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Response letter of hess-2020-19-RC1 

 

 

Dear Anonymous Referee #1, 

 

Please find the responses to the comments. 

 

Comments made by the reviewer were highly insightful. They allowed us to greatly improve the 

quality of the manuscript. We described the response to the comments. 

 

Each comment made by the reviewers is written in italic font. We numbered each comment as (n.m) 

in which n is the reviewer number and m is the comment number. In the revised manuscript, changes 

are highlighted in yellow. 

 

We trust that the revisions and responses are sufficient for our manuscript to be published in Hydrology 

and Earth System Sciences 
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Responses to the comments of Referee #1 

 

The paper “Socio-hydrologic data assimilation: Analyzing human-flood interactions by model data 

integration” applied a sequential data assimilation approach to the sociohydrological model 

developed by Di Baldassarre et al. (2013) to update model state and estimate the model parameters. 

While I found the idea of combining data assimilation with socio-hydrological modeling interesting, I 

believe that there are different shortcomings that prevent the publication of the paper in the present 

form. I have provided more comments below to help the authors strengthening their paper: 

 

(1.1) My main concern is related to the use of synthetic observations to test the hindcast assimilation 

experiment. On the one hand, it is a standard procedure to use synthetic experiments to test new 

approaches and observations. On the other hand, synthetic experiments must be coupled with real-

world analysis when observations are available. The authors state: "Although our experiment design 

was idealized, this study reveals several important findings toward real-world applications” (in the 

Discussion section). However, authors do not provide any empirical comparison or validation of their 

approach with real-world applications. Does the model perform better against any real-world 

criteria? The main reason for integrating observations into a mathematical model is to improve the 

representation of reality by updating model states, output, parameters or input. If this new modeling 

approach cannot be applied to a single case study then, what is it the purpose of this study if not just 

a mere numerical exercise? For example, you could use the same data reported in Barendrecht et al. 

(2019) to test your assimilation approach. 

→ Thank you very much for this comment. We have performed the real-data experiment using the 

data collected by Ciullo et al. (2017). The results have already been shown in the other Authors’ 

comment. We attached them below as the proposal of the revision. We successfully showed that our 

SIRPF can be applied to the real-world case, which we believe significantly strengthen the paper. 

“3.2. Real-data experiment 

In addition to the OSSEs, we performed the real-world experiment in the city of Rome, Italy. 

Ciullo et al. (2017) collected real-world data and calibrated their flood risk model. Using the data 

collected by Ciullo et al. (2017), we performed the data assimilation experiment. It should be 

noted that the flood risk model of Ciullo et al. (2017) is different from our model (i.e. Di 

Baldassarre et al. 2013), although they are conceptually similar. 

 

All the data were collected from Figure 1 of Ciullo et al. (2017) by WebPlotDigitizer 

(https://automeris.io/WebPlotDigitizer/). The observed high water level of Tiber River was used 

as input forcing data (W). The levee height (H) and population (G) were used as the observation 

data to be assimilated into the flood risk model. In Ciullo et al. (2017), population values within 

https://automeris.io/WebPlotDigitizer/
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the Tiber’s floodplain were normalized by the theoretical maximum Tiber’s floodplain population 

which is estimated to the range between 106 and 2 × 106. Since our flood risk model needs the 

population values (not normalized values), we multiplied 1.5 × 106 and the normalized values 

shown in Figure 1 of Ciullo et al. (2017) to obtain population in the floodplain. 

 

We added lognormal multiplicative noise to the observed high water level as we did in the OSSEs. 

The observation errors of levee height and population were set to 10% and 25% of the observed 

values, respectively. Since Ciullo et al. (2017) showed the large uncertainty in the estimation of 

the theoretical maximum population (see above), it is reasonable to assume that the estimation of 

population values also has relatively large uncertainty. 

 

As the second and third OSSEs, we have 4 unknown parameters in this real-world experiment. 

We used the same settings of parameters as the OSSEs, which are shown in Table 1, except for 

𝜉𝐻 , proportion of additional high water level due to levee heightening. In this real-world 

experiment, we set 𝜉𝐻 = 0 because the observed high water level includes the effects of levee 

heightening. This treatment is consistent to Ciullo et al. (2017) (see their Table 2). 

 

The initial conditions of H and M were set to 0. The initial conditions of D were obtained from 

the uniform distribution between 1000 and 5000. The initial conditions of G were obtained from 

the uniform distribution between 1500 and 50000. 

 

4.2. Real-data experiment 

Figure 12 shows the timeseries of the model variables calculated by 5000 ensembles with no data 

assimilation. The 5000-ensemble simulation reveals the two bifurcated social systems. One builds 

a high levee and maintains a course of stable economic growth. The other one has no levee and 

its economy is damaged by severe floods many times (ensemble mean shown in Figure 12b 

implies that there are many ensemble members with zero levee height). 

 

In reality, the city of Rome constructed the levee responding to the severe flood occurred on 28 

December 1870. After the construction of this levee, no major flood losses occurred, allowing 

the steady and undisturbed growth. Figure 13 indicates that our SIRPF successfully constrains 

the trajectory of the ensemble simulation to the real-world (i.e. high levee and stable economic 

growth) by assimilating the real data of H and G. Figure S8 shows the SIRPF-estimated unknown 

parameters. Our SIRPF suggests lower 𝛾𝐸 than the initial ensemble mean to promote the levee 

construction with lower costs. Lower 𝜅𝑇 is also obtained because the assimilated real data show 

no decay of levee from 1874 to 2009. Compared with the OSSE experiment 2, the large 
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uncertainty in estimated parameters remains at the final timestep due to the limited number of 

assimilated observations. In contrast to the OSSEs, our observation network has the uneven 

temporal distribution. Figure 13 clearly indicates that our SIRPF is robust to these intermittent 

observations whose intervals temporally change.  

 

We analyzed the impacts of the individual observation types (i.e. H and G) on the simulation skill 

as we did in the OSSEs. Figure 14 indicates that our SIRPF realistically simulates the socio-

hydrologic dynamics in the city of Rome and provides the similar estimated state variables shown 

in Figure 13 by assimilating only population data. As we found in the OSSEs, observations of the 

size of the human settlement G are informative to effectively constrain the flood risk model. The 

dynamics of the parameter estimation is similar to the case in which data of both G and H are 

assimilated (Figure S9). 

 

On the other hand, assimilating only levee height data cannot provide the similar results to those 

shown above. Figure 15 shows the timeseries of the model variables by the data assimilation 

experiment in which we assimilated the observation data of H only. Observations of the levee 

height cannot effectively constrain D, G, and M compared with the observations of G. This 

finding is consistent to the OSSEs. The uncertainty in estimated parameters becomes larger when 

we omit to assimilate observations of G (Figure S10). Although the impact of levee height data 

is limited compared with population data, it is promising that we can estimate the socio-

hydrologic dynamics to some extent only from the levee height data whose distribution is 

temporally sparse. 
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Figure 12. Timeseries of (a) high water level W(t), (b) the flood protection level (or levee height) 

H(t), (c) the distance of the center of mass of the human settlement from the river D(t), (d) the 

size of the human settlement G(t), (e) the intensity of flooding events F(t), and (f) the social 

awareness of the flood risk M(t) simulated by 5000 ensembles with uncertain high water levels 

and no data assimilation in the real-world experiment in the city of Rome. The time step is annual. 

Grey, and red lines are the ensemble members and their mean, respectively. 
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Figure 13. Timeseries of (a) high water level W(t), (b) the flood protection level (or levee height) 

H(t), (c) the distance of the center of mass of the human settlement from the river D(t), (d) the 

size of the human settlement G(t), (e) the intensity of flooding events F(t), and (f) the social 

awareness of the flood risk M(t) simulated by the data assimilation experiment in which the real-

world observations of G and H (green dots) are assimilated into the model with 5000 ensembles 

in the real-world experiment in the city of Rome. The time step is annual. Grey, and red lines are 

the ensemble members and their mean, respectively. 
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Figure 14. Same as Figure 13 but only real data of G are assimilated. 
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Figure 15. Same as Figure 13 but only real data of H are assimilated. 
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Figure S8. Timeseries of (a) the cost of levee raising 𝛾𝐸, (b) the rate by which new properties 

can be built 𝜑𝑃, (c) the rate of decay of levees 𝜅𝑇, (d) memory loss rate 𝜇𝑆 estimated by the 

data assimilation of observations of G and H with 5000 ensembles in the real-world experiment 

in the city of Rome. The timestep is annual. Grey and red lines are the ensemble members and 

their mean, respectively. 

 

Figure S9. Same as Figure S8 but only real data of G are assimilated. 



10 

 

 

Figure S10. Same as Figure S8 but only real data of H are assimilated.” 

 

(1.2) The proper estimation of the observational error plays a key role in the assimilation 

performances (especially in socio-hydrological models in which uncertainty of social observation can 

be quite high). How is the covariance matrix of the observation error process estimated in this study? 

Are some observations more reliable than others? Small observational errors can force the updated 

model closer to the observation, while high observational errors may lead to poor model updates. Are 

the good results achieved in the experiments due to low observational error with respect to the model 

error with NoDA? The authors mentioned that M is considered as an observed variable for 

assimilation purposes. How are the authors planning to estimate the accuracy of flood awareness 

observations in real-world applications? 

→ We assumed that the observation errors (standard deviation) were set to 10% of the true value. We 

mentioned this point in the original version of the paper. 

“The variance of the Gaussian white noise was 10% of the synthetic true variables.” 

We noticed that this description was wrong. We should say “standard deviation” (not variance) here. 

In addition, we realized that this description was unclear. We have modified this point as follows. 

“The observation error, the standard deviation of the Gaussian white noise, was firstly set to 10% 

of the synthetic true variables.” 

We believe that 10% observation error is much larger than the observation error generally used in the 

other earth science domains such as atmospheric science and hydrology. As the referee mentioned, we 

assumed that the uncertainty of social observations is quite high. This point was indeed unclear in the 

original version of the paper and we have clarified it in the revised version of the paper. 

“Although this observation error is generally larger than that used in meteorology and hydrology,” 

In addition, we tested the sensitivity of the observation error to the SIRPF’s performance and found 

that our SIRPF is robust to the uncertain observation. In the revised version of the paper, we included 
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Figures S2 and S6 in the supplement material and explained our SIRPF significantly improves the 

state and parameter estimation with larger observation errors. As the referee mentioned, the SIRPF’s 

performance gradually declines as the observation error increases. We have included the following 

sentences in the results section of the revised paper. 

“Although this observation error is generally larger than that used in meteorology and hydrology, 

we further increased the observation error and tested the sensitivity of the observation error to 

the SIRPF’s performance.” 

“We set the observation error to 10% of the synthetic truth thus far. The improvement of the 

simulation skill can be found with larger observation errors (Figure S2). Although the SIRPF’s 

performance gradually declines as the observation error increases, our SIRPF can significantly 

improve the simulation skill with 25% observation error.” 

“As we found in the experiment 1, the SIRPF’s performance declines with the increased 

observation error (Figure S6). However, it is promising that our SIRPF can improve the 

simulation skill with larger observation errors up to 25% of the synthetic truth considering that 

the observations in the socio-hydrologic domain are often inaccurate.” 

 

Figure S2. The ratio of RMSEs of the no data assimilation experiment (NoDA) to those of the 

data assimilation experiments in which the observation error is set to 10%, 15%, 20%, and 25% 

of the synthetic true values in the experiment 1 (see section 3.1.1). Blue, orange, gray, and yellow 

bars are RMSEs of the size of the human settlement G(t), the center of mass of the human 

settlement from the river D(t), the flood protection level (or levee height) H(t), and the social 
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awareness of the flood risk M(t). 

 

 

Figure S6. The ratio of RMSEs of the no data assimilation experiment (NoDA) to those of the 

data assimilation experiments in which the observation error is set to 10%, 15%, 20%, and 25% 

of the synthetic true values in the experiment 2 (see section 3.1.2). (a) Blue, orange, gray, and 

yellow bars are RMSEs of the size of the human settlement G(t), the center of mass of the human 

settlement from the river D(t), the flood protection level (or levee height) H(t), and the social 

awareness of the flood risk M(t). (b) Blue, orange, gray, and yellow bars are RMSEs of the cost 

of levee raising 𝛾𝐸, the rate by which new properties can be built 𝜑𝑃, the rate of decay of levees 

𝜅𝑇, memory loss rate 𝜇𝑆.  
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We agree with the referee’s comment that it is not straightforward to observe flood awareness. Several 

studies have obtained the proxy of the social memory by interview data (Barendrecht et al. 2019) and 

the number of Google searches (Gonzales and Ajami 2017). This point was indeed unclear in the 

original version of the paper and we have clarified this point in the revised version of the paper. 

“Although it is not straightforward to observe social memory M, several previous studies 

obtained the proxy of the social memory by interview data (Barendrecht et al. 2019) and the 

number of Google searches (Gonzales and Ajami 2017).” 

 

 

(1.3) I have some doubts about the setup of the experiments. Why only 4 parameters and 1 parameter 

are considered in the second and third experiments respectively? Why the authors selected those 

parameters and not others? This must be explained as the results can be biased by the selection of the 

parameters. Personally, the way I would structure the experiments (and results) of this study is 1) 

Uncertain input and uncertain observation (assuming different observation errors); 2) Temporal 

uneven distribution of observational data (similar to Figure 4); 3) Assimilation strategies (similar to 

Figure 3); 4) Real-world application. I have already explained the reason behind points 1 and 4. I 

have included more comments on point 2 below. 

→ The referee mentioned that only 1 parameter were considered in the third experiments. Please note 

that we actually considered all 4 parameters and one of the 4 parameters were assumed to be time-

variant. As the response to the comment from the referee #2, we will include one more parameter as 

time-variant parameters in the revised version of the paper. Please see our response to the comment 

(2.3) of the referee #2. 

 

We believe that the selection of the targeted parameters in socio-hydrologic data assimilation will 

depend on the case and purpose of the study. The problem setting adopted in this study can be 

recognized as one of the reasonable examples without the significant loss of generality. Here we 

explain how to select those parameters as a reasonable example of socio-hydrologic data assimilation. 

First, it is unlikely that the parameters related to F in equation (1) are much more inaccurate than the 

other parameters. They are mainly determined by the topography and we believe the process described 

in equation (1) can be replaced by the more accurate hydrodynamic models. Second, we selected four 

unknown parameters one by one from four equations of economy, politics, technology, and social to 

discuss how each state variable’s observation affects the parameter space. Third, our 4 unknown 

parameters, their initial uncertainties, and the uncertainty in the high water level make our problem 

difficult enough to demonstrate the potential of data assimilation in the socio-hydrologic domain. 
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Figure 5 indicates that we can get no useful information of the socio-hydrologic processes with this 

specified uncertainty. Although the referee may think that the number of unknown parameters is too 

small, we believe that our problem gives enough uncertainty to demonstrate the potential of data 

assimilation. Fourth, we successfully applied this setting to the real-world case in the city of Rome so 

that our specified initial uncertainty is reasonably good. We have added some sentences to explain this 

point in the revised version of the paper. 

“We selected these unknown parameters one by one from four equations of economy, politics, 

technology, and social to discuss how each state variable’s observation affects the estimation of 

parameters across these four equations (see section 2.1). We have no unknown parameters related 

to F (equation (1)) since it is unlikely that the parameters in equation (1) are much more inaccurate 

than the other parameters. The parameters related to flood are mainly determined by the 

topography of the flood plain so that the process described in equation (1) can be replaced by 

more accurate hydrodynamic models in the real-world case study. The initial parameter variables 

were assumed to be distributed in the bounded uniform distributions whose ranges were found in 

Table 1. The uncertainty of the simulation induced by these parameters’ uncertainty is large 

enough to demonstrate the potential of data assimilation to minimize the simulation’s uncertainty 

(see Results).” 

 

The referee suggested to changing the structure of the paper in the latter part of this comment. We 

would like to keep the structure of the original paper because in the current structure, the problem 

setting gets harder and approaches to the real-world problem (and eventually arrive at the real-data 

experiment). We believe that the referee’s concerns have been addressed by our responses to the 

comments. Please see our responses to the comments (1.1) (real-data experiment), (1.2) (observation 

error) and (1.4) (temporally uneven observation). We believe the change in the structure of the paper 

is not absolutely necessary to meet the referee’s requirements. We have decided not to change this 

aspect of the paper. 

 

 

(1.4) It is mentioned that “our SIRPF can efficiently improve the simulation of the sociohydrologic 

state variables using the sparsely distributed data”. I guess the authors refer to the temporal 

availability of observation and not spatial as the system dynamic model of Di Baldassarre et al. (2013) 

is lumped. I appreciate that the authors considered the effect of different assimilation updating times. 

However, I would find more interesting to consider intermittent and uneven temporal distributions of 

social and hydraulic information. In fact, it can be that flood awareness and other social data are not 

available regularly available as you assumed in your study. How would the intermittency 

characteristics of social data affect the model performances? 
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→ I believe that our new real-data experiment shows the reasonable performance of our SIRPF with 

the intermittent and uneven temporally distributed observation. Since we need no tuning of the 

hyperparameters with different observation intervals in our SIRPF, we have no problem when the 

observation intervals temporally change. As Figures S1 and S3 indicate, the uncertainty (i.e. the spread 

of ensembles) increases in the observation interval so that we have relatively large (small) uncertainty 

if we have a large (small) observation interval. This finding is consistent to the unevenly distributed 

observation in the real-data experiment. We believe that the real-data experiment has already addressed 

this comment and the additional OSSE is not necessary. It is not straightforward to design the realistic 

unevenly distributed observation in the framework of OSSE so that it is better to show the real-data 

experiments to explain our SIRPF is robust to this issue. In the revised version of the paper, we 

emphasized this point as follows. 

“In contrast to the OSSEs, our observation network has the uneven temporal distribution. Figure 

13 clearly indicates that our SIRPF is robust to these intermittent observations whose intervals 

temporally change.” 

 

 

(1.5) Results need to be discussed in a more critical way. For example, why when only G is updated 

also the other state variables are improved? Also “Observing F, D, and M negatively impacts the 

estimation of H and observing H does not significantly improve the simulation of D and M”. I found 

these results counter-intuitive. If a flood occurs, then flood awareness will increase and this will lead 

to reinforcement of the levee system (as already described in Di Baldassarre et al. (2013), Di 

Baldassarre et al. (2015), and other related papers). However, you found a negative impact. Why? 

Levees are built and reinforced to protect urbanized areas from flooding and F should be critical for 

the estimation of H. In the same way, levee systems (H) can shape human flood awareness and distance 

from the river (as already described in Di Baldassarre et al. (2013), Di Baldassarre et al. (2015), and 

many other related papers). So, how can you justify your results? Provide a real-world example in 

which flooding and flood awareness are not relevant to the reinforcement of a levee system. 

→ The first question of this block is why the other state variables are improved by updating only G. 

The referee has a misunderstanding due to our insufficient description. We actually updated all state 

variables (and parameters) by assimilating only G. Although we evaluated equation (11) using only 

simulated and observed G, x(t) in (13) includes all state variables (and parameters). In SIRPF, we can 

infer the unobserved variables from the observed variables and simulation based on the Bayes’ theorem. 

This point was indeed unclear in the original version of the paper. We have clarified this point in the 

revised version of the paper. 
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“Note that equations (13) and (14) update all state variables and parameters of the model although 

the weight is calculated using only observable variables. Therefore, it is not necessary to observe 

all state variables in order to update all system variables.” 

“Our SIRPF updates all state variables although only one of them is assimilated.” 

 

The second question of this block is why the observation H has little impact on the estimation of the 

state space in summary. This comment is critical, and we thank the referee for this comment. In the 

flood risk model of Di Baldassarre et al. (2013), flooding and flood awareness strongly control whether 

they raise the levee or not as the referee mentioned. However, once they determined to raise the levee 

responding to the flood event, the amount by which the levees are raised is fully determined by the 

high water level (see equation (2)). On the contrary to the previous works, we assumed the uncertainty 

in the high water level, which brings the uncertainty in the dynamics of H. Observing H can improve 

the simulation of D and M only if the uncertainty in the dynamics of H is induced by the uncertainty 

in D and M. Because the uncertainty in the dynamics of H is largely determined by the uncertainty in 

the high water level, we could not obtain the significant impact of the observation of H on the other 

variables. This point was indeed unclear in the original version of the paper and we have clarified this 

point in the revised version of the paper. 

“Although the dynamics of F, D, and M strongly affects the decision making of whether the levees 

are raised or not, the amount by which the levees are raised, R, is fully determined by the high 

water level, W, once the community determines to raise the levees (see equation (2)). Therefore, 

the uncertainty of H is largely induced by the uncertainty of the high water level, W, whose 

uncertainty is not directly mitigated by our SIRPF. This is why observing F, D, and M is not 

helpful to mitigate the uncertainty of H.” 

 

 

(1.6) Line 268: “In the first OSSE, we assumed that the model was perfect, and we knew it”. I honestly 

doubt that the model is perfect and I strongly invite the authors to remove this sentence as conceptually 

wrong. No model is perfect, in particular socio-hydrological models that represent complex social 

interactions as the distance from the river, flood awareness, etc. 

→ This is indeed the assumption and we do not trust it is true in the real-world. We understand that no 

model is perfect in the real-world application. In the revised version of the paper, we rephrased this 

sentence as follows. 

“we assumed that there is no uncertainty in model parameters.” 

 

(1.7) What do you mean with “H is decoupled from the other state variables”? 

→ We intended to make this sentence the summary (or rephrasing) of the next sentence “Observing F, 
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D, and M negatively impacts the estimation of H and observing H does not significantly improve the 

simulation of D and M.”. We noticed that this sentence is simply unnecessary to explain our results. 

We have deleted this sentence in the revised version of the paper. 

 

(1.8) Line 298-300. The sentence is unclear and has to be rephrased. 

→ In the revised paper, we have rephrased this sentence in the following: 

“In the data assimilation experiment, we assumed that the dynamics of 𝜑𝑃  and 𝜇𝑆  was 

unknown, and we integrated the flood risk model with time-invariant 𝜑𝑃 and 𝜇𝑆.” 

 

(1.9) Line 270: “Our SIRPF estimated only state variables”. Change “estimated” with “updated”. 

→ We have modified this point following the reviewer’s instruction. 
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Response letter of hess-2020-19-RC2 

 

Dear Anonymous Referee #2, 

 

Please find the responses to the comments. 

 

Comments made by the reviewer were highly insightful. They allowed us to greatly improve the 

quality of the manuscript. We described the response to the comments. 

 

Each comment made by the reviewers is written in italic font. We numbered each comment as (n.m) 

in which n is the reviewer number and m is the comment number. In the revised manuscript, changes 

are highlighted in yellow. 

 

We trust that the revisions and responses are sufficient for our manuscript to be published in Hydrology 

and Earth System Sciences 
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Responses to the comments of Referee #2 

 

This paper presents a study of data assimilation based on a conceptual sociohydrologic model. The 

authors used the SIRPF method to assimilate human-flood interaction data based on the flood risk 

model developed by Di Baldassarre et al. (2013). The manuscript is well-written and the study topic 

is of interest to the audience of HESS. I have the following comments that I hope the authors could 

address in their revision. Specific comments: 

 

(2.1) Lines 251-252: The authors should be clear about the time scale of the model, which I assume is 

annual. The human-flood interactions will be different at different time scales. Also, in the time series 

figures, the authors should make clear statement about the annual time step. 

→ This point was indeed unclear in the original version of the paper. We chose the annual time step. 

We have clarified this point in the model section of the revised paper. 

“The timestep was set to annual.” 

This point has also been clarified in the caption of figures. 

 

(2.2) In the Results section, the authors provided interpretations of the experiment results.It would be 

helpful if the study can include some validation of the method. For example, the authors could apply 

their proposed method in a realistic case study. 

→ Thank you very much for this comment. We performed the real-data experiment using the data 

collected by Ciullo et al. (2017). The results have already been shown in the other Authors’ comment. 

We have also attached it below as the proposal of the revision. 

“3.2. Real-data experiment 

In addition to the OSSEs, we performed the real-world experiment in the city of Rome, Italy. 

Ciullo et al. (2017) collected real-world data and calibrated their flood risk model. Using the data 

collected by Ciullo et al. (2017), we performed the data assimilation experiment. It should be 

noted that the flood risk model of Ciullo et al. (2017) is different from our model (i.e. Di 

Baldassarre et al. 2013), although they are conceptually similar. 

 

All the data were collected from Figure 1 of Ciullo et al. (2017) by WebPlotDigitizer 

(https://automeris.io/WebPlotDigitizer/). The observed high water level of Tiber River was used 

as input forcing data (W). The levee height (H) and population (G) were used as the observation 

data to be assimilated into the flood risk model. In Ciullo et al. (2017), population values within 

the Tiber’s floodplain were normalized by the theoretical maximum Tiber’s floodplain population 

which is estimated to the range between 106 and 2 × 106. Since our flood risk model needs the 

https://automeris.io/WebPlotDigitizer/
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population values (not normalized values), we multiplied 1.5 × 106 and the normalized values 

shown in Figure 1 of Ciullo et al. (2017) to obtain population in the floodplain. 

 

We added lognormal multiplicative noise to the observed high water level as we did in the OSSEs. 

The observation errors of levee height and population were set to 10% and 25% of the observed 

values, respectively. Since Ciullo et al. (2017) showed the large uncertainty in the estimation of 

the theoretical maximum population (see above), it is reasonable to assume that the estimation of 

population values also has relatively large uncertainty. 

 

As the second and third OSSEs, we have 4 unknown parameters in this real-world experiment. 

We used the same settings of parameters as the OSSEs, which are shown in Table 1, except for 

𝜉𝐻 , proportion of additional high water level due to levee heightening. In this real-world 

experiment, we set 𝜉𝐻 = 0 because the observed high water level includes the effects of levee 

heightening. This treatment is consistent to Ciullo et al. (2017) (see their Table 2). 

 

The initial conditions of H and M were set to 0. The initial conditions of D were obtained from 

the uniform distribution between 1000 and 5000. The initial conditions of G were obtained from 

the uniform distribution between 1500 and 50000. 

 

4.2. Real-data experiment 

Figure 12 shows the timeseries of the model variables calculated by 5000 ensembles with no data 

assimilation. The 5000-ensemble simulation reveals the two bifurcated social systems. One builds 

a high levee and maintains a course of stable economic growth. The other one has no levee and 

its economy is damaged by severe floods many times (ensemble mean shown in Figure 12b 

implies that there are many ensemble members with zero levee height). 

 

In reality, the city of Rome constructed the levee responding to the severe flood occurred on 28 

December 1870. After the construction of this levee, no major flood losses occurred, allowing 

the steady and undisturbed growth. Figure 13 indicates that our SIRPF successfully constrains 

the trajectory of the ensemble simulation to the real-world (i.e. high levee and stable economic 

growth) by assimilating the real data of H and G. Figure S8 shows the SIRPF-estimated unknown 

parameters. Our SIRPF suggests lower 𝛾𝐸 than the initial ensemble mean to promote the levee 

construction with lower costs. Lower 𝜅𝑇 is also obtained because the assimilated real data show 

no decay of levee from 1874 to 2009. Compared with the OSSE experiment 2, the large 

uncertainty in estimated parameters remains at the final timestep due to the limited number of 

assimilated observations. In contrast to the OSSEs, our observation network has the uneven 
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temporal distribution. Figure 13 clearly indicates that our SIRPF is robust to these intermittent 

observations whose intervals temporally change.  

 

We analyzed the impacts of the individual observation types (i.e. H and G) on the simulation skill 

as we did in the OSSEs. Figure 14 indicates that our SIRPF realistically simulates the socio-

hydrologic dynamics in the city of Rome and provides the similar estimated state variables shown 

in Figure 13 by assimilating only population data. As we found in the OSSEs, observations of the 

size of the human settlement G are informative to effectively constrain the flood risk model. The 

dynamics of the parameter estimation is similar to the case in which data of both G and H are 

assimilated (Figure S9). 

 

On the other hand, assimilating only levee height data cannot provide the similar results to those 

shown above. Figure 15 shows the timeseries of the model variables by the data assimilation 

experiment in which we assimilated the observation data of H only. Observations of the levee 

height cannot effectively constrain D, G, and M compared with the observations of G. This 

finding is consistent to the OSSEs. The uncertainty in estimated parameters becomes larger when 

we omit to assimilate observations of G (Figure S10). Although the impact of levee height data 

is limited compared with population data, it is promising that we can estimate the socio-

hydrologic dynamics to some extent only from the levee height data whose distribution is 

temporally sparse. 
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Figure 12. Timeseries of (a) high water level W(t), (b) the flood protection level (or levee height) 

H(t), (c) the distance of the center of mass of the human settlement from the river D(t), (d) the 

size of the human settlement G(t), (e) the intensity of flooding events F(t), and (f) the social 

awareness of the flood risk M(t) simulated by 5000 ensembles with uncertain high water levels 

and no data assimilation in the real-world experiment in the city of Rome. The time step is annual. 

Grey, and red lines are the ensemble members and their mean, respectively. 
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Figure 13. Timeseries of (a) high water level W(t), (b) the flood protection level (or levee height) 

H(t), (c) the distance of the center of mass of the human settlement from the river D(t), (d) the 

size of the human settlement G(t), (e) the intensity of flooding events F(t), and (f) the social 

awareness of the flood risk M(t) simulated by the data assimilation experiment in which the real-

world observations of G and H (green dots) are assimilated into the model with 5000 ensembles 

in the real-world experiment in the city of Rome. The time step is annual. Grey, and red lines are 

the ensemble members and their mean, respectively. 
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Figure 14. Same as Figure 13 but only real data of G are assimilated. 
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Figure 15. Same as Figure 13 but only real data of H are assimilated. 
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Figure S8. Timeseries of (a) the cost of levee raising 𝛾𝐸, (b) the rate by which new properties 

can be built 𝜑𝑃, (c) the rate of decay of levees 𝜅𝑇, (d) memory loss rate 𝜇𝑆 estimated by the 

data assimilation of observations of G and H with 5000 ensembles in the real-world experiment 

in the city of Rome. The timestep is annual. Grey and red lines are the ensemble members and 

their mean, respectively. 

 

Figure S9. Same as Figure S8 but only real data of G are assimilated. 
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Figure S10. Same as Figure S8 but only real data of H are assimilated.” 

 

 

(2.3) Section 4.3, the discussion about the experiment 3 results is too general. The study could include 

more temporally changing variables in experiment 3 (the cost of levee raising, the rate of new 

properties, and the decay rate of levees), since they are all changing with time in reality. 

→ Thank you for this comment. We could include more temporally changing parameters as the referee 

indicated. In the revised version of the paper, we have included the rate by which new properties can 

be built, 𝜑𝑃, as a time-variant parameter. We have modified the manuscript as follows: 

“Specifically, the rate by which new properties can be built, 𝜑𝑃, and the memory loss rate, 𝜇𝑆, 

were temporally varied in the experiment 3: 

𝜑𝑃(𝑡) = {

5000 (𝑡 < 250)

5000 + (𝑡 − 250) ×
40000−5000

500
(250 ≤ 𝑡 < 750)

40000 (750 ≤ 𝑡)

 (24) 

𝜇𝑆(𝑡) = {

0.01 (𝑡 < 250)

0.01 + (𝑡 − 250) ×
0.10−0.01

500

0.10 (750 ≤ 𝑡)

 (250 ≤ 𝑡 < 750)  (25) 

In the data assimilation experiment, we assumed that the dynamics of 𝜑𝑃 and 𝜇𝑆 was unknown, 

and we integrated the flood risk model with time-invariant 𝜑𝑃 and 𝜇𝑆.” 

 

“In addition to the experiment 2, two of the unknown parameters (𝜑𝑃 and 𝜇𝑆) temporally vary 

in the synthetic truth of the experiment 3. We found that a larger spread of 𝜑𝑃 is required to 

stably track the time-variant synthetic true 𝜑𝑃 so that we increased 𝑠0 in equation (18) from 

0.05 to 0.5 only for 𝜑𝑃 in this experiment 3. Figure 10 and Table 4 indicate that despite the error 

in the model’s description, our SIRPF can greatly improve the simulation of the flood risk model. 
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Please note that the synthetic truth shown in Figure 10 is different from that of the previous 

experiments especially for D and M. Figures 11b and 11d indicate that we can accurately estimate 

the time-variant parameters (𝜑𝑃 and 𝜇𝑆) as well as the other time-invariant parameters (Figures 

11a and 11c). This result is promising since we cannot expect the perfect description of the socio-

hydrologic model in the real-world applications. We also performed the sensitivity test on 

observation types, observation intervals, and ensemble sizes, which results in the same 

conclusions as the experiment 2 (not shown).” 

“

 

Figure 10. Timeseries of (a) high water level W(t), (b) the flood protection level (or levee height) 

H(t), (c) the distance of the center of mass of the human settlement from the river D(t), (d) the 
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size of the human settlement G(t), (e) the intensity of flooding events F(t), and (f) the social 

awareness of the flood risk M(t) simulated by the data assimilation experiment in which the 

observations of F, G, D, H, and M are assimilated into the model every 10 years with 5000 

ensembles in the experiment 3 (see section 3.1.3). The time step is annual. Grey, red, and black 

lines are the ensemble members, their mean, and the synthetic truth, respectively. 

 

 

Figure 11. Timeseries of (a) the cost of levee raising 𝛾𝐸, (b) the rate by which new properties 

can be built 𝜑𝑃, (c) the rate of decay of levees 𝜅𝑇, (d) memory loss rate 𝜇𝑆 estimated by the 

data assimilation of all observations (F, G, D, H, and M) with 5000 ensembles every 10 years in 

the experiment 3 (see section 3.1.3). The time step is annual. Grey, red, and black lines are the 

ensemble members, their mean, and the synthetic truth, respectively.” 

 

The other two parameters, the cost of levee raising and the decay rate of levees, were still kept constant 

in the synthetic truth. This is because the temporal change in these two parameters has small impacts 

on the state variables, which make it difficult to sequentially estimate the temporal change of the 

parameters. The cost of levee raising mainly affects the state variables in the early stage of the 

simulation and the change in the decay rate of levees has much smaller impacts than the uncertainty 

of high water level. This point was indeed unclear in the original version of the paper although it 

should be mentioned as the limitation. In the revised version of the paper, we have included this point 

as follows: 

“The cost of levee raising 𝛾𝐸 affects the state variables of the flood risk model mainly in the 

initial early years and the gradual change of the rate of decay of levees 𝜅𝑇 has few impacts on 
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the state variables. Therefore, we found that it is difficult to track the temporal change of these 

two parameters.” 

 

As we discuss in the response to the comment from the referee #1 (comment (1.3)), the problem setting 

of the parameter estimation strongly depends on the case and purpose of the study. We believe that our 

current problem setting is one of the reasonable examples without the significant loss of generality. 

The referee mentioned that all parameters may be time-variant. Although we can agree with it, if all 

parameters of the model can be time-variant, the model provides no reasonable constraints of the 

trajectory of the state variables. In this case, we doubt that it is beneficial to use the model to analyze 

the socio-hydrologic phenomena. Therefore, we believe that it is reasonable to assume some of the 

parameters are known and only a few parameters are time-variant. Please also see the discussion with 

the referee #1 attached below. 

 

 

--------- 

(1.3) I have some doubts about the setup of the experiments. Why only 4 parameters and 1 parameter 

are considered in the second and third experiments respectively? Why the authors selected those 

parameters and not others? This must be explained as the results can be biased by the selection of the 

parameters. Personally, the way I would structure the experiments (and results) of this study is 1) 

Uncertain input and uncertain observation (assuming different observation errors); 2) Temporal 

uneven distribution of observational data (similar to Figure 4); 3) Assimilation strategies (similar to 

Figure 3); 4) Real-world application. I have already explained the reason behind points 1 and 4. I 

have included more comments on point 2 below. 

→ The referee mentioned that only 1 parameter were considered in the third experiments. Please note 

that we actually considered all 4 parameters and one of the 4 parameters were assumed to be time-

variant. As the response to the comment from the referee #2, we will include one more parameter as 

time-variant parameters in the revised version of the paper. Please see our response to the comment 

(2.3) of the referee #2. 

 

We believe that the selection of the targeted parameters in socio-hydrologic data assimilation will 

depend on the case and purpose of the study. The problem setting adopted in this study can be 

recognized as one of the reasonable examples without the significant loss of generality. Here we 

explain how to select those parameters as a reasonable example of socio-hydrologic data assimilation. 

First, it is unlikely that the parameters related to F in equation (1) are much more inaccurate than the 

other parameters. They are mainly determined by the topography and we believe the process described 

in equation (1) can be replaced by the more accurate hydrodynamic models. Second, we selected four 



31 

 

unknown parameters one by one from four equations of economy, politics, technology, and social to 

discuss how each state variable’s observation affects the parameter space. Third, our 4 unknown 

parameters, their initial uncertainties, and the uncertainty in the high water level make our problem 

difficult enough to demonstrate the potential of data assimilation in the socio-hydrologic domain. 

Figure 5 indicates that we can get no useful information of the socio-hydrologic processes with this 

specified uncertainty. Although the referee may think that the number of unknown parameters is too 

small, we believe that our problem gives enough uncertainty to demonstrate the potential of data 

assimilation. Fourth, we successfully applied this setting to the real-world case in the city of Rome so 

that our specified initial uncertainty is reasonably good. We have added some sentences to explain this 

point in the revised version of the paper. 

“We selected these unknown parameters one by one from four equations of economy, politics, 

technology, and social to discuss how each state variable’s observation affects the estimation of 

parameters across these four equations (see section 2.1). We have no unknown parameters related 

to F (equation (1)) since it is unlikely that the parameters in equation (1) are much more inaccurate 

than the other parameters. The parameters related to flood are mainly determined by the 

topography of the flood plain so that the process described in equation (1) can be replaced by 

more accurate hydrodynamic models in the real-world case study. The initial parameter variables 

were assumed to be distributed in the bounded uniform distributions whose ranges were found in 

Table 1. The uncertainty of the simulation induced by these parameters’ uncertainty is large 

enough to demonstrate the potential of data assimilation to minimize the simulation’s uncertainty 

(see Results).” 

 

The referee suggested to changing the structure of the paper in the latter part of this comment. We 

would like to keep the structure of the original paper because in the current structure, the problem 

setting gets harder and approaches to the real-world problem (and eventually arrive at the real-data 

experiment). We believe that the referee’s concerns have been addressed by our responses to the 

comments. Please see our responses to the comments (1.1) (real-data experiment), (1.2) (observation 

error) and (1.4) (temporally uneven observation). We believe the change in the structure of the paper 

is not absolutely necessary to meet the referee’s requirements. We have decided not to change this 

aspect of the paper. 

 

 

 


