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Manuscript hess-2020-188: “Spatial distribution of tracers for optical sensing of stream 

surface flow” by Pizarro et al. 

 

We report a detailed response to each of the comments and suggestions below (text in red). 

 5 

Reviewer 1 

Obs. 1: This study reports a novel approach to refining image-based flow velocity estimates, with a 

specific focus on the effects of particle seeding. The use of simulated images to isolate these factors while 

eliminating the confounding effects of other environmental variables is innovative and could be a useful 

approach for conducting similar controlled experiments in the future. The paper is generally well-10 

organized and reasonably well written, and the figures are clear and insightful, so I am generally 

supportive of the work and believe that the manuscript could be published pending some minor revisions. 

Please refer to the attached PDF for the details, as well as a large number of in-line text edits to improve 

English usage, but here are a few of the highlights: 

 15 

Ans. 1: We thank the anonymous Reviewer 1 for the detailed feedback, comments, and suggestions 

provided. 

 

Obs. 2: Title: I suggest augmenting the title a bit to make what you actually did in this study more clear, 

perhaps start with “Identifying the optimal density and ...” 20 

Ans. 2: We agree with the reviewer and decided to change the title as follows: “Identifying the optimal 

spatial distribution of tracers for optical sensing of stream surface flow”.  

 

Obs. 3: Line 11: You need to clarify from the beginning what you mean by aggregation. It wasn’t until 

well into the paper that I got a clear understanding of what you mean by this term. Essentially clustering 25 

or dispersion of the tracers, right? 

Ans. 3: Thank you for pointing out this issue. In order to avoid confusion, we will only refer to the term 

clustering or dispersion rather than aggregation.  

 

Obs. 4: Line 17: Similarly, clarify what you mean by converging seeding density - is this only in areas 30 

where the flow streamlines come together? I never really got a clear sense of what this refers to. 
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Ans. 4: We agree with the reviewer, and we thank him/her for pointing out this aspect. The term was 

improperly used to identify the minimum seeding density that assures an error of about 2 – 3% in Figure 

4. This error value is a reference value after which an asymptotic behaviour of the errors is observed. We 

will reformulate the description on lines 217 – 220 to better clarify this concept. 35 

 

Obs. 5: Line 58: This would be a good place to elaborate a bit on what you mean by this term 

(aggregation). 

Ans. 5: See Ans. 3. 

 40 

Obs. 6: Line 78: Relative in what sense? In comparison to field measurements? Please clarify. 

Ans. 6: Thank you for this comment. The word “relative” will be removed in the new version of the 

manuscript. 

 

Obs. 7: Line 88: This (unidirectional, constant velocity) is a significant and somewhat unrealistic 45 

assumption and I think you should acknowledge this in some way within the text. 

Ans. 7: We appreciate this suggestion since it is an explicit limitation of the proposed framework. 

Therefore, we will add a final section introducing the strengths and limitations of this research. 

 

Obs. 8: Line 134: What kind (of current meter)? Please provide more detail, similar to the level of detail 50 

used to describe the camera system. 

Ans. 8: Velocities and river discharge were measured using a current meter (SEBA F1, SEBA 

Hydrometrie GmbH & Co, Kaufbeuren, Germany). The accuracy of measurements is within 2% of the 

measured values, corresponding to 0.001 and 0.014 m/s for the minimum and maximum velocities in 

question. This information will be added to the main text, respectively. 55 

 

 

Obs. 9:  Line 138: Were there two different kinds of tracers? The last couple of sentences of this paragraph 

are unclear. 

 60 

Ans. 9: Only one type of artificial tracers (wood chip) was considered to extra seed the ROI. Two 

operators were involved in the process of deploying the material. The sentence in question will be slightly 

modified to be clearer. 

 

 65 
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Obs. 10:   Line 156: This figure (3) appears to have only one image, not an original and enhanced version. 

Please modify the text and caption to remove the reference to the original image, or update the figure to 

include the raw image. 

 

Ans. 10: Figure 3.B shows two images in one. Riverbanks are shown in the original greyscale acquisition 70 

modality, while the darker area where water flows corresponds to the same pre-processed frame 

overlapping this area. A better explanation of this figure will be added to the main text in the new version 

of the manuscript. 

 

 75 

Obs. 11:   Line 168: Did you try the new ensemble correlation method available within PIVlab? This 

approach is designed for low particle densities and could be helpful in this study, so I suggest adding a 

bit of analysis to assess the performance of the ensemble correlation method in addition to the standard 

PIVlab technique. 

 80 

Ans. 11: Thank you for pointing out this matter. We did not apply the new-available-in-PIVLab ensemble 

correlation method within our analysis, mainly motivated by the small number of frames used within the 

synthetic framework (20 synthetic images). To have full benefits of the ensemble correlation method, it 

is suggested a large number of images and low seeding conditions. Nevertheless, this matter can be 

considered for future research. 85 

 

References: 

 

1. https://pivlab.blogspot.com/2019/09/the-benefit-of-ensemble-correlation-in.html 

2. Westerweel, J.; Geelhoed, P.F.; Lindken, R. Single-pixel resolution ensemble correlation for 90 

micro-PIV applications. Exp Fluids 2004, 37, 375–384. 

 

 

Obs. 12:  Line 170: Were the SA and IA the same? Typically, the step size is half the size of the IA. 

 95 

Ans. 12: IA was the half of SA for the three passes considered within the analyses as is shown between 

parentheses on line 170 (e.g., 128x64). We will slightly modify the sentence to clarify this issue better. 

 

 

Obs. 13: Figure 4: These graphs are a bit confusing at first glance because the error values are all negative, 100 

which makes the axes appear backward because smaller errors actually plot higher on the graph. You 

might want to point this out in the text to help the reader understand how to interpret these plots. 

 

Ans. 13: Thank you for this suggestion. This matter is already explicitly written on lines 190 – 193 (before 

Figure 4), where it is pointed out that only negative errors were observed within numerical analyses. 105 

Nevertheless, a clarification will be added to the figure caption. 
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Obs. 14:  Line 218: I still don’t know what you mean by converging seeding density. 

 110 

Ans. 14: Please, see Ans. 4. 

 

 

Obs. 15:  Line 270: You should provide some more information about this algorithm. 

 115 

Ans. 15: Thank you for this suggestion. More information will be added to the main text to clarify better 

how the algorithms work. Further information about this algorithm is also provided in the following paper: 

 

1. Dal Sasso, S.F.; Pizarro, A.; Manfreda, S., Metrics for the Quantification of Seeding 

Characteristics to Enhance Image Velocimetry Performance in Rivers. Remote Sens. 2020, 12, 1789. 120 

 

 

Obs. 16:  Please also note the supplement to this comment. 

 

Ans. 16: We would like to thank again Reviewer 1 for the detailed feedback provided. We will go through 125 

the supplement document in detail, checking all the matters pointed out. 
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Reviewer 2 

Obs. 1: The manuscript investigates on the seeding density role for image analysis algorithms (PTV and 

LSPIV) useful for surface velocity measurements. Moreover, authors propose a dimensionless index for 130 

evaluating performances of algorithms. The topic is surely interesting and the manuscript is well 

organised and easy to follow. In the last twenty years the attempt to use camera for estimating river surface 

velocity is becoming always more reliable and, in general, gauge-cams are promising instruments that 

soon will be widely adopted. However, there are still several bottlenecks that should be, and will be, soon 

solved either in the hardware and in the software behind this relatively new methodology. One of these, 135 

is the absence of benchmarks for evaluating and comparing performances of image analysis algorithms 

(PTV, LSPIV, OTV, etc.). This manuscript goes toward this direction providing a simple framework for 

analysing the seeding density role. So, I positively evaluate the manuscript since, about this research topic, 

is not easy, or better impossible, to have available reliable benchmark, so the idea of synthetic scenarios 

is welcome. Following this general assessment, I have some further comments to share with the authors. 140 

 

Ans. 1: We would like to thank the anonymous Reviewer 2 for the positive feedback, suggestions, and 

further comments. 

 

Obs. 2: Lines 30-35. I found reductive these lines for emphasising the usefulness of non-contact 145 

approaches. Such approaches allow to measure surface velocities (and so indirectly discharge) during a 

flood, that is not possible to observe with common methods. So, it represents really a crucial and 

significant advancement of knowledge. 

Ans. 2: Thank you for pointing out this matter. We agree with reviewer 2, and the sentence will be slightly 

modified in the new version of this manuscript to highlight better the importance of using non-contact 150 

approaches at high flow conditions. 

 

Obs. 3: Lines 49-50. Maybe the difference between PTV and LSPIV could be better described referring 

to the “eulerian” and “lagrangian” characterisation. 

Ans. 3: The sentence will be modified to add this information to the main text. 155 
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Obs. 4: Line 51. Unfortunately, or fortunately, these are still not “widely” used. 

Ans. 4: To the authors’ knowledge, several researchers, practitioners, and institutions are starting to use 

image-based techniques to observe/estimate surface flow velocities and river stream flows remotely. 160 

Among them, initiatives in Italy, France, Switzerland, the UK, Australia, Japan, Chile, Peru, Argentina, 

and the USA are examples of it (see some references below). Therefore, and despite their use worldwide, 

uncertainty within the measurements is still an open issue motivating not only the sentence in question 

but also the research the authors are carrying out. 

 165 

References: 

 

1. https://flood-obs.com/ 

2. https://floodscale.irstea.fr/front-page-en 

3. https://twitter.com/CdC_Cordoba 170 

4. https://www.usgs.gov/mission-areas/water-resources/science/usgs-next-generation-water-

observing-system-ngwos?utm_source=twitter&utm_medium=social&utm_term=f0750e58-

49ba-48cb-a985-46a71dc3f83c&utm_content=&utm_campaign=usgs&qt-

science_center_objects=0#qt-science_center_objects 

5. https://discharge.ch/ 175 

 

Obs. 5: Line 127. How discharge and velocities were estimated or measured? 

Ans. 5: Velocities were measured using a current meter (SEBA F1, SEBA Hydrometrie GmbH & Co, 

Kaufbeuren, Germany). The accuracy of measurements is within 2% of the measured values, 

corresponding to 0.001 and 0.013 m/s for the minimum and maximum velocities in question. River 180 

discharge was estimated according to ISO-748/1997, using the velocity-area method. The cross-section 

was divided into panels of equal width and, for each panel, the velocity was measured at 20%, 60% and 

80% of the panel depth. 

 

Reference: 185 

  

1. International Standards Organization (ISO). Measurement of Liquid Flow in Open Channel—

Velocity-Area Method; ISO 748; ISO: Geneva, Switzerland, 1997. 

Obs. 6: Figure 4. I am very glad to see the figure 4 that clearly shows how the PTV outperforms LSPIV. 

It is a pity that authors (line 185) did not apply any post-processing on the results. Comparing PTVLab 190 

and PTVLab+post processing, results are significantly different, indeed the potentiality of PTV is in the 

opportunity in validating trajectories avoiding fake information. In any case, it is already clear from the 

results that PIV suffers more that PTV of the seeding density. Maybe the final percentage errors would 

be different for the two methods. I would mention in the conclusion or in the discussion that the difference 

between PTV and LSPIV is expected be higher in case of using post processing analyses. 195 

https://flood-obs.com/
https://floodscale.irstea.fr/front-page-en
https://twitter.com/CdC_Cordoba
https://www.usgs.gov/mission-areas/water-resources/science/usgs-next-generation-water-observing-system-ngwos?utm_source=twitter&utm_medium=social&utm_term=f0750e58-49ba-48cb-a985-46a71dc3f83c&utm_content=&utm_campaign=usgs&qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/mission-areas/water-resources/science/usgs-next-generation-water-observing-system-ngwos?utm_source=twitter&utm_medium=social&utm_term=f0750e58-49ba-48cb-a985-46a71dc3f83c&utm_content=&utm_campaign=usgs&qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/mission-areas/water-resources/science/usgs-next-generation-water-observing-system-ngwos?utm_source=twitter&utm_medium=social&utm_term=f0750e58-49ba-48cb-a985-46a71dc3f83c&utm_content=&utm_campaign=usgs&qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/mission-areas/water-resources/science/usgs-next-generation-water-observing-system-ngwos?utm_source=twitter&utm_medium=social&utm_term=f0750e58-49ba-48cb-a985-46a71dc3f83c&utm_content=&utm_campaign=usgs&qt-science_center_objects=0#qt-science_center_objects
https://discharge.ch/
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Ans. 6: We are aware of possible post-processing methodologies. However, from the authors’ point of 

view, many of them are subjective and user-dependent despite their logical concept. Therefore, we 

decided to standardise the analysis giving the same conditions for both techniques, namely PTV and PIV. 

In addition, one of the main goals of this research was the discovery of seeding characteristics trends with 

the intention to minimise image-velocimetry errors. Post-processing methodologies would potentially 200 

hide them due to their filtering nature. Nevertheless, this matter is without a doubt, an issue to be 

considered for future research. 
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Editor 

Obs. 1: Dear Authors, Your original submission just received some interesting comments from two 205 

reviewers. I invite you to provide some preliminary responses so as to suitably feed the discussion step 

of the journal and possibly receive further comments from these experts. 

 

Ans. 1: We would like to thank the Editor for this suggestion that without a doubt will promote the 

discussion. We included our responses to the reviewers addressing their suggestions. 210 
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Reviewer 3 

Obs. 1: This manuscript deals with the image velocimetry method and suggests a new metric to evaluate 

the seeding quality. The study is interesting, but there are some issues that need to be addressed. 

 215 

Ans. 1: We thank the anonymous Reviewer 3 for the detailed feedback, comments, and suggestions 

provided. 

 

Obs. 2: There are some vague sentences. 

Ans. 2: We will revise the text carefully to avoid any vague sentence and lack of clarity. 220 

 

Obs. 3: At some points, the text lacks the necessary details to fully comprehend the steps followed.  For 

example, the authors do not provide any information on how the motion of the particles of the synthetic 

images was simulated. Similarly, the concept behind some assumptions is not explained (see below the 

comment about "multiplication of power laws" and the comment about v=D). 225 

Ans. 3: Thank you for pointing out this matter. Please, see Ans 2, Ans. 16, and Ans. 18. 
 

Obs. 4: The value of the suggested index is not fully demonstrated. The authors need to show what would 

be the error if all frames were used instead of selecting frames based on the suggested index. 

Ans. 4: Please, see Ans. 21. 230 

 

Obs. 5: The well known constant π is used as a symbol for the suggested metric. This is like using number 

1 as a symbol for a variable or index. 

Ans. 5: Please, see Ans. 6. 

Obs. 6: The specific locations in the manuscript of the previous general comments are given below. 235 

Location: "A descriptor of the seeding characteristics (based on density and aggregation) was introduced 

based on a newly developed metric π." Comment:  In mathematics, the Greek letter π is reserved to be 

used for one and only one thing, the ratio of a circle’s circumference to its diameter. Please use another 

symbol (e.g., "SCD") 

Ans. 6: We appreciate the reviewer for bringing us this issue. The Greek letter “π” is frequently used to 240 

define dimensionless parameters. Nevertheless, and with the intention to avoid any confusion, a different 

symbol will be adopted in the revised version of the manuscript. 
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References: 

 245 

1. Buckingham, E. (1914). On physically similar systems; illustrations of the use of dimensional 

equations. Physical review, 4(4), 345. 

2. Evans, J. H. (1972). Dimensional analysis and the Buckingham pi theorem. American Journal of 

Physics, 40(12), 1815-1822. 

3. Melville, B. W., & Sutherland, A. J. (1988). Design method for local scour at bridge piers. Journal 250 

of Hydraulic Engineering, 114(10), 1210-1226. 

4. Hanche-Olsen, H. (2004). Buckingham’s pi-theorem. NTNU: http://www. math. ntnu. no/~ 

hanche/notes/buckingham/buckingham-a4. pdf. 

5. Pizarro, A., Ettmer, B., Manfreda, S., Rojas, A., & Link, O. (2017). Dimensionless effective flow 

work for estimation of pier scour caused by flood waves. Journal of Hydraulic Engineering, 143(7), 255 

06017006. 

Obs. 7: Location:  "A  reduction  of  image-velocimetry  errors  was  systematically  observed  by 

decreasing the values of π" Comment: Since this is a metric, not a parameter that can be directly adjusted, 

it would be better to write "A reduction of image-velocimetry errors was systematically observed with 

lower values of SCD 260 

Ans. 7: The sentence will be reformulated in the revised version of the manuscript to avoid any lack of 

clarity within the text. 

 

Obs. 8: Location: Equation 1 Comment: It looks like S is missing after the exp(1). 

Ans. 8: Thank you for pointing out this matter. Indeed, there is a typing error that will be amended in the 265 

revised version of the manuscript. 

 

Obs. 9: Location:  "The range of variability was established based on the ..." Comment:  Does this refer 

to the values of the previous sentence?  

Ans. 9: The sentence in question refers to the values written in the previous sentence, i.e. “14 different 270 

seeding densities ranging from 0.4E-05 particles per pixel (ppp) up to 1.0E-02 (ppp)”. 

 

Obs. 10: Location: "Furthermore, each numerical experiment contains 20 images, ..." Comment: How 

these 20 images were created? 

Ans. 10: Synthetic images were generated using a Matlab code written by the authors for this purpose. 275 

The spatial distribution of synthetic tracers follows the Generalised Poisson Distribution (GPD), 
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presented in Eq. (1) of the manuscript. The main advantage of using this numerical approach is the fact 

that the seeding density and the clustering level of synthetic tracers can be controlled and associated to a 

parameter (𝜈 and 𝜆) of the GPD. Synthetic tracers move with a constant velocity of 15 pixels/frame along 

the y-axis. A numerical experiment was defined as 20 synthetic generated images following the mentioned 280 

information. All the data used in this study is freely available at https://doi.org/10.5281/zenodo.3761859. 

 

Obs. 11: Location:  "ð ̇IIJˇR ranges from 0.5 to 200 (12 different values) ..." Comment:  It is very unusual 

to start a sentence with a lowercase variable. 

Ans. 11: The sentence will be rephrased.  285 

 

Obs. 12: Location: Lines 163-175 Comment: These lines should be broken into two paragraphs, one for 

PTV and one for PIV. 

Ans. 12: The new version of the manuscript will take this issue into consideration. 

 290 

Obs. 13: Location:  "The theoretical velocity was set at 15 px/frame ..." Comment:  This term("theoretical 

velocity") is repeated many times in the manuscript, but its meaning has not been defined 

Ans. 13: Thank you for pointing out this matter. The “theoretical velocity” term will be defined at line 

99, within the Numerical Simulation Section. 

 295 

Obs. 14: Location: "...  used 8 and 20 (px) " Comment: The unit px appears both inside parenthesis and 

without parenthesis (preferable) in the text. 

Ans. 14: We will standardise the text in the revised version of the manuscript to avoid lack of consistency 

or clarity. 

 300 

Obs. 15: Location:  "PTV used 8 and 20 (px) for detection and tracking, respectively.  PIV used FFT with 

three-passes (128x64, 64x32, 32x16)." Comment: This information has been already given (and more 

clearly) previously.  It would be better to remove these sentences. 

Ans. 15: This repeated information will be removed from the main text in the revised version of the 

manuscript. 305 
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Obs. 16: Location: "where f = function" Comment:  This is not a solid definition, neither from a linguistic 

nor from a mathematical point of view.  c Location:  "The function f is usually considered as a 

multiplication of power laws." Comment: A reference is required. 

Ans. 16: Thank you for bringing us this issue. The sentence in question will be reformulated to avoid 310 

confusion. Furthermore, the references given in Ans. 6 will be added at this point. 

 

Obs. 17: Location: "rhocv1 values for PIV and PTV were taken from Figure 4 and are 1.52E-03 and 

1.02E-03, " Comment: The error, for low error values, is not very sensitive on the suggested metric. What 

if a single ’v=1 converging seeding density’ was used for both PTV and PIV? This would reduce the 315 

number of parameters. 

Ans. 17: Although PIV and PTV are useful for image-based velocity estimates, they rely on different 

algorithms. In consequence, it is conceptually reasonable that the minimum seeding density assuring an 

error of about 2 – 3% in Figure 4 were different. Furthermore, the number of parameters will not be 

reduced since it does not modify π or Eq. (5). 320 

 

Obs. 18: Location:  "the  empirical  aggregation  level  (i.e.,  the  empirical  one  equivalent  to  the used 

in the numerical simulations),  was quantified through the dispersion index D."Comment: This approach, 

which assumes D as an estimator of v, needs to be justified and explained with more details. 

Ans. 18: Thank you for pointing out this issue. We agree with the reviewer that more details should be 325 

given at this regard. The new version of the manuscript will cover this issue as well as the introduction of 

a new section called “Strengths and Limitations” of this research. 

 

Obs. 19: Location: "A moving window of 100 frames was arbitrarily chosen, " Comment:  What exactly 

was chosen arbitrarily, the length of the window? 330 

Ans. 19: The length of the window was arbitrarily chosen, corresponding with 100 frames. The sentence 

will be reformulated to avoid confusion. 

 

Obs. 20: Location: "Figure 8.A shows the particular case of PTV; nevertheless, PIV presented similar 

results. The locations of the minimum and maximum π values was, therefore, unaffected by the image-335 

velocimetry technique under consideration." Comment:  Why PTV and PIV would present different 

values for the suggested index? Is it because of the different rhocv1 used for each method?  If so, then 

this (the fact that PIV and PTV presented similar results) is an indication of using a single rhocv1 value 

for both methods (see previous comment) 
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Ans. 20: Thank you for this observation. Please, see Ans. 18 as well. Indeed, PTV and PIV presented 340 

different π values because of 𝜌𝑐𝜈1. However, using the same 𝜌𝑐𝜈1 for both PIV and PTV is equivalent to 

assume that both algorithms work in the same way (which is far from being right). Additionally, 𝜌𝑐𝜈1 was 

estimated using a huge numerical framework, resulting in different values for PIV and PTV. Finally, there 

is no advantage in using only one common value since the number of coefficients remains invariable. 

 345 

Obs. 21: Location: Table 2 Comment: What would be the error if all frames were used? 

Ans. 21: The average absolute errors calculated using PTV and PIV if all frames were used are 23.93% 

and 23.69%, respectively. Nevertheless, this research introduced a new dimensionless parameter able to 

identify the best location of N frames, minimising image-based errors. Comparing these errors with the 

ones using 𝜋, it is possible to appreciate that they are essentially the same (23.31% and 24.11% for PTV 350 

and PIV, respectively); even though the number of frames used with 𝜋 is the half with respect to the total 

number of frames. A sentence will be added to the “Strengths and Limitations” section, highlighting this 

matter. Finally, the authors are currently working with a larger dataset to generalise the methodology. 

 

  355 
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Identifying the optimal Sspatial distribution of tracers for optical 

sensing of stream surface flow  
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Abstract. River monitoring is of particular interest for our society that is facing increasing complexity in water management. 

Emerging technologies have contributed to opening new avenues for improving our monitoring capabilities, but also generating 

new challenges for the harmonised use of devices and algorithms. In this context, optical sensing techniques for stream surface 365 

flow velocities are strongly influenced by tracer characteristics such as seeding density and their spatial clusteringdistribution 

level of aggregationtracers. Therefore, a principal research goal requirement is the identification of how these properties affect 

the accuracy of such methods. To this aim, numerical simulations were performed to consider different levels of particle 

aggregationtracer clustering, particle colour (in terms of greyscale intensity), seeding density, and background noise. Two 

widely used image-velocimetry algorithms were adopted: i) Particle Tracking Velocimetry (PTV), and ii) Large-Scale Particle 370 

Image Velocimetry (LSPIV). A descriptor of the seeding characteristics (based on seeding density and their 

aggregationspatialtracer clustering) was introduced based on a newly developed metric called Seeding Distribution Index (SDI) 

π. This value index can be approximated and used in practice as πSDI = 𝜈0.1/ (
𝜌

𝜌𝑐𝜈1
) where 𝜈, 𝜌, and 𝜌𝑐𝜈1 are the aggregation 

spatial clustering level, the seeding density, and the converging reference seeding density at 𝜈 = 1, respectively. A reduction 

of image-velocimetry errors was systematically observed by decreasing thewithfor lower values of SDIπ; and therefore, the 375 

optimal frame window (i.e., a subset of the video image sequence) was defined as the one that minimises SDI π. In addition 

to numerical analyses, the Basentoa field case study on the Basento river (located in southern Italy) was considered as a proof-

of-concept of the proposed framework. Field results corroborated numerical findings, and an error reductions of about 15.9 

and 16.1% was were calculated - using PTV and PIV, respectively - by employing the optimal frame window. 

1 Introduction 380 

SRiver streamflow observations are of enormous importance for environmental protection and engineering practice in general 

(Anderson et al., 2006; Manfreda, 2018; Manfreda et al., 2020; Owe, 1985). Such observations are critical for many 

hydrological and hydraulic applications. In turn, it enables the understanding of more complex processes such as flash flood 

dynamics (Perks et al., 2016), the interaction of fish upstream and downstream of dams (Strelnikova et al., 2020), sediment 

transport dynamics (Batalla and Vericat, 2009), and bridge scour (Manfreda et al., 2018a; Pizarro et al., 2017a). 385 
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Streamflow measurement campaigns are generally expensive and time-consuming, requiring the presence of highly-qualified 

personnel and forward planning (Tauro et al., 2018). Such approaches are typically based on pointwise measurements 

performed with flowmeters or acoustic doppler Doppler current profilers (ADCPs) that require the direct access placement of 

the operators or devices into the water. On the one hand, this is necessary to provide a full description of the flow velocity 

profile, but on the other hand, it may alter the measurements given the potential interaction of these elements with the fluxflow. 390 

Additionally, theseis standard approaches can be challenging and sometimes impossible to perform at flood conditions when 

operators and devices are unable to work in-situ due to in-situ hazardunfavourable circumstances. This issue has been partially 

dealt with by the use of non-contact approaches, as a timely modern alternative for river flow monitoring. Progress in the 

development of non-contact approaches (such as image velocimetry, radars, and microwave systems) has been promising in 

recent years, opening the possibility for real-time, non-contact, flow monitoring. In particular, the advancements of in image 395 

processing techniques have led to improvements of image-based approaches for surface flow velocity (SFV) estimation, and 

theise developments havehas enhanced expanded the range of potential applications. Several techniques, such as Particle 

Tracking Velocimetry (PTV) and Large-Scale Image Velocimetry (LSPIV), have been proposed and applied in field campaigns 

to accurately estimate SFV from video acquisitions (Bechle et al., 2012; Huang et al., 2018; Tauro and Salvatori, 2017). In 

turn, videos can be recorded from different devices (fixed-station located close to the river-section of interest, using cell phones, 400 

or onboard Unmanned Aerial Systems (UASs)), allowing an easy and portable way to estimate SFVs and, consequently, river 

discharge (Leitão et al., 2018; Manfreda et al., 2018b; Pearce et al., 2020; Perks et al., 2016; Tauro et al., 2015). 

The PTV technique revolves around particle identification and tracking (Lloyd et al., 1995) that can be implemented through 

cross-correlation (Brevis et al., 2011; Lloyd et al., 1995), relaxation (Wu and Pairman, 1995), among other methods. 

Additionally, particle trajectories can be reconstructed, adding valuable information to the analysis and making it possible to 405 

apply trajectory-based filters to ensure realistic trajectories (Eltner et al., 2020; Tauro et al., 2019). On the other side, LSPIV 

techniques apply Particle Image Velocimetry (PIV) principles (Adrian, 1991, 2005; Peterson et al., 2008; Raffel et al., 2018) 

to large scales and natural environments (Fujita et al., 1998). Interesting to mention, LSPIV recognises and tracks patterns 

(which can be a group of tracers within a discrete spatial portion of the water surface) instead of single tracers, while which 

are tracked in PTV single tracers. As a consequence, PTV adopts an exclusively Lagrangian approach, while PIV an Eulerian 410 

one. 

The use of tThese techniques are is widely usedgrowing in recent years, but it is hard to quantify their accuracy at field scales. 

This difficulty can be influenced byattributed to: i) environmental conditions, which can both deteriorate and enhance the 

image quality during the acquisition period (Le Coz et al., 2010; Muste et al., 2008); and ii) the characteristics of the 

tracers/features, such as colour, dimension, shape, seeding density, and their spatial clustering aggregation leveldistribution in 415 

the field of view (Dal Sasso et al., 2018, 2020; Raffel et al., 2018). PTV and LSPIV need features to identify, match, and track 

to compute surface flow velocities. High seeding densities are, however, rare in natural environments and, as a consequence, 

a general common practice is the use of artificial tracers to increase the surface seeding in the field of view (Dal Sasso et al., 

2018; Tauro et al., 2014, 2017). In this context, Figure 1 shows three different real case-study examples of natural and artificial 
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seedings that tend to cluster. Remarkably, Figure 1.A reports high seeding spatial aggregation clustering levels of tracers and 420 

complex cluster structures during a flood event at the Tiber river in Italy (Tauro et al., 2017), whereas Figure 1.B and 1.C 

present the case when artificial seeding is introduced in the river system for image-velocimetry analysis (Detert et al., 2017; 

Tauro et al., 2017). More information about the mentioned case studies can be found elsewhere (Perks et al., 2019). 

 

Figure. 1. Examples of moving and aggregated clustering structures on the water surface: A) Natural seeding during a flood event 425 
at the Tiber river, Italy (Tauro et al., 2017); B) and C) Artificial seeding at low/intermediate flow conditions at Brenta river in Italy 

(Tauro et al., 2017) and Murg river in Switzerland (Detert et al., 2017), respectively. 

The spatial distribution of artificial tracers (hereafter called spatial clustering) is, however, operator-dependent and influenced 

by their experience, the type of material deployed, and amount. External environmental and river conditions such as wind and 

turbulence are also important factors. This issue is extremely relevant for discharge estimates recovered through image-based 430 

approaches because since velocity errors are transmitted to streamflow estimations. In As a consequence, and even by when 

using up-to-date approaches, monitoring complex flows, and extreme flood events , is still a challenge. 

This paper aims to quantify the accuracy of SFV estimates under different seeding densities and aggregation spatial clustering 

levels. To achieve this goal, the following objectives were proposed: i) generation ofperform numerical simulations of 

synthetically aggregated  tracers to produce 33,600 synthetic images of with known seeding characteristics; ii) using these 435 

synthetic images, derive a functional relationship between seeding densities, aggregations spatial clustering levels, and image 

velocimetry errors was derived under controlled conditions; iii) analysis was undertaken analyse on footage acquired of from 

the Basento River to determine how variations in seeding characteristics such as seeding density and aggregation spatial 

clustering of tracers level influence the image velocimetry errors in an uncontrolled field environment. Finally, iv) apply the 

function developed in ii) was applied to the Basento River to enable the selection of the optimal image frame sequence to 440 

minimise the velocity relative errors. 

The rest of the paper is organised as follows: Section 2 presents the numerical framework for synthetic image generation; a 

description of the hydrological characteristics of the Basento case study, which is used as a proof-of-concept; and; , an outline 

of the PTV and PIV techniques adopted in the analysis. Section 3 analyses the effects of seeding density and aggregation 

spatial clustering level on image-velocimetry results, using the synthetically generated images, and those of the Basento field 445 

case study. Section 4 presents the strengths and limitations of the research and framework adopted in this paper. Conclusions 

at the endare provided in Section 5. 

A) B) C)
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2 Methods 

2.1 Numerical Simulations 

Numerical simulations were performed to test two different image-velocimetry algorithms under controlled conditions, 450 

minimising the effects of external disturbances. In particular, the influence of tracer/feature properties on the final errors were 

quantified. Synthetic tracers were randomly distributed in space with a unidirectional and constant velocity. They consist of 

uniform circular shapes with diameter Dxp ≈ 10 pixels (px) and uniform white colour. Both diameters and colours - in grayscale 

intensity - were altered with white noise in order to consider more realistic configurations. Their spatial distribution was 

controlled by a Generalised Poisson Distribution (GPD) with an imposed numerical theoretical seeding density 𝜆 and spatial 455 

clustering level of aggregation spatial clustering 𝜐. 

The GPD was first introduced by Efron (1986), allowing the possibility to obtain point events randomly distributed in space 

with a given variance. The GPD has been used to model randomly distributed events in different studies to describe the spatial 

characteristics of the landscape and vegetation organisation across climatological gradients (for instance,e.g. Good, Rodriguez-

Iturbe, and Caylor (2013) and Manfreda, Caylor, and Good (2017) used the GPD to describe the spatial characteristics of the 460 

landscape and vegetation organisation across climatological gradients). In this manuscript, the synthetic tracers are assumed 

to be randomly distributed in space with a mean number 𝜆𝑆 where 𝑆 is the considered area. In consequence, the probability 

mass function that the random number of synthetic tracers, 𝑁, will be equal to a number 𝑛𝑖 is given by Eq. (1), 

 

𝑓𝐺𝑃𝐷(𝜆𝑆)(𝑛𝑖) =
1

𝐶𝐺𝑃𝐷

exp (−
𝜆𝑆
𝜐

)

√𝜐
(

exp(−𝑛𝑖) 𝑛𝑖
𝑛𝑖

𝑛𝑖!
) (

exp(1) 𝜆𝑆

𝑛𝑖

)

𝑛𝑖/𝜐

,  

 

(1) 

 

where 𝜆𝑆 and 𝜐 determine the location and the shape of 𝑓𝐺𝑃𝐷(𝜆𝑆)(𝑛𝑖), and 𝐶𝐺𝑃𝐷 is an integration constant. 

Tracers moved with a constant numerically imposed velocity of 15 (px/frame) along the y-axis and within a grid of 500x500 465 

pixels on a clear water  background as representative of actual real environmental conditions. Tracer diameter was set larger 

than 2.5 pixels in order to avoid peak locking effects (Cardwell et al., 2011; Dal Sasso et al., 2018; Nobach et al., 2005). 

Typical tracer dimensions at laboratory and field scales motivated the choice of Dxp ≈10 (px) for image-velocimetry 

experiments (Tauro et al., 2016). 

Synthetic image sequences were generated by varying the number of tracers in the spatial domain, allowing the consideration 470 

of 14 different seeding densities ranging from 0.4E-05 particles per pixel (ppp) up to 1.0E-02 (ppp). Thise range of variability 

was established based on the typical values adopted in field surveys (Tauro and Grimaldi, 2017) and numerical studies (Dal 

Sasso et al., 2018). Tracer colour (in terms of greyscale intensity) and diameter were altered (by introducing a Gaussian white 

noises with standard deviations equal to 0.05 and 0.3, respectively) to simulate environmental signal noises (such as possible 

changes in luminosity, brightness, and shadows). Figure 2 shows an example of synthetic image generations with different 475 

spatial clustering levels of aggregation and a fixed value of seeding density. In particular, the spatial distribution of tracers 

moves from an over-dispersed organisation (𝜐 = 0.5), through a Poisson random distribution (𝜐 = 1) and an under-dispersed 
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one (𝜐 = 100), to a super under-dispersed distribution (𝜐 = 200). Figure 2 (A, B, C and D) presents the original synthetic 

generation on the clear water background, while Figure 2 (E, F, G and H) shows the pre-processed images, enhancing the 

contrast between tracers and background (See Section 2.3). Furthermore, each numerical experiment contains involved 480 

generating 20 images, and each configuration was run 10 times. The spatial clustering level 𝜐 ranges from 0.5 to 200 (12 

different values), and in consequence, 33,600 synthetic images were generated (14 different 𝜆, 12 different 𝜐, 20 images per 

configuration, and 10 times each configuration). 

 

Figure. 2. Synthetic generations of spatial distribution of tracers assuming different values of the aggregation parameter 𝜈 = 0.5 485 
(over-dispersed distribution - Fig 2.A, E), 1.0 (Poisson random distribution - Fig 2.B, F), 100 (under-dispersed distribution - Fig 2.C, 

G), and 200 (super under-dispersed distribution - Fig 2.D, H). Fixed value of the seeding density 𝜆 = 2.02E-03. The generation was 

carried out adopting a background in the images to provide more realistic conditions (A, B, C, D). Thereafter, images have been 

pre-processed to increase the contrast and better visualise tracers (E, F, G, H). 

2.2 Proof-of-concept: The Basento case study 490 

A field survey on the Basento River (Basilicata region, southern Italy) was carried out to test the outcomes of numerical 

simulations under real natural conditions. The cross-section considered for the measurements is located in the upper portion 

of the basin (catchment area of about 127 km2) (Figure 3). The main river flow characteristics, at the moment time of the video 

acquisition, were: i) river streamflowdischarge: 0.61 (m3/s); ii) maximum flow depth: 0.38 (m); iii) river width: 6.0 (m); iv) 

maximum surface flow velocity: 0.68 (m/s); and, v) average surface flow velocity: 0.40 (m/s). Data were acquired using a DJI 495 

Phantom 3 Professional Quadcopter (DJI, Shenzhen, China) equipped with an integrated 4k UHD (ultra-high-definition) video 

recording camera and a 3-axis stabilised system. Video acquisition was performed using a Sony EXMOR 1/2.3” CMOS sensor 

and a greyscale video was captured from the UAS platform with a resolution of 1920x1080 (px) (i.e., Ffull Hhigh Ddefinition 

- FHD). The considered frame rate was set to 24 frames per second (fps). Reference objects, useful for image scale calibration 

and stabilisation, were positioned at visible locations on the riverbanks. The calibration factor converting pixels to meters was 500 

A) B) C) D)

H)G)F)E)
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estimated, taking into consideration those objects with a known-a-priori dimensions. The ground sampling distance (GSD) 

was, therefore, computed as 0.005 (m/px). Benchmark velocity measurements were performed using a current meter (SEBA 

F1, SEBA Hydrometrie GmbH & Co, Kaufbeuren, Germany), in the proximity of the water-free surface, at 11 different 

locations across the river cross-section. The accuracy of measurements was within 2% of the measured values, corresponding 

to 0.001 and 0.013 m/s for the minimum and maximum velocities in question. The spanning distance between the respective 505 

measurements was 0.5 (m). Each measurement was made over a fixed acquisition period of 30 seconds. River discharge was 

estimated according to ISO -748 (1997), using the velocity-area method. The cross-section was divided into panels of equal 

width and, for each panel, the velocity was measured at 20%, 60% and 80% of the panel depth. Artificial seeding was properly 

deployed onto the water surface, giving the possibility to create complex aggregated floating structures. Two operators were 

involved in the process, and artificial tracers made of wood chips only were used to enhance particle seeding extra seed the 510 

region of interest (ROI). 

The videos captured with the UAS were first stabilised using an automatic feature selection method that identifies features in 

frame pairs, matching them to compute possible values of translation and rotation. The Features from Accelerated Segment 

Test (FAST) detection algorithm was applied to identify features on an ad-hoc ROI. To improve the feature matching accuracy, 

at each step, the method utilises the Random Sample Consensus (RANSAC) filter for to remove unacceptable correspondences. 515 

The application of the stabilisation algorithm has allowed the effects of camera movements to be reduced throughout the 

duration of the video. Planimetric Planar errors considering differences in translation and rotation were computed taking the 

first frame as the reference target. On average, the reduction due to the stabilisation process goes from 64 to 7 (px) for the 

considered Basento case study. Therefore, movement in the original video is reduced by around 89%. The stabilisation 

algorithm does not require Ground Control Points (GCPs) to be applied. Rather, it performs the detection of features 520 

automatically, and making the stabilisation process is, therefore, a good alternative for non-experienced users. 

The Basento River presented low-flow conditions leading us to subsampleing the original video from 24 to 12 (fps). The choice 

of the appropriate frame rate was made to ensure, on the one hand, a frame-by-frame displacement bigger than particle 

dimension and, on the other hand, to minimise the effects of camera movement between frame pairs on the calculation of 

surface velocity. As already mentioned, tThe footage was acquired in greyscale and. A a pre-processing procedure was applied 525 

using the contrast stretching techniques to enhance the visibility of the artificial tracers against the background. For this 

purpose, GIMP (the GNU Image Manipulation Program) was utilised to adjust brightness and contrast. This procedure 

eliminated a large amount of noise caused by external reflections, improving the number of tracers identified and thus cross-

correlation in the ROI. Figure 3.B shows a compositen example of the original frames  (river banks in grayscale), overlain by 

and thea pre-processed image covering the extent of the active channel using GIMP (darker area overlapping the original 530 

frame). 



20 

 

 

Figure. 3. A) Basento river and its drainage basin with an indication of the measurement location (Basento at Potenza). B) Grayscale 

footage acquired with a DJI Phantom 3 Pro (river banks) and corresponding footage after the pre-processing (river flow) aimed at 535 
enhancing contrast for particle identification. 

2.3 Image velocimetry analysis 

PTV analyses were carried out employing a command-line version of PTVLab software (Brevis et al., 2011) that have been 

automated in order to handle the number of synthetic images. Tracer detection was performed using the particle Gaussian mask 

correlation method (Ohmi and Li, 2000). Setting parameters in terms of particle diameter and reflectance intensity were set 540 

equal to 8 px and 70, respectively. Particle tracking was implemented using a cross-correlation algorithm (Wu and Pairman, 

1995). The iInterrogation aArea (IA) was set at 20 px, cross-correlation threshold at 0.7, and neighbour similarity percentage 

at 25%. PTV parameter settings were slightly modified under field conditions due to the differences between the numerical 

and field datasets. In particular, the average tracer dimension atin the field conditions was estimated as 5 px and therefore, the 

particle diameter was set equal to 4 px and the IA at 25 px. 545 

A) B)

A) B)
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PIV analyses were performed employing a command-line version of PIVLab software (Thielicke and Stamhuis, 2014) written 

by the authors for the same purpose. The PIV algorithm was applied using the Fast Fourier Transform (FFT) with a three-

passes standard correlation method. For both numerical and field analysis, (search area (SA) and the interrogation area (IA) 

sizes were set for three passes of 128x64128x128, 64x32 64x64 and 32x16 32x32 px with 50% overlap). Additionally, the 

2x3-point Gaussian fit was employed to estimate the sub-pixel displacement peak. These setting parameters were carefully 550 

chosen to assure ensure the right identification and tracking of synthetic tracers. For instance, PTV used a particle diameter of 

8 px, while the synthetic diameter had an average value of 10 px with a standard deviation of 0.3 px. In addition, tracer 

movements must be inside the IA (PTV) and SA (PIV) for their right correct identification. The imposed numerical theoretical 

velocity was set at 15 px/frame, while IA and SA were 20 and 32 px for PTV and PIV (minimum one of the three passes), 

respectively. 555 

PTV parameter settings were slightly modified under field conditions due to the differences between the numerical and field 

datasets. In particular, the average tracer dimension at field conditions was estimated as 5 px and therefore, the particle diameter 

was set equal to 4 and the IA at 25 (px). 

Finally, the quality of the results was determined by examining the magnitude of the errors that were computed as: 

 

𝜖 = 100 ×
(𝑢𝑐 − 𝑢𝑅 )

𝑢𝑅

, 

 

(2) 

 

where 𝑢𝐶  is the computed velocity and 𝑢𝑅  is the theoretical numerically imposed (numerical case taken as reference) or 560 

measured (field case) velocity. 

3 Results and Discussion 

3.1 Numerical Analysis 

The performance of PTV and PIV tracking algorithms was assessed by the calculation of errors (considering the imposed 

theoretical numerical surface velocity) to test how the seeding density and aggregation spatial clustering leveldistribution of 565 

tracers influenced on the final velocity estimatesresults. PTV used 8 and 20 (px) for detection and tracking, respectively. PIV 

used FFT with three-passes (128x64, 64x32, 32x16). No post-processing method was applied to filter the spatiotemporal 

velocity results. The ROI was taken as the original dimension of the synthetic image generation, i.e. 500x500 (px). The 

processing times, considering the 33,600all the synthetically generated images, for PIV and PTV and PIV analyses were 4,736 

18,548 and 18,548 4,736 seconds, respectively. The same hardware (Processor i7-8700 CPU @ 3.20 GHz 3.19 GHz and RAM 570 

32 GB) was used for both image-velocimetry analyses, leading to a fair comparison between them. PTV computing time was 

almost four times higher than PIV under the circumstances considered in this study. For all the cases, PTV and PIV techniques 

systematically underestimated the theoretical imposed numerical velocity independently of the seeding density and aggregation 

spatial clustering level under consideration. Consequently, only negative errors were observed with numerical results, in 
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agreement with previously published work (Dal Sasso et al., 2018). This can be due to the use of a static background that may 575 

introduce sporadic zero velocity vectors.   

Figure 4 shows the PTV and PIV error results with different values of seeding densities and aggregation spatial clustering 

levels. A comparison between PTV and PIV is shown in Figure 4.A, where each data point is associated with a colour that is 

scaled based on the numerically theoretical imposed numerical seeding density adopted in the generation of synthetic images. 

A strong dependence between image-velocimetry results and seeding density was observed: errors can be reduced by 580 

increasing the seeding density. In all cases, PTV outperformed PIV under the synthetic conditions analysed in this study. These 

findings also support those of Tauro, Piscopia, and Grimaldi (2017) who found that PTV outperformed PIV in two different 

field case studies (Brenta and Tiber Rivers). It is however noteworthy that the obtained results we present here refer to a single 

synthetic experiment that, although realistic, is not representative of any field condition. Therefore, further investigations with 

a larger set of idealised and field circumstances should be carried out to generalise the obtained results. 585 

 

Figure 4. Comparison of PTV and PIV results using synthetic images with different values of seeding density and aggregation spatial 

clustering level. Only negative errors were observed with numerical results. A) PTV vs PIV errors (𝝐𝑷𝑻𝑽 and 𝝐𝑷𝑰𝑽, respectively). 

Each data point is associated with a colour that is scaled based on the numerically theoretical imposed numerical seeding density 

adopted in the numerical generation of synthetic images. B) Envelope error curves and areas in function of seeding density and level 590 
of aggregation spatial clustering 𝝂. The blue and orange colours are associated with PTV and PIV results, respectively. Dashed and 

solid lines are associated with 𝝂 = 𝟎. 𝟓 and 𝝂 = 𝟐𝟎𝟎, respectively. C) Zoom of the right upper portion of B). 

Figure 4.B shows the envelope error curves (and areas between them) for a range of seeding densities and level of aggregation 

spatial clustering ν. The blue and orange colours are associated with PTV and PIV error results, while dashed and solid lines 
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are associated with ν = 0.5 and ν = 200, respectively. For the sake of simplicity, Figure 4.B only shows the extreme cases when 595 

ν = 0.5 and ν = 200; nevertheless, all the other cases (with ν values between these two extremes considered cases) were confined 

and within these envelope curves. Error results of both techniques were influenced by ν, with a higher aggregation spatial 

clustering level tending to deteriorate the accuracy of image-velocimetry results, producing higher errors and associated 

variability across the range of seeding densities. When the sensitivity of PIV and PTV to changes in ν are compared, it is clear 

that PIV is generally more sensitive than PTV, as demonstrated by the greater distance between ν = 0.5 and ν = 200 lines for 600 

a given seeding density, and by the orange shaded area being greater than the blue. The minimum seeding density leading to 

the minimum converginglowest errors (around 2 – 3%) depended on ν. These errors were taken as reference values after which 

an asymptotic behaviour was observed. As a consequence, this minimum seeding density concept was termed reference seeding 

density in the rest of the paper.  For instance, considering the PIV case, the converging reference seeding density values were 

1.52E-03 and 1.02E-02 for ν = 0.5 and ν = 200, respectively. The converging reference seeding density values for PTV were 605 

1.02E-03 and 2.02E-03 for ν = 0.5 and ν = 200, respectively. 

These numerical results are useful to visualise more-in-depth trends under controlled flow conditions, avoiding external 

disturbances. Results demonstrated that the minimum required seeding density to produce an error equal or lower than 3% 

differs slightly between the two techniques. We used this percentage as a reference error in order to derive a reference seeding 

density associated with a known error. It was observed that PIV required 1.52E-03 (ppp), while PTV needed about 1.02E-03 610 

(ppp) to reach the same error. Notably, seeding densities lower than 1.0E-03 produced larger errors (larger than 3%) and 

consequently, flows should be extra-seeded at least this density in field campaigns for optimal implementation of the methods. 

This practice should always be adopted since typical natural flows are not characterised for presenting elevatedby abundant 

transiting features, with maybe the exception of high flows. Furthermore, the effective seeding density (defined as the seeding 

that the algorithms are genuinely able to identify, match, and track) is always lower than the one transiting onto the water 615 

surface and therefore, the extra seed practice is recommended. However, Wwe are aware that this recommendation may not 

be practical in all conditions since fixed cameras can operate remotely without the necessity to be in-person at the field site, 

and . Furthermore, deploying material in wide channels or difficult-to-access areas can may be challenging. 

Following dimensional considerations, a model of the image-based errors can be formulated. Since the only variables 

considered in this study were the aggregation spatial clustering level and the seeding density, it is hypothesised that these errors 620 

depend on only these variables. In functional form 

 

𝑓(𝜖, 𝜈, 𝜌, 𝜌𝑐𝜈1) = 0, 

 

(3) 

 

where 𝑓 = is a generic function, and 𝜌 and 𝜌𝑐𝜈1 are the seeding density and the converging reference seeding density at 𝜈 = 1 

(Poisson case taken as a reference). According to the Buckingham-  𝜋  theorem, Eq. (3) can be rewritten in terms of 

dimensionless parameters as follows: 
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𝜖 = 𝑓 ( 𝜈,
𝜌

𝜌𝑐𝜈1

). 

 

(4) 

 

The function 𝑓  is usually considered as a multiplication of power laws (Buckingham, 1914; Evans, 1972; Melville and 625 

Sutherland, 1988; Pizarro et al., 2017b). In this study, we partially follow this approach and also hypothesise that the functional 

relationship 𝑓 is described by a two-parameter exponential function: 

 

𝜖 = 𝑐1(1 − 𝑒−𝑐2𝜋𝑆𝐷𝐼), 

 

(5) 

 

where πSDI = 𝜈𝑘1 (
𝜌

𝜌𝑐𝜈1
)

𝑘2
 is the multiplication of power laws; and,  𝑐1, 𝑐2, 𝑘1, 𝑘2 are fitting coefficients. Model performance 

was quantified by means of the root mean square error (RMSE) and the Nash-Sutcliffe efficiency (NSE) for prediction of the 

image-velocimetry errors. In turn, the fitting coefficients were calibrated using the MATLAB genetic algorithm optimising 630 

RMSE. Table 1 summarises the results of the calibration process for both PTV and PIV, while Figure 5 shows the image-

velocimetry errors in as a function of SDI π, and observed versus computed errors. It is observed from Eq. (5)Figure 5 indicates 

that andSDI π can correctly reproduced the main dynamics of the image-velocimetry errors, reporting low RMSE values in 

calibration (5.34 and 5.77% for PIV and PTV, respectively). A visual inspection of Figure 5.A1 and 5.B1 shows that increasing 

SDI π values leads to higher errors for both image-velocimetry techniques. Figure 5.A2 and 5.B2 also show that the predictive 635 

capacity of Eq. (5) is higher at low PTV and PIV error values. 

Even though PIV and PTV work differently, the fitted values in Eq. (5) were similar. Remarkably, 𝑘1 and 𝑘2 showed that the 

dimensionless SDI π parameter can be approximated and used in practice as πSDI = 𝜈0.1/ (
𝜌

𝜌𝑐𝜈1
). Furthermore, considering 

that the errors are minimised when SDI π takes low values, SDI π can be used in field conditions as a descriptor to choose the 

optimal portion of a video to analyse in order to minimise the errors in image-velocimetry estimates as a function of seeding 640 

density and aggregation spatial clustering level. This novel idea is explored in the next subsection, taking the Basento River 

as a proof-of-concept case study. 

 

Table 1. Calibrated values of 𝒄𝟏, 𝒄𝟐, 𝒌𝟏, 𝒌𝟐 and model performances in terms of RMSE (%) and NSE. PTV and PIV calibration 

results. 𝝆𝒄𝝂𝟏 values for PIV and PTV were taken from Figure 4 and are 1.52E-03 and 1.02E-03, respectively. 645 

 𝒄𝟏 𝒄𝟐 𝒌𝟏 𝒌𝟐 RMSE (%) NSE 

PTV -71.87 0.04 0.10 -1.09 5.77 0.92 

PIV -78.49 0.07 0.10 -1.06 5.34 0.97 
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Figure 5. Image-velocimetry errors in function of SDI 𝛑 (A1 and B1) and observed versus computed errors (A2 and B2). Blue and 

orange colours are related to PTV and PIV numerical error results. Solid lines represent Eq. (5), while the dashed lines are the 

perfect agreement between observed and computed image-velocimetry errors. 650 

3.2 Field Campaign: The Basento case study 

Outcomes of the numerical analysis were tested on a real case study in order to identify the best temporal window (i.e., a subset 

of the video sequencesubset of the video sequence) for image velocimetry analyses. The case study was selected due to the 

spatial distribution of tracers varying significantly during the recording period, making it challenging subjective to manually 

select the optimal frames for analysis. Figure 6 displays a pre-processed frame with the location of the measuring points using 655 

standard field equipment (from L1 to L11). These surface flow velocity measurements were taken as reference velocities for 

PTV and PIV benchmarking. Figure 6.B and 6.C show a zoom of the ROI and the identification of transiting features, 

respectively. An example of identified features is presented in Figure 6.D. In this Figurefigure, the number of features, their 

relative positions and associated areas were identified using an ad-hoc algorithm recently developed by Dal Sasso et al. (2020).  

the authors. This algorithm was recently introduced by Dal Sasso et al. (2020), detecting seeding characteristics for image-660 

velocimetry purposes. Moving fFeatures – that can be blobs, regions of uniform intensity, or local corners – are detected and 

processed to derive This enables characterisation of the seeding properties (i.e., empirical seeding densities and aggregation 

spatial clustering levelsdistribution of tracers) on a frame-by-frame basis even if shapes and dimensions of the tracers vary 
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considerably. Using this approach, the empirical aggregation spatial clustering level (i.e., the empirical one equivalent to thate 

used in the numerical simulations), was quantified through the spatial dispersion index 𝐷∗(= 𝐷/𝐷𝑃𝑜𝑖𝑠𝑠𝑜𝑛 = D. [ D = 665 

Var(N)/E(N)]/1σ2/µ, where σ2 Var(N) and E(N)µ are the variance and mean values of the seeding densitynumber of tracers N, 

respectively, computed in sub-patches of the same size). This metric is normally a  measured to quantify whether a set of 

events are clustered or dispersed. Important to notice, D* is assumed as an estimator of 𝜈 due to their similar properties such 

as As in the numerical case, 𝐷∗ = 𝜈 = 1D = 1 which means features follow a Poisson distribution, while D* < 1 (𝜈 < 1) and 

D* > 1 (𝜈 > 1) follow an over- and under-dispersed spatial distribution, respectively. 670 

 

Figure 6. A) Pre-processed frame indicating the ROI and the reference measuring locations for benchmark purposes. The isolation 

of the ROI is presented in B), while in C) an example of identified features on the water surface. D) Zoom of an arbitrary portion of 

the ROI with the identified features. 

Figure 7 shows a comprehensive overview of the seeding behaviour during the 200 frames considered for the analysis. Figure 675 

7.A and 7.B present the seeding density in ppp, and the dispersion index D* computed as a function of the frame number. The 

minimum and maximum values for seeding density – and dispersion index – were 1.3E-04 and 2.9E-03 (ppp) – and 4.1 and 

57.3  –, respectively. Additionally, the estimated mean area of features (computed frame-by-frame and inside the ROI) varied 

between 1.5 and 3.5 cm2 approximately. 

L2 L3 L4 L5 L6 L7 L8 L9 L10 L11L1
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680 

 

Figure 7. Overview of seeding characteristics on the ROI of the Basento River during the acquisition time: A) Seeding density in 

ppp, B) Dimensionless dispersion index D*. 

The approach mentioned above made it possible to compute SDI π and correctly identify the worst and best part of the video 

for image velocimetry analysis. A moving frame window length of 100 frames was arbitrarily chosen, on which an average 685 
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dispersion index D* and seeding density was were computed. This decision was motivated to increase the odds of populating 

the entire ROI with features. The empirical SDI π was then calculated as πSDI = 𝐷̅0.1/ (
𝜌̅

𝜌𝑐𝜈1
), where 𝐷̅ and 𝜌̅ are the average-

in-100-frames dispersion index and seeding density, respectively. Figure 8.A depicts SDI π in function of the frame windows. 

Triangle markers correspond with the minimum and maximum value of SDI π and their respective locations (82-181 and 1-

100, respectively). Figure 8.A shows the particular case of PTV; nevertheless, PIV presented similar results. The locations of 690 

the minimum and maximum SDI π values was, therefore, unaffected by the image-velocimetry technique under consideration. 

 

Figure 8. A) SDI π in function of the frame windows considering 100 frames. Triangle markers correspond with the minimum and 

maximum value of SDI π. Their locations were 82-181 and 1-100, respectively. Particular case of PTV, whereas PIV showed similar 

results and the locations of the minimum and maximum SDI π values were unaffected by the image-velocimetry technique. B) 695 
Comparison between PTV and PIV data for experiments on the Basento River. Values recorded with the current meter are also 

reported for a rapid visual assessment (green squares). Blue and orange colours represent PTV and PIV data. 

Image-based velocity results were averaged in a block of 30x30 cm2 for a fair comparison among PTV, PIV, and benchmark 

velocity values. The measuring locations corresponded with the centre of the blocks. Computed velocities across the cross-

section and reference velocities are reported in Figure 8.B. The blue and orange colours are associated with PTV and PIV 700 

results, respectively (same colours used within numerical results for consistency and fast visual comparison). Green squares 

are the velocities measured using the current meter. Notably, the measuring location L1 had no computed velocity values due 

to the lack of features transiting on this part of the ROI, whereas only PIV was able to compute velocities at L2. This issue can 

be explained due to the inherent property of PIV that is able to identify and track other non-seeded features such as ripples and 
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other structures transiting on the water surface. Interestingly, and in agreement with numerical results, 80% (frames 1-100) 705 

and 75% (frames 82-182) of the computed velocity measuring locations underestimated the reference velocities using PTV. 

Similarly, results using PIV were 67 and 78%, respectively. Therefore, a close agreement was observed with the numerical 

results that systematically presented underestimations of computed velocities in comparison with the numerically theoretical 

imposed numerical one. The computed errors using PTV, PIV, and the total number of frames available were 23.93% and 

23.69%, respectively. Interesting to mention is also the fact thatMoreover, considering adopting the optimal frame window 710 

ensured that image-velocimetry measurements were produced for a greater or equal proportion of the channel than that 

produced by using frames allowed the computation of velocities over more reference locations than using frames 1 - 100 (PTV: 

72.7% vs 45.5% of the channel width; PIV: 81.8% vs 81.8%). 

Both image-velocimetry approaches correctly captured the mean behaviour of velocities across the cross-section. Table 2 

presents summarised information of the average-in-100-frames seeding density and dispersion index as well as the initial and 715 

final frame used for image-velocimetry purposes. The SDI π value is also presented as well as the absolute average error across 

the cross-section. As expected from numerical analyses, an error reduction of about 15.9% (PTV) and 16.1% (PIV) was found 

on the Basento case study by employing the optimal frame window that minimises SDIπ. It is therefore recommended that 

SDI π is used as a descriptor of the optimal portion of a video to analyse. 

 720 

Table 2. Overview of features characteristics, minimum and maximum π values, and absolute errors using PTV and PIV. Values in 

parenthesis correspond with the error reduction using the optimal frame window. 

Frames 𝝆̅ 
𝑫̅ 

πSDI Absolute average Error (%) Absolute Error Eq. (5) (%) 

(from – to) (ppp) PTV PIV PTV PIV PTV PIV 

1 - 100 1.2E-03 26.1 1.16 1.72 27.72 28.74 3.70 8.91 

82 - 181 1.7E-03 18.2 0.81 1.21 23.31 (15.9) 24.11 (16.1) 2.61 (29.5) 6.36 (28.6) 

 

Finally, considering numerical findings, field image-based estimates presented larger errors in comparison with numerical 

results for the respective same values of SDI π (last two columns of Table 2). This is despite the average seeding density being 725 

relatively high (~1.5E-03) and the average dispersion index relatively low (~20). Possible reasons for deteriorations in PTV 

and PIV estimates can be attributed to other variables such as video stabilisation issues, noise due to different environmental 

conditions (e.g., intermittent and different levels of illumination, water reflections, and presence of shadows), and different 

shapes and dimensions of features (stressing the matching and tracking process between consecutive frames). At In this regard, 

Dal Sasso et al. (2020) recently introduced some metrics for the quantification of seeding characterisitics needed to enhance 730 

image-velocimetry performances in rivers. Among them, the seeding density, aggregation spatial clustering level, and 

coefficient of variation of tracers’ dimension were statistically significant to velocity estimation accuracy. These issues should 

be the subject of further investigation, along with the application of these ideas to case studies with very different field 

conditions to assess the uncertainty of computed surface velocities and remote river flow estimates. 



30 

 

4 Strengths and limitations 735 

One of the main strengthss of this study wasis the introduction of the new dimensionless SDI index, which combines seeding 

characteristics – seeding density and spatial clustering of tracers – for image-velocimetry purposes. A numerical framework 

of synthetically generated images was adopted to isolate seeding effects on the performance of PIV and PTV 

performancesanalysis. This numerical framework allowed the generation of moving tracers with the possibility to vary the 

seeding density and spatial clustering of tracers. Additionally, one field case study was used to test and validate numerical 740 

findings. However, among the limitations, the numerical framework considered a constant and unidirectional imposed velocity 

only. Besides, PIV and PTV were set to run using a single configuration (e.g., PIV used FFT with a three-pass correlation 

method with fixed SA and IA rather than other combinations of SA and IA or an ensemble correlation method). The field case 

study was artificially seeded to enhance the identification and tracking of moving patterns on the water surface. Interestingly, 

the dispersion index D* was used as an empirical estimator of the numerical clustering level of tracers 𝜈. D* and 𝜈 share some 745 

interesting properties, which are useful to characterise under- and over-dispersed spatial distribution of tracers in practical 

applications. Finally, the errors computed using all frames available (frames 1 - 200) versus the optimal frame window (frames 

82 - 181) were of the same order of magnitude, even though the number of frames used with SDI was the half of the total 

available. As a consequence, the quality of the seeding characteristics seemed to be more critical than the duration of the 

footage. Of course, many other factors may affect the quality of the videos and consequently, the performance of image 750 

velocimetry estimates, but this assessment focuses specifically on the spatial distribution of tracers. In the field, other factors 

such as illumination conditions, shading on the scene, light reflections, presence of turbulent fluxes, vibration of the camera – 

among others – may further affect overall quality of the analysis, and these should be the subject of further assessment.  

4 5 Conclusions 

In this paper, we investigated the performances of PTV and PIV for surface flow velocity estimations. Synthetic generation of 755 

33,600 images was generated performed to test image-velocimetry techniques under different levels of seeding density and 

spatial tracer aggregation anddispersionspatial clustering seeding density. In all numerical cases, velocity results systematically 

underestimated the theoretical imposed numerical velocity. A general trend was observed by in which increasing the seeding 

density and decreasing the level of aggregationtracersspatial clustering, in which results were improved results. The main 

advantage of the numerical proposed approach adopted is the controlled conditions in which the analyses can be conducted, 760 

minimising the effects of external disturbances. This later helped to visualise the hidden trends that optimise image-based 

estimates. Based on numerical findings, seeding densities lower than 1.0E-03 produced larger errors and in consequencetly, 

flows should be extra-seeded in field campaigns for optimal implementation of image velocimetry methods. Additionally, the 

dimensionless SDI π parameter index was introduced as a descriptor of the optimal portion of the video to analyse using the 

studied image-based techniques. Based on numerical results, SDI π can be approximated and used in practice as πSDI =765 
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𝜈0.1/ (
𝜌

𝜌𝑐𝜈1
), where 𝜈, 𝜌, and 𝜌𝑐𝜈1 are the aggregation spatial clustering level, the seeding density, and the converging seeding 

density at 𝜈 = 1, respectively. A reduction of image-based errors was observed by decreasing thewith lower values of SDI π. 

The Basento field case study (located in southern Italy) was considered as a proof-of-concept of the proposed framework. 

Seeding characteristics were empirically estimated through using a novel algorithm recently developed by the authors, opening 

the possibilities of more refined analyses. The number of features, relative positions, and associated areas were saved for the 770 

computation of the empirical seeding densities and aggregation spatial clustering levels. The empirical SDI π values were then 

computed, and two extreme cases were considered for velocimetry comparison purposes: i) the one considering the maximum 

value of SDI π (worst case), and ii) the one related to the minimum SDI π (best case). Field results corroborated numerical 

findings, and an error reduction of about 15.9 and 16.1% was achieved for PTV and PIV approaches respectively by using the 

optimal frame window that minimises SDI for then calculated - using PTV and PIV, respectively - on the Basento case study 775 

by employing the optimal frame window. The optimal frame window was defined as the one that minimises SDIπ. 

InterestinInterestinglyg to note, field image-based estimates presented larger errors than numerical results for the respective 

same values of SDIπ. Possible reasons for deteriorating PTV and PIV estimates can be attributed to other variables such as: i) 

video stabilisation issues; ii) intermittent and differentvariable levels of illumination, water reflections, and presence of 

shadows; and, iii) different shapes and dimensions of seeding features, stressing the importance of the feature matching and 780 

tracking process between consecutive frames. Further assessment is required to evaluate the significance of these factors in 

contributing to the uncertainty in image-velocimetry estimates across a range of hydrological and environmental 

conditions.The authors are keen to apply these ideas to further assess the uncertainty in remote flow velocities and river 

discharge estimates. 
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