

- 1 Socio-hydrologic data assimilation: Analyzing human-flood interactions by model-
- 2 data integration
- 3
- 4 Yohei Sawada¹, Risa Hanazaki²
- ⁵ ¹ Institute of Engineering Innovation, School of Engineering, the University of Tokyo,
- 6 Tokyo, Japan
- 7 ² Institute of Industrial Science, the University of Tokyo, Tokyo, Japan
- 8
- 9
- 10 Corresponding author: Y. Sawada, Institute of Engineering Innovation, the University of
- 11 Tokyo, Tokyo, Japan, 2-11-6, Yayoi, Bunkyo-ku, Tokyo, Japan, yohei.sawada@sogo.t.u-
- 12 tokyo.ac.jp
- 13

14 Abstract

15	In socio-hydrology, human-water interactions are simulated by mathematical models.
16	Although the integration of these socio-hydrologic models and observation data is
17	necessary to improve the understanding of the human-water interactions, the
18	methodological development of the model-data integration in socio-hydrology is in its
19	infancy. Here we propose to apply sequential data assimilation, which has been widely
20	used in geoscience, to a socio-hydrological model. We developed particle filtering for a
21	widely adopted flood risk model and performed an idealized observation system
22	simulation experiment to demonstrate the potential of the sequential data assimilation in
23	socio-hydrology. In this experiment, the flood risk model's parameters, the input forcing
24	data, and empirical social data were assumed to be somewhat imperfect. We tested if data
25	assimilation can contribute to accurately reconstructing the historical human-flood
26	interactions by integrating these imperfect models and imperfect and sparsely distributed
27	data. Our results highlight that it is important to sequentially constrain both state variables
28	and parameters when the input forcing is uncertain. Our proposed method can accurately
29	estimate the model's unknown parameters even if the true model parameter temporally
30	varies. The small amount of empirical data can significantly improve the simulation skill

- 31 of the flood risk model. Therefore, sequential data assimilation is useful to reconstruct
- 32 historical socio-hydrological processes by the synergistic effect of models and data.

33

35

36 1. Introduction

Socio-hydrology is an emerging research field in which two-way feedbacks between 37 social and water systems are investigated (Sivapalan et al. 2012, 2014). Understanding 38 39 complex socio-hydrologic phenomena contributes to solving water crises around the world. Socio-hydrology has been recognized as an important scientific grand challenge 4041 to meet United Nations' Sustainable Development Goals (Di Baldassarre et al. 2019).

42

The most popular approach in socio-hydrology is to develop dynamic models which 4344compute non-linear interactions between human and water. For instance, Di Baldassarre et al. (2013) developed a simplified model, which described human-flood interactions, to 4546understand the levee effect in which high levees generate a false sense of security and induce social vulnerabilities to severe floods (see also Viglione et al. 2014; Ciullo et al. 472017). Van Emmerik et al. (2014) developed a stylized model, which described two-way 48feedbacks between environment and economic activities, to understand the historical 4950competition for water between agricultural development and environment health in Australia (see also Roobavannan et al. 2017). Pande and Savenije (2016) modeled 51economic activities of smallholder farmers to analyze the agrarian crisis in Marathwada, 5253India. While socio-hydrologic models described above assumed the existence of a single 4

54	lumped decision maker, Yu et al. (2017) incorporated a collective action into their model
55	and analyzed the dynamics of community-managed flood protection systems in coastal
56	Bangladesh. Please refer to Di Baldassarre et al. (2019) for the comprehensive review of
57	socio-hydrologic modeling.
58	
59	In addition to these modeling approaches, both qualitative and quantitative data related to
60	socio-hydrologic processes are important to understand human-water interactions. For
61	instance, Mostert (2018) revealed historical changes in river management from water
62	resources development to protection and restoration by analyzing qualitative data. Dang
63	and Konar (2018) applied econometric methods to analyze quantitative data in both
64	human and water domains and quantified the causal relationship between trade openness
65	and water use. Kreibich et al. (2017) performed the detailed case study analysis on paired
66	floods, consecutive flood events which occurred in the same region with the second flood
67	causing significantly lower damage. They found that the reduction of vulnerability played
68	a key role for successful adaptation to the second floods.
69	
70	Although it is expected that the integration of model and data contributes to accurately

- vnderstanding the socio-hydrologic processes (Mount et al. 2016), the methodological
 - $\mathbf{5}$

72	development of the model-data integration in socio-hydrology is in its infancy. Generally,
73	mathematical models can provide spatiotemporally continuous state variables and
74	quantitative scenarios for future socio-hydrologic developments. In addition,
75	mathematical models can quantitatively provide possible scenarios unrealized in the real-
76	world, which gives the insight to targeted processes (e.g., Viglione et al. 2014). The major
77	limitation of socio-hydrological models is that they are often inaccurate due to the
78	uncertainty in their input forcing, parameters, and descriptions of the processes. On the
79	other hand, hydrologic and social data are often more reliable than numerical models and
80	can provide more complete understanding of the socio-hydrological processes (e.g.,
81	Mostert 2018), although data also have uncertainties. However, in many cases, relevant
82	data in socio-hydrology are sparsely distributed so that it is difficult to completely
83	reconstruct the historical socio-hydrologic processes from data. The other limitation of
84	the data-driven approach is that the quantification of the causal relationship cannot be
85	easily done only by empirical data (e.g., Dang and Konar 2018). Considering this
86	advantages and disadvantages of model and data, previous studies used social statistics
87	to calibrate and validate their socio-hydrologic models (e.g., Barendrecht et al. 2019;
88	Roobavannan et al. 2017; Ciullo et al. 2017; van Emmerik et al. 2014; Gonzales and
89	Ajami 2017).

90

91	In geosciences, sequential data assimilation has been widely used for the model-data
92	integration. Data assimilation sequentially adjusts the predicted state variables and
93	parameters of dynamic models by integrating observation data into models based on
94	Bayes' theorem. Data assimilation has been widely applied to numerical weather
95	prediction (e.g., Miyoshi and Yamane 2007; Bauer et al. 2015; Poterjoy et al. 2019;
96	Sawada et al. 2019), atmospheric reanalysis (e.g., Kobayashi et al. 2015; Hersbach et al.
97	2019), and hydrology and land surface modeling (e.g., Moradkhani et al. 2005; Sawada
98	et al. 2015; Rasmussen et al. 2015; Lievens et al. 2017). Applicability of the data
99	assimilation approach to the socio-hydrologic models has yet to be investigated.
100	
101	In this study, we aim to develop the methodology of sequential data assimilation for the
102	flood risk model proposed by Di Baldassarre et al. (2013). From a series of idealized
103	experiments, we demonstrate the potential of data assimilation to accurately reconstruct
104	the historical human-flood interactions. We focus on the case in which the socio-

105 hydrologic model's parameters, input forcing data, and social data are somewhat

106 inaccurate.

108

- 110 **2.1. Model**
- 111 In this study, we used a socio-hydrologic flood risk model proposed by Di Baldassarre et
- al. (2013). This model conceptualizes human-flood interactions by the set of simple

113 equations which describe the states of flood, economy, technology, politics, and society.

- 114 Based on this original model of Di Baldassarre et al. (2013), many similar flood risk
- 115 models have been proposed, validated, and applied (e.g., Viglione et al. 2014; Ciullo et
- al. 2017; Barendrecht et al. 2019). Here we briefly describe this model. Please refer to Di

117 Baldassarre et al. (2013) for the complete description of this model.

118

119 The governing equations of the flood risk model are shown below:

120
$$F = \begin{cases} 1 - \exp\left(-\frac{W + \xi_H H}{\alpha_H D}\right) & \text{if } W + \xi_H H > H\\ 0 & \text{if } W + \xi_H H \le H \end{cases}$$
(1)

121
$$R = \begin{cases} \varepsilon_T (W + \xi_H H - H) & \text{if } (F > 0) \text{ and } (FG > \gamma_E R \sqrt{G}) \text{ and } (G - FG > \gamma_E R \sqrt{G}) \\ 0 & \text{otherwise} \end{cases}$$

123
$$S = \begin{cases} \alpha_S F & if \ (R > 0) \\ F & if \ (R = 0) \end{cases}$$
(3)
124
$$\frac{dG}{dt} = \rho_E \left(1 - \frac{D}{\lambda_E} \right) G - \Delta(\Upsilon(t)) (FG + \gamma_E R \sqrt{G})$$
(4)

125
$$\frac{dD}{dt} = \left(M - \frac{D}{\lambda_P}\right) \frac{\varphi_P}{\sqrt{G}}$$
(5)

126
$$\frac{dH}{dt} = \Delta (\Upsilon(t))R - \kappa_T H$$
(6)

127
$$\frac{dM}{dt} = \Delta (\Upsilon(t))S - \mu_S M$$
(7)

128

This model has four state variables: G, D, H, and M. G(t) [L²] is the size of the human settlement; D(t) [L] is the distance of the center of mass of the human settlement from the river; H(t) [L] is the flood protection level (or levee height); M(t) [.] is the social awareness of the flood risk.

133

Equation (1) calculates the intensity of flooding events F(t) [.] from the high water level 134W(t) [L], the height of the levee H(t) [L], and the distance of the human settlement from 135the river D(t) [L]. Equation (2) calculates R(t) [L], the amount by which the levees are 136137raised responding to the flood event. There are three required conditions under which people decide to raise the levee. First, the flood event occurs. Second, the damage of flood 138139(FG) should be larger than the cost of raising levee. Third, the cost of raising levee should be lower than the wealth remaining after the flooding. Equation (3) shows the magnitude 140 of the psychological shock by the flood event S(t) [.]. If the levee is raised, the 141142psychological shock is assumed to be mitigated. Equation (4) explains the dynamics of

143	G(t), the size of the human settlement or the wealth of the community. Following the
144	notation of Di Baldassarre et al. (2013), $\Delta(\Upsilon(t)) = 1$ with integral only when time t
145	passes the time of the flooding event (F>0), otherwise, $\Delta(\Upsilon(t)) = 0$. The term FG +
146	$\gamma_E R \sqrt{G}$ (total cost of flood damage and construction of levees) appears only if flood
147	occurs. Equation (5) shows the dynamics of the distance of the center of mass of the
148	human settlement from the river $D(t)$. When the social awareness of the flood risk is high,
149	people tend to live far from the river. Equation (6) computes the dynamics of the flood
150	protection level H(t) and equation (7) shows the dynamics of the social awareness of the
151	flood risk M(t). The explanation of parameters can be found in Table 1.
152	

153

154 2.2. Data Assimilation

155	In this study, we used Sampling Importance Resampling Particle Filtering (SIRPF) as the
156	method of data assimilation. SIRPF has been widely used in hydrologic data assimilation
157	(e.g., Moradkhani et al. 2005; Qin et al. 2009; Sawada et al. 2015). Compared with the
158	other data assimilation algorithms such as ensemble Kalman filter, SIRPF is robust
159	against model nonlinearity and associated non-Gaussian error distribution. The
160	disadvantage of SIRPF is that the infeasible computational resources are required if the

161

162	model.
163	
164	The flood risk model can be formulated as a discrete state-space dynamic system:
165	$\boldsymbol{x}(t+1) = f(\boldsymbol{x}(t), \boldsymbol{\theta}, \boldsymbol{u}(t)) + \boldsymbol{q}(t) $ (8)
166	where $\mathbf{x}(t)$ is the state variables (i.e. G, D, H, and M), $\boldsymbol{\theta}$ is the model parameters, $\mathbf{u}(t)$
167	is the external forcing (i.e., the high water level), and $q(t)$ is the noise process which
168	represents the model error. In data assimilation, it is useful to formulate an observation
169	process as follows:
170	$\mathbf{y}^{f}(t) = h(\mathbf{x}(t)) + \mathbf{r}(t) $ (9)
171	where $y^{f}(t)$ is the simulated observation, h is the observation operator which maps the
172	model's state variables into the observable variables, and $r(t)$ is the noise process which
173	represents the observation error.
174	
175	The SIRPF is a Monte Carlo approximation of Bayesian update of the state variables and
176	parameters:
177	$p(\mathbf{x}(t), \boldsymbol{\theta} \mathbf{y}^{o}(1:t)) \propto p(\mathbf{y}^{o}(t) \mathbf{x}(t), \boldsymbol{\theta}) p(\mathbf{x}(t), \boldsymbol{\theta} \mathbf{y}^{o}(1:t-1)) $ (10)

numerical model is computationally expensive, which is not the case in the flood risk

- 178 where $p(\mathbf{x}(t), \boldsymbol{\theta} | \mathbf{y}^o(1:t))$ is the posterior probability of the state variables $\mathbf{x}(t)$ and
- 179 parameters θ given all observations up to time t $y^{o}(1:t)$. The prior knowledge,
- 180 $p(\mathbf{x}(t), \boldsymbol{\theta} | \mathbf{y}^o(1: t 1))$, based on the model integration is updated using the likelihood
- 181 which includes the new observation at time t $p(y^o(t)|x(t), \theta)$. In this study, we assumed
- 182 that our observation error follows Gaussian distribution so that the likelihood can be
- 183 formulated as follows:

184
$$p(\mathbf{y}^o(t)|\mathbf{x}(t), \boldsymbol{\theta}) \equiv L(\mathbf{y}^o(t), \mathbf{x}(t), \boldsymbol{\theta}) =$$

185
$$\frac{1}{\sqrt{\det(2\pi R)}} \exp\left[-\frac{1}{2} \left(\mathbf{y}^{o}(t) - \mathbf{y}^{f}(t) \right)^{T} \mathbf{R}^{-1} \left(\mathbf{y}^{o}(t) - \mathbf{y}^{f}(t) \right) \right]$$
 (11)

186 where **R** is the covariance matrix of the observation error process r(t). The prior

187 knowledge of the state variables is approximated by the ensemble simulation:

188
$$p(\mathbf{x}(t)|\mathbf{y}^{o}(1:t-1)) \approx \frac{1}{N} \sum_{i=1}^{N} \delta \left[\mathbf{x}(t) - f\left(\mathbf{x}^{i}(t-1), \boldsymbol{\theta}^{i}, \mathbf{u}^{i}(t-1) \right) \right]$$
 (12)

- 189 where N is the ensemble size, x^i, θ^i, u^i are the realizations of the ensemble member i,
- 190 and $\delta[.]$ is the Direc delta function.
- 191

192 The posterior probability of the state variables and parameters can be approximated as

193 follows:

194
$$p(\mathbf{x}(t)|\mathbf{y}^{o}(1:t)) \approx \sum_{i=1}^{N} w(i)\delta(\mathbf{x}(t) - \mathbf{x}^{i}(t))$$
 (13)

195
$$p(\boldsymbol{\theta}|\boldsymbol{y}^o(1:t)) \approx \sum_{i=1}^N w(i)\delta(\boldsymbol{\theta} - \boldsymbol{\theta}^i)$$
 (14)

- 196 where w(i) is the normalized weight for the realization of the ensemble member i and
- 197 is calculated using the likelihood (see also equation (11)).

198
$$w(i) = \frac{L(y^{o}(t), x^{i}(t), \theta^{i})}{\sum_{k=1}^{N} L(y^{o}(t), x^{k}(t), \theta^{k})}$$
(15)

199

200 The implementation of SIRPF is the following:

201	1.	Model state va	riables are	updated	from	time t-1	to t	using	ensemble
202		simulation (equa	ations (8) a	nd (12)).					

- 203 2. Simulated observations are calculated for all ensembles (equation (9)).
- 3. The likelihood for each ensemble member is calculated (equation (11))

4. The weights are obtained for all ensembles (equation (15))

206	5.	We applied a resampling procedure according to the normalized weights.
207		The normalized weights of ensemble i, $w(i)$, can be recognized as the
208		probability that the ensemble i is selected after resampling. Resampled state
209		variables and parameters are defined as x_{resamp}^{i} and θ_{resamp}^{i} , respectively.
210	6.	Since there are no mechanisms to increase the variance of parameters of
211		ensemble members, Moradkhani et al. (2005) proposed to perturb the
212		ensembles of parameters:

213 $\boldsymbol{\theta}^{i} \leftarrow \boldsymbol{\theta}^{i}_{resamp} + \varepsilon^{i}$ (16)

214	$\varepsilon^i \sim N(0, \max(\boldsymbol{\omega}, s \times Var^{\theta}))$	(17)
215	where $N(.)$ is the Gaussian distribution, Var	$\boldsymbol{\theta}^{i}$ is the variance of $\boldsymbol{\theta}^{i}$, $\boldsymbol{\omega}$
216	is the fixed hyperparameter (see Table 1 for it	s variable) which guarantees
217	that the ensembles of parameters do not conve	erge into a single value. s is
218	an adaptively changed factor according to the ef	fective ensemble size, N_{eff} .
219	$s = s_0 (1 - \left(\frac{N_{eff}}{N}\right)^2)$	(18)
220	$N_{eff} = \frac{1}{\sum_{i=1}^{N} w(i)}$	(19)
221	where $s_0 = 0.05$. The effective ensemble s	size is the measure of the
222	diversity of ensembles. If the effective ens	emble size becomes small,
223	ensembles should be strongly perturbed in orde	er to maintain the diversity of
224	ensembles. Similar strategy has been used in	many SIRPF systems (e.g.,
225	Moradkhani et al. 2005; Poterjoy et al. 2019).	
226		
227		

228 **3. Experiment design**

In this study, we performed three observation system simulation experiments (OSSEs).In the OSSE, we generated the synthetic truth of the state and flux variables by driving

231 the flood risk model with the specified parameters and input. Then, we generated

232	synthetic observations by adding the noise to this synthetic truth. Those synthetic
233	observations were assimilated into the model by SIRPF. The performance of SIRPF was
234	evaluated by comparing the estimated state variables by SIRPF with the synthetic truth.
235	Model parameters used to generate the synthetic truth can be found in Table 1. They are
236	identical to Di Baldassarre et al. (2013). The OSSE has been recognized as an important
237	preliminary step to verify the newly developed data assimilation systems (e.g.,
238	Moradkhani et al. 2005; Vrugt et al. 2013; Penny and Miyoshi 2016; Sawada et al. 2018).
239	

240 The high water level for the synthetic truth was generated by the following:

241
$$W = \min(v - 10, 0)$$
 (20)

242 v follows the Gumbel distribution:

243
$$p(v) = \frac{\exp(-\frac{v-\mu}{\beta})}{\beta} \exp(-\exp(-(v-\mu)\beta))$$
 (21)

where $\mu = 9, \beta = 2.5$. Although our high water level is not identical to Di Baldassarre et al. (2013), the estimated trajectory of the state variables is similar to Di Baldassarre et al. (2013).

247

248 Synthetic observations were generated by adding the Gaussian white noise to the F, G, D,

249 H, and M (see section 2.1) of the synthetic truth. The mean of the Gaussian white noise

250	was 0. The variance of the Gaussian white noise was 10% of the synthetic true variables.
251	We firstly assumed that all of the F, G, D, H, and M can be observed every 10 years or
252	every 10 model integration steps. Then, we evaluated the sensitivity of the observation
253	network (i.e. the observable variables and the observation intervals) to the SIRPF's
254	performance.
255	
256	We used the ensemble mean of root-mean square errors (mRMSE) as an evaluation
257	metrics:
258	$RMSE^{i} = \sqrt{\frac{1}{T} \sum_{t=1}^{T} (x^{i}(t) - z(t))} $ (22)
259	$mRMSE = \frac{1}{N} \sum_{i=1}^{N} RMSE^{i} $ (23)
260	where $RMSE^{i}$ is root-mean-square-error for i th ensemble, T is the computational period,
261	$x^{i}(t)$ is the simulated state variables of ensemble i at time t, $z(t)$ is the synthetic truth
262	at time t.
263	
264	
265	
266	
267	3.1. Experiment 1: Perfect model with uncertain high water levels

268	In the first OSSE, we assumed that the model was perfect, and we knew it. We used the
269	same parameter variables as the synthetic truth run and we did not perform the estimation
270	of parameters. Our SIRPF estimated only state variables. Although the model had no
271	uncertainty, it was assumed that the input data, the timeseries of the high water level, were
272	uncertain. Lognormal multiplicative noise was added to the synthetic true high water level
273	so that different ensemble members have different high water levels in the data
274	assimilation experiment. The two parameters of the lognormal distribution, commonly
275	called μ and σ , were set to 0 and 0.15, respectively.

276

277

278 **3.2. Experiment 2: Unknown model parameters and uncertain high water levels**

In the second OSSE, we assumed that some of the synthetic true parameter values were unknown. The unknown parameters in the experiment 2 were the cost of levee raising γ_E , the rate by which new properties can be built φ_P , the rate of decay of levees κ_T , and memory loss rate μ_S (see Table 1). We selected these unknown parameters one by one from four equations of economy, politics, technology, and social (see section 2.1). The initial parameter variables were assumed to be distributed in the bounded uniform distributions whose ranges were found in Table 1. Our SIRPF sequentially assimilated

- 286 observations and estimated both state variables and parameters in the experiment 2. The
- high water level data were uncertain as the experiment 1.
- 288

289

290 **3.3. Experiment 3: Unknown and time-variant model parameters and uncertain**

- 291 high water levels
- 292 To further demonstrate the potential of sequential data assimilation in socio-hydrology,

we assumed that the description of the model was biased in the experiment 3. Here we assumed that one of the model parameters was temporally varied by the unknown dynamics. Specifically, the memory loss rate, μ_s , was temporally varied in the

experiment 3:

297
$$\mu_{S}(t) = \begin{cases} 0.01 \ (t < 250) \\ 0.01 + (t - 250) \times \frac{0.10 - 0.01}{500} \ (250 \le t < 750) \\ 0.10 \ (750 \le t) \end{cases}$$
(24)

In this problem setting, we misunderstood the memory loss rate as a time-invariant parameter in our socio-hydrological model since the dynamics to control the memory loss rate was unknown. We evaluated if SIRPF could track this time-variant parameter and reveal the bias of the model's description. The cost of levee raising γ_E , the rate by which new properties can be built φ_P , and the rate of decay of levees κ_T were assumed to be

- 303 time-invariant unknown parameters as they were in the experiment 2. The input forcing
- data, high water level, were uncertain as described in the experiment 1.

305

306

```
307 4. Results
```

308 4.1. Experiment 1: Perfect model with uncertain high water levels

309 Figure 1 shows the timeseries of the model variables calculated by 5000 ensembles with

310 no data assimilation. Although the ensemble mean of the state variables is close to the

- 311 synthetic truth, the ensembles have the large spread especially for G. The uncertainty in
- the input forcing brings the uncertainty in the estimation of the historical socio-hydrologic
- 313 condition.
- 314

315	Figure 2	indicates	that this	uncertainty	is mitig	pated by	assimi	lating t	he observ	ations of	F.

- 316 G, D, H, and M into the model every 10 years with 5000 ensembles. Table 2 shows that
- 317 RMSE is reduced for all state variables by data assimilation.

- 319 While we can observe all of F, G, D, H, and M in Figure 2 and Table 2, Figure 3 shows
- 320 the performance of our SIRPF in which only one of them can be observed. Figure 3

321	reveals that we can accurately propagate the observation information into the model state
322	space. In other words, our SIRPF can positively impact the estimation of not only
323	observed state variables but unobserved state variables. For instance, even if we can
324	observe only G, the simulation of all G, D, H, and M is improved. This finding is
325	promising since all of the state variables cannot be observed in the real-world applications
326	Figure 3 also shows that observing F is not effective compared with the other variables.
327	This is because F is a flux and F can be observed only when floods occur so that the
328	number of effective observations is small. In addition, H is decoupled from the other state
329	variables. Observing F, D, and M negatively impacts the estimation of H and observing
330	H does not significantly improve the simulation of D and M. This is because the dynamics
331	of H is largely determined by high water levels whose uncertainty is not mitigated by our
332	SIRPF system.

333

While we can observe every 10 years in Figure 2 and Table 2, Figure 4 shows the sensitivity of the observation intervals to the performance of our SIRPF. Our SIRPF improves the estimation of the state variables when we can obtain observation once in 50-year or 100-year (see also Figure S1 for timeseries of the model's variables), which is promising since we cannot expect the frequent observations in the real-world applications.

339

340	Although we demonstrate the potential of our SIRPF with 5000 ensembles thus far, the
341	improvement of the simulation skill can be found in much smaller ensemble sizes. The
342	performance of our SIRPF with 20 ensembles is similar to that with 5000 ensembles
343	(Figure S2).
344	
345	
346	4.2. Experiment 2: Unknown model parameters and uncertain high water levels
347	Figure 5 reveals that the flood risk model completely loses its skill to estimate the human-
348	flood interactions if there are uncertainties in model parameters and high water levels
349	prescribed in Section 3. In contrast to the experiment 1, the ensemble mean cannot
350	accurately reproduce the synthetic truth.
351	
352	Figure 6 indicates that our SIRPF can accurately estimate the model state variables by
353	assimilating the observations of F, G, D, H, and M into the model every 10 years with
354	5000 ensembles. Figure 7 indicates that four unknown parameters can also be accurately
355	estimated. We find that it is relatively difficult to estimate the rate of levee's decay, κ_T ,

356 compared with the other parameters. This is because κ_T strongly affects the dynamics

- 357 of H and the uncertainty in H is largely determined by the uncertainty in high water levels,
- 358 which is not directly mitigated by our SIRPF system. Table 3 shows that RMSE is reduced
- 359 for both state variables and parameters by data assimilation.
- 360

361	We analyzed the impacts of the individual observation types on the simulation skill as we
362	did in the experiment 1. Figure 8a shows that the effects of the individual observation
363	types are similar to what we found in the experiment 1: (1) our SIRPF can improve the
364	skill to simulate unobservable state variables; (2) observing F is not effective compared
365	with the other observations; (3) H is decoupled from the other state variables. Figure 8b
366	reveals that the parameters can be efficiently estimated by assimilating the observation of
367	the state variables which are tightly related to the targeted parameters. For instance,
368	observing D can greatly improve the rate by which new properties can be built, φ_P , in
369	equation (5) which governs the dynamics of D. However, assimilating a single
370	observation type can contribute to accurately estimating all four parameters in many cases,
371	which is the promising result considering the sparsity of the observation in the real-world
372	applications.

374	The good performance of our SIRPF can be found with the longer observation intervals
375	as we found in the experiment 1. Figure 9 indicates that our SIRPF can improve the
376	estimation of the state variables and parameters when we can obtain observation once in
377	50-year or 100-year (see also Figures S3 and S4 for timeseries of the model's variables).
378	
379	In contrast to the experiment 1, the larger ensemble size is required to stably estimate both
380	state variables and parameters (Figure S5). The increased degree of freedom and the
381	nonlinear relationship between parameters and observations increase the necessary
382	ensemble size.
383	
384	
385	4.3. Experiment 3: Unknown and time-variant model parameters and uncertain
386	high water levels
387	In addition to the experiment 2, one of the unknown parameters (μ_S) temporally varies in
388	the synthetic truth of the experiment 3. Figure 10 and Table 4 indicate that despite the
389	error in the model's description, our SIRPF can greatly improve the simulation of the
390	flood risk model. Please note that the synthetic truth shown in Figure 10 is different from
391	that of the previous experiments especially for D and M. Figure 11d indicates that we can

392	accurately estimate the time-variant parameter (μ_S) as well as the other time-invariant
393	parameters (Figures 11a, 11b, and 11c). This result is promising since we cannot expect
394	the perfect description of the socio-hydrologic model in the real-world applications. We
395	also performed the sensitivity test on observation types, observation intervals, and
396	ensemble sizes, which results in the same conclusions as the experiment 2 (not shown).
397	
398	
399	5. Discussion
400	In this study, we developed the sequential data assimilation system for the widely adopted

demonstrated that our SIRPF for the flood risk model is useful to reconstruct the historical
human-flood interactions, which can be called "socio-hydrologic reanalysis", by
integrating sparsely distributed observations and imperfect numerical simulation.
Although our experiment design was idealized, this study reveals several important
findings toward real-world applications.

socio-hydrological model, the flood risk model by Di Baldassarre et al. (2013). We

407

401

First, the sequential data assimilation can mitigate the negative impact of the uncertaintyin the input forcing on the simulation of socio-hydrologic state variables. We found that

410	the small perturbation of high water levels greatly affects the long-term trajectory of the
411	socio-hydrologic state variables as Viglione et al. (2014) found. It is necessary to
412	sequentially constrain the state variables and parameters by sequential data assimilation
413	if the input forcing is uncertain although previous studies on the model-data integration
414	in socio-hydrology mainly focused on parameter calibration assuming no uncertainty in
415	the input forcing (e.g., Barendrecht et al. 2019; Roobavannan et al. 2017; Ciullo et al.
416	2017; van Emmerik et al. 2014; Gonzales and Ajami 2017). To deeply understand the
417	socio-hydrologic processes, the long-term historical analysis should be performed.
418	Although there are many studies on the accurate reconstruction of the historical weather
419	condition (e.g., Toride et al. 2017), it may be necessary to tackle with the uncertainty in
420	hydrometeorological datasets used for the input forcing of the socio-hydrologic models.
421	

422 Second, our SIRPF can efficiently improve the simulation of the socio-hydrologic state 423 variables using the sparsely distributed data. All model variables should not necessarily 424 be observed to constrain the model's state variables and parameters. In some cases, 425 observations of a single state variable are enough to reconstruct the accurate socio-426 hydrologic state. In addition, observation intervals can be longer than 10-year. Since it is 427 difficult to obtain the large volume of data in socio-hydrology, this finding is promising

428	toward real-world applications. We also give some insights about the informative
429	observation types in the flood risk model. With uncertain high water levels, observations
430	of the intensity of flooding events F and the height of levee H are not informative (i.e. the
431	assimilation of these observations cannot greatly improve the simulation skill) although
432	the empirical data which can be related to F and H may be easily found. On the other
433	hand, observations of the size of the human settlement G are informative to constrain the
434	flood risk model. Model parameters can be efficiently estimated by assimilating the state
435	variables which is tightly related to the targeted parameters, which is consistent to the
436	findings of the idealized experiment by Barendrecht et al. (2019).
437	

Third, our SIRPF is robust to the imperfectness of the socio-hydrologic model. The 438439unknown parameters can be efficiently estimated by the sequential data assimilation. 440 While previous studies evaluated the trajectory in the whole study period to calibrate the 441 socio-hydrologic models by iteratively performing the long-term model integration (e.g., 442Barendrecht et al. 2019; Roobavannan et al. 2017; Ciullo et al. 2017; van Emmerik et al. 443 2014; Gonzales and Ajami 2017), we sequentially optimize parameters based on the relatively short-term timeseries allowing parameters to temporally vary in the study 444445period. The advantage of this strategy is that we can deal with time-variant parameters as

446	previously demonstrated in the applications to hydrologic models (e.g., Pathiraja et al.
447	2018). In the model development, parameters are formulated as time-invariant values so
448	that the existence of time-variant parameters indicates the imperfect description of
449	dynamic models. Sequential data assimilation can mitigate the negative impact of this
450	imperfect model description. Vrugt et al. (2013) pointed out that the parameter
451	optimization by the sequential filters is unstable if parameter sensitivity temporally
452	changes (e.g., parameters affects the model's dynamics differently in the different
453	seasons), which may be the potential limitation of our strategy compared with Bayesian
454	inference based on the long-term trajectory such as Barendrecht et al. (2019).

455

456

457 6. Conclusion

In this study, we proposed to apply the sequential data assimilation to the sociohydrologic models. By several OSSEs in the flood risk modeling, we found that our proposed SIRPF is robust to the imperfect input forcing and the imperfect model. The sequential data assimilation is useful to reconstruct the socio-hydrologic conditions from the inaccurate and sparsely distributed data and the imperfect simulation. Future work will focus on the verification of our approach by the real data.

464

465

- 466 Acknowledgements
- 467 We thank Di Baldassarre for sharing the original source code of the flood risk model.
- 468 Data Integration and Analysis System (DIAS) provided us the computational resources.

469

470 References

- 471 Barendrecht, M. H., Viglione, A., Kreibich, H., Merz, B., Vorogushyn, S., and Blöschl,
- 472 G.: The Value of Empirical Data for Estimating the Parameters of a
- 473 Sociohydrological Flood Risk Model. Water Resources Research.
- 474 <u>https://doi.org/10.1029/2018WR024128</u>, 2019
- 475 Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather
- 476 prediction. *Nature*, 525(7567), 47–55. <u>https://doi.org/10.1038/nature14956</u>, 2015
- 477 Ciullo, A., Viglione, A., Castellarin, A., Crisci, M., and Di Baldassarre, G.: Socio-
- 478 hydrological modelling of flood-risk dynamics: comparing the resilience of green
- 479 and technological systems. Hydrological Sciences Journal, 62(6), 880-891.
- 480 https://doi.org/10.1080/02626667.2016.1273527, 2017

- 481 Dang, Q., and Konar, M.: Trade Openness and Domestic Water Use. Water Resources
- 482 *Research*, 54(1), 4–18. <u>https://doi.org/10.1002/2017WR021102</u>, 2018
- 483 Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Salinas, J. L., and Blöschl, G.: Socio-
- 484 hydrology: Conceptualising human-flood interactions. Hydrology and Earth
- 485 System Sciences, 17(8), 3295–3303. <u>https://doi.org/10.5194/hess-17-3295-2013</u>,
- 486 2013
- 487 Di Baldassarre, G., et al.: Socio-hydrology: Scientific Challenges in Addressing a Societal
- 488 Grand Challenge. Water Resources Research, 1–29.
- 489 <u>https://doi.org/10.1029/2018wr023901</u>, 2019
- 490 Gonzales, P., and Ajami, N.: Social and Structural Patterns of Drought-Related Water
- 491 Conservation and Rebound. Water Resources Research, 53(12), 10619–10634.
- 492 https://doi.org/10.1002/2017WR021852, 2017
- 493 Hersbach, H. et al.: Global reanalysis: goodbye ERA-Interim, hello ERA5, ECMWF
- 494 Newsletter, 159, 17-24, doi: <u>10.21957/vf291hehd7</u>, 2019
- 495 Kobayashi, S., et al.: The JRA-55 Reanalysis: General Specifications and Basic
- 496 Characteristics. Journal of the Meteorological Society of Japan, 93, 5-48.
- 497 https://doi.org/10.2151/jmsj.2015-001, 2015

- 498 Kreibich, H., et al.: Adaptation to flood risk: Results of international paired flood event
- 499 studies. Earth's Future. https://doi.org/10.1002/eft2.232, 2017
- 500 Lievens, H., et al.: Joint Sentinel-1 and SMAP data assimilation to improve soil moisture
- 501 estimates. Geophysical Research Letters, 44(12), 6145–6153.
- 502 https://doi.org/10.1002/2017GL073904, 2017
- 503 Miyoshi, T., and Yamane, S.: Local Ensemble Transform Kalman Filtering with an
- 504 AGCM at a T159/L48 Resolution. Monthly Weather Review, 135(2002), 3841-
- 505 3861. <u>https://doi.org/10.1175/2007MWR1873.1</u>, 2007
- 506 Moradkhani, H., Hsu, K. L., Gupta, H., and Sorooshian, S.: Uncertainty assessment of
- 507 hydrologic model states and parameters: Sequential data assimilation using the
- 508 particle filter. Water Resources Research, 41(5), 1–17.
- 509 https://doi.org/10.1029/2004WR003604, 2005

510 Mostert, E.: An alternative approach for socio-hydrology: Case study research. Hydrology

- 511 and Earth System Sciences, 22(1), 317–329. <u>https://doi.org/10.5194/hess-22-317-</u>
- 512 <u>2018</u>, 2018
- 513 Mount, N., J., et al.: Data-driven modelling approaches for sociohydrology: opportunities
- and challenges within the Panta Rhei Science Plan. Hydrological Sciences Journal,
- 515 *61(7)*, 1192-1208. <u>https://doi.org/10.1080/02626667.2016.1159683</u>, 2016

- 516 Pande, S., and Savenije, H. H. G.: A sociohydrological model for smallholder farmers in
- 517 Maharashtra, India. Water Resources Research, 52(3), 1923–1947.
- 518 https://doi.org/10.1002/2015WR017841, 2016
- 519 Pathiraja, S., Anghileri, D., Burlando, P., Sharma, A., Marshall, L., and Moradkhani, H.:
- 520 Time-varying parameter models for catchments with land use change: the
- 521 importance of model structure, Hydrol. Earth Syst. Sci., 22, 2903–2919,
- 522 https://doi.org/10.5194/hess-22-2903-2018, 2018.
- 523 Penny, S. G., and Miyoshi, T.: A local particle filter for high-dimensional geophysical
- 524 systems. 391–405. https://doi.org/10.5194/npg-23-391-2016, 2016
- 525 Poterjoy, J., Wicker, L., and Buehner, M.: Progress toward the application of a localized
- 526 particle filter for numerical weather prediction. *Monthly Weather Review*, 147(4),
- 527 1107–1126. https://doi.org/10.1175/MWR-D-17-0344.1, 2019
- 528 Qin, J., Liang, S., Yang, K., Kaihotsu, I., Liu, R., and Koike, T.: Simultaneous estimation
- 529 of both soil moisture and model parameters using particle filtering method through
- 530 the assimilation of microwave signal. Journal of Geophysical Research, 114(D15),
- 531 1–13. <u>https://doi.org/10.1029/2008JD011358</u>, 2009
- 532 Rasmussen, J., Madsen, H., Jensen, K. H., and Refsgaard, J. C.: Data assimilation in
- 533 integrated hydrological modeling using ensemble Kalman filtering: evaluating the

534	effect of ensemble size and localization on filter performance. Hydrology and Earth
535	System Sciences, 19(7), 2999-3013. https://doi.org/10.5194/hess-19-2999-2015,
536	2015
537	Roobavannan, M., Kandasamy, J., Pande, S., Vigneswaran, S., and Sivapalan, M.: Role
538	of Sectoral Transformation in the Evolution of Water Management Norms in
539	Agricultural Catchments: A Sociohydrologic Modeling Analysis. Water Resources
540	Research, 53(10), 8344-8365. https://doi.org/10.1002/2017WR020671, 2017
541	Sawada, Y., Koike, T., and Walker, J. P.: A land data assimilation system for simultaneous
542	simulation of soil moisture and vegetation dynamics. J. Geophys. Res. Atmos., 120,
543	5910– 5930. doi: <u>10.1002/2014JD022895</u> , 2015
544	Sawada, Y., Nakaegawa, T. and Miyoshi, T.: Hydrometeorology as an inversion problem:
545	Can river discharge observations improve the atmosphere by ensemble data
546	assimilation? Journal of Geophysical Research: Atmospheres, 123, 848-860.
547	https://doi.org/10.1002/2017JD027531, 2018
548	Sawada, Y., Okamoto, K., Kunii, M., and Miyoshi, T.: Assimilating every-10-minute
549	Himawari-8 infrared radiances to improve convective predictability. Journal of
550	Geophysical Research: Atmospheres, 124, 2546–2561.
551	https://doi.org/10.1029/2018JD029643, 2019

552	Sivapalan.	М.,	Saveniie.	H.H.G.	and Blöschl.	G.: Socio-h	vdrology: A	new	science	of
				TT:TT: OI				110 11		~ -
	,	,	J ,)		J 0J			

- 553 people and water. Hydrol. Process., 26: 1270-1276. doi:<u>10.1002/hyp.8426</u>, 2012
- 554 Sivapalan, M., Konar, M., Srinivasan, V., Chhatre, A., Wutich, A., Scott, C. A., and
- 555 Wescoat, J. L.: Socio-hydrology: Use-inspired water sustainability science for the
- 556 Anthropocene, *Earth's Future*, 2, 225–230. <u>https://doi.org/10.1002/2013EF000164</u>,
- 557 2014.
- 558 Toride, K., Neluwala, P., Kim, H. and Yoshimura, K.: Feasibility Study of the
- 559 Reconstruction of Historical Weather with Data Assimilation. *Mon. Wea. Rev.*, 145,
- 560 3563–3580, https://doi.org/10.1175/MWR-D-16-0288.1, 2017
- 561 Van Emmerik, T. H. M., et al.: Socio-hydrologic modeling to understand and mediate the
- 562 competition for water between agriculture development and environmental health:
- 563 Murrumbidgee River basin, Australia. Hydrology and Earth System Sciences,
- 564 18(10), 4239–4259. <u>https://doi.org/10.5194/hess-18-4239-2014</u>, 2014
- 565 Viglione, A., et al.: Insights from socio-hydrology modelling on dealing with flood risk -
- 566 Roles of collective memory, risk-taking attitude and trust. *Journal of Hydrology*,
- 567 518(PA), 71–82. <u>https://doi.org/10.1016/j.jhydrol.2014.01.018</u>, 2014
- 568 Vrugt, J. A., ter Braak, C. J. F., Diks, C. G. H., and Schoups, G.: Hydrologic data
- 569 assimilation using particle Markov chain Monte Carlo simulation: Theory, concepts

570	and applications	. Advances	in	Water	Resources,	51,	457	-478.
571	https://doi.org/10.1	016/j.advwatre	<u>s.2012</u>	2 <u>.04.002</u> , 2	2013			
572	Yu, D. J., Sangwan, N., S	ung, K., Chen,	X., ar	nd Merwa	de, V.: Incorpo	orating	instit	utions
573	and collective acti	on into a socio	ohydro	ological n	nodel of flood	resilie	nce.	Water
574	Resources Researc	h, 53(2), 1336-	-1353	. <u>https://d</u>	oi.org/10.1002	2/2016V	<u>VR01</u>	<u>9746</u> ,
575	2017							
576								
577								
578								

Table 1. Parameters of the flood risk model

	description	Values	Ranges in data	$\boldsymbol{\omega}$ in equation
			assimilation	(17)
ξ_H	proportion of additional	0.5	-	-
	high water level due to			
	levee heightening			
α_H	parameter related to the	0.01	-	-
	slope of the floodplain and			
	the resilience of the human			
	settlement			
ρ_{E}	maximum relative growth	0.02	-	-
	rate			
λ_E	critical distance from the	5000	-	-
	river beyond which the			
	settlement can no longer			
	grow			
γ_E	Cost of levee raising	0.5	0.2-5.0	0.01
λ_P	distance at which people	12000	-	
	would accept to live when			
	they remember past floods			
	whose total consequences			
	were perceived as a total			
	destruction of the			
	settlement			
φ_P	rate by which new	10000	1000-50000	100
	properties can be built			
$\boldsymbol{\varepsilon}_T$	safety factor for levees	1.1	-	-
	rising			
κ_T	rate of decay of levees	0.001	0-0.0015	0.0000025
α_s	proportion of shock after	0.5	-	-
	flooding if levees are risen			
μ_S	memory loss rate	0.05	0-0.4	0.0025

- 584 **Table 2.** RMSE of the no data assimilation experiment (NoDA) and the data
- assimilation experiment (DA) in which all observations are assimilated every 10 years
- 586 with 5000 ensembles in the experiment 1 (see section 3.1).

001			
		NoDA	DA
	G	1.06×10^{6}	1.64×10^{4}
	D	3.60×10^{2}	3.92×10^{1}
	Н	2.65	1.41
	Μ	1.08×10^{-1}	8.32×10 ⁻²
588			
589			

- 590 **Table 3.** RMSE of the no data assimilation experiment (NoDA) and the data
- 591 assimilation experiment (DA) in which all observations are assimilated every 10 years
- 592 with 5000 ensembles in the experiment 2 (see section 3.2).

	NoDA	DA
G	2.97×10^{6}	1.64×10^{4}
D	1.86×10^{3}	1.01×10^{2}
Н	9.35	1.63
Μ	2.24×10^{-1}	8.99×10 ⁻²
γ_E	2.08	4.27×10 ⁻¹
$arphi_P$	1.72×10^{4}	3.81×10^{3}
κ_T	4.12×10^{-4}	2.36×10 ⁻⁴
μ_S	$1.55 imes 10^{-1}$	2.43×10 ⁻²

594 595

- 596 **Table 4.** RMSE of the no data assimilation experiment (NoDA) and the data
- 597 assimilation experiment (DA) in which all observations are assimilated every 10 years
- with 5000 ensembles in the experiment 3 (see section 3.3).

	NoDA	DA
G	2.90×10^{6}	3.78×10^{3}
D	2.12×10^{3}	1.45×10^{2}
Н	9.33	1.62
Μ	2.45×10^{-1}	7.70×10 ⁻²
γ_E	2.08	4.51×10 ⁻¹
$arphi_P$	1.72×10^{4}	5.00×10^{3}
κ_T	4.12×10^{-4}	2.77×10 ⁻⁴
μ_S	1.60×10^{-1}	3.22×10 ⁻²
	•	

600 601

Figure 1. Timeseries of (a) high water level W(t), (b) the flood protection level (or levee height) H(t), (c) the distance of the center of mass of the human settlement from the river D(t), (d) the size of the human settlement G(t), (e) the intensity of flooding events F(t), and (f) the social awareness of the flood risk M(t) simulated by 5000 ensembles with uncertain high water levels and no data assimilation in the experiment 1 (see section 3.1). Grey, red, and black lines are the ensemble members, their mean, and the synthetic truth, respectively.

Figure 2. Timeseries of (a) high water level W(t), (b) the flood protection level (or levee height) H(t), (c) the distance of the center of mass of the human settlement from the river D(t), (d) the size of the human settlement G(t), (e) the intensity of flooding events F(t), and (f) the social awareness of the flood risk M(t) simulated by the data assimilation experiment in which the observations of F, G, D, H, and M are assimilated into the model

- every 10 years with 5000 ensembles in the experiment 1 (see section 3.1). Grey, red, and black lines are the
- ensemble members, their mean, and the synthetic truth, respectively.

617

Figure 3. The ratio of RMSEs of the no data assimilation experiment (NoDA) to those of the data assimilation experiments in which all of observations (F, G, D, H, and M) are assimilated (all) and each one of them is assimilated in the experiment 1 (see section 3.1). Blue, orange, gray, and yellow bars are RMSEs of the size of the human settlement G(t), the center of mass of the human settlement from the river D(t), the flood protection level (or levee height) H(t), and the social awareness of the flood risk M(t).

624

Figure 4. The ratio of RMSEs of the no data assimilation experiment (NoDA) to those of the data assimilation experiments in which all of observations (F, G, D, H, and M) are assimilated every 10, 20, 50, and 100 years in the experiment 1 (see section 3.1). Blue, orange, gray, and yellow bars are RMSEs of the size of the human settlement G(t), the center of mass of the human settlement from the river D(t), the flood protection level (or levee height) H(t), and the social awareness of the flood risk M(t).

Figure 5. Timeseries of (a) high water level W(t), (b) the flood protection level (or levee height) H(t), (c) the distance of the center of mass of the human settlement from the river D(t), (d) the size of the human settlement G(t), (e) the intensity of flooding events F(t), and (f) the social awareness of the flood risk M(t) simulated by 5000 ensembles with uncertain high water levels and no data assimilation in the experiment 2 (see section 3.2). Grey, red, and black lines are the ensemble members, their mean, and the synthetic truth, respectively.

Figure 6. Timeseries of (a) high water level W(t), (b) the flood protection level (or levee height) H(t), (c) the distance of the center of mass of the human settlement from the river D(t), (d) the size of the human settlement G(t), (e) the intensity of flooding events F(t), and (f) the social awareness of the flood risk M(t) simulated by the data assimilation experiment in which the observations of F, G, D, H, and M are assimilated into the model

- every 10 years with 5000 ensembles in the experiment 2 (see section 3.2). Grey, red, and black lines are the
- 643 ensemble members, their mean, and the synthetic truth, respectively.

Figure 7. Timeseries of (a) the cost of levee raising γ_E , (b) the rate by which new properties can be built φ_P ,

(c) the rate of decay of levees κ_T , (d) memory loss rate μ_S estimated by the data assimilation of all

observations (F, G, D, H, and M) with 5000 ensembles every 10 years in the experiment 2 (see section 3.2).

648 Grey, red, and black lines are the ensemble members, their mean, and the synthetic truth, respectively.

649

650

651

652 Figure 8. The ratio of RMSEs of the no data assimilation experiment (NoDA) to those of the data assimilation

653 experiments in which all of observations (F, G, D, H, and M) are assimilated (all) and each one of them is

assimilated in the experiment 2 (see section 3.2). (a) Blue, orange, gray, and yellow bars are RMSEs of the 48

- 655 size of the human settlement G(t), the center of mass of the human settlement from the river D(t), the flood
- 656 protection level (or levee height) H(t), and the social awareness of the flood risk M(t). (b) Blue, orange, gray,
- and yellow bars are RMSEs of the cost of levee raising γ_E , the rate by which new properties can be built φ_P ,
- 658 the rate of decay of levees κ_T , memory loss rate μ_S .
- 659
- 660

Figure 9. The ratio of RMSEs of the no data assimilation experiment (NoDA) to those of the data assimilation experiments in which all of observations (F, G, D, H, and M) are assimilated every 10, 20, 50, and 100 years in the experiment 2 (see section 3.2). (a) Blue, orange, gray, and yellow bars are RMSEs of the size of the

- 665 human settlement G(t), the center of mass of the human settlement from the river D(t), the flood protection
- level (or levee height) H(t), and the social awareness of the flood risk M(t). (b) Blue, orange, gray, and yellow
- bars are RMSEs of the cost of levee raising γ_E , the rate by which new properties can be built φ_P , the rate of
- 668 decay of levees κ_T , memory loss rate μ_S .
- 669
- 670

671

Figure 10. Timeseries of (a) high water level W(t), (b) the flood protection level (or levee height) H(t), (c) the distance of the center of mass of the human settlement from the river D(t), (d) the size of the human settlement G(t), (e) the intensity of flooding events F(t), and (f) the social awareness of the flood risk M(t) simulated by the data assimilation experiment in which the observations of F, G, D, H, and M are assimilated into the model

- every 10 years with 5000 ensembles in the experiment 3 (see section 3.3). Grey, red, and black lines are the
- ensemble members, their mean, and the synthetic truth, respectively.

Figure 11. Timeseries of (a) the cost of levee raising γ_E , (b) the rate by which new properties can be built φ_P , (c) the rate of decay of levees κ_T , (d) memory loss rate μ_S estimated by the data assimilation of all observations (F, G, D, H, and M) with 5000 ensembles every 10 years in the experiment 3 (see section 3.3). Grey, red, and black lines are the ensemble members, their mean, and the synthetic truth, respectively.

683