a linear regression model. The horizontal gradient describes the strength

of POT discharge changes in response to event temperature changes while the vertical gradient describes the strength of change170

in response to changes in event precipitation. Conducting this experiment for both observed and simulated time series allows

for the determination of whether the models react to changes in mean event temperature and precipitation in the same way as

the real world system and are therefore suitable for the use in climate change impact assessments on floods. If models produce

different climate sensitivities than the ones seen in the observations, the use of models to simulate sets of flood events for future

conditions may preclude reliable change assessments.175
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3 Results

3.1 Flood characteristics at individual sites

Model performance at individual sites with respect to the number of events, event magnitude, and timing varies by model and

hydrological regime type (Figure 3). For most catchments, the median deviation between the simulated and observed number

of flood events lies close to zero (SAC: -3 events, HBV: -1, VIC: -1, mHM: 0). However, the simulations result in over- and180

underestimations of the number of events depending on the catchment (1st and 3rd quartiles for SAC: -9, 4; HBV: -8, 15; VIC:

-7, 6; mHM: -6, 6). The overestimation is strongest for HBV, which overestimates the number of events for catchments with

intermittent, weak winter, and melt regimes (Brunner et al., 2020b). Event magnitude in terms of peak discharge is generally

underestimated for all regime types independent of the model and also absolute flood timing errors are present in all models.

They are the highest in catchments with intermittent regimes with a high variability in flood timing and low in catchments with185

a New Year’s and melt regime where the flood season is limited to a few months (Brunner et al., 2020a).

3.2 Spatial flood dependencies

Over all seasons, most models show a median error close to zero for flood connectedness. Flood connectedness can be over-

and underestimated dependent on the catchment by most of the models while HBV overestimates spatial dependence in most

catchments (Figure 4). Seasonally, most models over- or underestimate spatial dependence in certain regions. In winter, con-190

nectedness is overestimated by most models except for VIC and the strength of overestimation is strongest for HBV. In spring,

most models tend to underestimate spatial dependence except for HBV that results in an overestimation of spatial dependence

for catchments with an intermittent regime. Connectedness overestimation by HBV is most pronounced for catchments with

an intermittent regime. Otherwise, connectedness over-/underestimation seems to be independent of the regime.

3.3 Flood triggers195

The differences in model performance regarding local and spatial flood characteristics may be partially explained by differences

in their structure and how they transform precipitation into runoff. Figure 5 shows how simulated peak discharge is related to

event precipitation, event precipitation plus snowmelt, and simulated soil moisture over all catchments for the four hydrologic

models. The SAC and VIC models show similar simulated relationships for all three variable pairs. There is a positive relation-

ship between peak discharge and precipitation and peak discharge and rainfall plus snowmelt, i.e. the higher the precipitation200

input or rainfall and snowmelt combined, respectively, the higher the resulting peak discharge. This relationship is slightly

more expressed for VIC than for SAC. In both models, soil moisture and event magnitude are also positively related with lower

peak values potentially associated with lower soil moisture states than more severe events. The peak discharge–precipitation

relationship of HBV and mHM is less straightforward than the one of SAC and VIC. HBV and mHM also show high dis-

charge when precipitation input is high, but may in some cases still produce high discharge values even for low precipitation205

inputs. Such low precipitation inputs can also lead to high peak discharge for SAC but to a lesser degree than HBV and mHM.
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Figure 5. Simulated relationships between normalized flood discharge (Q) and normalized precipitation (i, P ), rainfall and snowmelt (ii,

R+M ), and soil moisture (iii, SM , upper two soil layers for mHM) over all catchments represented by a binned scatter plot for the four
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However, peak discharge and rainfall plus snowmelt show a strong linear relationship, i.e. the higher the combined rainfall and

snowmelt input to the system, the higher is peak discharge. High flows are in most cases related to nearly full storage states but

can occasionally also be triggered when soil moisture is low for SAC and VIC and to a lesser degree for HBV.

3.4 Floods under change210

In addition to looking at how well local and spatial flood characteristics are represented by models, we look at how changes

in temperature and event precipitation are translated into changes in flood flows to assess each model’s suitability for climate

impact assessments on floods. Our sensitivity analysis shows that the models have difficulty translating changes in event

temperature and precipitation into sensitivities of flood flows (Figure 6), which can be problematic if we would like to use

such models in climate change assessments. Generally, flood flows show a relatively low sensitivity to changes in mean event215

precipitation and temperature. This is in contrast to the behavior for mean flow, which is strongly influenced by changes in

mean precipitation as demonstrated in a similar experiment by Brunner et al. (2020b). The much stronger relationship between

mean precipitation and flow than between event precipitation and flow might arise because mean flow is a climate signal

(Knoben et al., 2018), whereas floods are more an event (higher frequency, short-term) signal. However, some catchments,

e.g. the Tucca Creek (New Year’s regime) show a clear relationship between peak magnitude and both event temperature and220

precipitation. While these relationships are captured for some catchments (e.g. Blackwater River, weak winter regime or Tucca

Creek, New Year’s regime), they aren’t in other catchments. The simulated sensitivities may even point in another direction

than the observed ones (e.g. Pacific Creek, melt regime). In the case of melt regimes, the misrepresentation of flood sensitivities

by models suggests that they may have difficulty simulating snow-influenced flooding.

This relatively poor model performance in capturing observed flood sensitivities can be generalized to the larger set of225

catchments studied here (Figure 7). Temperature sensitivities are found to be positive or negative, i.e. an increase in temperature

could lead to an increase or decrease of peak flow depending on the catchment. In general, these temperature sensitivities are

relatively weak (i.e. gradients are close to zero), which may be the reason why they are difficult to capture. In contrast,

precipitation sensitivities are mostly positive, i.e. an increase in event precipitation leads to an increase in peak flow. However,

the strength of these sensitivities is underestimated by all models, i.e. a change in precipitation leads to a too small change in230

peak flow. This underestimation of sensitivity can be understood by the underestimation of flood magnitude in general.

4 Discussion

4.1 Model performance in simulating floods

The results presented in this study demonstrate that simulating floods using hydrological models is challenging both at a local235

and spatial scale. At the local scale, flood timing and magnitude may not be perfectly captured which can translate into a

sub-optimal representation of spatial dependencies because space and time are closely related. The challenges related to flood
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Figure 6. Climate sensitivity analysis for the VIC model: Dependence of mean POT magnitude (Q) on mean flood event precipitation (1-day;

P ) and mean flood temperature (T ) for five example catchments, those with the best EKG per regime type: intermittent regime (green; USGS

ID 09210500 Fontanelle Creek near Fontanelle, WY; EKG = 0.78), weak winter regime (yellow; USGS ID 02369800 Blackwater River near

Bradley, AL; EKG = 0.83), strong winter regime (blue; USGS ID 11522500 Salmon River above Somes, CA; EKG = 0.84), New Year’s

regime (pink; USGS ID 14303200 Tucca Creek near Blaine, OR; EKG = 0.9), and melt regime (purple; USGS ID 13011500 Pacific Creek

at Moran, WY; EKG = 0.92). Grid axes and grey scales differ between plots where darker colors indicate higher flood magnitudes.
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Figure 7. Observed vs. simulated (i) horizontal (temperature) and (ii) vertical (precipitation) climate sensitivities for floods represented

by two-dimensional kernel density estimates for the four models (1) SAC, (2) HBV, (3) VIC, and (4) mHM for the five regime types:

intermittent (114 catchments), weak winter (108), strong winter (176), New Year’s (50), and melt (40) (Figure 1). Positive and negative

values indicate positive and negative associations of precipitation and temperature with peak flow, respectively. Values on the dashed line

indicate correspondence between observed and modeled sensitivity gradients.

simulations become especially pronounced under climate conditions different from the current ones because additional sources

of uncertainty are added to the modeling chain.

Even though the models have been calibrated for the local situation, substantial differences in magnitude and timing were240

found between observations and simulations. Locally, simulated floods showed smaller magnitudes and had different timing

than observed ones while the number of floods was reproduced relatively well except by the HBV model for catchments

with intermittent regimes. The flood magnitude underestimation found for all four models tested is in line with previous

studies showing that using EKG individually results in an underestimation of peak flow (Mizukami et al., 2019) due to an

underestimation of variability, which will result in an under-representation of extremes (Katz and Brown, 1992). Another factor245

potentially contributing to this underestimation is that the models were forced with spatially lumped instead of distributed data,

which may have smoothed the simulated discharge response.
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Under the current calibration paradigm, where models are calibrated to local discharge conditions using EKG as objective

function, flood conectedness is not accounted for. As a result, flood contectedness is not well captured by the models as

illustrated by the finding that flood connectedness is over- or underestimated depending on the season. The overestimation of250

spatial dependence in winter for all regimes except the melt regime is likely related to higher simulated than observed snowmelt

as high soil moisture and snow availability have been shown to increase spatial flood connectedness (Brunner et al., 2020a).

Related to this, the underestimation of spatial connectedness in spring may be related to the subsequent missing snowmelt

contributions. Spatial connectedness in summer has been shown to be generally weak due to the occurrence of localized,

convective events (Brunner et al., 2020a), which is reflected by most models except for HBV in the case of intermittent and255

melt regimes. Spatial flood connectedness has also been shown to be weak in fall (Brunner et al., 2020a) but is overestimated by

most models. The finding that there is room to improve the representation of spatial flood dependencies is in line with previous

studies showing that large-scale hydrological models have a weakness in reproducing regional aspects of floods (Prudhomme

et al., 2011).

There are slight variations in performance among models. These variations may result from differences in the representation260

of flood producing mechanisms as indicated by distinct behaviors in how the models translate precipitation into runoff. VIC

and SAC show more linearity in their event precipitation and peak discharge relationship than HBV and mHM, possibly

because VIC and SAC have the capability to generate surface runoff when precipitation intensity exceeds infiltration capacity

(Burnash et al., 1973; Liang et al., 1994). In this case, incoming precipitation is directly translated into flood discharge. In

contrast, HBV and mHM, the latter which is based on the HBV model structure (Kumar et al., 2013), does not include a265

surface runoff component and all discharge originates in the model stores (Bergström, 1976). This introduces a non-linearity in

model response and may explain why a smaller precipitation input may still generate high peak flows in these models. These

differences in process representation suggests that a ’most suitable model’ could be identified for a specific application at hand.

If one is e.g. interested in simulating floods in catchments with intermittent regimes, the HBV model does not seem to be an

ideal choice because it there simulates too many floods with a too small magnitude. The overestimation of the number of events270

in catchments with intermittent regimes by HBV may be explained by its fast response to precipitation as expressed through

its model parameter β, which introduces non-linearity to the system (Viglione and Parajka, 2020).

Our climate sensitivity analysis shows that the simulation of floods becomes even more challenging under climate conditions

different from the current ones as the hydrological models employed in this study have limited capability in reproducing

observed hydrologic sensitivities during flooding. These limitations may be related to input uncertainties (Te Linde et al., 2007),275

insufficient model calibration (Fowler et al., 2016), or equifinality in process contributions for simulations with (very) similar

efficiency scores, leading to an inability to unambiguously identify the appropriate relative process contributions (Khatami

et al., 2019).
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4.2 Potential ways to improve model performance280

The results of our model comparison highlight that there is room for improvement regarding the representation of local flood

events, spatial flood dependence, and flood producing mechanisms. We here discuss four potential ways for improving model

performance: developing flood-tailored calibration metrics, considering spatial aspects in model calibration, improving repre-

sentation of flood processes, and representing input uncertainties.

A first possibility to improve model performance is to develop calibration metrics tailored to flooding instead of relying on285

EKG. Our results show that EKG can lead to simulation performance deficits for phenomena of interest, including an underes-

timation of peak flow, a misrepresentation of timing, and over- or underestimation of seasonal spatial flood connectedness. As

is evident in some existing practice-oriented applications of hydrological models (Hogue et al., 2000; Unduche et al., 2018;

World Meteorological Organization, 2011), the simulation of floods and other hydrologic phenomena is likely to be improved

by using more tailored model calibration strategies. The representation of streamflow variability could potentially be improved290

by giving more weight to the variability component of an integrative metric such as the EKG (Pool et al., 2017); whereas the

representation of flood magnitude and timing may be improved by giving more weight to the bias and correlation components

of the EKG. Alternatively, these characteristics could be optimized explicitly by minimizing error in key hydrograph signatures

related to site-specific flood phenomena. Such flood-focused optimization may similarly to EKG rely on multiple objectives in

a scalar function (Gupta et al., 1998; Efstratiadis and Koutsoyiannis, 2010) such as volume error, root-mean-squared error, and295

peak flow error (Moussa and Chahinian, 2009); ENS and relative peak deviation (Krauße et al., 2012); EKG, peak efficiency,

and logarithmic efficiency (Sikorska et al., 2018); or EKG, peak efficiency, and mean absolute relative error (Sikorska-Senoner

et al., 2020). In addition, model performance can potentially be improved by using multiple metrics describing important catch-

ment processes (Madsen, 2003; Dembélé et al., 2020), i.e. flood generating mechanisms such as soil moisture and snowmelt.

A second way to improve model performance is to focus on the spatial representation of extremes, which may be improved300

by considering spatially distributed features of model response or spatial correlation within a spatial calibration framework.

Such a framework could build upon existing spatial verification metrics such as the spatial prediction comparison test used

e.g. to validate precipitation forecasts (SPCT; Gilleland, 2013), Empirical Orthogonal Functions (EOFs), or Kappa statistics

(Koch et al., 2015). For the calibration and evaluation of spatially-distributed hydrological models, Koch et al. (2018) recently

proposed the SPAtial Efficiency (SPAEF) metric which reflects three equally weighted components: correlation, coefficient of305

variation and histogram overlap. To improve the spatial dependence of floods across different sites, such spatial calibration

frameworks would need to include spatial verification metrics focusing at extremes, which could e.g. be achieved by looking at

deviations of simulated from observed F-madograms, which measure extremal dependence (Cooley et al., 2012). Please note,

however, that even the use of spatial verification metrics may not overcome the lack of spatial heterogeneity in precipitation or

soil moisture data.310

A third way of improving model performance is to test whether a model is fit-for-purpose and to identify model structures

which accurately represent relevant flood producing mechanisms. The importance of model structure choice has been high-

lighted in previous studies both for low- and high flow events (Melsen and Guse, 2019; Kempen et al., 2020; Knoben et al.,
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2020) and should depend on the spatial complexity of the phenomenon studied (Hrachowitz and Clark, 2017). However, model

structure choice for a specific application is not straightforward and automatic model structure identification frameworks have315

only been introduced very recently (Spieler et al., 2020). To improve the representation of flood processes, such frameworks

would ideally explicitly consider local and spatial flood characteristics and the representation of different flood generation

processes such as rain-on-snow events or flash floods. The representation of rain-on-snow floods for example requires an ac-

curate representation of the energy balance in order to represent factors affecting snowmelt processes such as net radiation and

turbulent heat fluxes (Pomeroy et al., 2016; Li et al., 2019) .320

A fourth possibility to improve model performance is to address data uncertainty of streamflow observations and of pre-

cipitation input. Errors in streamflow measurements caused by stage-discharge rating-curve uncertainty (Coxon et al., 2015;

Kiang et al., 2018) influence model calibration and evaluation. To improve uncertainty estimates, such uncertainty should be

accounted for by explicitly considering streamflow measurement uncertainty in model calibration (McMillan et al., 2010). In

addition, the uncertainty of the precipitation product used to drive a hydrological model can lead to differences in observed325

and simulated flows (Te Linde et al., 2007; Renard et al., 2011). Precipitation products may show observation uncertainties

(Mcmillan et al., 2012) and underestimate extreme rainfall or the spatial dependence of extreme precipitation at different lo-

cations because spatial smoothing or averaging during the gridding process reduces variability (Haylock et al., 2008; Risser

et al., 2019). Such spatial uncertainty could be accounted for by using probabilistic analyses of precipitation fields (Newman

et al., 2015a; Frei and Isotta, 2019). The consideration of such input uncertainty is particularly important if we are interested in330

future changes because of climate model and scenario uncertainty, where precipitation uncertainty is specifically pronounced

(Chen et al., 2014; Lopez-Cantu et al., 2020). Even though many of these possibilities have been discussed in previous studies,

their consideration in flood analyzes is not a standard practice.

5 Conclusions

Our model comparison shows that flood characteristics are not always well captured in hydrological models developed for335

research studies – even when the models have been calibrated with a calibration metric perceived suitable for flood model-

ing, the Kling–Gupta efficiency metric (EKG). The number of flood events were over- or underestimated depending on the

catchment, flood magnitudes were underestimated by all models in most catchments, and the ability of the model to accurately

reproduce event timing was proportional to the hydroclimatic seasonality. These model deficiencies in reproducing local flood

characteristics, especially timing, can lead to a misrepresentation of spatial flood dependencies, particularly in winter, because340

the temporal and spatial dimension of flooding are closely linked. Our sensitivity analysis also shows that climate sensitiv-

ities of floods, especially to changes in precipitation, are not well represented in models even if the model can be deemed

’well-calibrated’ according to the EKG metric. These sensitivities are generally underestimated by models independent of the

geographical areas considered, i.e. an increase in event precipitation may not be translated into a strong enough increase in

flood peak. The mis-estimation of these sensitivities may undermine the reliability of future flood hazard assessments relying345

on such models.
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The limited capability of the models in reproducing local and spatial flood characteristics and the sensitivity of runoff to

precipitation inputs is partly attributed to model structure and partly to a reliance of the calibration on an individual variable

(streamflow) and metric (EKG). While EKG is integrative of certain properties (bias, variance, correlation), it does nonetheless

not explicitly focus on high flow values, their spatial dependencies, or processes generating high flow values. We conclude350

that calibration using only an individual model performance metric or variable can result in model implementations that have

limited value for specific model applications, such as local and in particular spatial flood hazard analyses and change impact

assessments. This study underscores the importance of improving the representation of magnitude, timing, spatial connect-

edness, and flood generating processes. Potential ways of achieving such improvements include developing flood-focused,

multi-objective and spatial calibration metrics, improving flood generating process representations through model structure355

comparisons, and reducing uncertainty in precipitation input. Such steps are recommended to improve the reliability of flood

simulations and ultimately local and regional flood hazard assessments under both current and future climate conditions.

Data availability. Observed streamflow measurements were made accessible by the USGS and can be downloaded via the website https://

waterdata.usgs.gov/nwis. Simulated streamflow, precipitation, and storage time series can be requested from Lieke Melsen (lieke.melsen@wur.nl)

for the SAC, HBV, and VIC models and for the mHM model from Oldrich Rakovec (oldrich.rakovec@ufz.de).360

Appendix A: Model illustrations

This section provides illustrations of the model structures used in this work. Model schematics summarize the model states and

fluxes. Schematics and equations use model-specific names as they are used in the model code. For clarity, these descriptions

enforce that fluxes are shown in lower case and states in upper case. The model diagrams are based on:

– Snow17/SAC-SMA: analysis of the model’s description (National Weather Service NOAA, 2002): https://www.nws.365

noaa.gov/oh/hrl/general/chps/Models/Sacramento_Soil_Moisture_Accounting.pdf and source code.

– TUW HBV: analysis of the model’s source code (Viglione and Parajka, 2020).

– VIC: descriptions of VIC in Melsen et al. (2018); Melsen and Guse (2019) and on analysis of the v4.1.2h source code

(https://github.com/UW-Hydro/VIC/releases/tag/VIC.4.1.2.h).

– mHM: analysis of the model’s source code (https://git.ufz.de/mhm/mhm/-/tree/5.7) and a diagram provided in (Kumar370

et al., 2010).
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Figure A1. Structure of the Snow17/SAC-SMA model. Fluxes: precipitation (precip), snow, rain, snowmelt (melt), refreeze, snowpack

outflow, evapotranspiration (E1, E2, and E3), tension refill, surface runoff, interflow percolation, baseflow, simulated discharge (Q). States:

snow-water-equivalent (SWE), liquid water content (LWC), upper zone tension water contents (UZTWC), upper zone free water contents

(UZFWC), lower zone tension water contents (LZTWC), lower zone free primary contents (LZFPC), lower zone free supplemental contents

(LZFSC).
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Figure A2. Structure of the TUW HBV model. Fluxes: precipitation (precip), snow, rain, snowmelt (melt), actual evapotranspiration (eta),

runoff (dq), surface runoff (q0), subsurface runoff (q1), baseflow (q2), simulated runoff (qg), simulated discharge (dquh), input from upper

to lower storage (slzin). States: snow-water-equivalent (SWE), soil moisture (MOIST), upper storage zone (SUZ), lower storage zone (SLZ).
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Figure A3. Fluxes: precipitation (precip), energy, snow, rain, variable infiltration, evaporation and transpiration, infiltration excess, baseflow,

percolation, transpiration, simulated runoff (Q). Storage: snow layer 1 (Snow 1), snow layer 2 (Snow 2), soil layer 1 (Soil 1), soil layer 2

(Soil 2), soil layer 3 (Soil 3).
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Figure A4. Fluxes: precipitation (precip), evapotranspiration (evap), throughfall, snow, rain, snowmelt (melt), runoff, fast interflow, slow

interflow, percolation, baseflow, karstic loss/gain, simulated discharge (Q). Storage: Interception storage (X1), snow pack (X2), soil moisture

storage (X3), impervious surface storage (X4), unsaturated zone (X5), saturated zone (X6), routing (X7).
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