Response letter of hess-2020-19-RC1

Dear Anonymous Referee #1,

Please find the responses to the comments.

Comments made by the reviewer were highly insightful. They allowed us to greatly improve the
quality of the manuscript. We described the response to the comments.

Each comment made by the reviewers is written in italic font. We numbered each comment as (n.m)
in which n is the reviewer number and m is the comment number. In the revised manuscript, changes

are highlighted in yellow.

We trust that the revisions and responses are sufficient for our manuscript to be published in Hydrology
and Earth System Sciences



Responses to the comments of Referee #1

The paper “Socio-hydrologic data assimilation: Analyzing human-flood interactions by model data
integration” applied a sequential data assimilation approach to the sociohydrological model
developed by Di Baldassarre et al. (2013) to update model state and estimate the model parameters.
While I found the idea of combining data assimilation with socio-hydrological modeling interesting, |
believe that there are different shortcomings that prevent the publication of the paper in the present

form. I have provided more comments below to help the authors strengthening their paper:

(1.1) My main concern is related to the use of synthetic observations to test the hindcast assimilation
experiment. On the one hand, it is a standard procedure to use synthetic experiments to test new
approaches and observations. On the other hand, synthetic experiments must be coupled with real-
world analysis when observations are available. The authors state: "Although our experiment design
was idealized, this study reveals several important findings toward real-world applications” (in the
Discussion section). However, authors do not provide any empirical comparison or validation of their
approach with real-world applications. Does the model perform better against any real-world
criteria? The main reason for integrating observations into a mathematical model is to improve the
representation of reality by updating model states, output, parameters or input. If this new modeling
approach cannot be applied to a single case study then, what is it the purpose of this study if not just
a mere numerical exercise? For example, you could use the same data reported in Barendrecht et al.
(2019) to test your assimilation approach.
-> Thank you very much for this comment. We have performed the real-data experiment using the
data collected by Ciullo et al. (2017). The results have already been shown in the other Authors’
comment. We attached them below as the proposal of the revision. We successfully showed that our
SIRPF can be applied to the real-world case, which we believe significantly strengthen the paper.
“3.2. Real-data experiment
In addition to the OSSEs, we performed the real-world experiment in the city of Rome, Italy.
Ciullo et al. (2017) collected real-world data and calibrated their flood risk model. Using the data
collected by Ciullo et al. (2017), we performed the data assimilation experiment. It should be
noted that the flood risk model of Ciullo et al. (2017) is different from our model (i.e. Di
Baldassarre et al. 2013), although they are conceptually similar.

All the data were collected from Figure 1 of Ciullo et al. (2017) by WebPlotDigitizer
(https://automeris.io/WebPlotDigitizer/). The observed high water level of Tiber River was used

as input forcing data (W). The levee height (H) and population (G) were used as the observation

data to be assimilated into the flood risk model. In Ciullo et al. (2017), population values within


https://automeris.io/WebPlotDigitizer/

the Tiber’s floodplain were normalized by the theoretical maximum Tiber’s floodplain population
which is estimated to the range between 10° and 2 x 10°. Since our flood risk model needs the
population values (not normalized values), we multiplied 1.5 X 10 and the normalized values

shown in Figure 1 of Ciullo et al. (2017) to obtain population in the floodplain.

We added lognormal multiplicative noise to the observed high water level as we did in the OSSEs.
The observation errors of levee height and population were set to 10% and 25% of the observed
values, respectively. Since Ciullo et al. (2017) showed the large uncertainty in the estimation of
the theoretical maximum population (see above), it is reasonable to assume that the estimation of

population values also has relatively large uncertainty.

As the second and third OSSEs, we have 4 unknown parameters in this real-world experiment.
We used the same settings of parameters as the OSSEs, which are shown in Table 1, except for
&y, proportion of additional high water level due to levee heightening. In this real-world
experiment, we set & = 0 because the observed high water level includes the effects of levee

heightening. This treatment is consistent to Ciullo et al. (2017) (see their Table 2).

The initial conditions of H and M were set to 0. The initial conditions of D were obtained from
the uniform distribution between 1000 and 5000. The initial conditions of G were obtained from
the uniform distribution between 1500 and 50000.

4.2. Real-data experiment

Figure 12 shows the timeseries of the model variables calculated by 5000 ensembles with no data
assimilation. The 5000-ensemble simulation reveals the two bifurcated social systems. One builds
a high levee and maintains a course of stable economic growth. The other one has no levee and
its economy is damaged by severe floods many times (ensemble mean shown in Figure 12b

implies that there are many ensemble members with zero levee height).

In reality, the city of Rome constructed the levee responding to the severe flood occurred on 28
December 1870. After the construction of this levee, no major flood losses occurred, allowing
the steady and undisturbed growth. Figure 13 indicates that our SIRPF successfully constrains
the trajectory of the ensemble simulation to the real-world (i.e. high levee and stable economic
growth) by assimilating the real data of H and G. Figure S8 shows the SIRPF-estimated unknown
parameters. Our SIRPF suggests lower yp than the initial ensemble mean to promote the levee
construction with lower costs. Lower kg is also obtained because the assimilated real data show

no decay of levee from 1874 to 2009. Compared with the OSSE experiment 2, the large



uncertainty in estimated parameters remains at the final timestep due to the limited number of
assimilated observations. In contrast to the OSSEs, our observation network has the uneven
temporal distribution. Figure 13 clearly indicates that our SIRPF is robust to these intermittent

observations whose intervals temporally change.

We analyzed the impacts of the individual observation types (i.e. H and G) on the simulation skill
as we did in the OSSEs. Figure 14 indicates that our SIRPF realistically simulates the socio-
hydrologic dynamics in the city of Rome and provides the similar estimated state variables shown
in Figure 13 by assimilating only population data. As we found in the OSSEs, observations of the
size of the human settlement G are informative to effectively constrain the flood risk model. The
dynamics of the parameter estimation is similar to the case in which data of both G and H are

assimilated (Figure S9).

On the other hand, assimilating only levee height data cannot provide the similar results to those
shown above. Figure 15 shows the timeseries of the model variables by the data assimilation
experiment in which we assimilated the observation data of H only. Observations of the levee
height cannot effectively constrain D, G, and M compared with the observations of G. This
finding is consistent to the OSSEs. The uncertainty in estimated parameters becomes larger when
we omit to assimilate observations of G (Figure S10). Although the impact of levee height data
is limited compared with population data, it is promising that we can estimate the socio-
hydrologic dynamics to some extent only from the levee height data whose distribution is

temporally sparse.



D(t)

(a)
50 water level
-
S 10
0 .
1800 1900 2000
(C) . .
10000 dlstapge from river
5000
0
1800 1900 2000
1(%) intensity of flooding
0.5
| T

0.0

1800

Figure 12. Timeseries of (a) high water level W(t), (b) the flood protection level (or levee height)
H(t), (c) the distance of the center of mass of the human settlement from the river D(t), (d) the
size of the human settlement G(t), (e) the intensity of flooding events F(t), and (f) the social
awareness of the flood risk M(t) simulated by 5000 ensembles with uncertain high water levels

and no data assimilation in the real-world experiment in the city of Rome. The time step is annual.
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Grey, and red lines are the ensemble members and their mean, respectively.
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Figure 13. Timeseries of (a) high water level W(t), (b) the flood protection level (or levee height)
H(t), (c) the distance of the center of mass of the human settlement from the river D(t), (d) the
size of the human settlement G(t), (e) the intensity of flooding events F(t), and (f) the social
awareness of the flood risk M(t) simulated by the data assimilation experiment in which the real-
world observations of G and H (green dots) are assimilated into the model with 5000 ensembles

in the real-world experiment in the city of Rome. The time step is annual. Grey, and red lines are
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the ensemble members and their mean, respectively.
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Figure 14. Same as Figure 13 but only real data of G are assimilated.
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Figure 15. Same as Figure 13 but only real data of H are assimilated.
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Figure S8. Timeseries of (a) the cost of levee raising yg, (b) the rate by which new properties

can be built @p, (c) the rate of decay of levees xr, (d) memory loss rate pg estimated by the

data assimilation of observations of G and H with 5000 ensembles in the real-world experiment

in the city of Rome. The timestep is annual. Grey and red lines are the ensemble members and

their mean, respectively.
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Figure S9. Same as Figure S8 but only real data of G are assimilated.
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Figure S10. Same as Figure S8 but only real data of H are assimilated.”

(1.2) The proper estimation of the observational error plays a key role in the assimilation
performances (especially in socio-hydrological models in which uncertainty of social observation can
be quite high). How is the covariance matrix of the observation error process estimated in this study?
Are some observations more reliable than others? Small observational errors can force the updated
model closer to the observation, while high observational errors may lead to poor model updates. Are
the good results achieved in the experiments due to low observational error with respect to the model
error with NoDA? The authors mentioned that M is considered as an observed variable for
assimilation purposes. How are the authors planning to estimate the accuracy of flood awareness
observations in real-world applications?
- We assumed that the observation errors (standard deviation) were set to 10% of the true value. We
mentioned this point in the original version of the paper.
“The variance of the Gaussian white noise was 10% of the synthetic true variables.”
We noticed that this description was wrong. We should say “standard deviation” (not variance) here.
In addition, we realized that this description was unclear. We have modified this point as follows.
“The observation error, the standard deviation of the Gaussian white noise, was firstly set to 10%
of the synthetic true variables.”
We believe that 10% observation error is much larger than the observation error generally used in the
other earth science domains such as atmospheric science and hydrology. As the referee mentioned, we
assumed that the uncertainty of social observations is quite high. This point was indeed unclear in the
original version of the paper and we have clarified it in the revised version of the paper.
“Although this observation error is generally larger than that used in meteorology and hydrology,”
In addition, we tested the sensitivity of the observation error to the SIRPF’s performance and found

that our SIRPF is robust to the uncertain observation. In the revised version of the paper, we included



Figures S2 and S6 in the supplement material and explained our SIRPF significantly improves the
state and parameter estimation with larger observation errors. As the referee mentioned, the SIRPF’s
performance gradually declines as the observation error increases. We have included the following
sentences in the results section of the revised paper.
“Although this observation error is generally larger than that used in meteorology and hydrology,
we further increased the observation error and tested the sensitivity of the observation error to
the SIRPF’s performance.”
“We set the observation error to 10% of the synthetic truth thus far. The improvement of the
simulation skill can be found with larger observation errors (Figure S2). Although the SIRPF’s
performance gradually declines as the observation error increases, our SIRPF can significantly
improve the simulation skill with 25% observation error.”
“As we found in the experiment 1, the SIRPF’s performance declines with the increased
observation error (Figure S6). However, it is promising that our SIRPF can improve the
simulation skill with larger observation errors up to 25% of the synthetic truth considering that

the observations in the socio-hydrologic domain are often inaccurate.”
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Figure S2. The ratio of RMSEs of the no data assimilation experiment (NoDA) to those of the
data assimilation experiments in which the observation error is set to 10%, 15%, 20%, and 25%
of the synthetic true values in the experiment 1 (see section 3.1.1). Blue, orange, gray, and yellow
bars are RMSEs of the size of the human settlement G(t), the center of mass of the human

settlement from the river D(t), the flood protection level (or levee height) H(t), and the social



awareness of the flood risk M(t).
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Figure S6. The ratio of RMSEs of the no data assimilation experiment (NoDA) to those of the
data assimilation experiments in which the observation error is set to 10%, 15%, 20%, and 25%
of the synthetic true values in the experiment 2 (see section 3.1.2). (a) Blue, orange, gray, and
yellow bars are RMSEs of the size of the human settlement G(t), the center of mass of the human
settlement from the river D(t), the flood protection level (or levee height) H(t), and the social
awareness of the flood risk M(t). (b) Blue, orange, gray, and yellow bars are RMSEs of the cost

of levee raising Y, the rate by which new properties can be built ¢p, the rate of decay of levees

K1, memory loss rate ps.



We agree with the referee’s comment that it is not straightforward to observe flood awareness. Several
studies have obtained the proxy of the social memory by interview data (Barendrecht et al. 2019) and
the number of Google searches (Gonzales and Ajami 2017). This point was indeed unclear in the
original version of the paper and we have clarified this point in the revised version of the paper.
“Although it is not straightforward to observe social memory M, several previous studies
obtained the proxy of the social memory by interview data (Barendrecht et al. 2019) and the

number of Google searches (Gonzales and Ajami 2017).”

(1.3) I have some doubts about the setup of the experiments. Why only 4 parameters and 1 parameter
are considered in the second and third experiments respectively? Why the authors selected those
parameters and not others? This must be explained as the results can be biased by the selection of the
parameters. Personally, the way I would structure the experiments (and results) of this study is 1)
Uncertain input and uncertain observation (assuming different observation errors);, 2) Temporal
uneven distribution of observational data (similar to Figure 4); 3) Assimilation strategies (similar to
Figure 3); 4) Real-world application. I have already explained the reason behind points 1 and 4. 1
have included more comments on point 2 below.

- The referee mentioned that only 1 parameter were considered in the third experiments. Please note
that we actually considered all 4 parameters and one of the 4 parameters were assumed to be time-
variant. As the response to the comment from the referee #2, we will include one more parameter as
time-variant parameters in the revised version of the paper, if we are allowed to revise. Please see our

response to the comment (2.3) of the referee #2.

We believe that the selection of the targeted parameters in socio-hydrologic data assimilation will
depend on the case and purpose of the study. The problem setting adopted in this study can be
recognized as one of the reasonable examples without the significant loss of generality. Here we
explain how to select those parameters as a reasonable example of socio-hydrologic data assimilation.
First, it is unlikely that the parameters related to F in equation (1) are much more inaccurate than the
other parameters. They are mainly determined by the topography and we believe the process described
in equation (1) can be replaced by the more accurate hydrodynamic models. Second, we selected four
unknown parameters one by one from four equations of economy, politics, technology, and social to
discuss how each state variable’s observation affects the parameter space. Third, our 4 unknown
parameters, their initial uncertainties, and the uncertainty in the high water level make our problem

difficult enough to demonstrate the potential of data assimilation in the socio-hydrologic domain.



Figure 5 indicates that we can get no useful information of the socio-hydrologic processes with this
specified uncertainty. Although the referee may think that the number of unknown parameters is too
small, we believe that our problem gives enough uncertainty to demonstrate the potential of data
assimilation. Fourth, we successfully applied this setting to the real-world case in the city of Rome so
that our specified initial uncertainty is reasonably good. We have added some sentences to explain this
point in the revised version of the paper.
“We selected these unknown parameters one by one from four equations of economy, politics,
technology, and social to discuss how each state variable’s observation affects the estimation of
parameters across these four equations (see section 2.1). We have no unknown parameters related
to F (equation (1)) since it is unlikely that the parameters in equation (1) are much more inaccurate
than the other parameters. The parameters related to flood are mainly determined by the
topography of the flood plain so that the process described in equation (1) can be replaced by
more accurate hydrodynamic models in the real-world case study. The initial parameter variables
were assumed to be distributed in the bounded uniform distributions whose ranges were found in
Table 1. The uncertainty of the simulation induced by these parameters’ uncertainty is large
enough to demonstrate the potential of data assimilation to minimize the simulation’s uncertainty

(see Results).”

The referee suggested to changing the structure of the paper in the latter part of this comment. We
would like to keep the structure of the original paper because in the current structure, the problem
setting gets harder and approaches to the real-world problem (and eventually arrive at the real-data
experiment). We believe that the referee’s concerns have been addressed by out responses to the
comments. Please see our responses to the comments (1.1) (real-data experiment), (1.2) (observation
error) and (1.4) (temporally uneven observation). We believe the change in the structure of the paper
is not absolutely necessary to meet the referee’s requirements. We have decided not to change this

aspect of the paper.

(1.4) It is mentioned that “our SIRPF can efficiently improve the simulation of the sociohydrologic
state variables using the sparsely distributed data”. I guess the authors refer to the temporal
availability of observation and not spatial as the system dynamic model of Di Baldassarre et al. (2013)
is lumped. I appreciate that the authors considered the effect of different assimilation updating times.
However, I would find more interesting to consider intermittent and uneven temporal distributions of
social and hydraulic information. In fact, it can be that flood awareness and other social data are not
available regularly available as you assumed in your study. How would the intermittency

characteristics of social data affect the model performances?



- I believe that our new real-data experiment shows the reasonable performance of our SIRPF with
the intermittent and uneven temporally distributed observation. Since we need no tuning of the
hyperparameters with different observation intervals in our SIRPF, we have no problem when the
observation intervals temporally change. As Figures S1 and S3 indicate, the uncertainty (i.e. the spread
of ensembles) increases in the observation interval so that we have relatively large (small) uncertainty
if we have a large (small) observation interval. This finding is consistent to the unevenly distributed
observation in the real-data experiment. We believe that the real-data experiment has already addressed
this comment and the additional OSSE is not necessary. It is not straightforward to design the realistic
unevenly distributed observation in the framework of OSSE so that it is better to show the real-data
experiments to explain our SIRPF is robust to this issue. In the revised version of the paper, we
emphasized this point as follows.

“In contrast to the OSSEs, our observation network has the uneven temporal distribution. Figure

13 clearly indicates that our SIRPF is robust to these intermittent observations whose intervals

temporally change.”

(1.5) Results need to be discussed in a more critical way. For example, why when only G is updated
also the other state variables are improved? Also “Observing F, D, and M negatively impacts the
estimation of H and observing H does not significantly improve the simulation of D and M. I found
these results counter-intuitive. If a flood occurs, then flood awareness will increase and this will lead
to reinforcement of the levee system (as already described in Di Baldassarre et al. (2013), Di
Baldassarre et al. (2015), and other related papers). However, you found a negative impact. Why?
Levees are built and reinforced to protect urbanized areas from flooding and F should be critical for
the estimation of H. In the same way, levee systems (H) can shape human flood awareness and distance
from the river (as already described in Di Baldassarre et al. (2013), Di Baldassarre et al. (2015), and
many other related papers). So, how can you justify your results? Provide a real-world example in
which flooding and flood awareness are not relevant to the reinforcement of a levee system.

-> The first question of this block is why the other state variables are improved by updating only G.
The referee has a misunderstanding due to our insufficient description. We actually updated all state
variables (and parameters) by assimilating only G. Although we evaluated equation (11) using only
simulated and observed G, x(t) in (13) includes all state variables (and parameters). In SIRPF, we can
infer the unobserved variables from the observed variables and simulation based on the Bayes’ theorem.
This point was indeed unclear in the original version of the paper. We have clarified this point in the

revised version of the paper.



“Note that equations (13) and (14) update all state variables and parameters of the model although
the weight is calculated using only observable variables. Therefore, it is not necessary to observe
all state variables in order to update all system variables.”

“Our SIRPF updates all state variables although only one of them is assimilated.”

The second question of this block is why the observation H has little impact on the estimation of the
state space in summary. This comment is critical, and we thank the referee for this comment. In the
flood risk model of Di Baldassarre et al. (2013), flooding and flood awareness strongly control whether
they raise the levee or not as the referee mentioned. However, once they determined to raise the levee
responding to the flood event, the amount by which the levees are raised is fully determined by the
high water level (see equation (2)). On the contrary to the previous works, we assumed the uncertainty
in the high water level, which brings the uncertainty in the dynamics of H. Observing H can improve
the simulation of D and M only if the uncertainty in the dynamics of H is induced by the uncertainty
in D and M. Because the uncertainty in the dynamics of H is largely determined by the uncertainty in
the high water level, we could not obtain the significant impact of the observation of H on the other
variables. This point was indeed unclear in the original version of the paper and we have clarified this
point in the revised version of the paper.
“Although the dynamics of F, D, and M strongly affects the decision making of whether the levees
are raised or not, the amount by which the levees are raised, R, is fully determined by the high
water level, W, once the community determines to raise the levees (see equation (2)). Therefore,
the uncertainty of H is largely induced by the uncertainty of the high water level, W, whose
uncertainty is not directly mitigated by our SIRPF. This is why observing F, D, and M is not
helpful to mitigate the uncertainty of H.”

(1.6) Line 268: “In the first OSSE, we assumed that the model was perfect, and we knew it”. I honestly
doubt that the model is perfect and I strongly invite the authors to remove this sentence as conceptually
wrong. No model is perfect, in particular socio-hydrological models that represent complex social
interactions as the distance from the river, flood awareness, etc.

-> This is indeed the assumption and we do not trust it is true in the real-world. We understand that no
model is perfect in the real-world application. In the revised version of the paper, we rephrased this
sentence as follows.

“we assumed that there is no uncertainty in model parameters.”

(1.7) What do you mean with “H is decoupled from the other state variables”?

- We intended to make this sentence the summary (or rephrasing) of the next sentence “Observing F,



D, and M negatively impacts the estimation of H and observing H does not significantly improve the
simulation of D and M.”. We noticed that this sentence is simply unnecessary to explain our results.

We have deleted this sentence in the revised version of the paper.

(1.8) Line 298-300. The sentence is unclear and has to be rephrased.
—> In the revised paper, we have rephrased this sentence in the following:
“In the data assimilation experiment, we assumed that the dynamics of ¢p and pg was

unknown, and we integrated the flood risk model with time-invariant @p and pg.”

(1.9) Line 270: “Our SIRPF estimated only state variables”. Change “estimated” with “updated”.

- We have modified this point following the reviewer’s instruction.



