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Abstract 14 

Soil erosion can cause various ecological problems, such as land degradation, soil fertility loss, 15 

and river siltation. Rainfall is the primary water-driving force for soil erosion, and its potential 16 

effect on soil erosion is reflected by rainfall erosivity that relates to the raindrop kinetic energy. 17 

As it is difficult to observe large-scale dynamic characteristics of raindrops, all the current 18 

rainfall erosivity models use the function based on rainfall amount to represent the raindrops 19 

kinetic energy. With the development of global atmospheric re-analysis data, numerical weather 20 

prediction techniques become a promising way to estimate rainfall kinetic energy directly at 21 

regional and global scales with high spatial and temporal resolutions. This study proposed a 22 

novel method for large-scale and long-term rainfall erosivity investigations based on the Weather 23 

Research and Forecasting (WRF) model, avoiding errors caused by inappropriate rainfall–energy 24 

relationships and large-scale interpolation. We adopted three microphysical parameterizations 25 

schemes (Morrison, WDM6, and Thompson aerosol-aware) to obtain raindrop size distributions, 26 

rainfall kinetic energy and rainfall erosivity, with validation by two disdrometers and 304 rain 27 

gauges around the United Kingdom. Among the three WRF schemes, Thompson aerosol-aware 28 

had the best performance compared with the disdrometers at a monthly scale. The results 29 

revealed that high rainfall erosivity occurred in the west coast area at the whole country scale 30 

during 2013–2017. The proposed methodology makes a significant contribution to improving 31 

large-scale soil erosion estimation and for better understanding microphysical rainfall–soil 32 

interactions to support the rational formulation of soil and water conservation planning. 33 

 34 

1 Introduction 35 

Soil erosion plays a pivotal role in shaping the Earth’s physical landscape; however, it 36 

can threaten both ecosystems and human societies (Alewell et al., 2015). Accurate quantification 37 

of soil loss impact at large spatial scales is therefore important for developing land-use planning 38 

and sustainable conservation practices (Bilotta et al., 2012). The soil erosion rate is driven by a 39 

combination of factors, including rainfall, topography, soil characteristics, land cover, and land 40 

management applications (Wischmeier and Smith, 1958; Panagos et al., 2015b). Among these, 41 

rainfall is a driving force that accounts for a large proportion of soil loss throughout most of the 42 

world (Panagos et al., 2015b). The erosive force of rainfall with consequent runoff is represented 43 
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as erosivity of rainfall. This is a crucial factor for estimating soil loss in large-scale soil erosion 44 

models; for instance, the Universal Soil Loss Equation (USLE (Wischmeier and Smith, 1978) or 45 

RUSLE (Renard et al., 1997)), Limburg Soil Erosion Model (LISEM) (De Roo et al., 1996), and 46 

USLE-M (Kinnell and Risse, 1998). 47 

Rainfall erosivity estimation involves the microphysical properties of rainfall and 48 

rainfall–soil interactions on different time steps (Petan et al., 2010). Impact of rainfall, the main 49 

mechanism driving the splashing of soil particles from the soil mass, which leads to soil erosion 50 

through soil disintegration and mobilization, relies on the kinetic energy (KE) of raindrop 51 

motions (Wischmeier and Smith, 1958; Wang et al., 2014). Robust measurement of raindrop size 52 

and terminal velocity is vital for estimating and predicting rainfall erosivity. Many measurements 53 

can be used to obtain these two parameters, including the stained paper or flour pellet methods 54 

(Marshall and Palmer 1948; Wischmeier and Smith, 1958), high speed cameras (Jones, 1959; 55 

Kinnell, 1981; McIsaac, 1990), and disdrometers (Petan et al., 2010; Angulo-Martinez et al., 56 

2012). Accurate measurements of raindrop size can be provided in all their methods, and 57 

terminal velocity of raindrops can be further measured by video cameras and disdrometers. 58 

Velocity can also be estimated as the function of raindrop diameter from the empirical 59 

relationship (Beard, 1976; Atlas and Ulbrich, 1977; Uplinger, 1981; Van Dijk et al., 2002). 60 

When using ground observations, rainfall KE can be estimated at a given site. 61 

However, direct measurement of rainfall KE in a large area is difficult because it requires 62 

considerable effort, as well as a dense network of expensive instruments that provide accurate 63 

outputs (Fornis et al., 2005; Mikoš et al., 2006; Meshesha et al., 2016; Dai et al., 2017). Previous 64 

studies have, therefore, mainly employed more readily accessible records like rainfall intensity, 65 

and attempted to estimate rainfall KE from the empirical relationship of unit KE (ke) with 66 

intensity (ke–I). Since Marshall and Palmer (1948) first observed a two-parameter exponential 67 

relationship between drop size and intensity, several forms of ke–I mathematical expressions for 68 

specific locations and climatic conditions have been proposed, including power-law (Park et al., 69 

1982; Meshesha et al., 2016), linear (Sempere‐Torres et al., 1998; Nyssen et al., 2005), 70 

polynomial (Carter et al., 1974), logarithmic (Wischmeier and Smith, 1978; Davison et al., 2005; 71 

Meshesha et al., 2014), and exponential (Kinnell, 1981; Brown and Foster, 1987) relationships. 72 

Among these, the exponential function has been preferentially used currently (Van Dijk et al., 73 

2002; Fornis et al., 2005; Petan et al., 2010; Sanchez-Moreno et al., 2012; Lim et al., 2015). 74 
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Accurate raindrop size distribution (DSD) measured by disdrometers is widely used to derive ke–75 

I relationships (Angulo-Martínez et al., 2016; Meshesha et al., 2016). However, such empirically 76 

derived formulas indicate that rainfall ke will increase infinitely with increasing intensity, 77 

whereas studies (Rosewell, 1986; Angulo-Martínez et al., 2016; Meshesha et al., 2019) have 78 

found that rainfall ke reaches an top value when intensity is around 70 mm h−1 (Hudson, 1963; 79 

Wischmeier and Smith, 1978). More importantly, such a ke–I relationship only represents local 80 

climate and precipitation microphysics and is valid for such regions. There is great uncertainty 81 

associated with rainfall erosivity estimation using this ke–I relationship in a large domain 82 

(Angulo-Martínez and Barros, 2015), especially due to the poor spatial and temporal 83 

predictability of the ke–I relationship. This has motivated researchers to directly calculate KE 84 

based on large-scale DSD measurements.  85 

Ground- and space-based radar can be used to obtain DSD parameters (Atlas et al., 1973; 86 

Doelling et al., 1998). For example, the space-borne Dual-frequency Precipitation Radar (DPR) 87 

radar containing Ku- and Ka-bands in the Global Precipitation Measurement (GPM) satellite 88 

allows researchers to estimate the global three-dimensional spatial distribution of hydrometeors. 89 

Unfortunately, ground dual-polarization radars are available in limited areas (Prigent, 2010) with 90 

large uncertainties (Dai et al., 2019), and the GPM DPR instrument, which measures DSD with 91 

daily or longer temporal resolutions, fail to capture a full storm and meet the requirement for 92 

rainfall kinetic estimation. Mesoscale numerical weather prediction models, for instance, the 93 

WRF model, can simulate microphysical cloud processes and predict the evolution of particle 94 

size distribution through computationally feasible parametrization schemes (Dai et al., 2014; 95 

Brown et al., 2016). DSD on the ground can be derived from the WRF model through 96 

consideration of various physical processes, types of hydrometeor, and free degrees of size 97 

distributions in hydrometeor. As such, a number of recent researches have investigated the 98 

retrieval and uncertainty of DSD parameters by WRF (Gilmore et al., 2004; Ćurić et al., 2009; 99 

Brown et al., 2016; Yang et al., 2019). 100 

The WRF model runs with initial and boundary conditions using global reanalysis 101 

datasets, such as those of the European Centre for Medium-range Weather Forecasts (ECMWF) 102 

and National Centers for Environmental Prediction (NCEP). In other words, WRF-derived DSD 103 

can be obtained for any given area with fine spatial and temporal resolutions rather than 104 

traditional course linear interpolations. We therefore attempted to estimate rainfall erosivity for 105 
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the entirety of the United Kingdom (UK) domain using WRF-derived DSD. For comparison, we 106 

also calculated interpolated traditional disdrometer-derived rainfall erosivity. To our knowledge, 107 

this work is the first attempt to take advantage of a numerical weather prediction model for 108 

estimating rainfall erosivity anywhere around the world. The current study contributes to the 109 

development of large-scale soil erosion estimation and provides a better comprehension of 110 

microphysical rainfall–soil interactions.  111 

2 Methodology 112 

2.1 Disdrometer-based rainfall KE estimation 113 

KE dominates the ability of raindrops to separate soil particles. The KE (e, unit: J) of a 114 

raindrop with mass m (g) and terminal velocity v (m s−1) is defined by:  115 

2

2

1
mve   (1) 

Assuming a spherical volume for every raindrop shape, the mass of a drop can be 116 

calculated from the cube of the diameter D (mm). Because instruments (e.g., disdrometers) 117 

generally sample drop size, the mean radius and falling velocity of the corresponding sampling 118 

drop-size class are used to represent D and v, expressed as Di and vi, respectively. In such cases, 119 

the ei with any drop of a given class is given as: 120 

32610
12

1
iii Dve   (2) 

where 𝜌 is the water density (g cm−3). The sum of the KE of each individual raindrop within a 121 

given rain depth that hits a given area defines the total KE. The unit rainfall KE ket in the tth 122 

minute (MJ ha−1 mm−1) can be calculated as the sum of each drop KE in each size set, as follows: 123 
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where A represents the sample area of the sensor, Pt is rainfall depth at time t, and Ni is the drops 124 

number in class i. The instrument sums up the number of raindrops in each sampling class and 125 

produces the raindrop spectra for a time step. Here, we use the term ke to represent the 126 

disdrometer-based KE estimated by DSD directly measured every minute. The terminal velocity 127 
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of a raindrop can be estimated from its power law empirical relationship with raindrop diameter 128 

(Atlas and Ulbrich, 1977), with this considered more suitable for Chilbolton in the UK (Islam et 129 

al., 2012): 130 

67.0
78.3 iAtl Dv   (4) 

Thus, unit rainfall KE estimates per minute are obtained by replacing vi in Eq. (2) with vAtl. 131 

The other form of rainfall KE is expressed at an event scale and represents the sum of the 132 

storm energy covering all time steps covering an event. The individual event energy (MJ ha−1) is 133 

calculated as follows: 134 





nt

t
ttPkeE

1

 (5) 

where Pt is the rainfall amount (mm) in the tth minute and nt is the time steps number. Historical 135 

rainfall data are divided into wet and dry periods. A string of erosive rainfall storms is first 136 

extracted through the predefined rules. A continuous 6-h dry period interval was used to divide 137 

rainfall events (Hanel et al., 2016), following the “minimum dry-period duration” definition of a 138 

rainfall event (Bonta, 2004). Moreover, a rainfall amount of 12.7 mm was set as the threshold to 139 

filter effective rainfall events (Renard et al., 1997). 140 

Rainfall KE is obtained for a given site based on size and velocity of raindrops. When 141 

disdrometer data are absent, energy can be estimated from empirical relationships using rainfall 142 

intensity I (mm). Five commonly used functions (including exponential, logarithmic, power law, 143 

and inverse proportion) have been mentioned in Section 1. Taking the exponential form as an 144 

example, the rainfall KE at any location can be estimated as: 145 

)1(maxmax
bIaeeE   (6) 

where emax is the mean maximal value of energy measured under high rainfall intensity, and a 146 

and b are coefficients modeling the equation curve. Here, minimum KE can be determined by 147 

parameters a and emax together, while the overall shape of the curve is modeled by parameter b. 148 
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2.2 WRF-based rainfall KE estimation 149 

Differing from disdrometer measurements, the complete DSD cannot be obtained from 150 

the WRF model. Instead, the DSD of the microphysical parameterization (MP) scheme is 151 

handled with a constrained-gamma distribution model, which is defined as: 152 

DeDNDN   0)(  (7) 

where 𝑁0 , 𝜇 , and 𝜆  are the intercept, shape, and slope parameters of the DSD. In terms of 153 

double-moment bulk schemes, 𝑁0 and 𝜆 can be abstracted from the number concentration 𝑁 and 154 

predicted mixing ratio 𝑞, as shown below: 155 
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c and d are the assumed power-law coefficients between diameter and mass (m = cDd), and Γ 156 

represents the function in gamma form  (Morrison et al., 2009). The value of the shape parameter 157 

μ (μ = 0) in double-moment schemes is fixed, except for the WRF double-moment 6-class 158 

(WDM6) schemes, following gamma distribution, which defined μ = 1 (Jung et al., 2010; 159 

Johnson et al., 2016). 160 

Because DSD retrieval is sensitive to MPs (Cintineo et al., 2014; Morrison et al., 2015), 161 

the WRF model this study adopted completely or partially three types of double-moment cloud 162 

MP schemes. The Morrison double-moment scheme involves the number concentrations and 163 

mixing ratios of multiple hydrometeors (Morrison et al., 2009). Moreover, the WDM6 scheme 164 

further considers a prognostic factor to estimate and predict the cloud condensation nuclei (CCN) 165 

number concentration (Hong et al., 2010; Lim and Hong, 2010). Finally, the Thompson aerosol-166 

aware (TAA) scheme can predict both ice nuclei (IN) and CCN number concentrations 167 

(Thompson and Eidhammer, 2014).  168 

The DSD parameters were thus obtained under the three WRF MPs. For theoretical DSD, 169 

ke estimates per minute were obtained by integration of the full raindrop size spectrum using: 170 
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For the WRF-derived DSD covering the whole study area, there was no need to construct 171 

a ke–I relationship to interpolate KE in ungauged areas. The WRF-based rainfall KE under storm 172 

event scale is thus given as: 173 


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ttW PkeE

1

'  (11) 

2.3 Rainfall erosivity estimation 174 

Most storm events have relatively low intensities and KEs with occasional peaks, based 175 

on the disdrometer DSD data used to evaluate the rainfall ke–I function. Proper estimation of 176 

rainfall erosivity potential should consider total KE over a long period. The rainfall erosivity 177 

factor (or R-factor) is calculated by a multi-annual average of the total storm erosivity index 178 

(Wischmeier and Smith, 1958; Van Dijk et al., 2002), while annual rainfall erosivity R can be 179 

obtained using:  180 





M

m
mEIR

1
30)(  (12) 

where M is the total number of erosive events within a year. (EI30)m are total rainfall kinetic 181 

energy and maximum 30-min rainfall intensity recorded within 30 consecutive minutes (unit: 182 

mm h−1), respectively, for the mth event. 183 

Wischmeier and Smith (1958) first proposed the use of EI30, as the rainfall erosivity for 184 

each event, based on research data from many sources. I30 was calculated to have higher 185 

relevance to soil erosion than maximum 5-min, 15-min, or 60-min rainfall intensities 186 

(Wischmeier and Smith, 1958). The calculation of EI30 initially uses recording-rain gauge data to 187 

divide continuous rainfall into time periods with equal rainfall intensity. Though rainfall 188 

measurements with high temporal resolutions are required, it is difficult to obtain them from 189 

general rainfall measurements. Therefore, short time equal-interval rainfall data with higher 190 

accuracy over multiple years are preferred for estimating EI30. For example, Xie et al. (2016) 191 

used 1-min rainfall data instead of recording-rain gauge records. For coarse-resolution, equally 192 
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spaced data, researchers have proposed a conversion factor to reduce bias error (Weiss, 1964; 193 

Williams and Sheridan, 1991). 194 

The rainfall erosivity can be derived from rainfall KE. It plays a main dynamic role in 195 

USLE/RUSLE, representing the potential for soil erosion caused by rainfall. To distinguish the 196 

disdrometer- and WRF-derived rainfall erosivity in this study, we use the terms RD and RW, 197 

respectively. 198 

2.4 Evaluation methods 199 

Because there is no direct way to measure rainfall erosivity across a large area, it is 200 

difficult to validate outcomes using observations. However, RD is considered to be relatively 201 

accurate due to its specific measurement of raindrops. We therefore assumed that RW values were 202 

accurate if it closely matched RD of a given location. A long-term comparison of RW and RD at 203 

disdrometer stations was thus conducted to evaluate the validity of RW.  204 

Three indicators were introduced for the evaluation: Pearson’s correlation coefficient, 205 

mean absolute error (MAE), and coefficient of determination (R2) (Borrelli et al., 2017). Pearson 206 

correlation coefficient is an index used to evaluate the linear correlation between two variables, 207 

and is defined as follows:  208 

2222
)()( 
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
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where n is the number of variable samples. Because this correlation cannot reveal the absolute 209 

bias of rainfall erosivity values, the MAE was also used; this is defined as: 210 

n

RR
MAE ii DW 

  (14) 

R2 is an indicator to assess the fit of the trend line, expressed as the ratio of the variance 211 

in the dependent variable predicted from the independent variable. It measures the extent to 212 

which the model replicates observations based on the proportion of the results interpreted by the 213 

model to the total change, written as: 214 
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tot

res

SS

SS
R  12  (15) 

where SSres is the sum of squares of residuals between two variables, and SStot is the total sum of 215 

squares. 216 

3 Study area and data sources 217 

The whole of the UK was set as the experimental area for investigating rainfall erosivity 218 

estimation. The UK consists of mostly lowland terrain, with a maximum elevation of 1345 m. 219 

Water and wind are the most significant forces of soil erosion in the UK. Together, they cause 220 

approximately 2.2 million tons of topsoil to be eroded annually, seriously affecting soil 221 

productivity, water quality, and aquatic ecosystems through siltation of watercourses (EA, 2004). 222 

According to the Environmental Agency, the total cost of soil erosion in the UK is approximately 223 

$88 million each year, including an agricultural production loss of $17.6 million (O’Neill, 2007). 224 

More importantly, the changing climate may exacerbate the degree of erosion. For example, 225 

hotter, drier climates make soils more susceptible to wind erosion, and intense storms increase 226 

rainfall erosivity (Defra, 2009). Studies of water erosion in England and Wales (Morgan, 1985; 227 

Evans, 1990) have found that loose soils (especially sand), such as the soils found in Shropshire 228 

and Herefordshire in Wales, are more susceptible to water erosion. In a study of rainfall erosion 229 

in Europe, Panagos et al. (2015a) found that the humid Atlantic climate results in highly variable 230 

rainfall erosivity, such as higher R-factor values in western England and lower values in the 231 

eastern UK. 232 

The gauge datasets used are from the land surface and marine surface measurements 233 

datasets (data availability: 1853–present) provide by the UK Met Office. A network of rain 234 

gauges covering 304 stations across the whole UK observes continuous rainfall data in hours 235 

(Figure 1). The base data of most stations comprises the times of each tip (0.2 mm per tip), 236 

converted into 1-h rain accumulations. The rainfall observations are not always valid for each 237 

hour at each station. The hourly grid-based rainfall maps are then calculated based on ordinary 238 

kriging interpolation of rain gauge network data to obtain the spatial distribution of rainfall for 239 

each time step, as inputs for rainfall erosivity estimation. This wide-range-use geostatistical 240 

approach can account for both the distance and pairwise spatial relationship between points 241 
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through variograms. The precipitation interpolation method uses sample gauge points taken at 242 

different locations and creates a continuous surface to achieve an accurate spatial variation 243 

estimation of rainfall patterns.  244 

We used data from two disdrometers in southern England. The first was Chilbolton 245 

station (51°08’N, 1°26’W), with an impact-type Joss–Waldvogel disdrometer (JWD) mainly 246 

used to compute rainfall erosivity. It can measure drop sizes from 0.3 to 5.0 mm in 127 bins. The 247 

sampling period and collector area were 10 s and 50 cm2, respectively. Data were available for 248 

April 2003 to July 2018. The second was the University of Bristol station (51°27’N, 2°36’W), 249 

with an OTT Parsivel2 disdrometer (OPD). Data were available for November 2015 to December 250 

2018. This disdrometer subdivides particles into appropriate classes and has a nominal cross-251 

sectional area of 54 cm2. The 10-s period measurement data from the two disdrometers were 252 

averaged into a 1-min period to filter out time variations (Montopoli et al., 2008; Islam et al., 253 

2012; Song et al., 2017). 254 

Meteorological data comes from the ERA-Interim dataset, a global atmosphere re-255 

analysis product, generated by the ECMWF. For the scientific community, ERA-Interim is 256 

considered to be one of the most important atmospheric datasets, with its data-rich period 257 

available since 1979 and updated in current time (Dee et al., 2011). The Integrated Forecasting 258 

System released in 2006 contains a 12-h analysis window derived 4-D variational analysis, 259 

driving the data assimilation system to generate ERA-Interim. The dataset covers 60 vertical 260 

classes of approximately 80 km from the ground to 0.1 hPa. The Gridded Binary format is used 261 

to store data for three months in a separate file. A data processing scheme was established to 262 

collect and retrieve ERA-Interim data of each rainfall event. 263 

The rain gauge and Chilbolton disdrometer datasets can be obtained from British 264 

Atmospheric Data Centre in National Centre for Atmospheric Science research center (MO, 265 

2012). ERA-Interim data can be obtained from the ECMWF Public Dataset website 266 

(https://apps.ecmwf.int/). Considering the availability of the above datasets and model 267 

requirements, we mainly used data covering the period 2004–2017. 268 
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4 Results 269 

4.1 Empirically derived rainfall erosivity estimation 270 

To evaluate the RW, the raindrop spectrum collected by the Chilbolton station disdrometer 271 

is used to estimate rainfall KE first. The key in estimating rainfall KE by disdrometer lies in 272 

building an empirical relationship between rainfall amount and KE. We used DSD measurements 273 

from 2004 to 2013 to establish five empirical relationships between unit rainfall kinetic energy 274 

(ke) and intensity (I) (Table 1) and used 2014–2017 data for the cross-validation. It can be seen 275 

from Table 1 that the inverse proportional relationship (Equation III) had the worst performance, 276 

in that both the calibration and validation R2 values were < 0.3. The values of the other equations 277 

were > 0.48, among which the exponential formula (Equation I) had the highest calibration R2 278 

(0.50) and validation R2 (0.45), respectively. In addition, the power law formula (Equation V) 279 

showed a similar performance to the exponential formula at rainfall intensities < 5 mm h−1. 280 

However, the power law formula also had a continuously increasing trend, which may not be 281 

suitable for high-intensities. Figure 2 shows the ke–I relationship and five fitted curves at 282 

Chilbolton station. It can be seen that the two logarithmic curves (Equation II and IV) invariably 283 

overlap. The logarithmic form has been used for a long time in USLE (Wischemier and Smith, 284 

1978). It describes ke well at both low and high I, but does not have an upper limit. The power 285 

law curve (Equation V) can predict ke well at lower I but overestimates ke at high I. The 286 

exponent-based relationship (Equation I) is widely used in the literature and in forecast models 287 

such as RUSLE (Renard et al., 1997), which fits the data particularly well in Figure 2. Even 288 

though ke in exponential curve has a minimum value at very low I, it also should be noted that 289 

higher rainfall intensities are much more important in determining overall storm energy than 290 

lower intensities. Therefore, we adopted it here as the empirical formula to estimate rainfall 291 

erosivity in the UK. 292 

Based on rainfall KE, the point RD can be obtained at a disdrometer location. In the 293 

current study, we established a method to estimate the R using 60-min rainfall data. EI30 obtained 294 

from 1-min DSD data was considered as the standard R at Chilbolton Station. Hourly rain gauge 295 

data at the same location were used to calculate (EI30)60, which refers to EI30 calculated from 60-296 

min data. The regression relationship between EI30 and (EI30)60 was then established. The (EI30)60 297 

of each month, obtained from the 60-min rainfall data of the Chilbolton Station rain gauge in 298 
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2004–2013, was calculated. The regression relationship between the monthly sum of (EI30)60 and 299 

the standard monthly EI30 from DSD was calculated to obtain a coefficient of 1.836. Rainfall 300 

erosivity can subsequently be calculated by multiplying (EI30)60 by the coefficient. 301 

Beyond assuming that the disdrometer-derived ke–I relationship can be applied to a 302 

whole study area; point rainfall measurements must be interpolated to obtain areal rainfall values 303 

in traditional rainfall erosivity estimation. We obtained 60-min rainfall data from 304 rain gauges 304 

around the UK from 2004 to 2017. Note that not all rain gauges were available for the whole 305 

period (available gauges each year are indicated in Figure 3). We used the ordinary kriging 306 

interpolation method to obtain the spatial distribution of rainfall for each time step. This wide-307 

range-use geostatistical approach can account for both the distance and pairwise spatial 308 

relationship between points through variograms. Figure 3 shows the results of annual rainfall 309 

(Rain), annual rainfall kinetic energy (E), and annual rainfall erosivity (R) for different years. 310 

The distribution trends of Rain, E, and R were similar, and positively correlated except for 311 

certain locations or periods. For instance, in 2013, Rain in the northwestern UK decreased from 312 

west to east, while E and R decreased from south to north; furthermore, areas with large E and R 313 

values in southeastern UK could not be directly observed from the rain map. 314 

The key concern in traditional rainfall erosivity estimation is the spatial predictability of 315 

the ke–I relationship. To verify the regional reliability of this relationship, we used data from a 316 

newer disdrometer located at the University of Bristol, approximately 87 km from Chilbolton 317 

Station. The validation data at Bristol Station discontinuously covered the period 2016–2019. 318 

Figure 4 shows the exponential relationship of ke–I at Bristol station, which differed 319 

substantially from that based on data from Chilbolton station. A comparison of the modeled and 320 

observed event rainfall erosivity is shown in Figure 5. The modeled erosivity of rainfall event 321 

was not consistent with the observed event rainfall erosivity. The linear regression coefficient 322 

between these values was > 1.2, which was the result of the low ke for Bristol Station, and R2 323 

was < 0.85, indicating considerable uncertainty associated with disdrometer-based rainfall 324 

erosivity estimation. 325 

In summary, the point rainfall erosivity estimated by disdrometer is considered to be 326 

accurate compared to other methods. However, a large-scale rainfall erosivity through a simple 327 

interpolation of rainfall KE is subjected to a significant uncertainty. In the following analysis, the 328 
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point RD is used to appraise the performance of the proposed WRF-based estimated method, and 329 

the RD in the whole UK is only be used for a general comparison of spatial and temporal 330 

distribution of rainfall erosivity. 331 

4.2 Rainfall and DSD estimation by WRF 332 

We used the WRF model ver. 3.8, which has an Advanced Research WRF dynamical 333 

core, to downscale the ERA-Interim reanalysis data. The double-nested domain configuration 334 

used in the WRF model was centered at 55°19'N, 2°21'W and applied at a downscaling ratio of 335 

1:5, a finest grid of 5 km, and a temporal resolution of 1 h. Table 2 lists the detailed parameters 336 

used in this domain configuration. With the top pressure level set at 50 hPa in each, both 337 

domains include 28 vertical levels. To obtain favorable initial weather conditions, the model ran 338 

continuously to obtain five years of WRF simulation results. 339 

Simulations were performed using three different bulk double moment MPs: the  340 

Morrison (Morrison et al., 2009), WDM6 (Hong et al., 2010; Lim and Hong, 2010) and TAA 341 

(Thompson and Eidhammer, 2014) schemes. All three can predict the number concentration and 342 

hydrometeors mixing ratio for each time step. The WDM6 scheme also predicts the number 343 

concentration of CCN (Hong et al., 2010; Lim and Hong, 2010), while the TAA scheme are able 344 

to predict both IN and CCN number concentrations (Thompson and Eidhammer, 2014). 345 

Additionally, other physical parameterizations include the Dudhia shortwave radiation scheme 346 

(Dudhia, 1989), Mellor–Yamada–Janjic planetary boundary layer scheme (Janjić, 1994), RRTM 347 

longwave radiation scheme (Mlawer et al., 1997), the Noah land-surface model (Ek et al., 2003), 348 

and the Kain–Fritsch cumulus scheme (Kain, 2004),. 349 

The median volume diameter parameter (𝐷0) and generalized intercept parameter (𝑁𝑤) 350 

are generally used in the DSD model of WRF (Islam et al., 2012). 351 
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where 𝐷𝑚 is the mass-weighted mean diameter. The 𝑓(𝜇) is a function of the shape parameter 𝜇. 352 

The parameter 𝜇 is assumed as zero or one (based on microphysical scheme configuration) in 353 
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WRF. Figure 6 displays the spatial distribution of 𝐷0 and generalized intercept parameter 𝑁𝑤 for 354 

a given day with rainfall countrywide (January 10, 2013). 𝐷0 and 𝑁𝑤 had similar patterns and 355 

were mainly distributed across the southwestern and northeastern UK. The white strip in the 356 

middle of Figure 6 represents an area that received no rain. However, the three MPs yielded large 357 

differences; 𝐷0 of MP-TAA was the highest among three MPs, whereas 𝑁𝑤 of MP-WDM6 was 358 

significant larger than the others. In addition, 𝐷0 and 𝑁𝑤 did not consistently show a positive 359 

correlation. The different MP estimation results underscore the complexity of the rainfall process, 360 

which is the reason we estimated rainfall KE using WRF schemes instead of traditional formulas. 361 

4.3 Comparison of WRF- and disdrometer-derived rainfall erosivity at Chilbolton station 362 

With the WRF-based rainfall intensity and DSD estimations, rainfall erosivity was 363 

derived using Equations (10)–(12). Hereafter, this is referred to as RW, which is further 364 

distinguished based on the three MP schemes used: RW-Morrison, RW-WDM6, and RW-TAA. Figure 7 365 

compares disdrometer- and WRF-derived monthly rainfall erosivity estimations at Chilbolton 366 

station for the period 2014–2017. The general patterns of the four rainfall erosivity values were 367 

similar. RW-Morrison tended to be larger than RD in some months, whereas RW-TAA matched the RD 368 

value relatively well for smaller values. Because WRF data were taken from a 2×2-km grid 369 

around Chilbolton station, there was a spatial error in addition to the systematic error of 370 

estimating rainfall erosivity. Based on the four-year data, the study area is rainy throughout the 371 

year with little R monthly, or seasonal patterns change (Figure 8), influenced by the temperate 372 

oceanic climate. Figure 8 also indicated that through the perspective of monthly average results, 373 

RW-WDM6 values are low, RW-TAA has a good similarity with low RD, and RW-Morrison is the closest to 374 

RD in value. 375 

Table 3 shows the correlation indicator results between monthly RD and the three types of 376 

RW at Chilbolton station. The Pearson correlation coefficients generally exceeded 0.7, supporting 377 

the potential utility of WRF-based estimation. In terms of MAE, RW-TAA had the best performance 378 

(6.51), whereas RW-Morrison and RW-WDM6 showed slightly worse performance (approximately 8). 379 

Among the three schemes, RW-TAA had the best fit with RD. The indicators and comparison results 380 

suggest that the deviations in results need to be considered; therefore, a method of bias 381 

elimination is described in Section 4.4. 382 
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4.4 RW estimation for the whole UK 383 

The RW at Chilbolton station showed obvious systematic deviations compared with the 384 

disdrometer-derived results (see Section 4.2 and 4.3). Simple bias correction was therefore 385 

applied to adjust the individual storm KE estimations of RW. The biases from dividing average 386 

RW-Morrison, RW-WDM6, and RW-TAA by average RD during 2014-2017 were 0.55, 0.20, and 0.36, 387 

respectively. 388 

The rainfall erosivity distribution for the whole UK was then obtained. Figure 9 shows 389 

the distribution of RW at the annual scale covering the period 2013–2017. The pattern of the 390 

rainfall erosivity maps showed a general regional-dominant characteristic. For example, it 391 

always decreased from west to east, predominantly shaped by orography. Affected by the 392 

prevailing westerly winds, there was abundant rainfall in the western and northern mountains, as 393 

indicated by high rainfall KE values in these regions. In addition, among the study years, 2014 394 

and 2015 showed higher national rainfall erosivity, with a large range in the west coast area. 395 

Figure 10 shows the average R distribution for 2013–2017 estimated by rain gauges and 396 

WRF MPs. WRF grids could cover all regions in the UK evenly, offering more detailed erosivity 397 

results, especially in the mountainous northwestern region. Here, values of average R map 398 

calculated by rain gauges were much higher than three types of RW, although they all have R 399 

decreased from west to east. Noted that ke–I empirical equation at Chilbolton station used in the 400 

whole UK, will not always be accurate in regions with different rainfall characteristics. In terms 401 

of RW results, the three MPs obtained the same spatial pattern in rainfall erosivity, where RW-WDM6 402 

yielded the greatest geographical difference. It is clear that the proposed WRF-based estimated 403 

method can capture more details of the spatial change of rainfall erosivity compared with the 404 

traditional disdrometer-based method. 405 

The highest rainfall erosivity regions in the UK are concentrated in the mountainous 406 

areas along the western coast, related to their rainfall system. The moist air brought by the 407 

prevailing westerly wind from the Atlantic Ocean moves from west to east across the UK and 408 

rises when it encounters the mountains of western England. Therefore, the mountainous regions 409 

along the UK western coast have the highest rainfall amount and rainfall erosivity in the UK. In 410 

addition, western Scotland is under the subpolar oceanic climate, which enhances its humidity. 411 
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On the contrary, eastern Scotland and northeastern England are more likely to expose continental 412 

polar air mass, which brings dry and cold air and lower rainfall erosivity. 413 

To evaluate the change in rainfall erosivity with time in the UK, the average value of all 414 

the WRF grids covering the whole UK was calculated over 2013–2017 (Figure 11). The average 415 

RW trends of RW-Morrison and RW-TAA were similar, both increasing from a minimum in 2013 to a 416 

maximum in 2014, and then gradually decreasing from 2014 to 2017. The red line in Figure 11 417 

indicates a series of mean values of the three MPs results, which varied from 36,782 to 51,600 418 

MJ mm ha−1 h−1 y−1 (mean: 43,216 MJ mm ha−1 h−1 y−1).  419 

The maximum values for RW-Morrison and RW-TAA occurred in 2014, whereas that of RW-WDM6 420 

occurred in 2015. A sequence of extreme weather events occurred in the UK in 2014, including 421 

major winter storms in late January to mid-February, which caused widespread flooding and 422 

other economic losses, and greatly increased rainfall erosivity that year. However, the gauge-423 

based interpolation map shows the average annual rainfall amount for the years 2013–2017 were 424 

884.9, 1014.0, 1008.5, 894.9, and 937.3 mm, respectively. The large rainfall erosivity difference 425 

between 2014 and 2015, and the two years with similar rainfall amount, indicates that much 426 

rainfall erosion occurs during the rainfall events of high intensity instead of simply high rainfall 427 

amount. A more notable variation pattern of rainfall erosivity may be found with longer 428 

simulation. The strength of the proposed method lies on its ability to estimate large covering and 429 

long-term rainfall erosivity. 430 

5 Discussion and conclusions 431 

This study presented a novel method for large-scale rainfall KE and erosivity estimation 432 

based on high-resolution, WRF-derived DSDs. Three microphysical parameterizations schemes 433 

(Morrison, WDM6, and Thompson aerosol-aware [TAA]) were designed to obtain raindrop size 434 

distributions, rainfall KE and rainfall erosivity for the entire of the UK covering the period of 435 

2013–2017. With validation from the long-term observations of a disdrometer, the WRF-based 436 

rainfall erosivity exhibited an acceptable performance at Chilbolton station. Among the three 437 

WRF schemes, TAA exhibited the most superior performance and was recommended for future 438 

investigation. The results revealed that high rainfall erosivity occurred in the west coast area of 439 

the UK. Compared with the traditional empirical method, the proposed method can explain 440 

rainfall erosivity from a microphysical perspective and reflect more spatial variation because of 441 
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changes in rainfall KE at the whole-country scale. Therefore, the development of a numerical 442 

weather prediction model offers an opportunity to better understand rainfall erosivity directly 443 

from its true definition. More importantly, because the WRF model is able to be driven by the 444 

global reanalysis data to obtain large-scale rainfall kinetic information, the proposed scheme can 445 

be easily applied to other regions, especially in ungauged areas. 446 

Although an acceptable rainfall erosivity estimation is obtained using the WRF model, 447 

some uncertainties associated with it cannot be ignored. For example, as the MPs of WRF were 448 

closely related to DSD, improper determination of MPs will introduce additional uncertainty. 449 

The marked discrepancy among the three schemes (especially between Morrison and the others) 450 

in this study underscored the possible uncertainty associated with RW. The reliability of the WRF 451 

model is heavily dependent on the model-driving initial data provided by mesoscale or global 452 

models and complicated scheme setting and parameter adjustment (Liu et al., 2013; Thompson 453 

and Eidhammer, 2014; Kumar et al., 2017). However, numerous uncertainties are observed in the 454 

parameterization of the WRF simulation, and the choice of microphysical schemes has a 455 

significant influence on the inverted DSD (Ćurić et al., 2009; Yang et al., 2019). Therefore, 456 

combining the DSDs obtained by an increasing number of disdrometers and the WRF model is 457 

valuable. For example, the Disdrometer Verification Network (DiVeN) in the UK (Pickering et 458 

al., 2019) started in Feb 2017 can be introduced to support and improve our estimation in future 459 

studies. Moreover, the measurement error by disdrometer may also contaminate the evaluation 460 

process. For example, when comparing the observed raindrop velocities based on the 461 

disdrometer at Bristol station with their empirical values, we observed dispersion of raindrops, 462 

with a number of drops showing significant deviations. This velocity distribution resulted in 463 

uncertainty in ke estimation.  464 

Soil erosion in the UK is dominated by water erosion (10–30 t km−2 yr−1), especially in 465 

areas with abundant rainfall in Scotland, where the soil loss rate is approximately 5–10 times that 466 

of dry areas (Duck, 1996). Thus, it is significant to estimate rainfall erosivity to elucidate the 467 

microphysical characteristics of rainfall and rainfall–soil interactions. Benaud et al. (2020) 468 

collated empirical soil erosion observations from UK-based studies into a geodatabase. However, 469 

there is a limitation that this database does not cover the entirety of the UK, especially the 470 

limited records in northern Scotland. In our future work, we propose to compare the soil loss 471 

database with our estimated soil loss using WRF DSD based rainfall erosivity and a soil erosion 472 
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model (such as RUSLE). We believe that not only can we better analyze the impact of rainfall 473 

and rainfall erosivity on the UK soil loss, but also help to better understand microphysical 474 

rainfall–soil interactions to support the rational formulation of soil and water conservation 475 

planning. 476 

In addition, other sources of uncertainty, such as temporal downscaling of rainfall and 477 

point-to-area representative error by WRF, may introduce further uncertainty. This should be put 478 

in perspective of future work. It is expected that further exploration of research areas with 479 

different climatic and geographical characteristics would help us to establish a greater degree of 480 

accuracy on this matter.  481 
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 705 

Figure 1. Location of rain gauges, Joss–Waldvogel disdrometer (JWD) at Chilbolton 706 

Observatory, OTT Parsivel2 disdrometer (OPD) at Bristol Observatory and configurations of 707 

domain setups in the WRF model.  708 
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 710 

Figure 2. Minutes number per intensity class (x-axis) and ke class (y-axis) with five fitted ke–I 711 

curves at Chilbolton station (2004–2013), plotted on linear (left) and logarithmic (right) intensity 712 

scales.  713 
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 715 

Figure 3. Gauge-based interpolation maps of annual rainfall amount (Rain), rainfall kinetic 716 

energy (E) and rainfall erosivity (R) in 2013–2017.  717 
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 719 

Figure 4. Minutes number per intensity class (x-axis) and ke class (y-axis) with fitted ke–I 720 

curves at Bristol station (2015–2018), plotted on linear (left) and logarithmic (right) intensity 721 

scales.  722 
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 724 

Figure 5. Comparison of observed and modeled event rainfall erosivity at Bristol Station, 725 

covering the period of 2016–2019.  726 
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 728 

Figure 6. Map of average WRF DSD 𝐷0 and 𝑁𝑤 (January 10, 2013).  729 
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 731 

Figure 7. Comparison of disdrometer- and WRF-derived monthly rainfall erosivity estimations 732 

at Chilbolton station (2014–2017).  733 
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 735 

Figure 8. Comparison of disdrometer- and WRF-derived average monthly rainfall erosivity 736 

estimations at Chilbolton station (2014–2017). 737 
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 739 
Figure 9. WRF-derived annual rainfall erosivity maps of the whole UK for different years.  740 
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 742 

Figure 10. The 5-year (2013–2017) average annual rainfall erosivity maps based on WRF grids 743 

and rain gauge interpolation.  744 
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 746 

Figure 11. WRF-derived average annual rainfall erosivity of all the WRF grids covering the 747 

whole UK (2013–2017). 748 
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Table 1. Relationship of ke–I at Chilbolton Station (2004–2013).  750 

ID Equation Calibration R2 Validation R2 

I 𝑘𝑒 = 16.08(1 − 0.76𝑒−0.41𝐼) 0.50 0.45 

II 𝑘𝑒 = 8.65 + 6.39 lg(𝐼) 0.48 0.43 

III 𝑘𝑒 = 10.19 − 1.05/𝐼 0.29 0.25 

IV 𝑘𝑒 = 8.65 + 2.78 ln(𝐼) 0.48 0.43 

V 𝑘𝑒 = 8.12𝐼0.34 0.50 0.45 

 751 

  752 



 

40 

Table 2. The configurations of WRF model for two nested domains.  753 

Domain Domain size (km) Grid Spacing (km) Grid size Downscaling ratio 

d01 1,125 × 1,675 25 45 × 67 - 

d02 655 × 1,230 5 131 × 246 1:5 
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Table 3. Indicators comparison between disdrometer-derived rainfall erosivity RD and three 756 

types of WRF-derived rainfall erosivity at Chilbolton station on monthly scale (2014-2017).  757 

Indicators MP-Morrison MP-WDM6 MP-TAA 

Pearson 0.71 0.77 0.79 

MAE 8.05 8.42 6.51 

R2 0.42 0.31 0.54 
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