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Abstract 14 

In socio-hydrology, human-water interactions are simulated by mathematical models. 15 

Although the integration of these socio-hydrologic models and observation data is 16 

necessary to improve the understanding of the human-water interactions, the 17 

methodological development of the model-data integration in socio-hydrology is in its 18 

infancy. Here we propose to apply sequential data assimilation, which has been widely 19 

used in geoscience, to a socio-hydrological model. We developed particle filtering for a 20 

widely adopted flood risk model and performed an idealized observation system 21 

simulation experiment to demonstrate the potential of the sequential data assimilation in 22 

socio-hydrology. In this experiment, the flood risk model’s parameters, the input forcing 23 

data, and empirical social data were assumed to be somewhat imperfect. We tested if data 24 

assimilation can contribute to accurately reconstructing the historical human-flood 25 

interactions by integrating these imperfect models and imperfect and sparsely distributed 26 

data. Our results highlight that it is important to sequentially constrain both state variables 27 

and parameters when the input forcing is uncertain. Our proposed method can accurately 28 

estimate the model’s unknown parameters even if the true model parameter temporally 29 

varies. The small amount of empirical data can significantly improve the simulation skill 30 
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of the flood risk model. Therefore, sequential data assimilation is useful to reconstruct 31 

historical socio-hydrological processes by the synergistic effect of models and data. 32 

 33 

  34 
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 35 

1. Introduction 36 

Socio-hydrology is an emerging research field in which two-way feedbacks between 37 

social and water systems are investigated (Sivapalan et al. 2012, 2014). Understanding 38 

complex socio-hydrologic phenomena contributes to solving water crises around the 39 

world. Socio-hydrology has been recognized as an important scientific grand challenge 40 

to meet United Nations’ Sustainable Development Goals (Di Baldassarre et al. 2019). 41 

 42 

The most popular approach in socio-hydrology is to develop dynamic models which 43 

compute non-linear interactions between human and water. For instance, Di Baldassarre 44 

et al. (2013) developed a simplified model, which described human-flood interactions, to 45 

understand the levee effect in which high levees generate a false sense of security and 46 

induce social vulnerabilities to severe floods (see also Viglione et al. 2014; Ciullo et al. 47 

2017). Van Emmerik et al. (2014) developed a stylized model, which described two-way 48 

feedbacks between environment and economic activities, to understand the historical 49 

competition for water between agricultural development and environment health in 50 

Australia (see also Roobavannan et al. 2017). Pande and Savenije (2016) modeled 51 

economic activities of smallholder farmers to analyze the agrarian crisis in Marathwada, 52 

India. While socio-hydrologic models described above assumed the existence of a single 53 
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lumped decision maker, Yu et al. (2017) incorporated a collective action into their model 54 

and analyzed the dynamics of community-managed flood protection systems in coastal 55 

Bangladesh. Please refer to Di Baldassarre et al. (2019) for the comprehensive review of 56 

socio-hydrologic modeling. 57 

 58 

In addition to these modeling approaches, both qualitative and quantitative data related to 59 

socio-hydrologic processes are important to understand human-water interactions. For 60 

instance, Mostert (2018) revealed historical changes in river management from water 61 

resources development to protection and restoration by analyzing qualitative data. Dang 62 

and Konar (2018) applied econometric methods to analyze quantitative data in both 63 

human and water domains and quantified the causal relationship between trade openness 64 

and water use. Kreibich et al. (2017) performed the detailed case study analysis on paired 65 

floods, consecutive flood events which occurred in the same region with the second flood 66 

causing significantly lower damage. They found that the reduction of vulnerability played 67 

a key role for successful adaptation to the second floods. 68 

 69 

Although it is expected that the integration of model and data contributes to accurately 70 

understanding the socio-hydrologic processes (Mount et al. 2016), the methodological 71 
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development of the model-data integration in socio-hydrology is in its infancy. Generally, 72 

mathematical models can provide spatiotemporally continuous state variables and 73 

quantitative scenarios for future socio-hydrologic developments. In addition, 74 

mathematical models can quantitatively provide possible scenarios unrealized in the real-75 

world, which gives the insight to targeted processes (e.g., Viglione et al. 2014). The major 76 

limitation of socio-hydrological models is that they are often inaccurate due to the 77 

uncertainty in their input forcing, parameters, and descriptions of the processes. On the 78 

other hand, hydrologic and social data are often more reliable than numerical models and 79 

can provide more complete understanding of the socio-hydrological processes (e.g., 80 

Mostert 2018), although data also have uncertainties. However, in many cases, relevant 81 

data in socio-hydrology are sparsely distributed so that it is difficult to completely 82 

reconstruct the historical socio-hydrologic processes from data. The other limitation of 83 

the data-driven approach is that the quantification of the causal relationship cannot be 84 

easily done only by empirical data (e.g., Dang and Konar 2018). Considering this 85 

advantages and disadvantages of model and data, previous studies used social statistics 86 

to calibrate and validate their socio-hydrologic models (e.g., Barendrecht et al. 2019; 87 

Roobavannan et al. 2017; Ciullo et al. 2017; van Emmerik et al. 2014; Gonzales and 88 

Ajami 2017). 89 
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 90 

In geosciences, sequential data assimilation has been widely used for the model-data 91 

integration. Data assimilation sequentially adjusts the predicted state variables and 92 

parameters of dynamic models by integrating observation data into models based on 93 

Bayes’ theorem. Data assimilation has been widely applied to numerical weather 94 

prediction (e.g., Miyoshi and Yamane 2007; Bauer et al. 2015; Poterjoy et al. 2019; 95 

Sawada et al. 2019), atmospheric reanalysis (e.g., Kobayashi et al. 2015; Hersbach et al. 96 

2019), and hydrology and land surface modeling (e.g., Moradkhani et al. 2005; Sawada 97 

et al. 2015; Rasmussen et al. 2015; Lievens et al. 2017). Applicability of the data 98 

assimilation approach to the socio-hydrologic models has yet to be investigated. 99 

 100 

In this study, we aim to develop the methodology of sequential data assimilation for the 101 

flood risk model proposed by Di Baldassarre et al. (2013). From a series of idealized 102 

experiments, we demonstrate the potential of data assimilation to accurately reconstruct 103 

the historical human-flood interactions. We focus on the case in which the socio-104 

hydrologic model’s parameters, input forcing data, and social data are somewhat 105 

inaccurate.  106 

 107 
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 108 

2. Method 109 

2.1. Model 110 

In this study, we used a socio-hydrologic flood risk model proposed by Di Baldassarre et 111 

al. (2013). This model conceptualizes human-flood interactions by the set of simple 112 

equations which describe the states of flood, economy, technology, politics, and society. 113 

Based on this original model of Di Baldassarre et al. (2013), many similar flood risk 114 

models have been proposed, validated, and applied (e.g., Viglione et al. 2014; Ciullo et 115 

al. 2017; Barendrecht et al. 2019). Here we briefly describe this model. Please refer to Di 116 

Baldassarre et al. (2013) for the complete description of this model. 117 

 118 

The governing equations of the flood risk model are shown below: 119 

𝐹 = {
1 − exp (−

𝑊+𝜉𝐻𝐻

𝛼𝐻𝐷
)        𝑖𝑓 𝑊 + 𝜉𝐻𝐻 > 𝐻

0                                               𝑖𝑓 𝑊 + 𝜉𝐻𝐻 ≤ 𝐻
     (1) 120 

𝑅 = {𝜀𝑇(𝑊 + 𝜉𝐻𝐻 − 𝐻)    𝑖𝑓 (𝐹 > 0) 𝑎𝑛𝑑 (𝐹𝐺 > 𝛾𝐸𝑅√𝐺) 𝑎𝑛𝑑 (𝐺 − 𝐹𝐺 > 𝛾𝐸𝑅√𝐺)

0                                                                                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 121 

(2) 122 

𝑆 = {
𝛼𝑆𝐹    𝑖𝑓 (𝑅 > 0)
𝐹         𝑖𝑓 (𝑅 = 0)

     (3) 123 

𝑑𝐺

𝑑𝑡
= 𝜌𝐸 (1 −

𝐷

𝜆𝐸
) 𝐺 − Δ(Υ(𝑡))(𝐹𝐺 + 𝛾𝐸𝑅√𝐺)  (4) 124 
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𝑑𝐷

𝑑𝑡
= (𝑀 −

𝐷

𝜆𝑃
)

𝜑𝑃

√𝐺
      (5) 125 

𝑑𝐻

𝑑𝑡
= Δ(Υ(𝑡))𝑅 − 𝜅𝑇𝐻     (6) 126 

𝑑𝑀

𝑑𝑡
= Δ(Υ(𝑡))𝑆 − 𝜇𝑆𝑀     (7) 127 

 128 

This model has four state variables: G, D, H, and M. G(t) [L2] is the size of the human 129 

settlement; D(t) [L] is the distance of the center of mass of the human settlement from the 130 

river; H(t) [L] is the flood protection level (or levee height); M(t) [.] is the social 131 

awareness of the flood risk. 132 

 133 

Equation (1) calculates the intensity of flooding events F(t) [.] from the high water level 134 

W(t) [L], the height of the levee H(t) [L], and the distance of the human settlement from 135 

the river D(t) [L]. Equation (2) calculates R(t) [L], the amount by which the levees are 136 

raised responding to the flood event. There are three required conditions under which 137 

people decide to raise the levee. First, the flood event occurs. Second, the damage of flood 138 

(FG) should be larger than the cost of raising levee. Third, the cost of raising levee should 139 

be lower than the wealth remaining after the flooding. Equation (3) shows the magnitude 140 

of the psychological shock by the flood event S(t) [.]. If the levee is raised, the 141 

psychological shock is assumed to be mitigated. Equation (4) explains the dynamics of 142 
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G(t), the size of the human settlement or the wealth of the community. Following the 143 

notation of Di Baldassarre et al. (2013), Δ(Υ(𝑡)) = 1 with integral only when time t 144 

passes the time of the flooding event (F>0), otherwise, Δ(Υ(𝑡)) = 0. The term 𝐹𝐺 +145 

𝛾𝐸𝑅√𝐺  (total cost of flood damage and construction of levees) appears only if flood 146 

occurs. Equation (5) shows the dynamics of the distance of the center of mass of the 147 

human settlement from the river D(t). When the social awareness of the flood risk is high, 148 

people tend to live far from the river. Equation (6) computes the dynamics of the flood 149 

protection level H(t) and equation (7) shows the dynamics of the social awareness of the 150 

flood risk M(t). The explanation of parameters can be found in Table 1.  151 

 152 

 153 

2.2. Data Assimilation 154 

In this study, we used Sampling Importance Resampling Particle Filtering (SIRPF) as the 155 

method of data assimilation. SIRPF has been widely used in hydrologic data assimilation 156 

(e.g., Moradkhani et al. 2005; Qin et al. 2009; Sawada et al. 2015). Compared with the 157 

other data assimilation algorithms such as ensemble Kalman filter, SIRPF is robust 158 

against model nonlinearity and associated non-Gaussian error distribution. The 159 

disadvantage of SIRPF is that the infeasible computational resources are required if the 160 
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numerical model is computationally expensive, which is not the case in the flood risk 161 

model. 162 

 163 

The flood risk model can be formulated as a discrete state-space dynamic system: 164 

𝒙(𝑡 + 1) = 𝑓(𝒙(𝑡), 𝜽, 𝒖(𝑡)) + 𝒒(𝑡)    (8) 165 

where 𝒙(𝑡) is the state variables (i.e. G, D, H, and M), 𝜽 is the model parameters, 𝒖(𝑡) 166 

is the external forcing (i.e., the high water level), and 𝒒(𝑡) is the noise process which 167 

represents the model error. In data assimilation, it is useful to formulate an observation 168 

process as follows: 169 

𝒚𝑓(𝑡) = ℎ(𝒙(𝑡)) + 𝒓(𝑡)      (9) 170 

where 𝒚𝑓(𝑡) is the simulated observation, h is the observation operator which maps the 171 

model’s state variables into the observable variables, and 𝒓(𝑡) is the noise process which 172 

represents the observation error.  173 

 174 

The SIRPF is a Monte Carlo approximation of Bayesian update of the state variables and 175 

parameters: 176 

𝑝(𝒙(𝑡), 𝜽|𝒚𝑜(1: 𝑡)) ∝ 𝑝(𝒚𝑜(𝑡)|𝒙(𝑡), 𝜽)𝑝(𝒙(𝑡), 𝜽|𝒚𝑜(1: 𝑡 − 1))  (10) 177 
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where 𝑝(𝒙(𝑡), 𝜽|𝒚𝑜(1: 𝑡)) is the posterior probability of the state variables 𝒙(𝑡) and 178 

parameters 𝜽  given all observations up to time t 𝒚𝑜(1: 𝑡) . The prior knowledge, 179 

𝑝(𝒙(𝑡), 𝜽|𝒚𝑜(1: 𝑡 − 1)), based on the model integration is updated using the likelihood 180 

which includes the new observation at time t 𝑝(𝒚𝑜(𝑡)|𝒙(𝑡), 𝜽). In this study, we assumed 181 

that our observation error follows Gaussian distribution so that the likelihood can be 182 

formulated as follows: 183 

𝑝(𝒚𝑜(𝑡)|𝒙(𝑡), 𝜽) ≡ 𝐿(𝒚𝑜(𝑡), 𝒙(𝑡), 𝜽) = 184 

1

√det (2𝜋𝑹)
exp [−

1

2
(𝒚𝑜(𝑡) − 𝒚𝑓(𝑡))

𝑇

𝑹−1 (𝒚𝑜(𝑡) − 𝒚𝑓(𝑡))] (11) 185 

where R is the covariance matrix of the observation error process 𝒓(𝑡) . The prior 186 

knowledge of the state variables is approximated by the ensemble simulation: 187 

𝑝(𝒙(𝑡)|𝒚𝑜(1: 𝑡 − 1)) ≈
1

𝑁
∑ 𝛿 [𝒙(𝑡) − 𝑓 (𝒙𝑖(𝑡 − 1), 𝜽𝑖 , 𝒖𝑖(𝑡 − 1))]𝑁

𝑖=1  (12) 188 

where N is the ensemble size, 𝒙𝑖 , 𝜽𝑖 , 𝒖𝑖 are the realizations of the ensemble member i, 189 

and 𝛿[. ] is the Direc delta function. 190 

 191 

The posterior probability of the state variables and parameters can be approximated as 192 

follows: 193 

𝑝(𝒙(𝑡)|𝒚𝑜(1: 𝑡)) ≈ ∑ 𝑤(𝑖)𝛿(𝒙(𝑡) − 𝒙𝑖(𝑡))𝑁
𝑖=1    (13) 194 

𝑝(𝜽|𝒚𝑜(1: 𝑡)) ≈ ∑ 𝑤(𝑖)𝛿(𝜽 − 𝜽𝑖)𝑁
𝑖=1     (14) 195 
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where 𝑤(𝑖) is the normalized weight for the realization of the ensemble member i and 196 

is calculated using the likelihood (see also equation (11)). 197 

𝑤(𝑖) =
𝐿(𝒚𝑜(𝑡),𝒙𝑖(𝑡),𝜃𝑖)

∑ 𝐿(𝑁
𝑘=1 𝒚𝑜(𝑡),𝒙𝑘(𝑡),𝜃𝑘)

     (15) 198 

 199 

The implementation of SIRPF is the following: 200 

1. Model state variables are updated from time t-1 to t using ensemble 201 

simulation (equations (8) and (12)). 202 

2. Simulated observations are calculated for all ensembles (equation (9)). 203 

3. The likelihood for each ensemble member is calculated (equation (11)) 204 

4. The weights are obtained for all ensembles (equation (15)) 205 

5. We applied a resampling procedure according to the normalized weights. 206 

The normalized weights of ensemble i, 𝑤(𝑖) , can be recognized as the 207 

probability that the ensemble i is selected after resampling. Resampled state 208 

variables and parameters are defined as 𝒙𝑟𝑒𝑠𝑎𝑚𝑝
𝑖  and 𝜽𝑟𝑒𝑠𝑎𝑚𝑝

𝑖 , respectively. 209 

6. Since there are no mechanisms to increase the variance of parameters of 210 

ensemble members, Moradkhani et al. (2005) proposed to perturb the 211 

ensembles of parameters: 212 

𝜽𝑖 ← 𝜽𝑟𝑒𝑠𝑎𝑚𝑝
𝑖 + 𝜀𝑖     (16) 213 
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𝜀𝑖~𝑁(0, max (𝝎, 𝑠 × 𝑉𝑎𝑟𝜃)    (17) 214 

where 𝑁(. ) is the Gaussian distribution, 𝑉𝑎𝑟𝜃 is the variance of 𝜽𝑖 , 𝝎 215 

is the fixed hyperparameter (see Table 1 for its variable) which guarantees 216 

that the ensembles of parameters do not converge into a single value. 𝑠 is 217 

an adaptively changed factor according to the effective ensemble size, 𝑁𝑒𝑓𝑓. 218 

𝑠 = 𝑠0(1 − (
𝑁𝑒𝑓𝑓

𝑁
)

2

)    (18) 219 

𝑁𝑒𝑓𝑓 =
1

∑ 𝑤(𝑖)𝑁
𝑖=1

     (19) 220 

where 𝑠0 = 0.05 . The effective ensemble size is the measure of the 221 

diversity of ensembles. If the effective ensemble size becomes small, 222 

ensembles should be strongly perturbed in order to maintain the diversity of 223 

ensembles. Similar strategy has been used in many SIRPF systems (e.g., 224 

Moradkhani et al. 2005; Poterjoy et al. 2019). 225 

 226 

 227 

3. Experiment design 228 

In this study, we performed three observation system simulation experiments (OSSEs). 229 

In the OSSE, we generated the synthetic truth of the state and flux variables by driving 230 

the flood risk model with the specified parameters and input. Then, we generated 231 
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synthetic observations by adding the noise to this synthetic truth. Those synthetic 232 

observations were assimilated into the model by SIRPF. The performance of SIRPF was 233 

evaluated by comparing the estimated state variables by SIRPF with the synthetic truth. 234 

Model parameters used to generate the synthetic truth can be found in Table 1. They are 235 

identical to Di Baldassarre et al. (2013). The OSSE has been recognized as an important 236 

preliminary step to verify the newly developed data assimilation systems (e.g., 237 

Moradkhani et al. 2005; Vrugt et al. 2013; Penny and Miyoshi 2016; Sawada et al. 2018). 238 

 239 

The high water level for the synthetic truth was generated by the following: 240 

𝑊 = min (𝑣 − 10, 0)       (20) 241 

𝑣 follows the Gumbel distribution: 242 

𝑝(𝑣) =
exp (−

𝑣−𝜇

𝛽
)

𝛽
exp (− exp(−(𝑣 − 𝜇)𝛽))   (21) 243 

where 𝜇 = 9, 𝛽 = 2.5. Although our high water level is not identical to Di Baldassarre 244 

et al. (2013), the estimated trajectory of the state variables is similar to Di Baldassarre et 245 

al. (2013). 246 

 247 

Synthetic observations were generated by adding the Gaussian white noise to the F, G, D, 248 

H, and M (see section 2.1) of the synthetic truth. The mean of the Gaussian white noise 249 
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was 0. The variance of the Gaussian white noise was 10% of the synthetic true variables. 250 

We firstly assumed that all of the F, G, D, H, and M can be observed every 10 years or 251 

every 10 model integration steps. Then, we evaluated the sensitivity of the observation 252 

network (i.e. the observable variables and the observation intervals) to the SIRPF’s 253 

performance. 254 

 255 

We used the ensemble mean of root-mean square errors (mRMSE) as an evaluation 256 

metrics: 257 

𝑅𝑀𝑆𝐸𝑖 = √
1

𝑇
∑ (𝑥𝑖(𝑡) − 𝑧(𝑡)𝑇

𝑡=1 )    (22) 258 

𝑚𝑅𝑀𝑆𝐸 =
1

𝑁
∑ 𝑅𝑀𝑆𝐸𝑖𝑁

𝑖=1      (23) 259 

where 𝑅𝑀𝑆𝐸𝑖 is root-mean-square-error for i th ensemble, T is the computational period, 260 

𝑥𝑖(𝑡) is the simulated state variables of ensemble i at time t, 𝑧(𝑡) is the synthetic truth 261 

at time t.  262 

 263 

 264 

 265 

 266 

3.1. Experiment 1: Perfect model with uncertain high water levels 267 
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In the first OSSE, we assumed that the model was perfect, and we knew it. We used the 268 

same parameter variables as the synthetic truth run and we did not perform the estimation 269 

of parameters. Our SIRPF estimated only state variables. Although the model had no 270 

uncertainty, it was assumed that the input data, the timeseries of the high water level, were 271 

uncertain. Lognormal multiplicative noise was added to the synthetic true high water level 272 

so that different ensemble members have different high water levels in the data 273 

assimilation experiment. The two parameters of the lognormal distribution, commonly 274 

called 𝜇 and 𝜎, were set to 0 and 0.15, respectively. 275 

 276 

 277 

3.2. Experiment 2: Unknown model parameters and uncertain high water levels 278 

In the second OSSE, we assumed that some of the synthetic true parameter values were 279 

unknown. The unknown parameters in the experiment 2 were the cost of levee raising 𝛾𝐸, 280 

the rate by which new properties can be built 𝜑𝑃, the rate of decay of levees 𝜅𝑇, and 281 

memory loss rate 𝜇𝑆 (see Table 1). We selected these unknown parameters one by one 282 

from four equations of economy, politics, technology, and social (see section 2.1). The 283 

initial parameter variables were assumed to be distributed in the bounded uniform 284 

distributions whose ranges were found in Table 1. Our SIRPF sequentially assimilated 285 
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observations and estimated both state variables and parameters in the experiment 2. The 286 

high water level data were uncertain as the experiment 1. 287 

 288 

 289 

3.3. Experiment 3: Unknown and time-variant model parameters and uncertain 290 

high water levels 291 

To further demonstrate the potential of sequential data assimilation in socio-hydrology, 292 

we assumed that the description of the model was biased in the experiment 3. Here we 293 

assumed that one of the model parameters was temporally varied by the unknown 294 

dynamics. Specifically, the memory loss rate, 𝜇𝑆 , was temporally varied in the 295 

experiment 3: 296 

𝜇𝑆(𝑡) = {

0.01 (𝑡 < 250)

0.01 + (𝑡 − 250) ×
0.10−0.01

500

0.10 (750 ≤ 𝑡)

 (250 ≤ 𝑡 < 750)  (24) 297 

In this problem setting, we misunderstood the memory loss rate as a time-invariant 298 

parameter in our socio-hydrological model since the dynamics to control the memory loss 299 

rate was unknown. We evaluated if SIRPF could track this time-variant parameter and 300 

reveal the bias of the model’s description. The cost of levee raising 𝛾𝐸, the rate by which 301 

new properties can be built 𝜑𝑃, and the rate of decay of levees 𝜅𝑇 were assumed to be 302 
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time-invariant unknown parameters as they were in the experiment 2. The input forcing 303 

data, high water level, were uncertain as described in the experiment 1. 304 

 305 

 306 

4. Results 307 

4.1. Experiment 1: Perfect model with uncertain high water levels 308 

Figure 1 shows the timeseries of the model variables calculated by 5000 ensembles with 309 

no data assimilation. Although the ensemble mean of the state variables is close to the 310 

synthetic truth, the ensembles have the large spread especially for G. The uncertainty in 311 

the input forcing brings the uncertainty in the estimation of the historical socio-hydrologic 312 

condition. 313 

 314 

Figure 2 indicates that this uncertainty is mitigated by assimilating the observations of F, 315 

G, D, H, and M into the model every 10 years with 5000 ensembles. Table 2 shows that 316 

RMSE is reduced for all state variables by data assimilation. 317 

 318 

While we can observe all of F, G, D, H, and M in Figure 2 and Table 2, Figure 3 shows 319 

the performance of our SIRPF in which only one of them can be observed. Figure 3 320 
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reveals that we can accurately propagate the observation information into the model state 321 

space. In other words, our SIRPF can positively impact the estimation of not only 322 

observed state variables but unobserved state variables. For instance, even if we can 323 

observe only G, the simulation of all G, D, H, and M is improved. This finding is 324 

promising since all of the state variables cannot be observed in the real-world applications. 325 

Figure 3 also shows that observing F is not effective compared with the other variables. 326 

This is because F is a flux and F can be observed only when floods occur so that the 327 

number of effective observations is small. In addition, H is decoupled from the other state 328 

variables. Observing F, D, and M negatively impacts the estimation of H and observing 329 

H does not significantly improve the simulation of D and M. This is because the dynamics 330 

of H is largely determined by high water levels whose uncertainty is not mitigated by our 331 

SIRPF system. 332 

 333 

While we can observe every 10 years in Figure 2 and Table 2, Figure 4 shows the 334 

sensitivity of the observation intervals to the performance of our SIRPF. Our SIRPF 335 

improves the estimation of the state variables when we can obtain observation once in 336 

50-year or 100-year (see also Figure S1 for timeseries of the model’s variables), which is 337 

promising since we cannot expect the frequent observations in the real-world applications. 338 
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 339 

Although we demonstrate the potential of our SIRPF with 5000 ensembles thus far, the 340 

improvement of the simulation skill can be found in much smaller ensemble sizes. The 341 

performance of our SIRPF with 20 ensembles is similar to that with 5000 ensembles 342 

(Figure S2). 343 

 344 

 345 

4.2. Experiment 2: Unknown model parameters and uncertain high water levels 346 

Figure 5 reveals that the flood risk model completely loses its skill to estimate the human-347 

flood interactions if there are uncertainties in model parameters and high water levels 348 

prescribed in Section 3. In contrast to the experiment 1, the ensemble mean cannot 349 

accurately reproduce the synthetic truth. 350 

 351 

Figure 6 indicates that our SIRPF can accurately estimate the model state variables by 352 

assimilating the observations of F, G, D, H, and M into the model every 10 years with 353 

5000 ensembles. Figure 7 indicates that four unknown parameters can also be accurately 354 

estimated. We find that it is relatively difficult to estimate the rate of levee’s decay, 𝜅𝑇, 355 

compared with the other parameters. This is because 𝜅𝑇 strongly affects the dynamics 356 
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of H and the uncertainty in H is largely determined by the uncertainty in high water levels, 357 

which is not directly mitigated by our SIRPF system. Table 3 shows that RMSE is reduced 358 

for both state variables and parameters by data assimilation. 359 

 360 

We analyzed the impacts of the individual observation types on the simulation skill as we 361 

did in the experiment 1. Figure 8a shows that the effects of the individual observation 362 

types are similar to what we found in the experiment 1: (1) our SIRPF can improve the 363 

skill to simulate unobservable state variables; (2) observing F is not effective compared 364 

with the other observations; (3) H is decoupled from the other state variables. Figure 8b 365 

reveals that the parameters can be efficiently estimated by assimilating the observation of 366 

the state variables which are tightly related to the targeted parameters. For instance, 367 

observing D can greatly improve the rate by which new properties can be built, 𝜑𝑃, in 368 

equation (5) which governs the dynamics of D. However, assimilating a single 369 

observation type can contribute to accurately estimating all four parameters in many cases, 370 

which is the promising result considering the sparsity of the observation in the real-world 371 

applications. 372 

 373 
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The good performance of our SIRPF can be found with the longer observation intervals 374 

as we found in the experiment 1. Figure 9 indicates that our SIRPF can improve the 375 

estimation of the state variables and parameters when we can obtain observation once in 376 

50-year or 100-year (see also Figures S3 and S4 for timeseries of the model’s variables). 377 

 378 

In contrast to the experiment 1, the larger ensemble size is required to stably estimate both 379 

state variables and parameters (Figure S5). The increased degree of freedom and the 380 

nonlinear relationship between parameters and observations increase the necessary 381 

ensemble size. 382 

 383 

 384 

4.3. Experiment 3: Unknown and time-variant model parameters and uncertain 385 

high water levels 386 

In addition to the experiment 2, one of the unknown parameters (𝜇𝑆) temporally varies in 387 

the synthetic truth of the experiment 3. Figure 10 and Table 4 indicate that despite the 388 

error in the model’s description, our SIRPF can greatly improve the simulation of the 389 

flood risk model. Please note that the synthetic truth shown in Figure 10 is different from 390 

that of the previous experiments especially for D and M. Figure 11d indicates that we can 391 
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accurately estimate the time-variant parameter (𝜇𝑆) as well as the other time-invariant 392 

parameters (Figures 11a, 11b, and 11c). This result is promising since we cannot expect 393 

the perfect description of the socio-hydrologic model in the real-world applications. We 394 

also performed the sensitivity test on observation types, observation intervals, and 395 

ensemble sizes, which results in the same conclusions as the experiment 2 (not shown). 396 

 397 

 398 

5. Discussion 399 

In this study, we developed the sequential data assimilation system for the widely adopted 400 

socio-hydrological model, the flood risk model by Di Baldassarre et al. (2013). We 401 

demonstrated that our SIRPF for the flood risk model is useful to reconstruct the historical 402 

human-flood interactions, which can be called “socio-hydrologic reanalysis”, by 403 

integrating sparsely distributed observations and imperfect numerical simulation. 404 

Although our experiment design was idealized, this study reveals several important 405 

findings toward real-world applications. 406 

 407 

First, the sequential data assimilation can mitigate the negative impact of the uncertainty 408 

in the input forcing on the simulation of socio-hydrologic state variables. We found that 409 
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the small perturbation of high water levels greatly affects the long-term trajectory of the 410 

socio-hydrologic state variables as Viglione et al. (2014) found. It is necessary to 411 

sequentially constrain the state variables and parameters by sequential data assimilation 412 

if the input forcing is uncertain although previous studies on the model-data integration 413 

in socio-hydrology mainly focused on parameter calibration assuming no uncertainty in 414 

the input forcing (e.g., Barendrecht et al. 2019; Roobavannan et al. 2017; Ciullo et al. 415 

2017; van Emmerik et al. 2014; Gonzales and Ajami 2017). To deeply understand the 416 

socio-hydrologic processes, the long-term historical analysis should be performed. 417 

Although there are many studies on the accurate reconstruction of the historical weather 418 

condition (e.g., Toride et al. 2017), it may be necessary to tackle with the uncertainty in 419 

hydrometeorological datasets used for the input forcing of the socio-hydrologic models. 420 

 421 

Second, our SIRPF can efficiently improve the simulation of the socio-hydrologic state 422 

variables using the sparsely distributed data. All model variables should not necessarily 423 

be observed to constrain the model’s state variables and parameters. In some cases, 424 

observations of a single state variable are enough to reconstruct the accurate socio-425 

hydrologic state. In addition, observation intervals can be longer than 10-year. Since it is 426 

difficult to obtain the large volume of data in socio-hydrology, this finding is promising 427 
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toward real-world applications. We also give some insights about the informative 428 

observation types in the flood risk model. With uncertain high water levels, observations 429 

of the intensity of flooding events F and the height of levee H are not informative (i.e. the 430 

assimilation of these observations cannot greatly improve the simulation skill) although 431 

the empirical data which can be related to F and H may be easily found. On the other 432 

hand, observations of the size of the human settlement G are informative to constrain the 433 

flood risk model. Model parameters can be efficiently estimated by assimilating the state 434 

variables which is tightly related to the targeted parameters, which is consistent to the 435 

findings of the idealized experiment by Barendrecht et al. (2019). 436 

 437 

Third, our SIRPF is robust to the imperfectness of the socio-hydrologic model. The 438 

unknown parameters can be efficiently estimated by the sequential data assimilation. 439 

While previous studies evaluated the trajectory in the whole study period to calibrate the 440 

socio-hydrologic models by iteratively performing the long-term model integration (e.g., 441 

Barendrecht et al. 2019; Roobavannan et al. 2017; Ciullo et al. 2017; van Emmerik et al. 442 

2014; Gonzales and Ajami 2017), we sequentially optimize parameters based on the 443 

relatively short-term timeseries allowing parameters to temporally vary in the study 444 

period. The advantage of this strategy is that we can deal with time-variant parameters as 445 
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previously demonstrated in the applications to hydrologic models (e.g., Pathiraja et al. 446 

2018). In the model development, parameters are formulated as time-invariant values so 447 

that the existence of time-variant parameters indicates the imperfect description of 448 

dynamic models. Sequential data assimilation can mitigate the negative impact of this 449 

imperfect model description. Vrugt et al. (2013) pointed out that the parameter 450 

optimization by the sequential filters is unstable if parameter sensitivity temporally 451 

changes (e.g., parameters affects the model’s dynamics differently in the different 452 

seasons), which may be the potential limitation of our strategy compared with Bayesian 453 

inference based on the long-term trajectory such as Barendrecht et al. (2019). 454 

 455 

 456 

6. Conclusion 457 

In this study, we proposed to apply the sequential data assimilation to the socio-458 

hydrologic models. By several OSSEs in the flood risk modeling, we found that our 459 

proposed SIRPF is robust to the imperfect input forcing and the imperfect model. The 460 

sequential data assimilation is useful to reconstruct the socio-hydrologic conditions from 461 

the inaccurate and sparsely distributed data and the imperfect simulation. Future work 462 

will focus on the verification of our approach by the real data. 463 
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 579 

Table 1. Parameters of the flood risk model 580 

 581 

 description Values Ranges in data 

assimilation 

𝝎 in equation 

(17) 

𝝃𝑯 proportion of additional 

high water level due to 

levee heightening 

0.5 - - 

𝜶𝑯 parameter related to the 

slope of the floodplain and 

the resilience of the human 

settlement 

0.01 - - 

𝝆𝑬 maximum relative growth 

rate 

0.02 - - 

𝝀𝑬 critical distance from the 

river beyond which the 

settlement can no longer 

grow 

5000 - - 

𝜸𝑬 Cost of levee raising 0.5 0.2-5.0 0.01 

𝝀𝑷 distance at which people 

would accept to live when 

they remember past floods 

whose total consequences 

were perceived as a total 

destruction of the 

settlement 

12000 -  

𝝋𝑷 rate by which new 

properties can be built 

10000 1000-50000 100 

𝜺𝑻 safety factor for levees 

rising 

1.1 - - 

𝜿𝑻 rate of decay of levees 0.001 0-0.0015 0.0000025 

𝜶𝑺 proportion of shock after 

flooding if levees are risen 

0.5 - - 

𝝁𝑺 memory loss rate 0.05 0-0.4 0.0025 

 582 

583 
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Table 2. RMSE of the no data assimilation experiment (NoDA) and the data 584 

assimilation experiment (DA) in which all observations are assimilated every 10 years 585 

with 5000 ensembles in the experiment 1 (see section 3.1). 586 

 587 

  NoDA DA 

G 1.06×106 1.64×104 

D 3.60×102 3.92×101 

H 2.65 1.41 

M 1.08×10-1 8.32×10-2 

 588 

  589 
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Table 3. RMSE of the no data assimilation experiment (NoDA) and the data 590 

assimilation experiment (DA) in which all observations are assimilated every 10 years 591 

with 5000 ensembles in the experiment 2 (see section 3.2). 592 

 593 

  NoDA DA 

G 2.97×106 1.64×104 

D 1.86×103 1.01×102 

H 9.35 1.63 

M 2.24×10-1 8.99×10-2 

𝛾𝐸 2.08 4.27×10-1 

𝜑𝑃 1.72×104 3.81×103 

𝜅𝑇 4.12×10-4 2.36×10-4 

𝜇𝑆 1.55×10-1 2.43×10-2 

 594 

  595 
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Table 4. RMSE of the no data assimilation experiment (NoDA) and the data 596 

assimilation experiment (DA) in which all observations are assimilated every 10 years 597 

with 5000 ensembles in the experiment 3 (see section 3.3). 598 

 599 

  NoDA DA 

G 2.90×106 3.78×103 

D 2.12×103 1.45×102 

H 9.33 1.62 

M 2.45×10-1 7.70×10-2 

𝛾𝐸 2.08 4.51×10-1 

𝜑𝑃 1.72×104 5.00×103 

𝜅𝑇 4.12×10-4 2.77×10-4 

𝜇𝑆 1.60×10-1 3.22×10-2 

 600 

  601 
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 602 

Figure 1. Timeseries of (a) high water level W(t), (b) the flood protection level (or levee height) H(t), (c) the 603 

distance of the center of mass of the human settlement from the river D(t), (d) the size of the human settlement 604 

G(t), (e) the intensity of flooding events F(t), and (f) the social awareness of the flood risk M(t) simulated by 605 

5000 ensembles with uncertain high water levels and no data assimilation in the experiment 1 (see section 606 

3.1). Grey, red, and black lines are the ensemble members, their mean, and the synthetic truth, respectively. 607 

  608 

https://doi.org/10.5194/hess-2020-19
Preprint. Discussion started: 19 February 2020
c© Author(s) 2020. CC BY 4.0 License.



40 

 

 609 

Figure 2. Timeseries of (a) high water level W(t), (b) the flood protection level (or levee height) H(t), (c) the 610 

distance of the center of mass of the human settlement from the river D(t), (d) the size of the human settlement 611 

G(t), (e) the intensity of flooding events F(t), and (f) the social awareness of the flood risk M(t) simulated by 612 

the data assimilation experiment in which the observations of F, G, D, H, and M are assimilated into the model 613 
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every 10 years with 5000 ensembles in the experiment 1 (see section 3.1).Grey, red, and black lines are the 614 

ensemble members, their mean, and the synthetic truth, respectively.  615 

616 
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 617 

Figure 3. The ratio of RMSEs of the no data assimilation experiment (NoDA) to those of the data assimilation 618 

experiments in which all of observations (F, G, D, H, and M) are assimilated (all) and each one of them is 619 

assimilated in the experiment 1 (see section 3.1). Blue, orange, gray, and yellow bars are RMSEs of the size 620 

of the human settlement G(t), the center of mass of the human settlement from the river D(t), the flood 621 

protection level (or levee height) H(t), and the social awareness of the flood risk M(t). 622 

  623 
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 624 

Figure 4. The ratio of RMSEs of the no data assimilation experiment (NoDA) to those of the data assimilation 625 

experiments in which all of observations (F, G, D, H, and M) are assimilated every 10, 20, 50, and 100 years 626 

in the experiment 1 (see section 3.1). Blue, orange, gray, and yellow bars are RMSEs of the size of the human 627 

settlement G(t), the center of mass of the human settlement from the river D(t), the flood protection level (or 628 

levee height) H(t), and the social awareness of the flood risk M(t). 629 

  630 
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 631 

Figure 5. Timeseries of (a) high water level W(t), (b) the flood protection level (or levee height) H(t), (c) the 632 

distance of the center of mass of the human settlement from the river D(t), (d) the size of the human settlement 633 

G(t), (e) the intensity of flooding events F(t), and (f) the social awareness of the flood risk M(t) simulated by 634 

5000 ensembles with uncertain high water levels and no data assimilation in the experiment 2 (see section 635 

3.2). Grey, red, and black lines are the ensemble members, their mean, and the synthetic truth, respectively. 636 
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 637 

Figure 6. Timeseries of (a) high water level W(t), (b) the flood protection level (or levee height) H(t), (c) the 638 

distance of the center of mass of the human settlement from the river D(t), (d) the size of the human settlement 639 

G(t), (e) the intensity of flooding events F(t), and (f) the social awareness of the flood risk M(t) simulated by 640 

the data assimilation experiment in which the observations of F, G, D, H, and M are assimilated into the model 641 
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every 10 years with 5000 ensembles in the experiment 2 (see section 3.2). Grey, red, and black lines are the 642 

ensemble members, their mean, and the synthetic truth, respectively.   643 
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 644 

Figure 7. Timeseries of (a) the cost of levee raising 𝛾𝐸, (b) the rate by which new properties can be built 𝜑𝑃, 645 

(c) the rate of decay of levees 𝜅𝑇 , (d) memory loss rate 𝜇𝑆  estimated by the data assimilation of all 646 

observations (F, G, D, H, and M) with 5000 ensembles every 10 years in the experiment 2 (see section 3.2). 647 

Grey, red, and black lines are the ensemble members, their mean, and the synthetic truth, respectively. 648 

  649 
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 650 

 651 

Figure 8. The ratio of RMSEs of the no data assimilation experiment (NoDA) to those of the data assimilation 652 

experiments in which all of observations (F, G, D, H, and M) are assimilated (all) and each one of them is 653 

assimilated in the experiment 2 (see section 3.2). (a) Blue, orange, gray, and yellow bars are RMSEs of the 654 
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size of the human settlement G(t), the center of mass of the human settlement from the river D(t), the flood 655 

protection level (or levee height) H(t), and the social awareness of the flood risk M(t). (b) Blue, orange, gray, 656 

and yellow bars are RMSEs of the cost of levee raising 𝛾𝐸, the rate by which new properties can be built 𝜑𝑃, 657 

the rate of decay of levees 𝜅𝑇, memory loss rate 𝜇𝑆.  658 

 659 

  660 
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 661 

Figure 9. The ratio of RMSEs of the no data assimilation experiment (NoDA) to those of the data assimilation 662 

experiments in which all of observations (F, G, D, H, and M) are assimilated every 10, 20, 50, and 100 years 663 

in the experiment 2 (see section 3.2). (a) Blue, orange, gray, and yellow bars are RMSEs of the size of the 664 

https://doi.org/10.5194/hess-2020-19
Preprint. Discussion started: 19 February 2020
c© Author(s) 2020. CC BY 4.0 License.



51 

 

human settlement G(t), the center of mass of the human settlement from the river D(t), the flood protection 665 

level (or levee height) H(t), and the social awareness of the flood risk M(t). (b) Blue, orange, gray, and yellow 666 

bars are RMSEs of the cost of levee raising 𝛾𝐸, the rate by which new properties can be built 𝜑𝑃, the rate of 667 

decay of levees 𝜅𝑇, memory loss rate 𝜇𝑆.  668 

 669 

  670 
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 671 

Figure 10. Timeseries of (a) high water level W(t), (b) the flood protection level (or levee height) H(t), (c) the 672 

distance of the center of mass of the human settlement from the river D(t), (d) the size of the human settlement 673 

G(t), (e) the intensity of flooding events F(t), and (f) the social awareness of the flood risk M(t) simulated by 674 

the data assimilation experiment in which the observations of F, G, D, H, and M are assimilated into the model 675 
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every 10 years with 5000 ensembles in the experiment 3 (see section 3.3).Grey, red, and black lines are the 676 

ensemble members, their mean, and the synthetic truth, respectively.  677 
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 678 

Figure 11. Timeseries of (a) the cost of levee raising 𝛾𝐸, (b) the rate by which new properties can be built 679 

𝜑𝑃, (c) the rate of decay of levees 𝜅𝑇, (d) memory loss rate 𝜇𝑆 estimated by the data assimilation of all 680 

observations (F, G, D, H, and M) with 5000 ensembles every 10 years in the experiment 3 (see section 3.3). 681 

Grey, red, and black lines are the ensemble members, their mean, and the synthetic truth, respectively. 682 

 683 

 684 
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