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Abstract 14 

Soil erosion can cause various ecological problems, such as land degradation, soil fertility loss, 15 

and river siltation. Rainfall is the primary water-driving force for soil erosion and its potential 16 

effect on soil erosion is reflected by rainfall erosivity that relates to the raindrop kinetic energy 17 

(KE). As it is difficult to observe large-scale dynamic characteristics of raindrops, all the current 18 

rainfall erosivity models use the function based on rainfall amount to represent the raindrops KE. 19 

With the development of global atmospheric re-analysis data, numerical weather prediction 20 

(NWP) techniques become a promising way to estimate rainfall KE directly at regional and 21 

global scales with high spatial and temporal resolutions. This study proposed a novel method for 22 

large-scale and long-term rainfall erosivity investigations based on the Weather Research and 23 

Forecasting (WRF) model, avoiding errors caused by inappropriate rainfall–energy relationships 24 

and large-scale interpolation. We adopted three microphysical parameterizations schemes 25 

(Morrison, WDM6, and Thompson aerosol-aware [TAA]) to obtain raindrop size distributions, 26 

rainfall KE and rainfall erosivity, with validation by two disdrometers and 304 rain gauges 27 

around the United Kingdom. Among the three WRF schemes, TAA had the best performance 28 

compared with the disdrometers at a monthly scale. The results revealed that high rainfall 29 

erosivity occurred in the west coast area at the whole country scale during 2013-2017. The 30 

proposed methodology makes a significant contribution to improving large-scale soil erosion 31 

estimation and for better understanding microphysical rainfall–soil interactions to support the 32 

rational formulation of soil and water conservation planning. 33 

 34 

1 Introduction 35 

Soil erosion has a pivotal role in shaping the Earth’s physical landscape; however, it can 36 

threaten both ecosystems and human societies (Alewell et al., 2015). Accurate quantification of 37 

soil loss impact at large spatial scales is therefore important for developing land-use planning 38 

and sustainable conservation practices (Bilotta et al., 2012). The soil erosion rate is driven by a 39 

combination of factors, which include rainfall, topography, soil characteristics, land cover, and 40 

land management applications (Wischmeier and Smith, 1958; Panagos et al., 2015b). Among 41 

these, rainfall is a driving force that accounts for a large proportion of soil loss throughout most 42 

of world (Panagos et al., 2015b). The erosive force of rainfall with consequent runoff is 43 
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represented as erosivity of rainfall, which is a crucial factor for estimating soil loss in large-scale 44 

soil erosion models; for instance, the Universal Soil Loss Equation (USLE (Wischmeier and 45 

Smith, 1978) or RUSLE (Renard et al., 1997)), Limburg Soil Erosion Model (LISEM) (De Roo 46 

et al., 1996), and USLE-M (Kinnell and Risse, 1998). 47 

Rainfall erosivity estimation involves the microphysical properties of rainfall and 48 

rainfall–soil interactions on different time steps (Petan et al., 2010). Impact of rainfall, the main 49 

mechanism driving the splashing of soil particles from the soil mass, which leads to soil erosion 50 

through soil disintegration and mobilization, relies on the kinetic energy (KE) of raindrop 51 

motions (Wischmeier and Smith, 1958; Wang et al., 2014). Robust measurement of raindrop size 52 

and terminal velocity is vital for estimating and predicting rainfall erosivity. Many measurements 53 

can be used to obtain these two parameters, including the stain paper or flour pellet methods 54 

(Marshall and Palmer 1948; Wischmeier and Smith, 1958), high speed cameras (Jones, 1959; 55 

Kinnell, 1981; McIsaac, 1990), and disdrometers (Petan et al., 2010; Angulo-Martinez et al., 56 

2012). Accurate measurements of raindrop size can be provided in all their methods, and 57 

terminal velocity of raindrops can be further measured by video cameras and disdrometers. 58 

Velocity can also be estimated as the function of raindrop diameter from the empirical 59 

relationship (Beard, 1976; Atlas and Ulbrich, 1977; Uplinger, 1981; Van Dijk et al., 2002). 60 

When using ground observations, rainfall KE can be estimated at a given site. 61 

However, direct measurement of rainfall KE in a large area is difficult because it requires 62 

considerable effort, as well as a dense network of expensive instruments that provide accurate 63 

outputs (Fornis et al., 2005; Mikoš et al., 2006; Meshesha et al., 2016; Dai et al., 2017). Previous 64 

studies have therefore mainly employed more readily accessible records like rainfall intensity, 65 

and attempted to estimate rainfall KE from the empirical relationship of unit KE (ke) with 66 

intensity (ke–I). Since Marshall and Palmer (1948) first observed a two-parameter exponential 67 

relationship between drop size and intensity, several forms of ke–I mathematical expressions for 68 

specific locations and climatic conditions have been proposed, including power-law (Park et al., 69 

1982; Meshesha et al., 2016), linear (Sempere‐Torres et al., 1998; Nyssen et al., 2005), 70 

polynomial (Carter et al., 1974), logarithmic (Wischmeier and Smith, 1978; Davison et al., 2005; 71 

Meshesha et al., 2014), and exponential (Kinnell, 1981; Brown and Foster, 1987) relationships. 72 

Among these, the exponential function has been preferentially used currently (Van Dijk et al., 73 

2002; Fornis et al., 2005; Petan et al., 2010; Sanchez-Moreno et al., 2012; Lim et al., 2015). 74 
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Accurate raindrop size distribution (DSD) measured by disdrometers is widely used to derive ke–75 

I relationships (Angulo-Martínez et al., 2016; Meshesha et al., 2016). However, such empirically 76 

derived formulas indicate that rainfall ke will increase infinitely with increasing intensity, 77 

whereas studies (Rosewell, 1986; Angulo-Martínez et al., 2016; Meshesha et al., 2019) have 78 

found that rainfall ke reaches an top value when intensity is around 70 mm h−1 (Hudson, 1963; 79 

Wischmeier and Smith, 1978). More importantly, such a ke–I relationship only represents local 80 

climate and precipitation microphysics, and is valid for such regions. There is great uncertainty 81 

associated with rainfall erosivity estimation using this ke–I relationship in a large domain 82 

(Angulo-Martínez and Barros, 2015), especially due to the poor spatial and temporal 83 

predictability of the ke–I relationship. This has motivated researchers to directly calculate KE 84 

based on large-scale DSD measurements.  85 

Ground- and space-based radar can be used to obtain DSD parameters (Atlas et al., 1973; 86 

Doelling et al., 1998). For example, the space-borne Dual-frequency Precipitation Radar (DPR) 87 

radar containing Ku- and Ka-bands in the Global Precipitation Measurement (GPM) satellite 88 

allows researchers to estimate the global three-dimensional spatial distribution of hydrometeors. 89 

Unfortunately, ground dual-polarization radars are available in limited areas (Prigent, 2010) with 90 

large uncertainties (Dai et al., 2019), and the GPM DPR instrument, which measures DSD with 91 

daily or longer temporal resolutions, fail to capture a full storm and meet the requirement for 92 

rainfall kinetic estimation. Mesoscale numerical weather prediction models, for instance, the 93 

WRF model, can simulate microphysical cloud processes and predict the evolution of particle 94 

size distribution through computationally feasible parametrization schemes (Dai et al., 2014; 95 

Brown et al., 2016). DSD on the ground can be derived from the WRF model through 96 

consideration of various physical processes, types of hydrometeor, and free degrees of size 97 

distributions in hydrometeor. As such, a number of recent researches have investigated the 98 

retrieval and uncertainty of DSD parameters by WRF (Gilmore et al., 2004; Ćurić et al., 2009; 99 

Brown et al., 2016; Yang et al., 2019). 100 

The WRF model runs with initial and boundary conditions using global reanalysis 101 

datasets, such as those of the European Centre for Medium-range Weather Forecasts (ECMWF) 102 

and National Centers for Environmental Prediction (NCEP). In other words, WRF-derived DSD 103 

can be obtained for any given area with fine spatial and temporal resolutions rather than 104 

traditional course linear interpolations. We therefore attempted to estimate rainfall erosivity for 105 
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the whole United Kingdom (UK) domain using WRF-derived DSD. For comparison, we 106 

calculated interpolated traditional disdrometer-derived rainfall erosivity. To our knowledge, this 107 

work is the first attempt to take advantage of a numerical weather prediction model for 108 

estimating rainfall erosivity anywhere around the world. The current study contributes to the 109 

development of large-scale soil erosion estimation and provides a better comprehension of 110 

microphysical rainfall–soil interactions.  111 

2 Methodology 112 

2.1 Disdrometer-based rainfall KE estimation 113 

KE dominates the ability of raindrop to separate soil particles. The KE (e, unit: J) of a 114 

raindrop with mass m (g) and terminal velocity v (m s−1) is defined by:  115 

2

2

1
mve   (1) 

Assuming a spherical volume for every raindrop shape, the mass of a drop can be 116 

calculated from the cube of the diameter D (mm). Because instruments (e.g., disdrometers) 117 

generally sample drop size, the mean radius and falling velocity of the corresponding sampling 118 

drop-size class is used to represent D and v, expressed as Di and vi, respectively. In such cases, 119 

the ei with any drop of a given class is given as: 120 

32610
12

1
iii Dve   (2) 

where 𝜌 is the water density (g cm−3). The sum of the KE of each individual raindrop within a 121 

given rain depth that hits a given area defines the total KE. The unit rainfall KE ket in the tth 122 

minute (MJ ha−1 mm−1) can be calculated as the sum of each drop KE in each size set, as follows: 123 
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i
ii

tt
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t eN

APAP

e
ke

1

1
 (3) 

where A represents the sample area of the sensor, Pt is rainfall depth at time t, and Ni is the drops 124 

number in class i. The instrument sums up the number of raindrops in each sampling class and 125 

produces the raindrop spectra for a time step. Here, we use the term ke to represent the 126 

disdrometer-based KE estimated by DSD measured directly every minute. The terminal velocity 127 
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of a raindrop can be estimated from its power law empirical relationship with raindrop diameter 128 

(Atlas and Ulbrich, 1977), with this considered more suitable for Chilbolton in the UK (Islam et 129 

al., 2012): 130 

67.0
78.3 iAtl Dv   (4) 

Thus, unit rainfall KE estimates per minute are obtained by replacing vi in Eq. (2) with vAtl. 131 

The other form of rainfall KE is expressed at an event scale and represents the sum of the 132 

storm energy covering all time steps covering an event. The individual event energy (MJ ha−1) is 133 

calculated as follows: 134 





nt

t
ttPkeE

1

 (5) 

where Pt is the rainfall amount (mm) in the tth minute and nt is the time steps number. Historical 135 

rainfall data are divided into wet and dry periods. A string of erosive rainfall storms are first 136 

extracted through the predefined rules. A continuous 6-h dry period interval was used to divide 137 

rainfall events (Hanel et al., 2016), following the “minimum dry-period duration” definition of a 138 

rainfall event (Bonta, 2004). Moreover, a rainfall amount of 12.7 mm was set as the threshold to 139 

filter effective rainfall events (Renard et al., 1997). 140 

Rainfall KE is obtained for a given site based on size and velocity of raindrops. When 141 

disdrometer data are absence, energy can be estimated from empirical relationships using rainfall 142 

intensity I (mm). Five commonly used functions (including exponential, logarithmic, power law, 143 

and inverse proportion) have been mentioned in Section 1. Taking the exponential form as an 144 

example, the rainfall KE at any location can be estimated as: 145 

)1(maxmax
bIaeeE   (6) 

where emax is the mean maximal value of energy measured under high rainfall intensity, and a 146 

and b are coefficients modeling the equation curve. Here, minimum KE can be determined by 147 

parameters a and emax together, while the overall shape of the curve is modeled by parameter b. 148 
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2.2 WRF-based rainfall KE estimation 149 

Differing from disdrometer measurements, the complete DSD cannot be obtained from 150 

the WRF model. Instead, the DSD of the microphysical parameterization (MP) scheme is 151 

handled with a constrained-gamma distribution model, which is defined as: 152 

DeDNDN   0)(  (7) 

where 𝑁0, 𝜇,and 𝜆 are the intercept, shape, and slope parameters of the DSD. In terms of double-153 

moment bulk schemes, 𝑁0  and 𝜆  can be abstracted from the number concentration 𝑁  and 154 

predicted mixing ratio 𝑞, as shown below: 155 
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c and d are the assumed power-law coefficients between diameter and mass (m = cDd), and Γ 156 

represents the function in gamma form  (Morrison et al., 2009). The value of the shape parameter 157 

μ (μ = 0) in double-moment schemes is fixed, except for the WRF double-moment 6-class 158 

(WDM6) schemes, following gamma distribution which defined μ = 1 (Jung et al., 2010; 159 

Johnson et al., 2016). 160 

Because DSD retrieval is sensitive to MPs (Cintineo et al., 2014; Morrison et al., 2015), 161 

the WRF model this study adopted completely or partially three types of double-moment cloud 162 

MP schemes. The Morrison double-moment scheme involves the number concentrations and 163 

mixing ratios of multiple hydrometeors (Morrison et al., 2009). Moreover, the WDM6 scheme 164 

further considers a prognostic factor to estimate and predict the cloud condensation nuclei (CCN) 165 

number concentration (Hong et al., 2010; Lim and Hong, 2010). Finally, the Thompson aerosol-166 

aware (TAA) scheme can predict both ice nuclei (IN) and CNN number concentrations 167 

(Thompson and Eidhammer, 2014).  168 

The DSD parameters were thus obtained under the three WRF MPs. For theoretical DSD, 169 

ke estimates per minute were obtained by integration of the full raindrop size spectrum using: 170 
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For the WRF-derived DSD covering the whole study area, there was no need to construct 171 

a ke–I relationship to interpolate KE in ungauged areas. The WRF-based rainfall KE under storm 172 

event scale is thus given as: 173 





nt

t
ttW PkeE

1

'  (11) 

2.3 Rainfall erosivity estimation 174 

Most storm events have relatively low intensities and KEs with occasional peaks, based 175 

on the disdrometer DSD data used to evaluate the rainfall ke–I function. Proper estimation of 176 

rainfall erosivity potential should consider total KE over a long period. The rainfall erosivity 177 

factor (or R-factor) is calculated by a multi-annual average of the total storm erosivity index 178 

(Wischmeier and Smith, 1958; Van Dijk et al., 2002), while annual rainfall erosivity R can be 179 

obtained using:  180 





M

m
mEIR

1
30)(  (12) 

where M is the total number of erosive events within a year. (EI30)m are total rainfall kinetic 181 

energy and maximum 30-min rainfall intensity recorded within 30 consecutive minutes (unit: 182 

mm h−1), respectively, for the mth event. 183 

Wischmeier and Smith (1958) first proposed the use of EI30, as the rainfall erosivity for 184 

each event, based on research data from many sources. I30 was calculated to have higher 185 

relevance to soil erosion than maximum 5-min, 15-min, or 60-min rainfall intensities 186 

(Wischmeier and Smith, 1958). The calculation of EI30 initially uses recording-rain gauge data to 187 

divide continuous rainfall into time periods with equal rainfall intensity. Because rainfall 188 

measurements with high temporal resolutions are required but difficult to obtain from general 189 

rainfall measurements, short time equal-interval rainfall data with higher accuracy over multiple 190 

years are preferred for estimating EI30. For example, Xie et al. (2016) used 1-min rainfall data 191 

instead of recording-rain gauge records. For coarse-resolution, equally spaced data, researchers 192 
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have proposed a conversion factor to reduce bias error (Weiss, 1964; Williams and Sheridan, 193 

1991). 194 

The rainfall erosivity can be derived from rainfall KE. It plays a main dynamic role in 195 

USLE/RUSLE, representing the potential for soil erosion caused by rainfall. To distinguish the 196 

disdrometer- and WRF-derived rainfall erosivity in this study, we use the terms RD and RW, 197 

respectively. 198 

2.4 Evaluation methods 199 

Because there is no direct way to measure rainfall erosivity across a large area, it is 200 

difficult to validate outcomes using observations. However, RD is considered to be relatively 201 

accurate due to its specific measurement of raindrops. We therefore assumed that RW values were 202 

accurate if it closely matched RD of a given location. A long-term comparison of RW and RD at 203 

disdrometer stations was thus conducted to evaluate the validity of RW.  204 

Three indicators were introduced for the evaluation: Pearson’s correlation coefficient, 205 

mean absolute error (MAE), and coefficient of determination (R2) (Borrelli et al., 2017). Pearson 206 

correlation coefficient is an index used to evaluate the linear correlation between two variables, 207 

and is defined as follows:  208 

2222
)()( 

  






iiii

iiii

WWDD

WDWD

RRnRRn

RRRRn
Pearson  (13) 

where n is the number of variable samples. Because this correlation cannot reveal the absolute 209 

bias of rainfall erosivity values, the MAE was also used; this is defined as: 210 

n

RR
MAE ii DW 

  (14) 

R2 is an indicator to assess the fit of the trend line, expressed as the ratio of the variance 211 

in the dependent variable predicted from the independent variable. It measures the extent to 212 

which the model replicates observations based on the proportion of the results interpreted by the 213 

model to the total change, written as: 214 
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tot

res

SS

SS
R  12  (15) 

where SSres is the sum of squares of residuals between two variables and SStot is the total sum of 215 

squares. 216 

3 Study area and data sources 217 

The whole of the UK was set as the experimental area for investigating rainfall erosivity 218 

estimation. The UK consists of mostly lowland terrain, with a maximum elevation of 1345 m. 219 

Water and wind are most significant forces of soil erosion in the UK, and together cause 220 

approximately 2.2 million tons of topsoil to be eroded annually, seriously affecting soil 221 

productivity, water quality, and aquatic ecosystems through siltation of watercourses (EA, 2004). 222 

According to the Environmental Agency, the total cost of soil erosion in the UK is approximately 223 

$88 million each year, including an agricultural production loss of $17.6 million (O’Neill, 2007). 224 

More importantly, the changing climate may exacerbate the degree of erosion. For example, 225 

hotter, drier climates make soils more susceptible to wind erosion, and intense storms increase 226 

rainfall erosivity (Defra, 2009). Studies of water erosion in England and Wales (Morgan, 1985; 227 

Evans, 1990) have found that loose soils (especially sand), such as the soils found in Shropshire 228 

and Herefordshire in Wales, are more susceptible to water erosion. In a study of rainfall erosion 229 

in Europe, Panagos et al. (2015a) found that the humid Atlantic climate results in highly variable 230 

rainfall erosivity, such as higher R-factor values in western England and lower values in the 231 

eastern UK. 232 

The gauge datasets used are from the land surface and marine surface measurements 233 

datasets (data availability: 1853–present) provide by the UK Met Office. A network of rain 234 

gauges covering 304 stations across the whole UK observes continuous rainfall data in hours 235 

(Figure 1). The base data of most stations comprises the times of each tip (0.2 mm per tip), 236 

converted into 1-h rain accumulations. The rainfall observations are not always valid for each 237 

hour at each station. The hourly grid-based rainfall maps are then calculated based on ordinary 238 

kriging interpolation of rain gauge network data to obtain the spatial distribution of rainfall for 239 

each time step, as inputs for rainfall erosivity estimation. This wide-range-use geostatistical 240 

approach can account for both the distance and pairwise spatial relationship between points 241 
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through variograms. The precipitation interpolation method uses sample gauge points taken at 242 

different locations and creates a continuous surface to achieve an accurate spatial variation 243 

estimation of rainfall patterns.  244 

We used data from two disdrometers in southern England. The first was Chilbolton 245 

station (51°08’N, 1°26’W), with an impact-type Joss–Waldvogel disdrometer (JWD) mainly 246 

used to compute rainfall erosivity. It can measure drop sizes from 0.3 to 5.0 mm in 127 bins. The 247 

sampling period and collector area were 10 s and 50 cm2, respectively. Data were available for 248 

April 2003 to July 2018. The second was the University of Bristol station (51°27’N, 2°36’W), 249 

with an OTT Parsivel2 disdrometer (OPD). Data were available for November 2015 to December 250 

2018. This disdrometer subdivides particles into appropriate classes and has a nominal cross-251 

sectional area of 54 cm2. The 10-s period measurement data from the two disdrometers were 252 

averaged into a 1-min period to filter out time variations (Montopoli et al., 2008; Islam et al., 253 

2012; Song et al., 2017). 254 

Meteorological data comes from the ERA-Interim dataset, a global atmosphere re-255 

analysis product, generated by the ECMWF. For the scientific community, ERA-Interim is 256 

considered to be one of the most important atmospheric datasets, with its data rich period 257 

available since 1979 and updated in current time (Dee et al., 2011). The Integrated Forecasting 258 

System released in 2006 contains a 12-h analysis window derived 4-D variational analysis, 259 

driving the data assimilation system to generate ERA-Interim. The dataset covers 60 vertical 260 

classes of approximately 80 km from the ground to 0.1 hPa. The Gridded Binary format is used 261 

to store data for three months in a separate file. A data processing scheme was established to 262 

collect and retrieve ERA-Interim data of each rainfall event. 263 

The rain gauge and Chilbolton disdrometer datasets can be obtained from British 264 

Atmospheric Data Centre in National Centre for Atmospheric Science research center (MO, 265 

2012). ERA-Interim data can be obtained from the ECMWF Public Dataset website 266 

(https://apps.ecmwf.int/). Considering the availability of the above datasets and model 267 

requirements, we mainly used data covering the period 2004–2017. 268 
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4 Results 269 

4.1 Empirically derived rainfall erosivity estimation 270 

To evaluate the RW, the raindrop spectrum collected by the Chilbolton station disdrometer 271 

is used to estimate rainfall KE first. The key in estimating rainfall KE by disdrometer lies on 272 

building an empirical relationship between rainfall amount and KE. We used DSD measurements 273 

from 2004 to 2013 to establish five empirical relationships between unit rainfall kinetic energy 274 

(ke) and intensity (I) (Table 1), and used 2014–2017 data for the cross validation. It can be seen 275 

from Table 1 that the inverse proportional relationship (Equation III in Table 1) had the worst 276 

performance, in that both the calibration and validation R2 values were < 0.3. The values of the 277 

other equations were > 0.48, among which the exponential formula (Equation I in Table 1) had 278 

the highest calibration R2 (0.50) and validation R2 (0.45), respectively. In addition, the power 279 

law formula (Equation V in Table 1) showed a similar performance to the exponential formula at 280 

rainfall intensities < 5 mm h−1. However, the power law formula also had a continuous 281 

increasing trend, which may not be suitable for high-intensities. Figure 2 shows the fitted 282 

relationship of ke–I based on exponential regression. The exponent-based relationship is widely 283 

used in the literature and in forecast models such as RUSLE (Renard et al., 1997). We therefore 284 

adopted it here as the empirical formula to estimate rainfall erosivity in the UK. 285 

Based on rainfall KE, the point RD can be obtained at a disdrometer location. In current 286 

study, we established a method to estimate the R-factor using 60-min rainfall data. EI30 obtained 287 

from 1-min DSD data was considered as the standard R-factor at Chilbolton Station. Hourly rain 288 

gauge data at the same location were used to calculate (EI30)60, which refers to EI30 calculated 289 

from 60-min data. The regression relationship between EI30 and (EI30)60 was then established. 290 

The (EI30)60 of each month, obtained from the 60-min rainfall data of the Chilbolton Station rain 291 

gauge in 2004–2013, was calculated. The regression relationship between the monthly sum of 292 

(EI30)60 and the standard monthly EI30 from DSD was calculated to obtain a coefficient of 1.836. 293 

Rainfall erosivity can subsequently be calculated by multiplying (EI30)60 by the coefficient. 294 

Beyond assuming that the disdrometer-derived ke–I relationship can be applied to a 295 

whole study area; point rainfall measurements must be interpolated to obtain areal rainfall values 296 

in traditional rainfall erosivity estimation. We obtained 60-min rainfall data from 304 rain gauges 297 

around the UK from 2004 to 2017. Note that not all rain gauges were available for the whole 298 
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period (available gauges each year are indicated in Figure 3). We used the ordinary kriging 299 

interpolation method to obtain the spatial distribution of rainfall for each time step. This wide-300 

range-use geostatistical approach can account for both the distance and pairwise spatial 301 

relationship between points through variograms. Figure 3 shows the results of annual rainfall 302 

(Rain), annual rainfall kinetic energy (E), and annual rainfall erosivity (R) for different years. 303 

The distribution trends of Rain, E, and R were similar, and were positively correlated except for 304 

certain locations or periods. For instance, in 2013, Rain in the northwestern UK decreased from 305 

west to east, while E and R-factor decreased from south to north; furthermore, areas with large E 306 

and R values in southeastern UK could not be directly observed from the rain map. 307 

The key concern in traditional rainfall erosivity estimation is the spatial predictability of 308 

the ke–I relationship. To verify the regional reliability of this relationship, we used data from a 309 

newer disdrometer located at the University of Bristol, approximately 87 km from Chilbolton 310 

Station. The validation data at Bristol Station discontinuously covered the period 2016–2019. 311 

Figure 4 shows the exponential relationship of ke–I at Bristol station, which differed 312 

substantially from that based on data from Chilbolton station. A comparison of the modeled and 313 

observed event rainfall erosivity is shown in Figure 5. The modeled erosivity of rainfall event 314 

was not consistent with the observed event rainfall erosivity. The linear regression coefficient 315 

between these values was > 1.2, which was the result of the low ke for Bristol Station, and R2 316 

was < 0.85, indicating large uncertainty associated with disdrometer-based rainfall erosivity 317 

estimation. 318 

In summary, the point rainfall erosivity estimated by disdrometer is considered to be 319 

accurate compared to other methods. However, a large-scaled rainfall erosivity through a simple 320 

interpolation of rainfall KE is subjected to a large uncertainty. In the following analysis, the 321 

point RD is used to appraise the performance of proposed WRF-based estimated method, and the 322 

RD in the whole UK is only be used for a general comparison of spatial and temporal distribution 323 

of rainfall erosivity. 324 

4.2 Rainfall and DSD estimation by WRF 325 

We used the WRF model ver. 3.8, which has an Advanced Research WRF dynamical 326 

core, to downscale the ERA-Interim reanalysis data. The double-nested domain configuration 327 

used in the WRF model was centered at 55°19'N, 2°21'W and applied at a downscaling ratio of 328 
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1:5, a finest grid of 5 km, and a temporal resolution of 1 h. Table 2 lists the detailed parameters 329 

used in this domain configuration. With the top pressure level set at 50 hPa in each, both 330 

domains include 28 vertical levels. To obtain favorable initial weather conditions, the model ran 331 

continuously to obtain five years of WRF simulation results. 332 

Simulations were performed using three different bulk double moment MPs: the  333 

Morrison (Morrison et al., 2009), WDM6 (Hong et al., 2010; Lim and Hong, 2010) and TAA 334 

(Thompson and Eidhammer, 2014) schemes. All three can predict the number concentration and 335 

hydrometeors mixing ratio each time step. The WDM6 scheme also predicts the number 336 

concentration of CCN (Hong et al., 2010; Lim and Hong, 2010), while the TAA scheme are able 337 

to predict both IN and CCN number concentrations (Thompson and Eidhammer, 2014). 338 

Additionally, other physical parameterizations include the Dudhia shortwave radiation scheme 339 

(Dudhia, 1989), Mellor–Yamada–Janjic planetary boundary layer scheme (Janjić, 1994), RRTM 340 

longwave radiation scheme (Mlawer et al., 1997), the Noah land-surface model (Ek et al., 2003), 341 

and the Kain–Fritsch cumulus scheme (Kain, 2004),. 342 

The median volume diameter parameter (𝐷0) and generalized intercept parameter (𝑁𝑤) 343 

are generally used in DSD model of WRF (Islam et al., 2012). 344 
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where 𝐷𝑚 is the mass-weighted mean diameter. The 𝑓(𝜇) is a function of the shape parameter 𝜇. 345 

The parameter 𝜇 is assumed as zero or one (based on microphysical scheme configuration) in 346 

WRF. Figure 6 displays the spatial distribution of 𝐷0 and generalized intercept parameter 𝑁𝑤 for 347 

a given day with rainfall countrywide (January 10, 2013). 𝐷0 and 𝑁𝑤 had similar patterns, and 348 

were mainly distributed across the southwestern and northeastern UK. The white strip in the 349 

middle of Figure 6 represents an area that received no rain. However, the three MPs yielded large 350 

differences; 𝐷0 of MP-TAA was the highest among three MPs, whereas 𝑁𝑤 of MP-WDM6 was 351 

much larger than others. In addition, 𝐷0 and 𝑁𝑤 did not consistently show a positive correlation. 352 
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The different MP estimation results underscore the complexity of the rainfall process, which is 353 

the reason we estimated rainfall KE using WRF schemes instead of traditional formulas. 354 

4.3 Comparison of WRF- and disdrometer-derived rainfall erosivity at Chilbolton station 355 

With the WRF-based rainfall intensity and DSD estimations, rainfall erosivity was 356 

derived using Equations (10)–(12). Hereafter, this is referred to as RW, which is further 357 

distinguished based on the three MP schemes used: RW-Morrison, RW-WDM6, and RW-TAA. Figure 7 358 

compares disdrometer- and WRF-derived monthly rainfall erosivity estimations at Chilbolton 359 

Station for the period 2014–2017. The general patterns of the four rainfall erosivity values were 360 

similar. RW-Morrison tended to be larger than RD in some months, whereas RW-TAA matched the RD 361 

value relatively well for smaller values. Because WRF data were taken from a 2 × 2-km grid 362 

around Chilbolton Station, there was spatial error in addition to the systematic error of estimating 363 

rainfall erosivity.  364 

Table 3 shows the correlation indicator results between RD and the three type RW at 365 

Chilbolton station. The Pearson correlation coefficients generally exceeded 0.7, supporting the 366 

potential utility of WRF-based estimation. In terms of MAE, RW-TAA had the best performance 367 

(6.51), whereas RW-Morrison and RW-WDM6 showed slightly worse performance (approximately 8). 368 

Among the three schemes, RW-TAA had the best fit with RD. The indicators and comparison results 369 

suggest that the deviations in results need to be considered; a method of bias elimination is 370 

therefore described in Section 4.4. 371 

4.4 RW estimation for the whole UK 372 

The RW at Chilbolton station showed obvious systematic deviations compared with the 373 

disdrometer-derived results (see Section 4.2 and 4.3). A simple bias correction was therefore 374 

applied to adjust the individual storm KE estimations of RW. The biases from dividing average 375 

RW-Morrison, RW-WDM6, and RW-TAA by average RD during 2014-2017 were 0.55, 0.20, and 0.36, 376 

respectively. 377 

The rainfall erosivity distribution for the whole UK was then obtained. Figure 8 shows 378 

the distribution of RW at the annual scale covering the period 2013–2017. The pattern of the 379 

rainfall erosivity maps showed a general regional-dominant characteristic. For example, it 380 

always decreased from west to east, predominantly shaped by orography. Affected by the 381 
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prevailing westerly winds, there was abundant rainfall in the western and northern mountains, as 382 

indicated by high rainfall KE values in these regions. In addition, among the study years, 2014 383 

and 2015 showed higher national rainfall erosivity, with a large range in the west coast area. 384 

Figure 9 shows the average R distribution for 2013–2017 estimated by rain gauges and 385 

WRF MPs. WRF grids could cover all regions in the UK evenly, offering more detailed erosivity 386 

results, especially in the mountainous northwestern region. Here, values of average R map 387 

calculated by rain gauges were much higher than three type RW, although they all have R 388 

decreased from west to east. Noted that ke–I empirical equation at Chilbolton station used in the 389 

whole UK, will not always be accurate in regions with different rainfall characteristics. In terms 390 

of RW results, the three MPs obtained the same spatial pattern in rainfall erosivity, where RW-WDM6 391 

yielded the greatest geographical difference. It is clear that the proposed WRF-based estimated 392 

method can capture more details of the spatial change of rainfall erosivity compares with the 393 

traditional disdrometer-based method. 394 

To evaluate the change in rainfall erosivity with time in the UK, the average value of all 395 

the WRF grids covering the whole UK was calculated over 2013–2017 (Figure 10). The average 396 

RW trends of RW-Morrison and RW-TAA were similar, both increasing from a minimum in 2013 to a 397 

maximum in 2014, and then gradually decreasing from 2014 to 2017. The red line in Figure 10 398 

indicates a series of mean values of the three MPs results, which varied from 36,782 to 51,600 399 

MJ mm ha−1 h−1 y−1 (mean: 43,216 MJ mm ha−1 h−1 y−1).  400 

The maximum values for RW-Morrison and RW-TAA occurred in 2014, whereas that of RW-WDM6 401 

occurred in 2015. A sequence of extreme weather events occurred in the UK in 2014, including 402 

major winter storms in late January to mid-February, which caused widespread flooding and 403 

other economic losses, and greatly increased rainfall erosivity that year. However, the gauge-404 

based interpolation map shows the average annual rainfall amount for the years 2013–2017 were 405 

884.9, 1014.0, 1008.5, 894.9, and 937.3 mm, respectively. The large rainfall erosivity difference 406 

between 2014 and 2015, and the two years with similar rainfall amount, indicates that much 407 

rainfall erosion occurs during the rainfall events of high intensity instead of simply high rainfall 408 

amount. More notable variation pattern of rainfall erosivity may be found with longer simulation. 409 

The strength of the proposed method lies on its ability to estimate large covering and long-term 410 

rainfall erosivity. 411 
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5 Conclusions 412 

This study presented a novel method for large-scale rainfall KE and erosivity estimation 413 

based on high resolution WRF-derived DSDs. Three microphysical parameterizations schemes 414 

(Morrison, WDM6, and Thompson aerosol-aware [TAA]) were designed to obtain raindrop size 415 

distributions, rainfall KE and rainfall erosivity at the whole UK scale covering the period of 416 

2013-2017. With validation by the long-term observations of a disdrometer, the WRF-based 417 

rainfall erosivity showed acceptable performance at Chilbolton station. Among the three WRF 418 

schemes, TAA performed best and was recommended for the future investigation. The results 419 

revealed that high rainfall erosivity occurred in the west coast area in the UK. Compared with the 420 

traditional empirical method, the proposed method can explain rainfall erosivity from a 421 

microphysical perspective, and reflect more spatial variation due to changes in rainfall KE at the 422 

whole-country scale. The development of a numerical weather prediction model therefore offers 423 

an opportunity to better understand rainfall erosivity directly from its true definition. More 424 

importantly, because the WRF model is able to be driven by the global reanalysis data to obtain 425 

large-scale rainfall kinetic information, the proposed scheme can be easily applied to other 426 

regions, especially in ungauged areas. 427 

Although an acceptable rainfall erosivity estimation is obtained using the WRF model, 428 

some uncertainties associated with it cannot be ignored. For example, as the MPs of WRF were 429 

closely related to DSD, improper determination of MPs will introduce additional uncertainty. 430 

The marked discrepancy among the three schemes (especially between Morrison and the others) 431 

in this study underscored the possible uncertainty associated with RW. Moreover, the 432 

measurement error by disdrometer may also contaminate the evaluation process. For example, 433 

when comparing the observed raindrop velocities based on the disdrometer at Bristol station with 434 

their empirical values, we observed a dispersion of raindrops, with a number of drops showing 435 

significant deviations. This velocity distribution resulted in an uncertainty in ke estimation.  436 

In addition, other sources of uncertainty, such as temporal downscaling of rainfall and 437 

point-to-area representative error by WRF, may introduce further uncertainty, which should be 438 

put in perspective of future work. It is expected that more exploration of research areas with 439 

different climatic and geographical characteristics would help us to establish a greater degree of 440 

accuracy on this matter.  441 
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 652 

Figure 1. Location of rain gauges, Joss–Waldvogel disdrometer (JWD) at Chilbolton 653 

Observatory, OTT Parsivel2 disdrometer (OPD) at Bristol Observatory and configurations of 654 

domain setups in the WRF model.  655 
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 657 

Figure 2. The fitted relationship of ke–I based on exponential regression (2004–2013).  658 
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 660 

Figure 3. Gauge-based interpolation maps of annual rainfall amount (Rain), rainfall kinetic 661 

energy (E) and rainfall erosivity (R) in 2013-2017.  662 
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 664 

Figure 4. Relationship of ke–I at Bristol station.  665 
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 667 

Figure 5. Comparison of observed and modeled event rainfall erosivity covering the period of 668 

2016–2019.  669 
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 671 

Figure 6. Map of average WRF DSD 𝐷0 and 𝑁𝑤 (January 10, 2013).  672 
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 674 

Figure 7. Comparison of disdrometer- and WRF-derived monthly rainfall erosivity estimations 675 

at Chilbolton station.  676 
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 678 
Figure 8. RW maps of the whole UK for different years.  679 
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 681 

Figure 9. The 5-year (2013–2017) average R maps based on WRF grids and rain gauge 682 

interpolation.  683 
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 685 

Figure 10. The average RW of all the WRF grids covering the whole UK (2013–2017). 686 
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Table 1. Relationship of ke–I at Chilbolton Station.  688 

ID Equation Calibration R2 Validation R2 

I 𝑘𝑒 = 16.08(1 − 0.76𝑒−0.41𝐼) 0.50 0.45 

II 𝑘𝑒 = 8.65 + 6.39 lg(𝐼) 0.48 0.43 

III 𝑘𝑒 = 10.19 − 1.05/𝐼 0.29 0.25 

IV 𝑘𝑒 = 8.65 + 2.78 ln(𝐼) 0.48 0.43 

V 𝑘𝑒 = 8.12𝐼0.34 0.50 0.45 

 689 
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Table 2. The configurations of WRF model for two nested domains.  691 

Domain Domain size (km) Grid Spacing (km) Grid size Downscaling ratio 

d01 1,125 × 1,675 25 45 × 67 - 

d02 655 × 1,230 5 131 × 246 1:5 
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Table 3. Indicators comparison between RD and three type RW at Chilbolton station on monthly 694 

scale.  695 

Indicators MP-Morrison MP-WDM6 MP-TAA 

Pearson 0.71 0.77 0.79 

MAE 8.05 8.42 6.51 

R2 0.42 0.31 0.54 
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