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Response letter of hess-2020-19-RC2 

 

Dear Anonymous Referee #2, 

 

Please find the responses to the comments. 

 

Comments made by the reviewer were highly insightful. They allowed us to greatly improve the 

quality of the manuscript. We described the response to the comments. 

 

Each comment made by the reviewers is written in italic font. We numbered each comment as (n.m) 

in which n is the reviewer number and m is the comment number. In the revised manuscript, changes 

are highlighted in yellow. 

 

We trust that the revisions and responses are sufficient for our manuscript to be published in Hydrology 

and Earth System Sciences 

  



2 

 

Responses to the comments of Referee #2 

 

This paper presents a study of data assimilation based on a conceptual sociohydrologic model. The 

authors used the SIRPF method to assimilate human-flood interaction data based on the flood risk 

model developed by Di Baldassarre et al. (2013). The manuscript is well-written and the study topic 

is of interest to the audience of HESS. I have the following comments that I hope the authors could 

address in their revision. Specific comments: 

 

(2.1) Lines 251-252: The authors should be clear about the time scale of the model, which I assume is 

annual. The human-flood interactions will be different at different time scales. Also, in the time series 

figures, the authors should make clear statement about the annual time step. 

→ This point was indeed unclear in the original version of the paper. We chose the annual time step. 

We have clarified this point in the model section of the revised paper. 

“The timestep was set to annual.” 

This point has also been clarified in the caption of figures. 

 

(2.2) In the Results section, the authors provided interpretations of the experiment results.It would be 

helpful if the study can include some validation of the method. For example, the authors could apply 

their proposed method in a realistic case study. 

→ Thank you very much for this comment. We performed the real-data experiment using the data 

collected by Ciullo et al. (2017). The results have already been shown in the other Authors’ comment. 

We have also attached it below as the proposal of the revision. 

“3.2. Real-data experiment 

In addition to the OSSEs, we performed the real-world experiment in the city of Rome, Italy. 

Ciullo et al. (2017) collected real-world data and calibrated their flood risk model. Using the data 

collected by Ciullo et al. (2017), we performed the data assimilation experiment. It should be 

noted that the flood risk model of Ciullo et al. (2017) is different from our model (i.e. Di 

Baldassarre et al. 2013), although they are conceptually similar. 

 

All the data were collected from Figure 1 of Ciullo et al. (2017) by WebPlotDigitizer 

(https://automeris.io/WebPlotDigitizer/). The observed high water level of Tiber River was used 

as input forcing data (W). The levee height (H) and population (G) were used as the observation 

data to be assimilated into the flood risk model. In Ciullo et al. (2017), population values within 

the Tiber’s floodplain were normalized by the theoretical maximum Tiber’s floodplain population 

which is estimated to the range between 106 and 2 × 106. Since our flood risk model needs the 

https://automeris.io/WebPlotDigitizer/
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population values (not normalized values), we multiplied 1.5 × 106 and the normalized values 

shown in Figure 1 of Ciullo et al. (2017) to obtain population in the floodplain. 

 

We added lognormal multiplicative noise to the observed high water level as we did in the OSSEs. 

The observation errors of levee height and population were set to 10% and 25% of the observed 

values, respectively. Since Ciullo et al. (2017) showed the large uncertainty in the estimation of 

the theoretical maximum population (see above), it is reasonable to assume that the estimation of 

population values also has relatively large uncertainty. 

 

As the second and third OSSEs, we have 4 unknown parameters in this real-world experiment. 

We used the same settings of parameters as the OSSEs, which are shown in Table 1, except for 

𝜉𝐻 , proportion of additional high water level due to levee heightening. In this real-world 

experiment, we set 𝜉𝐻 = 0 because the observed high water level includes the effects of levee 

heightening. This treatment is consistent to Ciullo et al. (2017) (see their Table 2). 

 

The initial conditions of H and M were set to 0. The initial conditions of D were obtained from 

the uniform distribution between 1000 and 5000. The initial conditions of G were obtained from 

the uniform distribution between 1500 and 50000. 

 

4.2. Real-data experiment 

Figure 12 shows the timeseries of the model variables calculated by 5000 ensembles with no data 

assimilation. The 5000-ensemble simulation reveals the two bifurcated social systems. One builds 

a high levee and maintains a course of stable economic growth. The other one has no levee and 

its economy is damaged by severe floods many times (ensemble mean shown in Figure 12b 

implies that there are many ensemble members with zero levee height). 

 

In reality, the city of Rome constructed the levee responding to the severe flood occurred on 28 

December 1870. After the construction of this levee, no major flood losses occurred, allowing 

the steady and undisturbed growth. Figure 13 indicates that our SIRPF successfully constrains 

the trajectory of the ensemble simulation to the real-world (i.e. high levee and stable economic 

growth) by assimilating the real data of H and G. Figure S8 shows the SIRPF-estimated unknown 

parameters. Our SIRPF suggests lower 𝛾𝐸 than the initial ensemble mean to promote the levee 

construction with lower costs. Lower 𝜅𝑇 is also obtained because the assimilated real data show 

no decay of levee from 1874 to 2009. Compared with the OSSE experiment 2, the large 

uncertainty in estimated parameters remains at the final timestep due to the limited number of 

assimilated observations. In contrast to the OSSEs, our observation network has the uneven 
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temporal distribution. Figure 13 clearly indicates that our SIRPF is robust to these intermittent 

observations whose intervals temporally change.  

 

We analyzed the impacts of the individual observation types (i.e. H and G) on the simulation skill 

as we did in the OSSEs. Figure 14 indicates that our SIRPF realistically simulates the socio-

hydrologic dynamics in the city of Rome and provides the similar estimated state variables shown 

in Figure 13 by assimilating only population data. As we found in the OSSEs, observations of the 

size of the human settlement G are informative to effectively constrain the flood risk model. The 

dynamics of the parameter estimation is similar to the case in which data of both G and H are 

assimilated (Figure S9). 

 

On the other hand, assimilating only levee height data cannot provide the similar results to those 

shown above. Figure 15 shows the timeseries of the model variables by the data assimilation 

experiment in which we assimilated the observation data of H only. Observations of the levee 

height cannot effectively constrain D, G, and M compared with the observations of G. This 

finding is consistent to the OSSEs. The uncertainty in estimated parameters becomes larger when 

we omit to assimilate observations of G (Figure S10). Although the impact of levee height data 

is limited compared with population data, it is promising that we can estimate the socio-

hydrologic dynamics to some extent only from the levee height data whose distribution is 

temporally sparse. 
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Figure 12. Timeseries of (a) high water level W(t), (b) the flood protection level (or levee height) 

H(t), (c) the distance of the center of mass of the human settlement from the river D(t), (d) the 

size of the human settlement G(t), (e) the intensity of flooding events F(t), and (f) the social 

awareness of the flood risk M(t) simulated by 5000 ensembles with uncertain high water levels 

and no data assimilation in the real-world experiment in the city of Rome. The time step is annual. 

Grey, and red lines are the ensemble members and their mean, respectively. 
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Figure 13. Timeseries of (a) high water level W(t), (b) the flood protection level (or levee height) 

H(t), (c) the distance of the center of mass of the human settlement from the river D(t), (d) the 

size of the human settlement G(t), (e) the intensity of flooding events F(t), and (f) the social 

awareness of the flood risk M(t) simulated by the data assimilation experiment in which the real-

world observations of G and H (green dots) are assimilated into the model with 5000 ensembles 

in the real-world experiment in the city of Rome. The time step is annual. Grey, and red lines are 

the ensemble members and their mean, respectively. 
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Figure 14. Same as Figure 13 but only real data of G are assimilated. 
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Figure 15. Same as Figure 13 but only real data of H are assimilated. 
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Figure S8. Timeseries of (a) the cost of levee raising 𝛾𝐸, (b) the rate by which new properties 

can be built 𝜑𝑃, (c) the rate of decay of levees 𝜅𝑇, (d) memory loss rate 𝜇𝑆 estimated by the 

data assimilation of observations of G and H with 5000 ensembles in the real-world experiment 

in the city of Rome. The timestep is annual. Grey and red lines are the ensemble members and 

their mean, respectively. 

 

Figure S9. Same as Figure S8 but only real data of G are assimilated. 
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Figure S10. Same as Figure S8 but only real data of H are assimilated.” 

 

 

(2.3) Section 4.3, the discussion about the experiment 3 results is too general. The study could include 

more temporally changing variables in experiment 3 (the cost of levee raising, the rate of new 

properties, and the decay rate of levees), since they are all changing with time in reality. 

→ Thank you for this comment. We could include more temporally changing parameters as the referee 

indicated. In the revised version of the paper, we have included the rate by which new properties can 

be built, 𝜑𝑃, as a time-variant parameter. We have modified the manuscript as follows: 

“Specifically, the rate by which new properties can be built, 𝜑𝑃, and the memory loss rate, 𝜇𝑆, 

were temporally varied in the experiment 3: 

𝜑𝑃(𝑡) = {

5000 (𝑡 < 250)

5000 + (𝑡 − 250) ×
40000−5000

500
(250 ≤ 𝑡 < 750)

40000 (750 ≤ 𝑡)

 (24) 

𝜇𝑆(𝑡) = {

0.01 (𝑡 < 250)

0.01 + (𝑡 − 250) ×
0.10−0.01

500

0.10 (750 ≤ 𝑡)

 (250 ≤ 𝑡 < 750)  (25) 

In the data assimilation experiment, we assumed that the dynamics of 𝜑𝑃 and 𝜇𝑆 was unknown, 

and we integrated the flood risk model with time-invariant 𝜑𝑃 and 𝜇𝑆.” 

 

“In addition to the experiment 2, two of the unknown parameters (𝜑𝑃 and 𝜇𝑆) temporally vary 

in the synthetic truth of the experiment 3. We found that a larger spread of 𝜑𝑃 is required to 

stably track the time-variant synthetic true 𝜑𝑃 so that we increased 𝑠0 in equation (18) from 

0.05 to 0.5 only for 𝜑𝑃 in this experiment 3. Figure 10 and Table 4 indicate that despite the error 

in the model’s description, our SIRPF can greatly improve the simulation of the flood risk model. 
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Please note that the synthetic truth shown in Figure 10 is different from that of the previous 

experiments especially for D and M. Figures 11b and 11d indicate that we can accurately estimate 

the time-variant parameters (𝜑𝑃 and 𝜇𝑆) as well as the other time-invariant parameters (Figures 

11a and 11c). This result is promising since we cannot expect the perfect description of the socio-

hydrologic model in the real-world applications. We also performed the sensitivity test on 

observation types, observation intervals, and ensemble sizes, which results in the same 

conclusions as the experiment 2 (not shown).” 

“

 

Figure 10. Timeseries of (a) high water level W(t), (b) the flood protection level (or levee height) 

H(t), (c) the distance of the center of mass of the human settlement from the river D(t), (d) the 



12 

 

size of the human settlement G(t), (e) the intensity of flooding events F(t), and (f) the social 

awareness of the flood risk M(t) simulated by the data assimilation experiment in which the 

observations of F, G, D, H, and M are assimilated into the model every 10 years with 5000 

ensembles in the experiment 3 (see section 3.1.3). The time step is annual. Grey, red, and black 

lines are the ensemble members, their mean, and the synthetic truth, respectively. 

 

 

Figure 11. Timeseries of (a) the cost of levee raising 𝛾𝐸, (b) the rate by which new properties 

can be built 𝜑𝑃, (c) the rate of decay of levees 𝜅𝑇, (d) memory loss rate 𝜇𝑆 estimated by the 

data assimilation of all observations (F, G, D, H, and M) with 5000 ensembles every 10 years in 

the experiment 3 (see section 3.1.3). The time step is annual. Grey, red, and black lines are the 

ensemble members, their mean, and the synthetic truth, respectively.” 

 

The other two parameters, the cost of levee raising and the decay rate of levees, were still kept constant 

in the synthetic truth. This is because the temporal change in these two parameters has small impacts 

on the state variables, which make it difficult to sequentially estimate the temporal change of the 

parameters. The cost of levee raising mainly affects the state variables in the early stage of the 

simulation and the change in the decay rate of levees has much smaller impacts than the uncertainty 

of high water level. This point was indeed unclear in the original version of the paper although it 

should be mentioned as the limitation. In the revised version of the paper, we have included this point 

as follows: 

“The cost of levee raising 𝛾𝐸 affects the state variables of the flood risk model mainly in the 

initial early years and the gradual change of the rate of decay of levees 𝜅𝑇 has few impacts on 
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the state variables. Therefore, we found that it is difficult to track the temporal change of these 

two parameters.” 

 

As we discuss in the response to the comment from the referee #1 (comment (1.3)), the problem setting 

of the parameter estimation strongly depends on the case and purpose of the study. We believe that our 

current problem setting is one of the reasonable examples without the significant loss of generality. 

The referee mentioned that all parameters may be time-variant. Although we can agree with it, if all 

parameters of the model can be time-variant, the model provides no reasonable constraints of the 

trajectory of the state variables. In this case, we doubt that it is beneficial to use the model to analyze 

the socio-hydrologic phenomena. Therefore, we believe that it is reasonable to assume some of the 

parameters are known and only a few parameters are time-variant. Please also see the discussion with 

the referee #1 attached below. 

 

 

--------- 

(1.3) I have some doubts about the setup of the experiments. Why only 4 parameters and 1 parameter 

are considered in the second and third experiments respectively? Why the authors selected those 

parameters and not others? This must be explained as the results can be biased by the selection of the 

parameters. Personally, the way I would structure the experiments (and results) of this study is 1) 

Uncertain input and uncertain observation (assuming different observation errors); 2) Temporal 

uneven distribution of observational data (similar to Figure 4); 3) Assimilation strategies (similar to 

Figure 3); 4) Real-world application. I have already explained the reason behind points 1 and 4. I 

have included more comments on point 2 below. 

→ The referee mentioned that only 1 parameter were considered in the third experiments. Please note 

that we actually considered all 4 parameters and one of the 4 parameters were assumed to be time-

variant. As the response to the comment from the referee #2, we will include one more parameter as 

time-variant parameters in the revised version of the paper, if we are allowed to revise. Please see our 

response to the comment (2.3) of the referee #2. 

 

We believe that the selection of the targeted parameters in socio-hydrologic data assimilation will 

depend on the case and purpose of the study. The problem setting adopted in this study can be 

recognized as one of the reasonable examples without the significant loss of generality. Here we 

explain how to select those parameters as a reasonable example of socio-hydrologic data assimilation. 

First, it is unlikely that the parameters related to F in equation (1) are much more inaccurate than the 

other parameters. They are mainly determined by the topography and we believe the process described 

in equation (1) can be replaced by the more accurate hydrodynamic models. Second, we selected four 
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unknown parameters one by one from four equations of economy, politics, technology, and social to 

discuss how each state variable’s observation affects the parameter space. Third, our 4 unknown 

parameters, their initial uncertainties, and the uncertainty in the high water level make our problem 

difficult enough to demonstrate the potential of data assimilation in the socio-hydrologic domain. 

Figure 5 indicates that we can get no useful information of the socio-hydrologic processes with this 

specified uncertainty. Although the referee may think that the number of unknown parameters is too 

small, we believe that our problem gives enough uncertainty to demonstrate the potential of data 

assimilation. Fourth, we successfully applied this setting to the real-world case in the city of Rome so 

that our specified initial uncertainty is reasonably good. We have added some sentences to explain this 

point in the revised version of the paper. 

“We selected these unknown parameters one by one from four equations of economy, politics, 

technology, and social to discuss how each state variable’s observation affects the estimation of 

parameters across these four equations (see section 2.1). We have no unknown parameters related 

to F (equation (1)) since it is unlikely that the parameters in equation (1) are much more inaccurate 

than the other parameters. The parameters related to flood are mainly determined by the 

topography of the flood plain so that the process described in equation (1) can be replaced by 

more accurate hydrodynamic models in the real-world case study. The initial parameter variables 

were assumed to be distributed in the bounded uniform distributions whose ranges were found in 

Table 1. The uncertainty of the simulation induced by these parameters’ uncertainty is large 

enough to demonstrate the potential of data assimilation to minimize the simulation’s uncertainty 

(see Results).” 

 

The referee suggested to changing the structure of the paper in the latter part of this comment. We 

would like to keep the structure of the original paper because in the current structure, the problem 

setting gets harder and approaches to the real-world problem (and eventually arrive at the real-data 

experiment). We believe that the referee’s concerns have been addressed by out responses to the 

comments. Please see our responses to the comments (1.1) (real-data experiment), (1.2) (observation 

error) and (1.4) (temporally uneven observation). We believe the change in the structure of the paper 

is not absolutely necessary to meet the referee’s requirements. We have decided not to change this 

aspect of the paper. 

 

 


