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Abstract. Satellite observations can provide valuable information for a better understanding of hydrological processes and 

thus serve as valuable tools for model structure development and improvement. While model calibration and evaluation has in 

recent years started to make increasing use of spatial, mostly remotely-sensed information, model structural development 

largely remains to rely on discharge observations at basin outlets only. Due to the ill-posed inverse nature and the related 10 

equifinality issues in the modelling process, this frequently results in poor representations of the spatiotemporal heterogeneity 

of system-internal processes, in particular for large river basins. The objective of this study is thus to explore the value of 

remotely-sensed, gridded data to improve our understanding of the processes underlying this heterogeneity and, as a 

consequence, their quantitative representation in models through a stepwise adaptation of model structures and parameters. 

For this purpose, a distributed, process-based hydrological model was developed for the study region, the poorly gauged 15 

Luangwa river basin. As a first step, this benchmark model was calibrated to discharge data only and, in a post-calibration 

evaluation procedure, tested for its ability to simultaneously reproduce (1) the basin-average temporal dynamics of remotely-

sensed evaporation and total water storage anomalies, and (2) their temporally-averaged spatial patterns. This allowed the 

diagnosis of model structural deficiencies in reproducing these temporal dynamics and spatial patterns. Subsequently, the 

model structure was adapted in a step-wise procedure, testing five additional alternative process hypotheses that could 20 

potentially better describe the observed dynamics and pattern. These included, on the one hand, the addition and testing of 

alternative formulations of groundwater upwelling into wetlands as function of the water storage and, on the other hand, 

alternative spatial discretizations of the groundwater reservoir. Similar to the benchmark, each alternative model hypothesis 

was, in a next step, calibrated to discharge only and tested against its ability to reproduce the observed spatiotemporal pattern 

in evaporation and water storage anomalies. In a final step, all models were re-calibrated to discharge, evaporation and water 25 

storage anomalies simultaneously. The results indicated that (1) the benchmark model (Model A) could reasonably well 

reproduce the time series of observed discharge, basin-average evaporation and total water storage. In contrast, it poorly 

represented time series of evaporation in wetland dominated areas as well as the spatial pattern of evaporation and total water 

storage. (2) Step-wise adjusting the model structure (Models B – F) suggested that Model F, allowing for upwelling 

groundwater from a distributed representation of the groundwater reservoir and (3) simultaneously calibrating the model with 30 

respect to multiple variables, i.e. discharge, evaporation and total water storage anomalies, provided the best representation of 

all these variables with respect to their temporal dynamics and spatial patterns, except for the basin-average temporal dynamics 

in the total water storage anomalies. It was shown that satellite-based evaporation and total water storage anomaly data are not 

only valuable for multi-criteria calibration, but can play an important role in improving our understanding of hydrological 

processes through diagnosing model deficiencies and step-wise model structural improvement. 35 

  

mailto:p.hulsman@tudelft.nl


2 

 

1. Introduction 

Traditionally, discharge observations at basin outlets are used for hydrological model development and calibration, which can 

be a robust strategy in small watersheds with relatively uniform characteristics such as topography and land cover, but not for 

larger, heterogeneous basins (Blöschl and Sivapalan, 1995; Daggupati et al., 2015). As a result, temporal dynamics of discharge 40 

may be well reproduced. This however, does not ensure that the spatial patterns and temporal dynamics of model internal 

storage and flux variables provide a meaningful representation of their real pattern and dynamics (Beven, 2006b; Kirchner, 

2006; Clark et al., 2008; Gupta et al., 2008; Hrachowitz et al., 2014; Garavaglia et al., 2017). Especially in large, poorly gauged 

basins this traditional model calibration and testing method is likely to result in a poor representation of spatial variability 

(Daggupati et al., 2015) due to equifinality and the related the boundary flux problem (Beven, 2006b).  45 

An increasing number of satellite-based observations have become available over the last decade, giving us insight into a wide 

range of hydrology-relevant variables, including precipitation, total water storage anomalies, evaporation, surface soil moisture 

or river width (Xu et al., 2014; Jiang and Wang, 2019). These data are increasingly used as model forcing or for parameter 

selection and model calibration (e.g. Li et al., 2015; Mazzoleni et al., 2019; Tang et al., 2019).  

Many studies used a single satellite product in the calibration procedure, some of them additionally using discharge data, others 50 

not. For instance, hydrological models have been calibrated with respect to evaporation (e.g. Immerzeel and Droogers, 2008; 

Winsemius et al., 2008; Vervoort et al., 2014; Bouaziz et al., 2018; Odusanya et al., 2019), water storage anomalies from 

GRACE (Gravity Recovery and Climate Experiment, Werth et al., 2009), river width (Revilla-Romero et al., 2015; Sun et al., 

2018) or river altimetry (Getirana, 2010; Michailovsky et al., 2013; Sun et al., 2015; Hulsman et al., 2019).  

Other studies simultaneously calibrated hydrological models with respect to multiple remotely-sensed variables, but only 55 

exploiting basin-average time series, without consideration for spatial patterns (e.g. Milzow et al., 2011; López et al., 2017; 

Kittel et al., 2018; Nijzink et al., 2018). On the other hand, some studies exclusively calibrated models to spatial patterns of 

observed variables (Stisen et al., 2011; Koch et al., 2016; Mendiguren et al., 2017; Demirel et al., 2018; Zink et al., 2018). As 

most satellite-based observations such as evaporation are not measured directly but are themselves a result of underlying 

models using satellite data as input (Xu et al., 2014), more focus has been recently placed on calibration to the relative spatial 60 

variability instead of using absolute magnitudes (Stisen et al., 2011; van Dijk and Renzullo, 2011; Dembélé et al., 2020).  

To fully exploit the information content of satellite-based observations, simultaneous model calibration on both, temporal 

dynamics and spatial patterns of multiple variables has the potential to improve the representation of spatiotemporal variability 

and, linked to that, their underlying model internal processes and therefore the model realism (Rientjes et al., 2013; Rakovec 

et al., 2016; Herman et al., 2018). Strikingly, only a few studies so far used satellite-based observations to calibrate with respect 65 

to the temporal and spatial variation simultaneously (Rajib et al., 2018; Dembélé et al., 2020).  

In general, most studies that made use of remotely-sensed data for model applications have exclusively addressed the problem 

of parameter selection and thus model calibration. However, as models are always abstract and simplified representations of 

reality, every model structure needs to be understood as a hypothesis to be tested (Clark et al., 2011; Fenicia et al., 2011; 

Hrachowitz and Clark, 2017). Yet, most studies on model structural improvement have so far only relied on spatially 70 

aggregated variables (Fenicia et al., 2008; Kavetski and Fenicia, 2011; Hrachowitz et al., 2014; Nijzink et al., 2016), while 

spatial data remain rarely used for that purpose (e.g. Fenicia et al., 2016; Roy et al., 2017).  

The overall objective of this paper is therefore to explore the simultaneous use of spatial patterns and temporal dynamics of 

satellite-based evaporation and total water storage observations for a step-wise structural improvement and calibration of 

hydrological models for a large river system in a semi-arid, data scarce region. More specifically, we tested the research 75 

hypotheses that (1) spatial patterns and temporal dynamics in satellite-based evaporation and water storage anomaly data 

contain relevant information to diagnose and to iteratively improve on model structural deficiencies and that (2) these data, 

when simultaneously used with discharge data for calibration, do contain sufficient information for a more robust parameter 

selection. 
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2. Site description 80 

The Luangwa River in Zambia is a large, mostly unregulated tributary of the Zambezi with a length of about 770 km (Figure 

1). This poorly gauged river basin has an area of 159,000 km2 which is mostly covered with deciduous forest, shrubs and 

savanna and where an elevation difference up to 1850 m can be found between the highlands and low lands along the river 

(The World Bank, 2010; Hulsman et al., 2019). In this semi-arid basin, the mean annual evaporation (1555 mm yr-1) exceeds 

the mean annual precipitation (970 mm yr-1). 85 

The Luangwa River flows into the Zambezi upstream of the Cahora Bassa Dam which is used for hydropower production, and 

flood and drought protection. The operation of this dam is very difficult since there is only limited information available from 

the poorly gauged upstream tributaries (SADC, 2008; Schleiss and Matos, 2016). As a result, the local population has in the 

past suffered from severe floods and droughts (ZAMCOM et al., 2015; Schumann et al., 2016). 

 90 

Figure 1: Map of the Luangwa River Basin in Zambia with A) the elevation, groundwater reservoir units at 0.1° resolution and 1° 

grid according to GRACE, and B) the main landscape types 

2.1 Data availability 

2.1.1 In-situ discharge observations 

Historical daily in-situ discharge data was available from the Zambian Water Resources Management Authority at the Great 95 

East Road Bridge gauging station, located at 30o 13’ E and 14o 58’ S (Figure 1), for the time period 2004 to 2016 yet containing 

considerable gaps resulting in a temporal coverage of 31%.  

2.1.2 Spatially gridded observation  

Spatially gridded data were used for a topography-based landscape classification into hydrological response units (HRU, 

Savenije, 2010), as model forcing (precipitation and temperature) and for parameter selection (evaporation and total water 100 

storage, see Table 1).  

More specifically, topography was extracted from GMTED with a spatial resolution of 0.002o (Danielson and Gesch, 2011). 

Daily precipitation data was extracted from CHIRPS (Climate Hazards Group InfraRed Precipitation with Station) with a 

spatial resolution of 0.05o. Monthly temperature data extracted from CRU at a spatial resolution of 1o was used to estimate the 

potential evaporation applying the Hargreaves method (Hargreaves and Samani, 1985; Hargreaves and Allen, 2003). These 105 

monthly observations were interpolated to daily timescale using daily averaged in-situ temperature measured at two locations 

with the coordinates 28o 30’ E, 14o 24’ S and 32o 35’ E, 13o 33’ S. The satellite-based total evaporation data was extracted 

from WaPOR (Water Productivity Open-access portal, FAO, 2018) version 1.1 as it proved to perform well in African river 

basins (Weerasinghe et al., 2019). This product was available on 10-day temporal and 250 m spatial resolution. Satellite-based 

observations on the total water storage anomalies were extracted from the Gravity Recovery and Climate Experiment 110 
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(GRACE). With two identical GRACE satellites, the variations in the Earth’s gravity field were measured to detect regional 

mass changes which are dominated by variations in the terrestrial water storage after having accounted for atmospheric and 

oceanic effects (Landerer and Swenson, 2012; Swenson, 2012). In this study, the long-term bias between the discharge, 

evaporation (WaPOR) and total water storage anomalies (GRACE) was corrected by multiplying the evaporation with a 

correction factor of 1.08 to close the long-term water balance. 115 

The gridded information provided for the precipitation, temperature and evaporation were rescaled to the model resolution of 

0.1°. If the resolution of the satellite product was higher than 0.1°, then the mean of all cells located within each model cell was 

used. Otherwise, each cell of the satellite product was divided into multiple cells such that the model resolution is obtained, 

retaining the original value. In contrast, the modelled total water storage was rescaled to 1o, the resolution of the GRACE data 

set, by taking the mean. 120 

 

Table 1: Data used in this study 

 Time period Time  

Resolution 

Spatial  

resolution 

Product  

Name 

Source 

Digital elevation map NA NA 0.002o GMTED (Danielson and Gesch, 2011) 

Precipitation 2002 – 2016 Daily 0.05o  CHIRPS (Funk et al., 2014) 

Temperature 2002 – 2016 Monthly 0.5o CRU (University of East Anglia 

Climatic Research Unit et al., 

2017) 

Evaporation 2009 – 2016 10-day 0.00223° WaPOR (FAO, 2018; FAO and IHE 

Delft, 2019) 

Total water storage 2002 – 2016 Monthly 1o GRACE (Swenson and Wahr, 2006; 

Landerer and Swenson, 

2012; Swenson, 2012) 

Discharge (Luangwa 

Bridge gauging 

station) 

2004 – 2016 Daily NA NA WARMA 

3. Modelling approach 

A previously developed and tested (Hulsman et al., 2019) distributed, process-based hydrological model was implemented for 

the Luangwa Basin, see Section 3.1 for more information. This benchmark model (Model A) was calibrated with respect to 125 

discharge for the time period 2002 – 2012 and validated for the time period 2012 – 2016 with respect to discharge, evaporation 

and total water storage anomalies. Then, the model was calibrated with respect to all above variables, hence discharge, 

evaporation and total water storage anomalies simultaneously, for the time period 2002 – 2012 and validated with respect to 

the same variables for the time period 2012 – 2016. Model deficiencies were then diagnosed for this benchmark model (Model 

A) based on the results of both calibration strategies. 130 

Next, model structure changes were applied creating Models B – D to improve the deficiencies found in Model A. These 

changes concerned the groundwater upwelling into the unsaturated zone as explained in Section 4.2. The same calibration and 

validation strategies as applied to Model A were applied to Models B – D. Model improvements were evaluated and further 

deficiencies were diagnosed for these models based on the calibration and validation results. 

To improve the deficiencies diagnosed in Models B – D, further model structural changes, i.e. increased levels of spatial 135 

discretisation of the saturated zone as explained in Section 4.3, resulted in Models E and F. Similar to the previous models, 

the same calibration and validation strategies were applied to Models E and F, and model improvements and deficiencies were 

diagnosed based on the calibration and validation model performances. 

The calculation of the model performance with respect to discharge, evaporation and total water storage are explained in 

Section 3.2. The calibration and validation procedures are described in Sections 3.3 and 3.4. 140 
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3.1 Hydrological models 

3.1.1 Benchmark model (Model A) 

This model is a process-based hydrological model developed in a previous study by Hulsman et al. (2019) for the Luangwa 

basin. In this model, the water accounting was distributed by discretizing the basin and using spatially distributed forcing data 

while the same model structure and parameter set were used for the entire basin. Each 0.1o x 0.1o model cell was then further 145 

discretized into functionally distinct landscape classes, i.e. hydrological response units (HRU), inferred from topography 

(Figure 1B), but connected by a common groundwater component (Euser et al., 2015) following the FLEX-Topo modelling 

concept (Savenije, 2010) which was previously successfully applied in many different and climatically contrasting regions 

(Gao et al., 2014; Gharari et al., 2014; 2016; Nijzink et al., 2016). Here, the landscape was classified based on the local slope 

and “Height-above-the-nearest-drainage” (HAND, Rennó et al., 2008) into sloped areas (slope ≥ 4%), flat areas (slope < 4%, 150 

HAND ≥ 11 m) and wetlands (slope < 4%, HAND < 11 m). For this purpose, the drainage network was derived from a digital 

elevation map extracted from GMTED (Section 2.1.2) using a flow accumulation map after having burned-in a river network 

map extracted from OpenStreetMap (https://wiki.openstreetmap.org/wiki/Shapefiles) to obtain an as accurate as possible 

drainage network as done successfully in previous studies (Seyler et al., 2009). According to this classification, the wetland 

areas covered 8% of the basin, flat areas 64% and sloped areas 28% (Figure 1).  155 

The model consisted of different storage components schematised as reservoirs representing interception and unsaturated 

storage, as well as a slow responding reservoir, representing the groundwater and a fast responding reservoir (Figure 2). The 

water balance for each reservoir and the associated constitutive equations are summarised in Table 2. The individual model 

structures of each parallel HRU were very similar. Functional differences between HRUs were thus mostly accounted for by 

different parameter sets. To allow the use of partly overlapping prior parameter distributions while maintaining relationships 160 

between parameters of individual HRUs that are consistent with our physical understanding of the system and to limit 

equifinality, model process constraints (Gharari et al., 2014; Hrachowitz et al., 2014) were applied for several parameters 

(Table 3). For instance, in the Luangwa Basin, the sloped areas are dominated by dense vegetation, suggesting higher 

interception capacities and larger storage capacities in the unsaturated zone compared to the remaining part of the basin. In 

addition, for each HRU the model structure was adjusted where necessary to include processes unique to that area. For instance, 165 

water percolates and recharges the groundwater system in sloped and flat areas whereas in wetlands this was assumed to be 

negligible due to groundwater tables that are very shallow and thus close to the surface.  

The runoff was first calculated for each individual grid cell. A simple routing scheme based on the flow direction and constant 

flow velocity as calibration parameter was applied to estimate the flow at the outlet. In total, this model consisted of 16 

calibration parameters with uniform prior distributions and constraints as summarized in Table 3. 170 

  

Figure 2: Schematisation of the model structure applied to each grid cell. Symbol explanation: precipitation (P), effective 

precipitation (Pe), interception evaporation (Ei), plant transpiration (Et), infiltration into the unsaturated root zone (Ru), drainage 

to fast runoff component (Rf), delayed fast runoff (Rfl), lag time (Tlag), groundwater recharge (Rr), upwelling groundwater flux (RGW), 

fast runoff (Qf), groundwater/slow runoff (Qs). 175 
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Table 2: Equations applied in the hydrological model. Fluxes [mm d-1]: precipitation (P), effective precipitation (Pe), potential 

evaporation (Ep), interception evaporation (Ei), plant transpiration (Et), infiltration into the unsaturated zone (Ru), drainage to fast 

runoff component (Rf), delayed fast runoff (Rfl), groundwater recharge (Rr for each relevant HRU and Rr,tot combining all relevant 180 
HRUs), groundwater upwelling (RGW for each relevant HRU and RGW,tot combining all relevant HRUs), fast runoff (Qf for each HRU 

and Qf,tot combining all HRUs), groundwater/slow runoff (Qs), total runoff (Qm). Storages [mm]: storage in interception reservoir 

(Si), storage in unsaturated root zone (Su), storage in groundwater/slow reservoir (Ss), storage in fast reservoir (Sf). Parameters: 

interception capacity (Imax) [mm], maximum upwelling groundwater (Cmax) [mm d-1], maximum root zone storage capacity (Sumax) 

[mm], reference storage in the saturated zone (Ss,ref) [mm], splitter (W) [-], shape parameter (β) [-], transpiration coefficient (Ce) [-], 185 
time lag (Tlag) [d], exponent (γ) [-], reservoir time scales [d] of fast (Kf) and slow (Ks) reservoirs, areal weights for each grid cell (pHRU) 

[-],time step (Δt) [d]. Model calibration parameters are shown in bold letters in the table below. The equations were applied to each 

hydrological response unit (HRU) unless indicated differently. 
Reservoir system Water balance equation Equation Process functions Equation 

Interception 𝛥𝑆i

𝛥𝑡
= 𝑃 − 𝑃e − 𝐸i  (1) 

𝐸i = min (𝐸p, min (𝑃,
𝑰𝐦𝐚𝐱

∆𝑡
))  

(2) 

 
   𝑃e = 𝑃 − 𝐸i  (3) 

Unsaturated zone Sloped: 
𝛥𝑆u

𝛥𝑡
= 𝑅u − 𝐸t  

 

(4) 

 

𝐸t = min ((𝐸p − 𝐸i), min (
𝑆u

𝛥𝑡
, (𝐸p − 𝐸i) ∙

𝑆u

𝑺𝐮,𝐦𝐚𝐱
∙
1

𝑪𝐞
))  

(5) 

 

 Flat: 
𝛥𝑆u

𝛥𝑡
= Pe − 𝐸t − 𝑅𝑓  

(6) 
Model A: 𝑅GW = 0 (7) 

 Wetland: 
𝛥𝑆u

𝛥𝑡
= Pe − 𝐸t − 𝑅𝑓 + 𝑅GW  

 

(8) Model B: 𝑅GW = min ((1 −
𝑆u

𝑺𝐮,𝐦𝐚𝐱
) ∙ 𝑪𝐦𝐚𝐱,

𝑆s
𝛥𝑡

𝑝HRU
)  (9) 

   
Model C, E, F: 𝑅GW = min (

min(𝑆s,𝑺𝐬,𝐫𝐞𝐟)

𝑺𝐬,𝐫𝐞𝐟
∙ 𝑪𝐦𝐚𝐱,

𝑆s
𝛥𝑡

𝑝HRU
)  (10) 

   
Model D: 𝑅GW = min ((

min(𝑆s,𝑺𝐬,𝐫𝐞𝐟)

𝑺𝐬,𝐫𝐞𝐟
)
𝜸

∙ 𝑪𝐦𝐚𝐱,
𝑆s
𝛥𝑡

𝑝HRU
)  (11) 

   
if 𝑆u + 𝑅GW ∙ 𝛥𝑡 > 𝑆u,max: 𝑅GW =

𝑆u,max−𝑆u

𝛥𝑡
 (12) 

   Sloped: 
𝑅u = (1 − 𝐶) ∙ 𝑃e  

 

(13) 

   
𝐶 = 1 − (1 −

𝑆u

𝑺𝐮,𝐦𝐚𝐱
)
𝜷

  (14) 

Fast runoff 𝛥𝑆f

𝛥𝑡
= 𝑅fl − 𝑄f  

 

(15) 
𝑄f =

𝑆f

𝐾f
  (16) 

   Flat/Wetland: 

𝑅f =
max(0,𝑆u−𝑺𝐮,𝐦𝐚𝐱)

𝛥𝑡
  

 

(17) 

   𝑅𝑓𝑙 = 𝑅𝑓  (18) 

   Sloped: 

𝑅f = (1 −𝑾) ∙ 𝐶 ∙ 𝑃e  

 

(19) 

   𝑅fl = 𝑅f ∗ f(𝑻𝐥𝐚𝐠)  (20) 

Groundwater 𝛥𝑆s

𝛥𝑡
= 𝑅rtot − 𝑅GWtot

− 𝑄s  

 

(21) 𝑅r = 𝑾 ∙ 𝐶 ∙ 𝑃𝑒  

𝑅rtot = ∑ 𝑝HRU ∙ 𝑅rHRU   
(22) 

(23) 

   𝑅GWtot
= ∑ 𝑝HRU ∙ 𝑅GWHRU   (24) 

   𝑄s =
𝑆s

𝐾s
  (25) 

Total runoff 𝑄m = 𝑄s + 𝑄ftot   (26) 𝑄ftot = ∑ 𝑝HRU ∙ 𝑄fHRU   (27) 

Supporting literature (Gao et al., 2014; Gharari et al., 2014; Euser et al., 2015; Hulsman et al., 2019)  

 

Table 3: Model parameter and ranges (Hulsman et al., 2019) 190 
Landscape class Parameter min max Unit Constraint Comment 

Entire basin Ce 0 1 -   

 Ks 50 200 d   
 Ssref 100 500 mm  Only for Models C to F 

Flat Imax 0 5 mm d-1   

 Su,max 300 1000 mm   
 Kf 10 12 d   

 W 0.5 0.95 -   

Sloped Imax 0 5 mm d-1 𝐼max,sloped > 𝐼max,flat  

 Sumax 300 1000 mm 𝑆umax,sloped > 𝑆umax,flat  

 β 0 2 -   
 Tlag 1 5 d   

 Kf 10 12 d   

 W 0.5 0.95 - 𝑊sloped > 𝑊flat  

Wetland Imax 0 5 mm d-1 𝐼max,wetland < 𝐼max,sloped  

 Sumax 10 500 mm 𝑆umax,wetland < 𝑆umax,sloped  

 Kf 10 12 d   

 Cmax 0.1 5 mm d-1  Only for Models B to F 

 γ 0.01 0.5 -  Only for Model D  
River profile v 0.01 5.0 m s-1
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3.1.2 First model adaptation: Adding groundwater upwelling (Models B – D) 

Satellite-based evaporation and total water storage observations were used to evaluate the benchmark Model A with respect to 

the spatial and temporal variability visually and using model performance metrics as described in Section 3.2 to detect model 

deficiencies in these system-internal variables. The first model adaptation was applied to improve the hydrological model with 195 

respect to the deficiencies detected in Model A. Therefore, a detailed description of the reasoning behind the first model 

adaptation was explained in Section 4.2 after having described the deficiencies in Model A in Section 4.1.3. 

In short, groundwater upwelling (RGW) was added in wetland areas (see Figure 2). This upwelling groundwater was made (1) 

a linear function of the water content in the unsaturated reservoir (Model B, Eq.9 in Table 2), (2) a linear function of the water 

content in the slow responding reservoir (Model C, Eq.10) and (3) a non-linear function of the water content in the slow 200 

responding reservoir (Model D, Eq.11). As a result, upwelling water from the saturated zone feeds the unsaturated zone, 

controlled by the water content in the unsaturated (Model B) or in the saturated zone (Models C and D), and thus increasing 

the water availability for transpiration from the unsaturated zone in wetland areas. Compared to the benchmark Model A, 

Model B introduces one additional calibration parameter, Model C two and Model D three (Tables 2 and 3).  

3.1.3 Second model adaptation: Discretizing the groundwater system (Models E – F) 205 

Similar to the first model adaptation, the second model adaptation was developed to improve deficiencies detected in Models 

B – D. Therefore, a detailed description of the reasoning behind the second model adaptation was explained in Section 4.3 

after having described the deficiencies in Models B – D in Section 4.2.3. 

In short, the spatial resolution of the slow responding reservoir was gradually increased from lumped (Models A – D) to semi-

distributed (Model E) and fully distributed (Model F). In Model E, the slow responding reservoir was divided into four units 210 

as visualised in Figure 1A, whereas in Model F it was further discretized into a grid of 10 x 10 km2, equivalent to the remaining 

parts of the model. For both alternative formulations, Models E and F respectively, the slow reservoir timescales Ks remained 

constant throughout the basin to limit the number of calibration parameters. For both Models E and F, groundwater upwelling 

was included according to Eq.10 (Table 2), hence using Model C as basis, introducing two additional calibration parameters 

compared to the benchmark Model A (Tables 2 and 3).  215 

3.2 Model performance metrics 

3.2.1 Discharge 

The model performance with respect to discharge was evaluated using eight distinct signatures simultaneously characterizing 

the observed discharge data (Euser et al., 2013; Hulsman et al., 2019). The model performance measure was based either on 

the Nash-Sutcliffe efficiency (ENS,θ, Eq.28 in Table 4) or the relative error (ER,θ, Eq.29) depending on the individual signature. 220 

The resulting performance metrics for the eight signatures then included the Nash-Sutcliffe efficiencies of the daily discharge 

time series (ENS,Q), its logarithm (ENS,logQ), the flow duration curve (ENS,FDC), its logarithm (ENS,logFDC) and of the autocorrelation 

function of daily flows (ENS,AC) and the relative errors of the mean seasonal runoff coefficient during dry and wet periods 

(ER,RCdry, ER,RCwet) and of the rising limb density of the hydrograph (ER,RLD). All these signatures were combined into an overall 

performance metric based on the Euclidian distance to the “perfect” model (DE,Qcal, Eq.31). In absence of more information 225 

and to obtain balanced solutions, all individual performance metrics were equally weighted in Eq.31. Here, a DE,Qcal = 1 

indicates a perfect fit. 

The discharge data availability was very limited during the validation time period (2012 – 2016). As a result, hydrological 

years were not fully captured resulting in incomplete information on the hydrologic signatures such as rising limb density or 

auto correlation function. That is why the overall model performance (DE,Qval) was calculated using the signatures ENS,Q, 230 

ENS,logQ, ENS,FDC and ENS,logFDC excluding ER,RCdry, ER,RCwet, ER,RLD and ENS,AC. It is therefore important to note that DE,Qcal cannot 
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be meaningfully compared with DE,Qval. Instead, following the overall objective of the analysis, DE,Qval of the different 

alternative model hypothesis were compared to evaluate the differences between the models. 

 

Table 4: Overview of equations used to calculate model performance 235 

Name Objective Function Equation Variable explanation 

Nash-Sutcliffe 

efficiency 
𝐸NS,θ = 1 −

∑ (𝜃mod(𝑡)−𝜃obs(𝑡))
2

𝑡

∑ (𝜃obs(𝑡)−𝜃obs̅̅ ̅̅ ̅̅ ̅)
2

𝑡

  (28) θ variable 

Relative error 𝐸R,θ = 1 −
|𝜃mod−𝜃obs|

𝜃obs
  (29)  

Spatial efficiency  

metric 

𝐸SP =
1

tmax

∙∑ 1 −√(𝛼 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2

𝑡

 

With: 

𝛼 = 𝜌(𝜑obs , 𝜑mod)  

𝛽 =
𝜎obs 𝜇obs⁄

𝜎mod 𝜇mod⁄
  

𝛾 = (∑ min(𝐾𝑖 , 𝐿𝑖)
𝑖=𝑛
𝑖=0 ) · (∑ 𝐾i

𝑖=𝑛
𝑖=0 )

−1
  

 

 

 

 

(30) 

α Pearson correlation coefficient  

φobs, φmod observed/modelled map 

β coefficient of variation  

σ standard deviation  

μ mean 

γ fraction of histogram intersection 

between K and L  

K observed histogram  

L modelled histogram 

n = 100 bins 

t time step within the dry season 

with maximum tmax 

Euclidian distance  

over multiple  

signatures 

𝐷E,Q = 1 − √
1

(𝑁+𝑀)
(∑ (1 − 𝐸NS,θn)

2
𝑛 +∑ (1 − 𝐸R,θm)

2
𝑚 )  

 

(31) 

n signatures evaluated with Eq.28 

with maximum N 

m signatures evaluated with Eq.29 

with maximum M 

Euclidian distance  

over multiple 

variables 

𝐷E,ESQ = 1 − √
1

𝑁
(∑ (1 − 𝐸n)

2
𝑛 )  (32) 

n variables maximum N 

En model performance metric of 

variable n 

 

3.2.2 Evaporation and total water storage 

The model performance was also evaluated with respect to both the temporal dynamics and the spatial pattern of evaporation 

and total storage, respectively. For this purpose, satellite-based evaporation data (WaPOR) was used on 10-day time scale, and 

total water storage anomaly data (GRACE) on monthly time scale.  240 

 

Temporal variation 

To quantify the models’ skill to reproduce the temporal dynamics of evaporation and total water storage anomalies, the 

respective Nash-Sutcliffe efficiencies (Eq. 28) were used as performance metrics. This performance metric was applied to 

assess the models’ skill to reproduce the basin-average time series of evaporation and total water storage anomalies, i.e. 245 

ENS,Basin,E and ENS,Basin,S, respectively. Similarly, the models’ performance to mimic the dynamics of evaporation in all grid 

cells dominated by the wetland HRU was calculated with the Nash-Sutcliffe efficiency (ENS,Wetland,E). Grid cells were 

considered as wetland dominated if they were completely covered by wetlands, hence if pHRU = 1 with pHRU the areal weight 

of wetland areas within that cell. With respect to evaporation, the flux was normalised first with Eq.33 to emphasize temporal 

variations rather than absolute values in an attempt to reduce bias related errors in the observation: 250 

𝐸normalised =
𝐸 − 𝐸min

𝐸max − 𝐸min

 
(33) 
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Spatial variation 

The model performance with respect to the spatial pattern of evaporation and total water storage anomalies was calculated 

with the spatial efficiency metrics ESP,E and ESP,S (Eq.30), respectively, which was successfully used in previous studies 

(Demirel et al., 2018; Koch et al., 2018). The spatial model performance was first calculated for each time step within the dry 255 

period which was in September/October and then averaged to obtain the overall model performance (ESP, Eq.30). The spatial 

pattern was averaged over the dry season to minimize the effect of precipitation errors. 

3.2.3 Multi-variable 

The overall potential of the models to simultaneously reproduce the temporal dynamics as well as the spatial patterns of all 

observed variables, i.e. discharge, evaporation and total water storage anomalies, was tested with the overall model 260 

performance metric DE,ESQ. This metric was the Euclidian distance (Eq.32) of the following individual metrics: the temporal 

variation of the basin-average evaporation (ENS,Basin,E) and total water storage anomalies (ENS,Basin,S), spatial pattern of the 

evaporation (ESP,E) and total water storage anomalies (ESP,S) as well as discharge (DE,Q). See Table 5 for an overview of all 

model performance metrics used in this study. 

 265 

Table 5: Overview of the applied model performance metrics 

Data Temporal dynamics/ 

Spatial pattern 

Performance metric Symbol and  

equation nr. 

Calibration/validation 

Discharge Temporal dynamics Euclidian distance over multiple 

signatures (combining ENS,Q, 

ENS,logQ, ENS,FDC, ENS,logFDC, 

ENS,AC, ER,RCdry, ER,RCwet and 

ER,RLD) 

DE,Qcal (Eq.31) Calibration (2002 – 2012)  

 

 Temporal dynamics Euclidian distance over multiple 

signatures (combining ENS,Q, 

ENS,logQ, ENS,FDC and ENS,logFDC) 

DE,Qval (Eq.31) Validation (2012 – 2016) 

Evaporation  Temporal dynamics  

(basin-average) 

Nash-Sutcliffe efficiency ENS,Basin,E (Eq.28) Validation (2012 – 2016) 

 Temporal dynamics 

 (wetland areas) 

Nash-Sutcliffe efficiency ENS,Wetland,E (Eq.28) Validation (2012 – 2016) 

 Spatial pattern Spatial efficiency metric ESP,E (Eq.30) Validation (2012 – 2016) 

Total water storage 

anomalies  

Temporal dynamics 

(basin-average) 

Nash-Sutcliffe efficiency ENS,Basin,S (Eq.28) Validation (2012 – 2016) 

 Spatial pattern Spatial efficiency metric ESP,S (Eq.30) Validation (2012 – 2016) 

Multi-variable  

(discharge, 

evaporation  

and total water 

storage anomalies) 

Combination  Euclidian distance over multiple 

variables (combining DE,Qcal, 

ENS,Basin,E, ESP,E, ENS,Basin,S and 

ESP,S) 

DE,ESQcal (Eq.32) Calibration (2002 – 2012) 

 Combination Euclidian distance over multiple 

variables (combining DE,Qval, 

ENS,Basin,E, ESP,E, ENS,Basin,S and 

ESP,S) 

DE,ESQval (Eq.32) Validation (2012 – 2016) 

 

3.3 Model calibration 

In general, the model was calibrated by first running the model with 5·104 random parameter sets generated with a Monte-

Carlo sampling strategy from uniform prior parameter distributions (Table 3). Then, the optimal and 5% best-performing 270 

parameter sets were selected according to the model performance metric as described in the previous section. The model was 

calibrated within the time period 2002 – 2012 with respect to 1) discharge (DE,Qcal) and 2) all variables simultaneously 

(DE,ESQcal). As the objective of this study was to explore the information content of multiple variables using multiple model 

evaluation criteria for step-wise model structure development and calibration, it was important to use the same parameter sets 

for all models as common starting point to rule out the effect of different parameter sets. This was efficiently possible with the 275 
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Monte-Carlo parameter sampling strategy, which, in addition also allowed a relatively straight-forward and intuitive 

interpretation and communication of the results. 

3.4 Model validation 

The model was validated with respect to discharge, evaporation and total water storage anomalies for the time period 2012 – 

2016. During validation each variable was evaluated separately both temporally and spatially. This included the temporal 280 

variation of the basin-average evaporation (ENS,Basin,E) and total water storage anomalies (ENS,Basin,S), evaporation in wetland 

areas (ENS,Wetland,E), spatial pattern of the evaporation (ESP,E) and total water storage anomalies (ESP,S) as well as discharge 

(DE,Qval). In addition, the model was evaluated with respect to the overall performance (DE,ESQval). This was done for the 

solutions from both calibration strategies. 

4. Model results 285 

4.1 Benchmark model (Model A) 

4.1.1 Discharge based calibration 

For the benchmark model (Model A), the model performance of all model realizations following the first calibration strategy, 

i.e. calibrating to discharge, resulted in an optimum DE,Qcal,opt = 0.76 and DE,Qval = 0.37 during validation (Table 6, Figure 3). 

As shown in Figure 4, the main features of the hydrological response were captured reasonably well. However, particularly in 290 

the validation period, low flows were somewhat underestimated. Note that in 2013, the observed high flows were probably 

underestimated due to failures in the recording which resulted in a truncated top in the hydrograph and flat top in the flow 

duration curve during the validation time period (Figure 4) and which affect the validated model performance values (DE,Qval). 

The range in the calibrated model performance with respect to each discharge signature separately is visualised in Figure S1 

in the supplementary material.  295 

The basin-average evaporation (ENS, Basin,E = 0.54) and total water storage anomalies (ENS, Basin,S = 0.74) were in general also 

reproduced rather well (Figures S3 and S5). In contrast, the model failed to mimic the evaporation dynamics in wetland 

dominated areas as it decreased rapidly to zero in the dry season in contrast to the observations (ENS,Wetland,E = 0.25, Figure 5). 

Similarly, the spatial variability in evaporation (ESP,E = 0.17) and water storage anomalies (ESP,S = -0.02) were poorly captured 

as several areas were over- or underestimated (Figures 6 and 7). Note that in both figures the normalised evaporation and total 300 

water storage anomalies were plotted applying Eq.33 to emphasize relative spatial differences rather than absolute values.  

 

Table 6: Summary of model performance with respect to evaporation (ENS,Basin,E, ENS,Wetland,E and ESP,E), total water storage 

anomalies (ENS,Basin,S or ESP,S), discharge (DE,Qcal and DE,Qval) and all variables combined (DE,ESQval): The parameter sets were selected 

based on discharge (DE,Qcal).  305 

 
Calibration 

(2002 – 2012) 
Validation (2012 – 2016) 

 
DE,Qcal,opt 

(DE, Qcal ,5/95%) 

DE,Qval 

(DE, Qval ,5/95%) 

ENS,Basin,E 

(ENS,Basin,E,5/95) 

ENS,wetland,E 

(ENS,wetland,E,5/95) 

ESP,E 

(ESP,E,5/95) 

ENS,Basin,S 

(ENS,Basin,S,5/95) 

ESP,S 

(ESP,S,5/95) 

DE,ESQval 

(DE,ESQval,5/95) 

A 
0.76 

(0.54 – 0.68) 

0.37 

(0.26 – 0.85) 

0.54 

(0.34 – 0.57) 

0.25 

(-0.14 – 0.58) 

0.17 

(-0.37 – 0.04) 

0.74 

(0.62 – 0.80) 

-0.02 

(-0.23 – 0.03) 

0.30 

(0.12 – 0.29) 

B 
0.75 

(0.36 – 0.60) 

0.08 

(-3.9 – 0.78) 

0.46 

(0.34 – 0.63) 

0.29 

(0.09 – 0.65) 

0.12 

(-0.68 – 0.12) 

0.69 

(0.61 – 0.82) 

-0.07 

(-0.20 – 0.08) 

0.21 

(-1.3 – 0.27) 

C 
0.79 

(0.58 – 0.70) 

0.81 

(0.27 – 0.85) 

0.50 

(0.34 – 0.58) 

0.19 

(-0.01 – 0.57) 

0.10 

(-0.39 – 0.06) 

0.76 

(0.62 – 0.81) 

-0.08 

(-0.23 – 0.04) 

0.32 

(0.12 – 0.30) 

D 
0.77 

(0.53 – 0.68) 

-1.7 

(-2.4 – 0.84) 

0.36 

(0.33 – 0.60) 

0.41 

(0.11 – 0.62) 

-0.04 

(-0.57 – 0.10) 

0.63 

(0.61 – 0.82) 

-0.17 

(-0.22 – 0.06) 

-0.41 

(-0.72 – 0.28) 

E 
0.78 

(0.58 – 0.70) 

0.81 

(0.27 – 0.85) 

0.50 

(0.34 – 0.58) 

0.07 

(-0.04 – 0.59) 

0.05 

(-0.39 – 0.05) 

0.77 

(0.62 – 0.81) 

-0.08 

(-0.23 – 0.04) 

0.30 

(0.12 – 0.29) 

F 
0.91 

(0.86 – 0.89) 

0.52 

(0.12 – 0.74) 

0.61 

(0.45 – 0.63) 

0.56 

(-0.08 – 0.61) 

-0.03 

(-0.49 – 0.19) 

0.66 

(0.44 – 0.71) 

0.08 

(-0.07 – 0.13) 

0.31 

(0.12 – 0.34) 
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Figure 3: Model performance with respect to discharge, evaporation and storage for all models. The model is calibrated to discharge 

(DE,Qcal, darker boxplots in the first column) and validated to the discharge, evaporation and storage (lighter boxplots). The dots 

represent the model performance using the “optimal” parameter set and the boxplot the range of the best 5% solutions both 310 
according to discharge (DE,Qcal). The following performance metrics were used: 1) discharge using the overall model performance 

metric (DE,Qcal for calibration and DE,Qval for validation), 2) evaporation temporally basin-average (ENS,Basin,E), 3) evaporation 

temporally wetland areas only (ENS,Wetland,E), 4) evaporation spatially (ESP,E), 5) storage temporally basin-average (ENS,Basin,S), 6) 

storage spatially (ESP,S), and 7) the combination of evaporation, storage and discharge (combined metric DE,ESQval).  

 315 

 

 

Figure 4: Range of model solutions for Model A. The left panel shows the hydrograph and the right panel the flow duration curve 

of the recorded (black) and modelled discharge: the line indicates the solution with the highest calibration objective function with 

respect to discharge (DE,Qcal) and the shaded area the envelope of the solutions retained as feasible. The data in the white area were 320 
used for calibration and the grey shaded area for validation. 

 

 

Figure 5: Range of model solutions for Model A. The left panel shows the time series and the right panel the duration curve of the 

recorded (black) and modelled normalised evaporation for wetland dominated areas: the line indicates the solution with the highest 325 
calibration objective function with respect to discharge (DE,Qcal) and the shaded area the envelope of the solutions retained as feasible. 

The data in the grey shaded area were used for validation. 
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Figure 6: Spatial variability of the normalised total evaporation for Model A averaged over all days within the dry season. The left 330 
panel shows the observation according to WaPOR data, the middle panel the model result using the “optimal” parameter set with 

respect to discharge (DE,Qcal), and the right panel the difference between the observation and model. 

 

 

 335 

Figure 7: Spatial variability of the normalised total water storage anomalies for Model A averaged over all days within the dry 

season. The left panel shows the observation according to GRACE data, the middle panel the model result using the “optimal” 

parameter set with respect to discharge (DE,Qcal), and the right panel the difference between the observation and model.  

4.1.2 Multi-variable calibration 

Calibrating with respect to multiple variables simultaneously in the second calibration strategy, resulted in a reduced model 340 

skill to simultaneously reproduce all flow signatures in the validation period with DE,Qval = 0.07 (Table 7, Figures 8 and 9). 

Compared to the first calibration strategy, the simulated evaporation did not change significantly with respect to the temporal 

dynamics (ENS,Wetland,E = 0.27, ENS,Basin,E = 0.57) and spatial pattern (ESP,E = -0.18). Evaporation from wetland dominated areas 

remained underestimated in the dry season (Figure 10) and large areas in the basin were still under- or overestimated (Figure 

11). The reproduction of the total water storage anomalies decreased though, mostly with respect to the spatial pattern (ESP,S = 345 

-0.14, Figure 12). On the other hand, when looking at the 5/95th percentile range instead of the “optimal” parameter set, then 

an improvement was observed in the spatial pattern in evaporation (ESP,E,5/95 =-0.10 – 0.22) and in total water storage (ESP,S,5/95 

= -0.17 – 0.08, compare Tables 6 and 7).  
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Table 7: Summary of the model performance with respect to evaporation (ENS,Basin,E, ENS,Wetland,E and ESP,E), total water storage 350 
anomalies (ENS,Basin,S or ESP,S), discharge (DE,Qval) and all variables combined (DE,ESQval): Parameter sets selected based on multiple 

variables simultaneously (DE,ESQcal).  

 
Calibration 

(2002 – 2012) 
Validation (2012 – 2016) 

 
DE,ESQcal,opt 

(DE,ESQcal,5/95) 

DE,Qval 

(DE, Qval ,5/95%) 

ENS,Basin,E 

(ENS,Basin,E,5/95) 

ENS,wetland,E 

(ENS,wetland,E,5/95) 

ESP,E 

(ESP,E,5/95) 

ENS,Basin,S 

(ENS,Basin,S,5/95) 

ESP,S 

(ESP,S,5/95) 

DE,ESQval 

(DE,ESQval,5/95) 

A 
0.42 

(0.28 – 0.36) 

0.07 

(-1.4 – 0.80) 

0.57 

(0.37 – 0.60) 

0.27 

(-0.05 – 0.61) 

0.18 

(-0.10 – 0.22) 

0.72 

(0.60 – 0.77) 

-0.14 

(-0.17 – 0.08) 

0.21 

(-0.25 – 0.32) 

B 
0.40 

(0.23 – 0.33) 

0.46 

(-4.2 – 0.70) 

0.55 

(0.39 – 0.63) 

0.56 

(0.04 – 0.64) 

0.16 

(-0.14 – 0.25) 

0.73 

(0.61 – 0.79) 

-0.16 

(-0.17 – 0.09) 

0.28 

(-1.4 – 0.29) 

C 
0.44 

(0.29 – 0.37) 

0.61 

(-1.6 – 0.79) 

0.48 

(0.37 – 0.61) 

0.51 

(0.08 – 0.60) 

0.19 

(-0.07 – 0.25) 

0.70 

(0.60 – 0.77) 

-0.03 

(-0.16 – 0.09) 

0.33 

(-0.31 – 0.33) 

D 
0.43 

(0.27 – 0.36) 

-0.08 

(-3.5 – 0.75) 

0.51 

(0.38 – 0.62) 

0.59 

(0.06 – 0.61) 

0.24 

(-0.09 – 0.26) 

0.69 

(0.60 – 0.78) 

-0.04 

(-0.16 – 0.09) 

0.21 

(-1.1 – 0.32) 

E 
0.43 

(0.29 – 0.36) 

0.30 

(-1.6 – 0.79) 

0.43 

(0.38 – 0.61) 

0.30 

(0.03 – 0.61) 

0.17 

(-0.08 – 0.25) 

0.64 

(0.60 – 0.77) 

-0.02 

(-0.16 – 0.10) 

0.27 

(-0.31 – 0.32) 

F 
0.52 

(0.39 – 0.45) 

0.51 

(-0.24 – 0.81) 

0.56 

(0.45 – 0.63) 

0.45 

(0.01 – 0.63) 

0.23 

(0.08 – 0.27) 

0.63 

(0.53 – 0.73) 

0.09 

(-0.10 – 0.13) 

0.37 

(0.15 – 0.38) 

 

 

Figure 8: Model performance with respect to discharge, evaporation and storage for all models. The model is calibrated to multiple 355 
variables simultaneously (DE,ESQcal, darker boxplots in the first column) and evaluated with respect to each flux individually (lighter 

boxplots). The dots represent the model performance using the “optimal” parameter set and the boxplot the range of the best 5% 

solutions both according to DE,ESQcal. The following performance metrics were used: 1) discharge using the overall model 

performance metric (DE,Qval), 2) evaporation temporally basin-average (ENS,Basin,E), 3) evaporation temporally wetland areas only 

(ENS,Wetland,E), 4) evaporation spatially (ESP,E), 5) storage temporally basin-average (ENS,Basin,S), 6) storage spatially (ESP,S), and 7) the 360 
combination of evaporation, storage and discharge (combined metric DE,ESQval). 
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 365 

 

 

 
Figure 9: Range of model solutions for Models A to F. The left panel shows the hydrograph and the right panel the flow duration 

curve of the recorded (black) and modelled discharge: the line indicates the solution with the highest calibration objective function 370 
with respect to multiple variables (DE,ESQcal) and the shaded area the envelope of the solutions retained as feasible. The data in the 

grey shaded area were used for validation. 

 

  



15 

 

 375 

 

 

 

 

 380 
Figure 10: Range of model solutions for Models A to F. The left panel shows the time series and the right panel the duration curve 

of the recorded (black) and modelled normalised evaporation for wetland dominated areas: the line indicates the solution with the 

highest calibration objective function with respect to multiple variables (DE,ESQcal) and the shaded area the envelope of the solutions 

retained as feasible. The data in the grey shaded area were used for validation. 

 385 
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Figure 11: Spatial variability of the normalised total evaporation for Models A, C and F averaged over all days within the dry 

season. The left panel shows the observation according to WaPOR data, the middle panel the model result using the “optimal” 

parameter set with respect to multiple variables (DE,ESQcal), and the right panel the difference between the observation and model. 390 

 

 
Figure 12: Spatial variability of the normalised total water storage anomalies for Models A, C and F averaged over all days within 

the dry season. The left panel shows the observation according to GRACE data, the middle panel the model result using the 

“optimal” parameter set with respect to multiple variables (DE,ESQcal), and the right panel the difference between the observation 395 
and model. 
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4.1.3 Model deficiencies 

Regardless of the calibration strategy, the benchmark model failed in particular to adequately reproduce evaporation dynamics 

in wetland dominated areas. During the dry seasons, the modelled evaporation decreased rapidly to zero in contrast to the 400 

observations (Figures 5 and 10). Partly as a consequence of that, the spatial pattern of evaporation was captured poorly as 

illustrated in Figures 6 and 11. Apart from the wetlands, the modelled average dry season evaporation was also extremely low 

in the centre of the basin which did not correspond with the satellite observations. At the same time, the evaporation was 

significantly overestimated in the southern part of the basin. Also the spatial pattern in total water storage anomalies were 

poorly represented since the model significantly overestimated storage anomalies in large parts of the basin (Figures 7 and 405 

12). Note, overestimations in specific regions do not necessarily mean the actual (non-normalised) model values were also 

higher compared to the observation, but it does mean the model results in this cell/region were high relative to the remainder 

of the basin compared to observations. This was the case for the evaporation and total water storage even though it was negative 

during dry seasons (compare Figures S8 and S9 in the supplementary material). 

4.2 First model adaptation: Adding groundwater upwelling (Models B, C and D) 410 

In the benchmark model (Model A), there was no groundwater upwelling into the wetlands and floodplains around the river 

channels, similar to many distributed conceptual hydrological models (eg. Samaniego et al., 2010; Bieger et al., 2017). 

However, according to field and satellite-based observations, wetland areas remain moist at the end of the dry season while 

the remaining areas of the basin become very dry. Given the low elevation of these wetlands above rivers, it is plausible to 

assume that groundwater from higher parts of the catchment is pushed up into the unsaturated root zone of these wetlands. As 415 

a result, water deficits in the unsaturated zone are partly replenished by upwelling groundwater. It thereby can sustain relatively 

elevated levels of moisture, available for plant transpiration long into the dry season.  

To improve the representation of evaporation in the model, the process of upwelling groundwater (RGW) was added to the 

model. In principle, it was assumed that the upwelling groundwater is regulated by the head difference between upland 

groundwater and the groundwater in the wetland. As this information was not available, due to the lack of continuous gradients 420 

in the type of model used (Hrachowitz and Clark, 2017), this was done in a simplified way. In three alternative formulations 

of this hypothesis, the upwelling groundwater was made (1) a linear function of the water content in the unsaturated reservoir 

(Model B, Eq.9), (2) a linear function of the water content in the slow responding reservoir (Model C, Eq.10) and (3) a non-

linear function of the water content in the slow responding reservoir (Model D, Eq.11). In other words, in Model B the 

groundwater upwelling was driven by the water deficit in the unsaturated zone, hence the lower the water content in the 425 

unsaturated zone, the higher the groundwater upwelling. In Models C and D, the groundwater upwelling was driven by the 

water content in the slow responding reservoir, the groundwater system, such that the higher the water content in the slow 

responding reservoir, the higher the groundwater upwelling. As a result of the non-linear relation between the groundwater 

upwelling and the water content in the slow responding reservoir in Model D, the groundwater upwelling increased the most 

under dry conditions and less under wet conditions. In Models B – D, the groundwater upwelling flowed into the unsaturated 430 

zone until it was saturated, hence until its maximum Su,max was reached (Eq.12). Model B required one additional calibration 

parameter, Model C two and Model D three (Tables 2 and 3). 

4.2.1 Discharge based calibration 

Following the first calibration strategy, the performances of Models B – D with respect to discharge did not improve 

significantly for the calibration period (DE,Qcal = 0.75 – 0.79) compared to Model A, regardless of the model (Table 6, Figures 435 

3 and S2). For the validation period, Models B and D experienced a pronounced reduction of their ability to adequately 

reproduce the discharge signatures with DE,Qval = 0.08 and -1.7, respectively, since the flows were mostly underestimated 

(Figure S2). On the other hand, Model C showed significant improvements with DE,Qval = 0.81. With respect to the evaporation 
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from wetland dominated areas, the largest improvements were found for Model D (ENS,Wetland,E = 0.41) where the evaporation 

did not drop rapidly to zero anymore even though it was still significantly underestimated in the dry season (Figure S4). But 440 

this came at the cost of decreased simulations of all remaining variables (Table 6, Figure 3), hence the discharge, basin-average 

evaporation and total water storage and their spatial patterns (Figures S2 – S7). For example Figure S6 illustrates the poorly 

simulated temporally-averaged dry season evaporation for Model D which was higher in wetland areas (centre of the basin) 

compared to the surrounding areas which was not observed in the satellite based observations. For Models B and C, the model 

performances with respect to the remaining variables remained comparable to Model A or even decreased as can be seen in 445 

Table 6 and Figure 3. As a result, when considering all variables simultaneously, Model C performed the best with DE,ESQval = 

0.32.  

4.2.2 Multi-variable calibration 

Following the second calibration strategy, Model C experienced the largest increases compared to Model A in its ability to 

describe features of discharge with DE,Qval = 0.61, while Model D decreased the most to DE,Qval = -0.08 with the high flows 450 

being overestimated and low flows underestimated (Table 7, Figures 8 and 9). With this calibration strategy, large 

improvements were observed in the reproduction of the evaporation from wetland dominated areas for all three Models B – 

D, especially for Model D with ENS,Wetland,E = 0.59 where the evaporation was simulated well even during the dry season as it 

did not decrease rapidly to zero in the dry season compared to Model A (Figure 10). For Models C and D, the spatial pattern 

in evaporation and total water storage anomalies improved, albeit moderately (Table 7) as large areas were still under- or 455 

overestimated (Figures S12 and S13), whereas it decreased slightly for Model B. For all Models B – D, the basin-average 

temporal dynamics in evaporation and total water storage anomalies remained similar or decreased slightly (Table 7, Figures 

S10 and S11). Overall, when considering the model performance with respect to all variables simultaneously, Model C showed 

the highest performances with DE,ESQval = 0.33.  

4.2.3 Model deficiencies 460 

According to the results, the representation of evaporation strongly benefitted from including upwelling groundwater as 

function of the water content in the slow responding reservoir (Eq.10, Model C) especially for the second calibration strategy. 

The incorporation of this flux resulted in increased levels of water supply to the unsaturated zone of wetlands to sustain higher 

levels of transpiration throughout the dry periods (Figure 10). But even though the evaporation increased during dry periods, 

it was still underestimated especially towards the end of the dry season due to too large groundwater upwelling depleting the 465 

slow responding reservoir. The major weakness of the model remained its very limited ability to represent the spatial pattern 

in evaporation as there were several local clusters of considerable mismatches, both over- and underestimating observed 

evaporation. This was clearly visible for example in the centre and southern part of the basin (Figure 11). Also the spatial 

pattern in the total water storage anomalies remained poorly represented, in spite of some improvements compared to Model 

A, as they were considerably overestimated in the northern parts of the basin (Figure 12). This could be a result of deficiencies 470 

in the hydrological models or in the satellite-based observations.  

4.3 Second model adaptation: Discretizing the groundwater system (Models E and F) 

In all above models, the groundwater layer was simulated as a single lumped reservoir assuming equal groundwater availability 

throughout the entire basin. As groundwater processes can occur on relatively large spatial scales, this assumption may be 

valid for small- or mesoscale catchments, but not necessarily for larger basins such as the Luangwa basin. This may partly be 475 

responsible for the deficiency of all above models to meaningfully reproduce the spatial pattern of the total water storage. 

Taking Model C as a basis for further model adaptations, two more alternative model hypothesis were formulated. In both 

models the slow responding reservoir, representing the groundwater, was spatially discretized. For Model E, the reservoir was 
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split into four units with an area of 15,396 – 47,239 km2 each containing four to six different GRACE cells (see Figure 1A). 

In contrast, Model F was formulated with a completely distributed slow reservoir at the resolution of the remaining parts of 480 

the model, i.e. 10 x 10 km2. In Models E and F, the slow reservoir timescales Ks remained constant throughout the basin to 

limit the number of calibration parameters. Models E and F did not require additional calibration parameters. See Tables 2 and 

3 for the corresponding model equations and calibration parameter ranges. 

4.3.1 Discharge based calibration 

Following the first calibration strategy, the calibrated and validated model performance with respect to discharge did not 485 

change significantly for Model E compared to Model C. For Model F on the other hand, the calibrated model performance 

increased to DE,Qcal = 0.91 (Table 6, Figures 3 and S2), but during validation it decreased to DE,Qval = 0.52 compared to Model 

C as a result of overestimated high flows (Figure S2). In other words, the discharge simulation was only affected when applying 

a fully distributed groundwater system (Model F). Also the simulated dynamics of the evaporation improved for Model F, 

especially for wetland dominated areas (ENS,Wetland,E = 0.56, Table 6) even though it remained significantly underestimated 490 

during the dry season (Figure S4). But for both models, no improvements in the spatial pattern of evaporation can be observed 

with ESP,E = 0.05 and -0.03 for Models E and F, respectively. As shown in Figure S6, for Model E and F the temporally-

averaged dry season evaporation was very low in the centre of the basin compared to the remaining part of the basin in contrast 

to the satellite-based observations. The spatial pattern of total water storage anomalies were at least slightly better mimicked 

by Model F with ESP,S = 0.08 (Figure S7), which, in turn, came at the price of a poorer reproduction of the temporal dynamics 495 

of the basin-averaged total water storage anomalies (ENS,Basin,S = 0.66, Figure S5).  

4.3.2 Multi-variable calibration 

Including multiple variables in the calibration process did not improve the representation of the hydrological response with 

respect to discharge for Models E and F compared to Model C with DE,Qval = 0.30 and 0.51, respectively (Table 7, Figures 8 

and 9). For both models, the flows were underestimated during low flows and overestimated during high flows (Figure 9). 500 

Also the evaporation from wetland dominated areas did not improve for both models as it decreased rapidly in the dry season 

(Figure 10). On the other hand, the spatial pattern in the evaporation was slightly better mimicked for Model F (ESP,E = 0.23), 

but still at low performance levels similar to Models A – D with large areas still being under- or overestimated (Figure S12). 

Slight improvements could be observed though for the representation of spatial pattern in total water storage in Models F (ESP,S 

= 0.09, Figure S13), albeit modestly. Overall, when considering the model performance with respect to all variables 505 

simultaneously, Model F showed the highest performances with DE,ESQval = 0.37. 

4.3.3 Model deficiencies 

Applying the second calibration strategy, Model F poorly reproduced the evaporation from wetlands (Figure 10) since the 

water availability for evaporation decreased rapidly in the dry season due to the limited water availability in the slow 

responding reservoir. This was a direct result of the limited connectivity in the distributed groundwater system within the basin 510 

and very likely points to the presence of contiguous groundwater systems extending beyond the modelling resolution that 

sustain dry season evaporation in wetlands. Strikingly, discretizing the groundwater basin only had limited effects on the 

spatial pattern in evaporation and total water storage anomalies. Despite their limited improvements, they remained poorly 

captured as several local clusters were over- and underestimated (Figures 11 and 12). 
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5. Discussion 515 

As illustrated in the previous sections, satellite-based evaporation and storage anomaly data were used in an attempt to (1) 

iteratively improve a benchmark model structure and 2) identify parameter sets with which the model can simultaneously 

reproduce the temporal dynamics as well as the spatial patterns of multiple flux and storage variables.  

The results suggested that among the tested models, Models C and F provided the overall best representation of the 

hydrological processes in the Luangwa basin, following the first and second calibration strategy respectively. The addition of 520 

upwelling groundwater alone (Model C) significantly improved the discharge simulations during validation regardless of the 

calibration strategy and the simulation of evaporation from wetland areas following the second calibration strategy. 

Discretizing the slow responding reservoir (Model F) reached reasonable overall performance levels, i.e. DE,ESQval, when 

calibrating on discharge and its signatures only (Figure 3), with improved simulations of evaporation from wetland areas. But 

calibrating on multiple variables proved instrumental as it allowed to improve the spatial pattern of the evaporation compared 525 

to calibrating with respect to discharge (Figures 11 and S12 in the supplementary material), while maintaining high levels for 

the other performance criteria (Figure 8). In general, it could also be observed that a further discretization of the model lead to 

a better representation of the system especially with respect to the spatial patterns. Nevertheless, while the model structure and 

calibration strategy did influence the spatial pattern in the evaporation (Figures S6 and S12 in the supplementary material) and 

total water storage anomalies (Figures S7 and S13 in the supplementary material), none of the tested models could adequately 530 

reproduce the observed spatial pattern which could be a result of model deficiencies or uncertainties in the satellite-based 

spatial patterns.  

A potential reason for the models’ problems to meaningfully describe the spatial pattern of the evaporation was in this study 

the use of the same parameters within a specific HRU in different model grid cells as also observed in previous studies (Stisen 

et al., 2018). As a result, the simulated spatial pattern was strongly influenced by the catchment classification method into 535 

distinct HRUs. In this study, the catchment was classified merely on the basis of topography into flat, sloped and wetland 

areas, whereas ecosystem diversity could also be considered as an additional layer in the classification. The poor representation 

of the spatial pattern in total water storage was also partly linked to that. Spatially distributing calibration parameters could 

improve the modelled spatial pattern assuming there is sufficient data available to meaningfully constrain the increased number 

of calibration parameters and thus to avoid elevated equifinality. In a preliminary test, the maximum interception storage (Imax) 540 

was spatially distributed using a linear transfer function with LAI (leaf area index) data similar to previous studies (Samaniego 

et al., 2010; Kumar et al., 2013) and using Model F as basis. This did not result in obvious improvements as shown in Figure 

S14 in the supplementary material. It was considered outside the scope of this study to analyse additional parameter distribution 

strategies with the limited data availability in this study region. 

Another likely reason for the poorly modelled spatial pattern is the absence of lateral exchange of sub-surface water between 545 

model grid cells in the tested models, as contiguous groundwater bodies of varying but unknown spatial scale will shape water 

transfer through the landscape in the real world which remain unaccounted for in the model. Lateral exchange fluxes are as 

any flux driven by continuous gradients and resistances. However, conceptual-type models, such as the one used in this study, 

only mimic gradients within grid cells, but not between grid cells. As a result, the head difference between neighbouring cells 

remains unknown which entails that the direction and magnitude of lateral exchange between cells is unknown. Consequently, 550 

these fluxes can only be expressed on basis of free calibration parameters. However, in this data-scarce region it will not be 

possible to test whether the additional calibration parameters and the associated exchange fluxes are physically plausible. 

These unspecified boundary fluxes across grid cells are at the core of the closure problem (Beven, 2006a) and touch on the 

limits of what can be done in hydrology with our current observational technology and the available data. Therefore, adding 

lateral exchange flow to the model was considered outside the scope of this study.  555 

In addition, each of the applied data sources have their own uncertainties and bias. These include uncertainties in observed 

discharge due to rating curve uncertainties (Westerberg et al., 2011; Domeneghetti et al., 2012; Tomkins, 2014) and limited 
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data availability, in precipitation data, often as a result of poorly capturing mountainous regions or extreme events on small 

scales (Hrachowitz and Weiler, 2011; Kimani et al., 2017; Dinku et al., 2018; Le Coz and van de Giesen, 2019), in estimates 

of total water storage anomalies as a result of data (post-) processing including data smoothing using a radius of for example 560 

300 km affecting the spatial variability on basin scale (Landerer and Swenson, 2012; Blazquez et al., 2018) and in evaporation 

data due to model, input data and parameter estimation uncertainties (Zhang et al., 2016). In general satellite products are a 

result of models that are prone to uncertainties related to the input data or model conceptualisation. Uncertainties in for example 

the spatial pattern of the precipitation affect the spatial pattern of the evaporation considerably as shown in Figure S15 in the 

supplementary material. In the ideal situation, the data would be validated with field measurements to assess the error 565 

magnitude. However, this was not possible due to data limitations. To compensate for bias errors in the satellite-based 

evaporation and to allow more reliable comparisons with model results, the satellite-based evaporation was adjusted with a 

correction factor of 1.08 (Section 2.1.2). Correcting the precipitation in a similar manner instead of the evaporation did not 

significantly affect the model results since normalised values were used for model calibration and evaluation (Figure S16 in 

the supplementary material). 570 

The results in this study were sensitive to the choice of performance metrics with respect to the individual variables (discharge, 

evaporation and total water storage) and all variables combined. For instance, the overall model performance measure DE,ESQval 

(Eq.32) was strongly influenced by the validated discharge model performance DE,Qval due to its large range and variation 

between models compared to the remaining variables where the range was smaller and similar for all models (Figure 8). As a 

result, the overall model performance measure might not reflect each variable equally well which affected the choice of best 575 

performing model. However, this did not cause the poorly reproduced spatial pattern in the evaporation as it remained poorly 

modelled also when calibrating only with respect to that variable (ESP,E, Figure S17 in the supplementary material). In addition, 

the histogram component (γ) in the Spatial efficiency metric (ESP, Eq.30) becomes less meaningful for very coarse resolutions 

when the river basin consists of only a few grid cells as was the case for GRACE. It would be interesting to examine the 

different components in ESP more detailed in future studies to assess the overall suitability of this metric to identify feasible 580 

parameter sets across different spatial scales. 

Reflecting the results of previous studies, this study found that calibrating to multiple variables including the spatial patterns 

improved the simulation of the evaporation and storage with some trade-off in the discharge simulation depending on the 

model structure (Stisen et al., 2011; Rientjes et al., 2013; Demirel et al., 2018; Herman et al., 2018; 2018; Dembélé et al., 

2020). But in contrast and additional to previous studies, this study also provided an example, illustrating that spatial data, here 585 

evaporation and total water storage, can contain relevant information to diagnose model deficiencies and to therefore enable 

step-wise model structural improvement. Previous studies have largely relied on discharge observations to improve model 

structures (Hrachowitz et al., 2014; Fenicia et al., 2016) and only few studies used satellite data (Roy et al., 2017) even though 

it provides valuable information on the internal processes temporally and spatially which is not available with discharge data 

alone (Daggupati et al., 2015; Rakovec et al., 2016). Roy et al. (2017) observed that the simulated evaporation according to 590 

the spatially lumped model HYMOD (HYdrological MODel) rapidly dropped to zero in contrast to the satellite product 

GLEAM (Global Land Evaporation Amsterdam Model) in the Nyangores river basin in Kenya. They improved this simulated 

evaporation while maintaining good discharge performances by modifying the corresponding equation in HYMOD such that 

it was a function of the soil moisture.  

While here we focussed on upwelling groundwater and spatial discretization, a promising avenue for future studies may be to 595 

evaluate the incorporation of simple formulations of subsurface exchange fluxes between model grid cells. Similarly, a further 

discretization of HRUs into different land cover and ecosystem types may be worthwhile. In addition, a systematic sensitivity 

analysis is recommended to explore the influence of individual factors such as model structure and parameters on the spatial 

and temporal variability of different variables and to further improve the representation of the hydrological processes.  
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6. Conclusion 600 

The objective of this paper was to explore the added value of satellite-based evaporation and total water storage anomaly data 

to increase the understanding of hydrological processes through step-wise model structure improvement and model calibration 

for large river systems in a semi-arid, data scarce region. For this purpose, a distributed process-based hydrological model with 

sub-grid process heterogeneity for the Luangwa River basin was developed and iteratively adjusted. The results suggested that 

(1) the benchmark model (Model A) calibrated with respect to discharge reproduced observed discharge but also basin-average 605 

evaporation and total water storage anomalies rather well, while  poorly capturing the evaporation for wetland dominated areas 

as well as the spatial pattern of evaporation and total water storage anomalies. Testing five further alternative model structures 

(Models B – F), it was found that (2) among the tested model hypotheses Model F, allowing for upwelling groundwater from 

a distributed representation of the groundwater reservoir and (3) simultaneously calibrating this model with respect to multiple 

variables, i.e. discharge, evaporation and total water storage anomalies, resulted in marked improvements of the model 610 

performance, providing the best simultaneous representation of all these variables with respect to their temporal dynamics and 

spatial pattern. As a result of the limited data availability and model hypotheses tested in this study, it should be noted that 

Model F allowed the rejection of alternative hypotheses tested here but may be rejected in future studies in favour of another 

hypothesis. However, this study illustrated that satellite-based evaporation and total water storage anomaly data are not only 

valuable for multi-criteria calibration, but can play an important role in improving our understanding of hydrological processes 615 

through diagnosing model deficiencies and step-wise model structural improvement. 

Abbreviations 

CHIRPS  Climate Hazards Group InfraRed Precipitation with Station 

CMRSET CSIRO MODIS Reflectance Scaling EvapoTranspiration 

CRU  Climatic Research Unit 620 

CSIRO  Commonwealth Scientific and Industrial Research Organisation 

FAO  Food and Agriculture Organization 

GEOS  Goddard Earth Observing System Model 

GMTED  Global Multi-resolution Terrain Elevation Data 

GRACE  Gravity Recovery and Climate Experiment 625 

HRU  Hydrological Response Unit 

MERRA  Modern-Era Retrospective analysis for Research and Applications 

MODIS  Moderate Resolution Imaging Spectroradiometer 

NDVI  Normalized Difference Vegetation Index 
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