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Abstract 

Evapotranspiration (ET) from tropical forests serves as a critical moisture source for regional and global climate cycles. 

However, the magnitude, seasonality, and interannual variability of ET in the Congo Basin remain poorly constrained due to 

a scarcity of direct observations, despite the Congo being the second-largest river basin in the world and containing a vast 10 

region of tropical forest. In this study, we applied a water balance model to an array of remotely-sensed and in-situ datasets to 

produce monthly, basin-wide ET estimates spanning April 2002 to November 2016. Data sources include water storage 

changes estimated from the Gravity Recovery and Climate Experiment (GRACE) satellites, in-situ measurements of river 

discharge, and precipitation from several remotely-sensed and gauge-based sources. An optimal precipitation dataset was 

determined as a weighted average of interpolated data by Nicholson et al. (2018), Climate Hazards Infrared Precipitation with 15 

Station Version 2 (CHIRPS2) data, and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks−Climate Data Record product (PERSIANN-CDR), with the relative weights based on the error magnitudes of each 

dataset as determined by triple collocation. The resulting water balance-derived ET (ETwb) features a long-term average that is 

consistent with previous studies (117.2±3.5 cm/year), but displays greater seasonal and interannual variability than seven 

global ET products. The seasonal cycle of ETwb generally tracks that of precipitation over the basin, with the exception that 20 

ETwb is greater in March-April-May (MAM) than in the relatively wetter September-October-November (SON) periods. This 

pattern appears to be driven by seasonal variations in diffuse photosynthetically-active radiation (PAR) fraction, net radiation 

(Rn), and soil water availability. From 2002–2016, Rn, PAR, and vapor-pressure deficit (VPD) all increased significantly within 

the Congo Basin; however, no corresponding trend occurred in ETwb. We hypothesize that the stability of ETwb over the study 

period despite sunnier and less humid conditions may be due to increasing atmospheric CO2 concentrations that offset the 25 

impacts of rising VPD and irradiance on stomatal water use efficiency (WUE).  

1 Introduction 

The Congo River Basin in central Africa is the second-largest river basin in the world and supports one of Earth’s three major 

humid tropical forest regions (Alsdorf et al., 2016). Approximately 24 to 39 percent of evapotranspiration (ET) from the Congo 
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Basin is recycled as local rainfall (Dyer et al., 2017), and model simulations indicate changes in ET within the basin affect 30 

moisture cycling across the African continent (Van Der Ent and Savenije, 2011; Bell et al., 2015; Sorí et al., 2017). 

Understanding the magnitude, variability, and drivers of ET in the Congo Basin is therefore crucial for studying the climate 

systems of central Africa and the global tropics, especially because significant environmental shifts have already been reported 

within the basin. For instance, deforestation is an ongoing problem in Congolese forests with potential impacts on climate 

(Laporte et al., 2007; Batra et al., 2008; Bell et al., 2015; Turubanova et al., 2018); temperatures are rising due to anthropogenic 35 

climate change (Collins, 2011; James and Washington, 2013); and many have reported a long-term decline in precipitation 

over the basin (Asefi-Najafabady and Saatchi, 2013; Diem et al., 2014; Zhou et al., 2014; Hua et al., 2016; Dezfuli, 2017). 

Such shifts are particularly concerning because Africa’s tropical rainforests are already significantly drier than other humid 

tropical forests and exist at the climatic threshold of conversion from evergreen to deciduous trees (Guan et al., 2015; Philippon 

et al., 2019; Bush et al., 2020).  40 

However, the hydrology of the Congo Basin is vastly understudied relative to the region’s size and influence (Alsdorf 

et al., 2016). In particular, no long-term observational studies of ET in the basin exist. There are also no eddy covariance 

towers operating within the Congo Basin. Prior studies provide only limited information and either analyze short-term ET 

observations at individual site scale (Nizinski et al., 2011, 2014) or rely on combining site scale meteorological measurements 

with localized models (Bultot, 1971; Lauer, 1989; Shahin, 1994). Some studies have also used process-based models to 45 

evaluate regional ET (Matsuyama et al., 1994; Shem, 2006; Batra et al., 2008; Chishugi and Alemaw, 2009; Marshall et al., 

2012; Ndehedehe et al., 2018; Crowhurst et al., 2020). However, the large size and heterogeneity of the Congo Basin render 

point-based approaches inadequate for basin scale analysis of hydrological cycling, and regional scale models suffer from 

being poorly constrained because of the widespread lack of in-situ observations throughout the basin (e.g. little understanding 

of local variability in rooting depth, vegetation responses to water and light availability, canopy interception, etc.). As a result, 50 

even basic seasonality patterns across the Congo Basin remain unclear. For example, Konings et al. (2017) showed that canopy 

water content increases during dry season, which could be due to either dry season leaf-out or a change in plant water uptake 

during the dry season that would increase ET. The latter could not be ruled out in Konings et al. (2017) due to the lack of direct 

ET estimates in the region.    

Remote sensing offers a partial solution to this scarcity of ET observations. Remote sensing-based estimates of ET 55 

are generally indirect, relying on physical models to link temperature, meteorological inputs, and/or other observables to the 

rate of ET (Zhang et al., 2016). However, these modeling approaches are poorly constrained in the Congo River Basin and 

may be highly erroneous there. Alternatively, basin scale ET can be estimated indirectly by inverting the water balance. This 

approach requires only three geophysical input variables: precipitation, river discharge, and the change in terrestrial water 

storage. Precipitation and total water storage change can both be estimated using remote sensing, with the latter determined by 60 

gravity measurements from the Gravity Recovery and Climate Mission (GRACE) (Tapley et al., 2004; Swenson, 2012). Recent 

examples of this method’s application include the Amazon Basin (Maeda et al., 2017; Swann and Koven, 2017) and the 

coterminous United States (Wan et al., 2015), as well as global examinations of basin scale ET (Liu et al., 2016). 
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While some previous studies have applied a similar technique to the Congo Basin as part of larger-scale experiments, 

these studies assumed terrestrial water storage was constant over their study periods (Marshall et al., 2012; Ukkola and 65 

Prentice, 2013; Weerasinghe et al., 2020)—a plausible assumption for long-term ET estimates, but one that could mask a large 

degree of ET variability on annual and shorter timescales. Indeed, remotely-sensed evidence suggests water storage anomalies 

within the basin do change significantly on monthly and interannual timescales (Crowley et al., 2006; Rodell et al., 2018), 

even if long-term trends are typically small relative to the magnitude of ET fluxes (Weerasinghe et al., 2020). Thus in order to 

explore seasonal cycles and variations in basin-wide ET, terrestrial water storage must be constrained in inverted water balance 70 

models. In this paper, we applied the water balance method to the Congo Basin to produce the first data-driven estimates of 

monthly basin-averaged ET for the period from April 2002 to November 2016. To determine the most accurate precipitation 

time series to use in this computation, precipitation data from multiple remote sensing-based approaches was combined based 

on uncertainty estimates from triple collocation. We further used the resulting ET time series to explore the climatic and 

ecological drivers of ET seasonality and trends by comparing it against a variety of vegetation indices and meteorological 75 

drivers. 

2 Methods 

Based on mass balance, any precipitation that falls on a basin and is not removed from the basin through river discharge or ET 

must increase the amount of water stored in the basin in the form of groundwater, soil moisture, or open water bodies. The 

equation for this mass balance can be rearranged to solve for ET as follows: 80 

𝐸𝑇𝑤𝑏 = 𝑃 − 𝑄 −
𝑑𝑆

𝑑𝑡
           (1) 

where ETwb is monthly basin-wide evapotranspiration, P is the monthly basin-wide precipitation, Q is total monthly runoff 

from the Congo River, S is the water storage anomaly within the basin expressed as an equivalent water height (Rodell et al., 

2004a, 2011), and t is time. We calculate ETwb using P from a combination of remotely-sensed and gauge-based precipitation 

products, as further discussed in Sects. 2.1 and 2.2. Q was obtained from a stream gauge at the outlet of the Congo River at 85 

Kinshasa-Brazzaville. Lastly, dS/dt was derived from the monthly change in terrestrial water storage throughout the basin, as 

estimated by gravitational anomaly data from GRACE (Tapley et al., 2004; Swenson, 2012). 

2.1 Water balance data sources 

The area and extent of the Congo Basin were determined using the 15-arcsecond HydroSHEDS Level 5 Basin Boundaries 

product (Lehner et al., 2008). The HydroSHEDS boundary produces a total basin area of 3,705,220 km2—in good agreement 90 

with a recent independent estimate of 3,687,000 km2 (Alsdorf et al., 2016). The HydroSHEDS product was used to trim all 

remotely-sensed raster data to the Congo Basin’s boundaries at 0.01° spatial resolution (all datasets with coarser spatial 

resolutions mentioned hereafter were first resampled to 0.01° grids with no interpolation before determining their basin-wide 

values). 
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Basin-wide runoff (Q) for the Congo Basin was estimated using monthly discharge data collected from the Congo 95 

River at Kinshasa-Brazzaville. The long-running gauging station is operated by the Observation Service for Geodynamical, 

Hydrological and Biogeochemical Control of Erosion/Alteration and Material Transport in the Amazon, Orinoco and Congo 

Basins (SO-HYBAM) and captures the drainage of over 98% of the Congo Basin’s area (Alsdorf et al., 2016). Because no 

uncertainty estimate is available for the streamflow gauge, we assumed an uncertainty range of ±20%. 

Changes in terrestrial water storage (dS/dt) were calculated using S data from NASA’s Gravity Recovery and Climate 100 

Experiment (GRACE) satellites (Swenson and Wahr, 2006; Landerer and Swenson, 2012; Swenson, 2012). In order to estimate 

monthly S, three independent GRACE solutions in 1° grids from Geoforschungs Zentrum Potsdam (GFZ), Jet Propulsion 

Laboratory (JPL), and the Center for Space Research at University of Texas, Austin (CSR) were retrieved. A scale factor grid 

was also applied to the GRACE data to account for attenuation of small-scale surface mass variations (Landerer and Swenson, 

2012). The arithmetic mean of the three S solutions was used in the primary dS/dt calculation in order to reduce noise (Wahr 105 

et al., 2006; Sakumura et al., 2014), though all three independent S solutions were also used to calculate unique dS/dt values 

in order to estimate uncertainty in the GRACE products (Lee et al., 2011). The S data were converted to dS/dt values using a 

centered-difference approach at monthly timescale: 

𝑑𝑆

𝑑𝑡𝑛
 =  (𝑆𝑛+1 –  𝑆𝑛−1)          (2) 

where the S terms are expressed in centimeters of equivalent water height averaged over the entire Congo Basin for the months 110 

before and after month n (Landerer et al., 2010). The uncertainty of dS/dt is calculated as half of the difference between the 

highest and lowest dS/dt values from the three GRACE S solutions in any given month (Lee et al., 2011) 

Beginning in early 2011, the GRACE mission began an active battery management strategy that resulted in data gaps 

every several months. In order to reconstruct dS/dt data from 2011–2016, we use its average seasonal cycle and correct for 

variability based on the deviations of adjacent months from their long-term averages. First, the mean monthly cycle of S was 115 

calculated from data-complete months from 2002–2016. For every missing month from 2011–2016, the average S from the 

two other months in the same season of the same year (DJF, MAM, JJA, and SON) was compared to the corresponding value 

from the multi-year S means. The resulting ratio was then multiplied by the multi-year S mean of the missing month to create 

the reconstructed S value. Because the sum of multi-year mean S values from October and November is nearly equal to zero 

and consequently produces unrealistically-scaled values for September, missing September values were instead interpolated 120 

using August and October of the same year. Repeating the same procedure for months that are available in the GRACE dataset 

(i.e. calculating what the reconstructed value would be if it were not available, and comparing it to the observations) shows 

that this seasonal-scaling interpolation reproduces true S fairly accurately: from 2002–2016, each of the twelve months was 

reconstructed with a mean R2 of 0.75 and a mean root mean square error (RMSE) of 2.80 cm (relative to average seasonal S 

variations of ~10 cm). Applying this procedure to the mean S data from the three monthly GRACE solutions produced the 125 

complete dS/dt time series that determined the study period for our water balance model (4/2002–11/2016). 
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Due to the uncertainty of precipitation (P) estimates in the Congo (Washington et al., 2013), P was estimated using 

an array of five datasets with different methodologies. These five datasets were chosen because recent validation efforts have 

shown them to be the most accurate for the Congo Basin (Nicholson et al., 2018, 2019). They include gridded precipitation 

data from the Global Precipitation Climatology Centre (GPCC) Version 7.0, which uses interpolation with a worldwide 130 

network of rain gauges to produce monthly precipitation grids (Schneider et al., 2015). GPCC-compiled gauges within the 

Congo are extremely sparse after 2000 (Nicholson et al., 2019), and the GPCC Version 7.0 product only lasts through 2013. 

The Tropical Rainfall Measuring Mission (TRMM) 3B43 Version 7 product (also known as TRMM Multi-satellite 

Precipitation Analysis or TMPA), which consists of monthly mean precipitation rate grids, is generated using microwave and 

infrared sensors on TRMM and other satellites as well as gauge data from the GPCC (Huffman et al., 2007). The Precipitation 135 

Estimation from Remotely Sensed Information using Artificial Neural Networks: Climate Data Record (PERSIANN-CDR) 

product uses satellite infrared data and a neural network approach, calibrated with precipitation forecasts, microwave data, and 

GPCC gauge data, to produce grids of precipitation estimates at the daily timescale (Ashouri et al., 2015). While PERSIANN 

is also available without the GPCC gauge corrections that make PERSIANN-CDR so similar to GPCC v7 and TRMM 3B43 

over the Congo Basin (Nguyen et al., 2018), it was not used here because it severely overestimates P across Africa (Beighley 140 

et al., 2011; Thiemig et al., 2012). Several recent studies have found that TRMM Version 7 3B43 and PERSIANN-CDR both 

perform reasonably well over central Africa (Munzimi et al., 2015; Awange et al., 2016; Camberlin et al., 2019). 

Notably, the above three products all depend on GPCC rain gauges to some degree. As a result, all three datasets 

feature similar rainfall trends and model performance over the Congo Basin during the 2002–2016 period studied here and 

cannot be considered truly independent P datasets (Nicholson et al., 2019). To that end, the Climate Hazards Group Infrared 145 

Precipitation with Stations Version 2.0 (CHIRPS2) product, which uses two thermal infrared datasets and interpolated gauge 

data, was also included as a more independent dataset (Funk et al., 2015). The CHIRPS2 product was recently found to be 

among the most accurate rainfall datasets on monthly timescales within the Congo Basin (Camberlin et al., 2019).While 

CHIRPS2 does incorporate some gauge data that overlap with the GPCC product, it is not scaled to fit GPCC data to the same 

extent as TRMM 3B43 or PERSIANN-CDR are over central Africa (Nicholson et al., 2019)—in fact, the near-total lack of 150 

rain gauges within the basin in both CHIRPS2 and GPCC leads to a low correlation between the two datasets within the study 

area (Funk et al., 2015), indicating the P datasets maintain a high degree of independence. Finally, a recent gauge-based dataset 

developed for the Congo Basin, NIC131-gridded, served as another independent precipitation data source with coverage 

through 2014 (Nicholson et al., 2018). The monthly 2.5° NIC131-gridded product was created by applying a spatial 

reconstruction technique based on principal component analysis to a gauge network that, due to the severe decline of GPCC 155 

coverage during the 1990s, is largely independent of the GPCC’s gauges in Africa (Nicholson et al., 2019). 

2.2 Comparing and merging precipitation estimates 

Because the above five datasets each individually remain highly uncertain, and because no accurate independent basin-wide 

validation is possible, triple collocation (TC) was used to estimate the error statistics of the different datasets, and ultimately 
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combine them by weighting them according to their relative errors. TC is a method for characterizing systematic and random 160 

errors in geophysical measurements using three independent, collocated time series, even if these datasets are individually 

noisy (Stoffelen, 1998; McColl et al., 2014). It is particularly valuable in gauge-sparse regions like the Congo Basin because 

it does not rely on independent error-free validation data. TC-based error calculations have previously been used in a wide 

variety of geophysical settings—among others, TC was recently used to determine the relative weightings of different 

hydrologic flux estimates in a neural network-based data combination effort in a manner conceptually analogous to its use here 165 

(Alemohammad et al., 2017), and other work has confirmed the ability of TC to merge P datasets into a single more accurate 

dataset (Dong et al., 2020). Rather than the linear model used in most TC applications, we used a multiplicative model that is 

more appropriate for quantifying errors in precipitation estimates (Alemohammad et al., 2015). In the multiplicative error 

model, true precipitation rate T is assumed to be related to the estimated precipitation of product i, Pi, as follows: 

𝑃𝑖 = 𝑎𝑖𝑇𝛽𝑖𝑒𝜖𝑖            (3) 170 

in which ai is the multiplicative error, βi is the deformation error, and ϵi is the random residual error (which is assumed to have 

a mean of zero).  

Assuming the three collocated precipitation estimates’ residual errors are uncorrelated with each other, and are 

uncorrelated with the true precipitation values, the RMSEs of all three input P datasets may be calculated with Eqs. (4–6): 

𝜎𝑝1
2 = 𝐶11 −

𝐶12𝐶13

𝐶23
           (4) 175 

𝜎𝑝2
2 = 𝐶22 −

𝐶12𝐶23

𝐶13
           (5) 

𝜎𝑝3
2 = 𝐶33 −

𝐶13𝐶23

𝐶12
           (6) 

where Ci j is the (i, j)th element of the sample covariance matrix between the three log-transformed datasets and σpi is the RMSE 

of the log-transformed Pi time series. σpi can be converted to the actual RMSE of Pi by multiplying by the mean value of Pi 

(Alemohammad et al., 2015). 180 

The errors of the five P datasets were evaluated by applying TC to triplets of products deemed relatively independent. 

That is, TC was repeated three times using different triplets: TRMM–NIC131–CHIRPS2, GPCC–NIC131–CHIRPS2, and 

PERSIANN–NIC131–CHIRPS2. The three RMSEs calculated for NIC131-gridded and CHIRPS2 were then averaged and 

compared to the RMSEs calculated for TRMM, GPCC, and PERSIANN-CDR. In order to combine the most accurate P time 

series (and their estimated errors) into a single unified P estimate, weighting factors were assigned to each time series in a 185 

manner inversely proportional to the product RMSE. That is, each weighting factor wi was assigned as in (Eq. 7): 

𝑤𝑖 =
𝑅𝑀𝑆𝐸𝑖

−1

∑ 𝑅𝑀𝑆𝐸𝑖
−13

1
            (7) 

The best-estimate rate of precipitation for each month was then calculated as a weighted average across the three independent 

precipitation products using wi. The resulting dataset’s RMSE was also used to propagate precipitation uncertainty into the 

uncertainty of ETwb using a root-mean-square sum of the weighted errors. While longer time series are generally preferred for 190 
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TC in order to reduce sampling error, data prior to 2002 were discarded in the TC analysis because the greater number of rain 

gauges likely leads to different error statistics than in this period (Nicholson et al., 2018).  

2.3 Comparison to global ET products 

Many hydrological studies of the Congo Basin rely on global ET products to constrain their models (e.g. Hassan and Jin, 2016; 

Ndehedehe et al. 2018). We analyzed seven widely-used global ET data products and evaluated their performance relative to 195 

ETwb. MOD16A2 Version 6 is a global ET data product based on the Penman-Monteith equation, meteorological reanalysis, 

and remotely-sensed land surface data from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite mission 

(Mu et al., 2013). The Operational Simplified Surface Energy Balance (SSEBop) Version 4 model uses remotely-sensed 

thermal data from MODIS and global weather datasets to produce gridded ET estimates at a very high (1 km) spatial resolution 

(Senay et al., 2013). The Global Land Evaporation: Amsterdam Model Version 3.3a (GLEAM v3.3a) product estimates 200 

Priestley-Taylor potential ET (PET) from reanalysis radiation and temperature data, then reduces PET to actual ET using 

remotely sensed soil moisture and vegetation optical depth measurements (Miralles et al., 2011; Martens et al., 2017). Modern-

Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2) is a reanalysis product that integrates a wide 

variety of observation types from satellites and in-situ sources to produce terrestrial ET estimates using a water balance 

approach (Gelaro et al., 2017). The Global Land Data Assimilation System Version 2.1 Noah (GLDAS-Noah) product is a 205 

land surface simulation forced by a combination of model and observation datasets that provides monthly mean ET estimates 

(Rodell et al., 2004b).  

Lastly, two global ET products based on upscaling tower data from the global FLUXNET eddy covariance network 

(Baldocchi et al., 2002) were included: the Model Tree Ensemble (FLUXNET-MTE) product uses a tree-based machine 

learning approach to upscale carbon, water, and energy flux observations using external global data sources, resulting in a 210 

monthly 0.5° global dataset (Jung et al., 2011). The more recent FLUXCOM product uses machine learning algorithms and 

additional time-varying meteorological inputs to achieve greater accuracy in upscaling eddy covariance tower data (Jung et 

al., 2019). This study uses FLUXCOM’s daily RS+METEO version because of its lower ET uncertainty in Africa (Jung et al., 

2019). However, it should be noted that FLUXNET-MTE and FLUXCOM, like the physical modeling approaches above, have 

primarily been validated against observational data in the mid-latitudes. There are no FLUXNET towers located within the 215 

Congo Basin that could have been used for training these and other models. 

The accuracies of these seven products were evaluated by comparing them to the monthly ETwb values: RMSEs, 

Pearson correlation coefficients, and Taylor skill scores were calculated for each dataset versus ETwb. Only the years 2003–

2011 are common to all seven ET datasets and the GRACE S data, so all statistics were calculated over this period. Pearson 

correlation coefficients help determine the ability of each ET model to predict ETwb, while Taylor skill scores allow a 220 

comparison of the variability present in each model by accounting for their standard deviations (Taylor, 2001). The average 

seasonal cycles and interannual variations of the products are also compared to better understand similarities and differences 

between the products.  
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2.4 Meteorological and vegetation data 

To examine potential drivers of ET’s seasonality, interannual variability, and long-term trends in the Congo Basin,  ETwb is 225 

compared to a host of meteorological and vegetation data including photosynthetically-active radiation (PAR), net radiation 

(Rn), vapor-pressure deficit (VPD), air and skin temperatures (Ta and Ts), solar-induced fluorescence (SIF), and enhanced 

vegetation index (EVI). We used all-sky monthly mean PAR and Rn data from the Clouds and the Earth’s Radiant Energy 

System (CERES) project’s 1° gridded products. PAR data were derived from the synoptic surface flux model (SYN1deg) 

(Doelling, 2017), which divides surface PAR fluxes into direct (PARdir) and diffuse (PARdiff) components, while Rn data were 230 

derived from the Energy Balanced and Filled (EBAF) climate data record (Loeb, 2017). The global reanalysis model ERA-

Interim (Dee et al., 2011) provided surface air temperature and relative humidity data in 6-hour increments, which were used 

to calculate monthly VPD means of the entire basin using linear interpolation. Although reanalysis models over Central Africa 

remain uncertain and poorly constrained (Lorenz and Kunstmann, 2012; Brands et al., 2013), these VPD values were tested 

against hourly VPD data from Automated Surface Observing Systems (ASOS) and Met Office Integrated Data Archive System 235 

(MIDAS) weather reports from the Congo Basin (Met Office, 2012) and were found to capture monthly cycles of VPD with 

acceptable accuracy (Fig. S1). 

Monthly mean Ta and Ts from the Congo Basin were sourced from the ascending (daytime) retrievals of the 

Atmospheric Infrared Sounder (AIRS) Level 3 monthly product (Kahn et al., 2014). The 740 nm SIF data from the Global 

Ozone Monitoring Experiment 2 (GOME-2) platform were retrieved from the GOME2_Fluorescence Version 26 Level 3 240 

dataset (Joiner et al., 2013). The GOME-2 SIF dataset is known to have suffered from a significant sensor decay problem 

resulting in a spurious worldwide downward trend (Zhang et al., 2018), so the SIF data were not used in any long-term trend 

analyses. SIF was normalized by monthly CERES total PAR data in order to isolate the effects of phenological, physiological, 

and hydrological variability on plant productivity independent of radiative controls (Madani et al., 2017; Pagán et al., 2019). 

MODIS Collection 6 EVI data processed with the Multi-Angle Implementation of Atmospheric Correction (MAIAC) 245 

algorithm were converted to monthly means from 8-day composite rasters (Lyapustin et al., 2018). The MAIAC algorithm, 

which eliminates errors from aerosols and sun-sensor geometry issues in MODIS data, has previously proven beneficial for 

examining vegetation greenness in tropical forests (Lyapustin et al., 2011a, 2011b, 2012; Hilker et al., 2012; Bi et al., 2016). 

Lastly, annual land cover data from the MODIS-based MCD12C1 Version 6 dataset were retrieved for 2002–2016 and 

modally-averaged to produce a single land cover classification of the Congo Basin (Friedl and Sulla-Menashe, 2015). Pixels 250 

were aggregated into dominantly deciduous or evergreen vegetation types according to the International Geosphere-Biosphere 

Programme’s (IGBP) 17-class land cover scheme, with savannas and grasslands considered deciduous and permanent wetlands 

considered evergreen. Other vegetation types that are more difficult to generalize (e.g. croplands, mixed forests, and 

shrublands) were spatially-limited enough to be ignored once the land cover data were majority-resampled to match the 1° 

pixel size of our study’s coarsest datasets (Fig. S2). 255 
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2.5 Removing seasonal cycles and long-term trends 

In order to track interannual correlations between ETwb, meteorological variables, and vegetation indices, the Breaks for 

Additive Season and Trend (BFAST) R package (Verbesselt et al., 2015) was used to search for abrupt changes in the trends 

of our time series, identify linear long-term trends, and remove average seasonal cycles from the data (Verbesselt et al., 2010a, 

2010b). 260 

3 Results  

3.1 Triple collocation of precipitation datasets 

The results of the TC analysis are provided in Table 1. NIC131-gridded exhibited the lowest RMSE in all three 

triplets, from 0.60 cm/month to 0.72 cm/month (mean 0.65 cm/month) depending on the triplet. The TC results indicate that 

NIC131-gridded, a Congo-specific gauge-based dataset designed using meteorological stations absent from the GPCC network 265 

and a principal component-based statistical approach, is the best currently-available P dataset for the Congo Basin after 2002 

(Nicholson et al., 2018). The results in Table 1 agree well with those of Nicholson et al. (2019), which found CHIRPS2 and 

PERSIANN-CDR to be more accurate than TRMM and GPCC in the Congo Basin after 1998. Prior work has also 

demonstrated that CHIRPS2 is among the best P products available for central Africa and outperforms TRMM and 

PERSIANN-CDR on a monthly basis (Dembélé and Zwart, 2016; Camberlin et al., 2019; Nicholson et al., 2019), consistent 270 

with the results in Table 1. Given the decreasing availability of Congolese rain gauge data in the GPCC database and the 

difficulty of measuring P with satellite remote sensing in central Africa (McCollum et al., 2000; Yin and Gruber, 2010; Awange 

et al., 2016; Nicholson et al., 2018), it is not surprising that the GPCC-based products generally displayed higher errors. 

Table 1: Root mean square errors (RMSEs) for the five P datasets (in three triplets) evaluated in this study, as well as the weighting 

factors used to unify the three most accurate datasets. All values are presented in units of cm/month. 275 

Dataset 
RMSE  

Triplet 1 

RMSE  

Triplet 2 

RMSE  

Triplet 3 
Mean RMSE Weighting Factor 

TRMM 3B43 1.67 - - 1.67 - 

GPCC Version 7 - 1.66 - 1.66 - 

PERSIANN-CDR - - 1.60 1.60 0.19 

NIC131-gridded 0.65 0.72 0.60 0.65 0.47 

CHIRPS2 0.93 0.88 0.96 0.93 0.33 

 

TRMM, GPCC, and PERSIANN-CDR—which all integrate GPCC rain gauges in some capacity—are highly 

correlated and therefore feature similar RMSEs between 1.60 cm/month (PERSIANN-CDR) and 1.67 cm/month (TRMM). 

Therefore, our subsequent analyses discard GPCC and TRMM and use only PERSIANN-CDR, the most accurate of the three 

GPCC gauge-related datasets. As discussed in Sect. 2.2, PERSIANN-CDR was implemented in a weighted average in 280 

combination with NIC131-gridded and CHRIPS2 to create a unified P time series, PTC. The NIC131-gridded dataset only lasts 
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through 2014, so from 2015–2016 only CHIRPS2 and PERSIANN-CDR were used in PTC. The uncertainty in PTC was 

estimated to be 0.30 cm/month from 2002–2014 and 0.59 cm/month from 2015-2016 (after NIC131-gridded data coverage 

ends)—both lower than the RMSEs of any of the individual P products tested. 

3.2 Water balance ET estimates 285 

In Fig. 1, clear seasonal cycles as well as interannual variations are visible in all four of the hydrologic fluxes from Eq. 1: the 

rainy MAM and SON seasons show local peaks in ETwb as well as dS/dt, which is generally a negative flux (representing water 

leaving the land surface system) for most of the rest of the year. Q has the least temporal variability of the fluxes and is the 

smallest in magnitude, although it exhibits increased runoff 1–2 months after the primary SON rainy season. Mean annual 

ETwb is 117.2±3.5 cm/year (calculated from 2003–2015, the data-complete years of the study period). Mean annual PTC from 290 

2003–2015 is 150.4±2.6 cm/year, and mean annual Q is 33.7 cm/year. dS/dt, which fluctuates between positive and negative 

values, ranges from −3.2 to 3.7 cm/month on average.  

Figure 1: Time series of the four water balance components from 2002-2016. Data are monthly, basin-wide averages in cm water 

height equivalents. Black lines represent mean values; ribbons represent uncertainty ranges. 

 295 

Plotting monthly means of the water balance fluxes provides further clarity regarding their seasonal cycles (Fig. 2). 

The basin-wide seasonal flux cycles are dominated by contributions from the region south of the equator, which comprises the 

majority of the Congo Basin (Fig. S2). October and November are the rainiest months, followed by March and April, while 

June and July are the driest months of the year. Positive dS/dt rates indicate S regenerates mostly during the very wet October 

and November months and less so during December, the secondary rainy season in March and April, and in September with 300 

the onset of the primary rainy season. S loses water fastest during May and June, reaching its minimum during June, when 

ETwb exceeds PTC on average (Matsuyama et al., 1994). Interestingly, while ETwb tracks the seasonality of PTC to an extent, it 

peaks in March during the secondary rainy season rather than during the primary, wetter, SON wet season. The possible causes 

of this difference between precipitation and ET seasonality are analyzed further in Sect. 4.2.  

 305 
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Figure 2: Mean monthly cycle of the four water balance components from 2002-2016. Dark lines represent mean values; ribbons 

represent uncertainties. 

Table 2 summarizes fourteen mean annual ET estimates from the Congo Basin found in the literature. The studies 

produce a mean ET of 116.8 cm/year with a standard deviation of 6.6 cm/year and a median ET of 118.6 cm/year, although 

different study periods and a variety of methods were used to estimate actual ET. All but one historical ET estimate fall within 310 

10% of mean annual ETwb, showing good agreement between the present study’s ET estimates and prior literature on the 

subject. 

Table 2: Historical estimates of mean annual basin-wide ET from the literature. Mean and median values are derived from the 

literature and presented alongside the mean annual ETwb from this study. 

Source Mean ET (cm/yr) Time span 

Balek 1977 124.8 climatology 

Balek 1983 122.4 climatology 

Bricquet 1988 123.0 climatology 

Bultot 1971 119.6 climatology 

Chishugi and Alemaw 2009 109.8 1961–1990 

Matsuyama et al. 1994 125.0 1985–1988 

Nicholson et al. 1997 112.7 climatology 

Oki et al. 1993 120 1985–1988 

Olivry et al. 1993 108.6 1951–1990 

Pan et al. 2012 ~102 1984–2006 

Pinet and Souriau 1988 118.2 climatology 

Russell and Miller 1990 114 climatology 

Shem 2006  122.3 1979–1994 

Ukkola and Prentice 2013 ~111 1963–1998 

Weerasinghe et al. 2020 118.6 1979–2010 
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Mean: 116.8 
 

Median: 118.6 
 

This study 117.2±3.5 2003–2015 

 315 

3.3 Comparing the ETwb seasonal cycle to global ET models 

The seasonal cycle of ETwb is compared to those of seven global ET products in Fig. 3. All seven products generally follow 

the seasonal shape of ETwb, however none capture the full amplitude of ET fluctuations across seasons. Peak basin-wide ET 

during March is underestimated in all models to some degree, and all seven overestimate the basin’s low JJA ET while also 

failing to capture the fast recovery of ETwb from August to September. The period from November to January displays the 320 

most consistent departure of global ET products from ETwb, with all seven products overestimating ET during these three 

months. Most models do correctly find ET to peak during the MAM rainy season (Matsuyama et al., 1994; Pan et al., 2012; 

Crowhurst et al., 2020), yet they generally underestimate how much larger the MAM ETwb peak is than the SON one. For 

instance, FLUXNET-MTE plots SON ET as roughly equivalent to MAM ET. In general, the global ET products underestimate 

the magnitude of seasonal variations in ETwb, although some track ETwb much more closely than others. 325 

Figure 3: Mean monthly cycle of ETwb plotted alongside the mean monthly cycles of seven global ET products. The grey ribbon 

represents ETwb uncertainty. 

Global ET products are evaluated against ETwb from 2003–2011 using several metrics in Table 3. Mean annual ET 

ranges from 110.7 cm/year (GLDAS-Noah) to 127.6 cm/year (FLUXCOM), compared to the ETwb annual mean of 118.0±3.5 

cm/year for that time period. Global ET product annual averages all fall within 10% of ETwb’s, yet no product comes close to 330 

the 6.1 cm average difference observed between maximum and minimum ETwb, nor do they match the 2.1 cm standard 
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deviation of the ETwb time series. All models find mean ET during MAM to exceed mean ET during SON, but the global 

products feature more uniform ET rates within each season (Fig. 3). FLUXCOM produces the highest Pearson correlation 

coefficient with ETwb while MERRA2 produces the lowest; FLUXCOM, GLDAS-Noah, and MERRA2 lead the products in 

Taylor skill score while FLUXNET-MTE achieves the lowest score. GLEAM v3.3a features the lowest RMSE relative to ETwb 335 

while MERRA2 features the highest. FLUXNET-MTE and SSEBop both exhibit very low standard deviations that manifest 

in low Taylor scores, suggesting these products are the worst at representing variability in Congo Basin ET. 

 

 

Table 3: Mean annual ETs, mean seasonal amplitudes, ratios of seasonal mean ET from MAM over SON,  Pearson correlation 340 
coefficients, Taylor skill scores, RMSEs, and standard deviations from 2003-2011 for seven global ET products in comparison to 

ETwb.  

3.4 Drivers of ET seasonality and variability 

As discussed in Sect. 3.2, the shape of ETwb’s seasonal cycle roughly follows that of PTC, since water availability and vegetation 

productivity modulate ET. However, ETwb is greater during the MAM rainy season than in the SON rainy season, despite the 345 

latter season being wetter than the former. On average, ETwb also exceeds PTC during June. These findings are consistent with 

previous studies that found basin-wide ET can peak during MAM (Matsuyama et al., 1994; Pan et al., 2012; Crowhurst et al., 

2020), although the drivers behind this seasonal cycle are less clear. To help develop hypotheses on the nature of ET’s drivers, 

monthly mean ETwb is compared here to several climatic drivers and indices reflecting seasonally-varying vegetation activity 

(Fig. 4). 350 

 Possible environmental drivers of  ETwb’s seasonality include soil water availability, water demand from VPD, solar 

irradiance, and temperature. GRACE-derived S can be assumed to be a partial proxy for water availability (though note that 

not all water measured by S is necessarily accessible to plant roots or available for soil evaporation; see Sect. 4.2.4). S is 

significantly lower during SON than MAM when considering the entire basin (Fig. 4f), consistent with the relatively lower 

SON ETwb. The relatively lower SON S could be due to the much lower precipitation during JJA than DJF (Fig. 3) and/or due 355 

ET product Mean 

annual ET 

(cm) 

MAM 

amplitude 

(cm) 

JJA 

amplitude 

(cm) 

ETMAM/ETSON Pearson 

correlation 

coefficient 

Taylor 

skill score 

RMSE 

(cm) 

Standard 

deviation 

(cm) 

ETwb 118.0±3.5 2.9 −3.2 1.15 - - - 2.1 

MOD16A2 120.1 2.0 −2.3 1.18 0.59 0.70 1.7 1.4 

SSEBop 117.9 1.2 −1.9 1.06 0.68 0.48 1.6 0.9 

GLEAM 120.3 1.6 −2.0 1.11 0.68 0.64 1.5 1.2 

FLUXNET-MTE 111.1 1.0 −1.4 1.04 0.64 0.39 1.8 0.8 

FLUXCOM 127.6 1.7 −2.5 1.09 0.73 0.72 1.6 1.4 

GLDAS-Noah  110.7 1.8 −2.3 1.13 0.70 0.72 1.6 1.4 

MERRA2 119.7 1.6 −2.2 1.16 0.47 0.72 2.0 1.8 
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to a seasonal difference in how much of the rainfall infiltrates the land surface. VPD is fairly low in both wet seasons, although 

still elevated in September following the JJA dry season (Fig. 4e). Rn is lower during the SON wet season than the MAM, 

likely contributing to the lower ETwb in SON (Fig. 4c). 

 

Figure 4: Mean monthly cycle of ETwb (black line with gray uncertainty range) plotted alongside those of (a) MAIAC-processed EVI, 360 
(b) SIF/PAR, (c) Rn and total PAR, (d) Diffuse PAR fraction (PARdiff/PARtotal), (e) VPD, and (f) S from GRACE (red lines). Data are 

averaged over the entire basin area. Note that the mean ETwb curve and scale is the same in each sub-panel. 

 The variability of ET is expected to be linked to vegetation phenology through the large contribution of transpiration 

to overall ET in the densely vegetated Congo Basin (Lian et al., 2018). However, both MAIAC EVI (Fig. 4a) and PAR-

normalized SIF (Fig. 4b) show greater vegetation greenness and photosynthesis, respectively, during the SON wet season than 365 

during the MAM wet season (SIF peaks in October and November with or without PAR normalization, indicating both greater 

total photosynthesis and more light-efficient production during these months; see Fig. S3). The high SON productivity without 

correspondingly high ETwb suggests relatively greater water use efficiency (WUE, or the ratio of photosynthetic production to 

the amount of water transpired through plants’ stomata) in SON and/or a relatively greater contribution of direct soil/canopy 

evaporation to ET in MAM (although bare soil evaporation is expected to be a minority of total ET in the densely-forested 370 

basin; see Sect. 4.2). WUE during SON may be higher than in March and April (when ETwb peaks) because of the greater ratio 

of diffuse PAR to total PAR during SON (Fig. 4d) which can increase photosynthetic efficiency (Mercado et al., 2009), as 

further discussed in Sect. 4.2.3. 
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The basin-wide analyses in Fig. 4 are almost certainly masking significant sub-basin variability. The sub-basin 

division of ET is not known, and dividing the coarse-resolution S at the sub-basin level is also highly uncertain. Nevertheless, 375 

we considered the sub-basin variation of MAIAC EVI, PAR-normalized SIF, and VPD in Fig. 5. The basin was divided into 

the equatorial evergreen forest region, northern deciduous ecosystems, and southern deciduous ecosystems (Fig. S2). The 

deciduous regions feature larger seasonal variations in all three variables than the evergreen forest does, but the opposite 

seasonalities of the northern and southern regions partially offset one another and produce basin-wide EVI and SIF/PAR cycles 

that are roughly similar to those of the evergreen forest (Figs. 4a, b; 5b). The greater extent of the Southern deciduous region 380 

results in basin-wide EVI and SIF/PAR minima during JJA rather than DJF, and basin-averaged VPD likewise peaks during 

JJA (Fig. 4e) despite its low variability in the extensive evergreen forest region (Fig. 5b). Taken together, the results of Fig. 5 

suggest that a basin-wide analysis is informative despite averaging over multiple vegetation types.  

Figure 5: (a) Average monthly cycles of MAIAC-processed EVI (green line), SIF/PAR (red dashed line), and VPD (purple line) for 

the northern deciduous area of the Congo Basin. (b)-(c) As with (a), but for the equatorial evergreen and southern deciduous regions, 385 
respectively. Scales are consistent between plots (a)-(c) for each variable. 

3.5 Long-term climatic shifts and their impacts in the Congo Basin 

We detect no significant linear trends in ETwb, PTC, dS/dt, or Q from 2002–2016 after removing average seasonal cycles with 

BFAST (Fig. 6). However, several interannual trends are detectable in other environmental data (Fig. 7): PAR, Rn, and VPD 
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all increase significantly from 2002–2016 after the average seasonal cycle is removed from the time series, indicating the 390 

Congo Basin has become sunnier and less humid in recent years. This progression to sunnier and less humid conditions in the 

Congo Basin is not reflected in ETwb and productivity (as measured by MAIAC EVI), which do not show long-term changes 

over the past two decades (Figs. 6d, 7d).  

 

Figure 6: Linear regressions of deseasonalized monthly (a) Q, (b) dS/dt, (c) PTC, and (d) ETwb. 395 
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Figure 7: Linear regressions of deseasonalized monthly (a) VPD, (b) Rn, (c) PARtotal, and (d) MAIAC EVI.  

4 Discussion 

4.1 The value of water balance-based ET estimates 400 

The scarcity of operational precipitation gauges and complete lack of eddy covariance towers within the Congo river basin 

have previously restricted ET estimates to process-based models, short-term ET observations at site scale, and global products 

with insufficient validation in tropical Africa. The water balance-based ETwb derived here provides a basin-wide constraint on 

ET. It has an uncertainty that is relatively low compared to its average seasonal cycle (Fig. 2), and its magnitude matches well 

with previous long-term ET estimates from the basin (Table 2). The shape of its annual seasonal cycle (with ETwb peaking in 405 

MAM rather than in SON) also agrees with several previous ET modeling efforts in the basin (Matsuyama et al., 1994; Pan et 

al., 2012; Crowhurst et al., 2020). These findings support the accuracy of the water balance model in estimating basin-wide 

ET. 



18 

 

The results of this study also reinforce the value of the inverted water balance method for studying river basins large 

enough to accommodate the coarse spatial resolution of GRACE data. Compared to the difficulty of directly measuring ET 410 

and the large amount of observational data needed to constrain ET models, the inverted water balance is conceptually 

straightforward and has relatively simple data requirements. But as demonstrated here and in other large river basins like the 

Amazon (Maeda et al., 2017; Swann and Koven, 2017), inverting the water balance produces robust estimates of ET which 

can be used to validate and improve other ET models’ representation of sparsely-observed basins. Limitations of water balance 

ET estimates include the coarse spatial resolution, monthly timesteps, and short temporal coverage of GRACE (2002–2016, 415 

with various data gaps), the availability of river discharge data for the area of interest, and the quality of gridded P data in the 

region. However, the use of dS/dt data may not be necessary in long-term ET estimates (Weerasinghe et al. 2020), so the 

limitations of GRACE data mostly affect studies examining ET variability on annual or shorter timescales.  The uncertainties 

of P datasets can be assessed and mitigated using techniques such as TC (Stoffelen 1998; McColl et al., 2014; Alemohammad 

et al. 2015; Dong et al. 2020), but basins with more thorough gauge coverage than the Congo probably do not require such 420 

thorough analysis of multiple gridded P products.  

4.2 The seasonal imbalance of ETwb and P maxima 

As expected, the seasonal cycle of ETwb mostly follows that of precipitation, with two annual dry and two annual wet seasons. 

However, the seasonal cycles of P and ETwb feature an interesting offset: whereas SON is the wetter of the two rainy seasons, 

ETwb is greater during MAM than during SON (Fig. 2). The ETwb peak during MAM is supported by several previous modeling 425 

efforts with a variety of methodologies (Matsuyama et al., 1994; Pan et al., 2012; Crowhurst et al., 2020), indicating it is not 

simply an artifact of the water balance model or the data sources used here. Yet the underlying causes of the imbalance are not 

well understood (Crowhurst et al., 2020). We evaluated several possible drivers of the observed MAM peak in ETwb including 

phenology, photosynthetic production (via EVI and SIF), terrestrial water availability (via GRACE-derived S), PAR, Rn, VPD, 

Ta, and Ts. Ultimately, we conclude that higher levels of solar irradiance (especially photosynthetically-favorable diffuse 430 

radiation) and greater soil water availability during MAM provide the most likely explanation for seasonally high ET rates. 

As transpiration is the dominant component of ET throughout the Congo Basin (Lian et al., 2018), primary 

productivity (through its links to stomatal closure and active leaf area) likely explains the seasonality of ETwb to some degree. 

In fact, recent studies have found that evergreen forests in an equatorial section of the Congo exhibit a similar greenness 

seasonality to the seasonality of ETwb, with a bimodal cycle generally aligning with P but peaking in MAM instead of the 435 

wetter SON (Betbeder et al., 2014; Philippon et al., 2016). However, these studies focused on specific areas of evergreen 

forests and wetlands that may not represent the ecohydrology of the Congo Basin’s entire equatorial rainforest belt, and used 

MODIS products that do not fully account for sun-sensor geometry and other sources of error at low latitudes (Hilker et al., 

2012; Bi et al., 2016). To this end, the MAIAC algorithm (Lyapustin et al., 2018) reduces noise and increases the availability 

of clear-sky data in wet tropical regions (Maeda et al., 2016). Here we find that, after correction with the MAIAC algorithm, 440 

EVI data from the Congo Basin’s evergreen forest region do not present any significant difference between the two rainy 
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seasons (Fig. 5b), and basin-wide MAIAC EVI appears to peak during SON rather than MAM (Fig. 4a). Furthermore, direct 

estimation of photosynthetic rates using SIF/PAR data reveals greater productivity and light use efficiency (LUE) in SON than 

MAM throughout the evergreen forest band (Fig. 5b) and the basin as a whole (Figs. 4b, S3). The misaligned seasonal peaks 

of SIF/PAR and ETwb indicate that either a) water use efficiency (WUE) varies seasonally when generalized across the basin, 445 

resulting in higher MAM transpiration but lower MAM photosynthesis, or b) that the MAM peak in ET is primarily driven by 

direct evaporation from the canopy or land surface rather than transpiration. 

4.2.1 Leaf age-related WUE variations 

Leaf age offers a possible explanation for the variable WUE hypothesis. Studies of tropical trees have found that new 

leaves can take 1–2 months to reach peak photosynthetic capacity and WUE, and that both traits tend to decline as leaves reach 450 

5–6 months old (Sobrado, 1994; Shirke, 2001). Leaf age has been linked to photosynthetic seasonality within the Amazon 

rainforest (Wu et al., 2016), although this effect has not been investigated in the Congo Basin. Connecting the phenology of 

Congolese forests to basin-wide photosynthesis and transpiration must account for multiple broad ecoregions that span the 

equator and therefore face inverted seasonalities (Figs. 5, S2). In much of the deciduous woodlands of the northern (southern) 

basin, vegetation leaf flushing tends to begin 1–2 months prior to the onset of MAM (SON) rains and senescence begins around 455 

the end of the SON (MAM) rains, but both processes occur over the course of 1–2 months (Guan et al., 2014; Vinya et al., 

2019). Likewise, microwave backscatter data from large areas of the Congo’s evergreen forests imply canopy biomass and/or 

water content peak during JJA and, to a lesser extent, DJF (Guan et al., 2013; Konings et al., 2017). But phenological 

observations from Gabon indicate that new leaf growth is suppressed during JJA and that the full mature-leaf tree canopies 

common in JJA contain an elevated fraction of senescing leaves, so dry season backscatter peaks in Congolese evergreen 460 

forests may not be attributable to widespread leaf flushing events (Bush, 2018). Overall, the phenological synchronicity of 

leaf-out events appears to be low in the evergreen forests of central Africa (Couralet et al., 2013; Bush, 2018), so the magnitude 

and hydrologic effects of evergreen leaf flushing are probably smaller and more temporally distributed in the evergreen forests 

than in the deciduous woodlands of the basin.  

After accounting for the different ecoregions within the Congo Basin, leaf age effects alone appear unable to explain 465 

the flipped seasonality of ETwb in the two rainy seasons: although WUE increases as leaves mature, overall transpiration rates 

in tropical deciduous leaves remain high until they reach old age (Sobrado, 1994; Shirke, 2001). Thus, July–August leaf 

flushing of the southern deciduous woodlands, which far exceed the northern woodlands in area (Fig. S2), would most likely 

increase basin-wide transpiration alongside photosynthesis during SON. While our current understanding of regional 

phenology appears broadly consistent with remotely-sensed vegetation data, better field observations of phenology, leaf age, 470 

and associated changes in stomatal conductance and productivity in the different ecosystems of the Congo Basin are needed 

to fully determine the role of vegetation in modulating ET seasonality. 
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4.2.2 VPD and temperature 

Climatic conditions beyond precipitation could also contribute to the seasonal variations in WUE. For instance, high 

VPD reduces WUE by drawing more water from stomata per unit of carbon intake during transpiration. Basin-averaged VPD 475 

data from the ERA-Interim reanalysis do not indicate that MAM conditions are significantly less humid than SON conditions 

(Fig. 4e), suggesting seasonal VPD variations cannot explain the swapped ETwb–precipitation wet season magnitudes. But the 

uncertainties in reanalysis-based temperature and humidity data from tropical regions (Lorenz and Kunstmann, 2012; Brands 

et al., 2013) warrant an examination of the limited in-situ data available from within the Congo Basin. Observational VPD 

data from weather reports show that while ERA-Interim captures the shapes of seasonal VPD cycles fairly accurately, it fails 480 

to capture the magnitude of daytime VPDs in the evergreen rainforest (Fig. S1). Further examination of station and reanalysis 

data from within the evergreen forest region shows that rainforest VPD is slightly greater during MAM than SON (Figs. 5b, 

S1c–f), consistent with models based on historical pan evaporation data across the basin (Bultot, 1971) and historical 

atmospheric humidity data from within the equatorial rainforest (Lauer, 1989). However, because evergreen rainforest VPDs 

are generally low compared to other regions of the basin (Fig. 5) and are only slightly greater during MAM (Fig. S1c–f), VPD 485 

is not expected to be a significant driver of ET variations at basin-wide scales.  

While basin-averaged Ta does not vary drastically throughout the year, Ts features a bimodal seasonality that peaks 

primarily in September and also from February to March (Fig. S4). Ts can regulate ET via stomatal conductance, which tends 

to increase with leaf temperature to a point, although a wide range of sometimes-contradictory results have been published on 

this matter (Urban et al., 2017). In this case, the poor alignment of peak Ts and ETwb values—taken in conjunction with the 490 

widespread stomatal closures known to occur in tropical forests during the hottest parts of the day (Fisher et al., 2006; Konings 

and Gentine, 2017; Konings et al., 2017)—indicate that other variables are more directly responsible for the high ETwb observed 

during MAM.  

4.2.3 Radiative fluxes 

The magnitude and quality of radiative fluxes can drive the dynamics of ETwb by influencing primary production as 495 

well as WUE. Rn and total PAR are both diminished in SON relative to MAM levels (Fig. 4c), which does not explain the 

SON peak in primary production observed in SIF/PAR and EVI data (Fig. 4a, b). However, greater Rn levels during MAM 

could decrease WUE by increasing water demand, thereby driving the high ETwb levels observed in MAM. 

In addition to the magnitude of the incoming radiative flux, the quality of PAR could affect WUE and explain the 

apparent decoupling of productivity from irradiance levels and ETwb. Prior studies have found that increasing PARdiff/PAR can 500 

raise WUE and LUE in tropical savannahs and global forest canopies, including an Amazonian tropical broadleaf stand (Alton 

et al., 2007; Kanniah et al., 2013). Furthermore, total canopy ET has been found to decrease as the diffuse light fraction 

increases (Rocha et al., 2004). Philippon et al. (2019) examined diffuse and direct irradiance data from the Breathing Earth 

System Simulator (BESS; Ryu et al., 2018) and the Satellite Application Facility for Climate Monitoring (CM-SAF; Müller et 
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al., 2015) and found that the ratio of direct irradiance is often higher during MAM than in SON throughout much of the Congo 505 

Basin. The CERES data produce similar results: while PARdiff/PAR peaks in May, it remains low throughout March and April 

(the month when ETwb peaks), and the greater total PAR flux in MAM is mostly attributable to greater PARdir (Fig. S5). LUE 

(as approximated by PAR-normalized SIF) is greater during SON (Figs. 4b, 5), which is consistent with the presence of higher-

quality radiation during the primary rainy season. After removing seasonal cycles and long-term trends, monthly mean 

SIF/PAR displays a strong negative correlation with mean PARdir but not with PARdiff, indicating photosynthetic rates do not 510 

scale as well with increasing direct sunlight as with diffuse sunlight (Fig. S6). These experiments suggest the quality of 

irradiance during SON could allow for higher photosynthetic rates with lower ET than during MAM, especially since monthly 

PARdiff/PAR in the Congo remains below 0.4 on average (Kanniah et al., 2013) and lower Rn corresponds to lower water 

demand (Philippon et al., 2019). Even if total PAR availability would favor a productivity peak in MAM, lower WUE and 

LUE could result in plants transpiring water at the highest possible rate without reaching the productivity levels achieved in 515 

SON. Thus the quality of solar irradiance potentially explains ETwb’s imbalanced seasonality. 

4.2.4 Terrestrial water storage 

The availability of water in the rooting zone can modulate ETwb by directly limiting transpiration during SON. In the 

Congo Basin, low average SIF values retrieved during both dry seasons even after normalizing for incident PAR imply that 

water availability could be limiting transpiration across all ecoregions (Figs. 4b, 5), warranting investigation of the terrestrial 520 

water dynamics of the basin. 

As with other variables examined in this study, seasonal S dynamics at the basin scale are driven by the wet SON and 

dry JJA seasons experienced by the larger southern portion of the basin. Even though basin-wide P during MAM is significant, 

dS/dt (which measures groundwater within the rooting zone as well as in deeper reserves) remains much lower than its SON 

levels and only seems to recharge S enough to compensate for the slightly negative dS/dt values of January and February (Fig. 525 

2), indicating that water reserves are largely saturated during MAM and undersaturated at the onset of SON when averaged 

across the basin (Fig. 4f). This hypothesis is consistent with prior soil moisture modeling efforts, which indicate that Congolese 

ecosystems south of the equator (i.e. most of the basin’s area) feature low soil moisture as SON rains begin before maintaining 

high soil moisture and deeper water reserves through the end of the MAM rainy season (Pokam et al., 2012; Guan et al., 2014). 

Terrestrial water reserves are well-known to modulate productivity/ET throughout the basin (Saeed et al., 2013; Guan et al., 530 

2014; Ndehedehe et al., 2018; Cuthbert et al., 2019), so depleted S during September and October could limit transpiration 

even after the dry season ends. This hypothesis is also consistent with recent findings that variability in soil moisture and 

groundwater are much more influential than variability in rainfall with regard to productivity anomalies within the Congo 

Basin (Madani et al., 2020), making variations in plant-available soil moisture a plausible driver of the seasonal ETwb imbalance 

when combined with the light quality impacts on WUE outlined in the previous section. 535 



22 

 

4.2.5 Direct canopy and soil evaporation 

The WUE hypotheses explored above largely focus on the seasonality of transpiration, but seasonal variability in 

direct evaporation from forest canopies and the soil system could also potentially influence the seasonal cycle of ETwb. As 

outlined above, Rn is lower in SON than during MAM (Fig. 4c), suggesting that there may simply be less energy driving direct 

evaporation of water from the land surface. As Rn and ETwb both peak in March and high water content in the soil surface layer 540 

is apparently sustained throughout the rainy seasons (Guan et al., 2014), the conditions seem appropriate to drive increased 

direct evaporation during MAM. However, the higher proportion of nighttime rains during these months (Philippon et al., 

2016) make this scenario less plausible, as recent rainfall would have more time to drip from the canopy to the soil surface and 

percolate to deeper soil levels. Additionally, a recent study of several climate models within the Congo Basin determined that 

soil and canopy evaporation rates are likely similar between the two wet seasons, and that the ETwb seasonal imbalance is more 545 

likely due to increased transpiration during MAM (Crowhurst et al., 2020). More research is required to definitively 

characterize the role of direct evaporation in the seasonality of ET, but given the dominance of transpiration as the primary 

component of ET within the Congo Basin (Lian et al., 2018) and the conclusions of Crowhurst et al. (2020), we find it unlikely 

to be the main driver of ETwb’s MAM peak. 

Taken together, the analyses above suggest that the timing of peak ET rates in MAM rather than SON is primarily 550 

due to a combination of greater moisture availability and higher Rn during MAM, as well as the higher fraction of diffuse 

radiation during that season. The decoupled seasonal peaks of ETwb and photosynthetic productivity also indicate that seasonal 

variations in WUE occur across the Congo Basin. 

4.3 Comparison to global ET products 

The seven global ET models evaluated generally do not capture the degrees of seasonal and interannual variability displayed 555 

by ETwb (Fig. 3, Table 3). Global ET product annual averages all fall within 10% of ETwb’s, consistent with Weerasinghe et al. 

(2020)’s finding that global ET products can accurately capture the magnitude of long-term ET in the Congo Basin. Yet all 

seven ET products have less temporal variability than ETwb, ranging from only ~40% of ETwb’s variability (FLUXNET-MTE) 

to at most 80% of it (MERRA2). These metrics reflect not only the lack of seasonal variability in these models (Fig. 3), but 

also the fact that global ET models tend to repeat the same seasonal ET cycle every year with only minor variations. Although 560 

some products feature relatively accurate seasonal cycles, ETwb makes significant departures from its mean seasonal cycle in 

any given year (Fig. 1) that are not reflected in the seven ET products evaluated here. 

 Broadly speaking, FLUXCOM and GLDAS-Noah appear to lead global ET products in reproducing ETwb at monthly 

timescales—they feature the highest Taylor scores and Pearson coefficients, and also exhibit relatively large seasonal 

amplitudes (Table 3). However, both of these products still have significantly lower temporal standard deviations than ETwb 565 

does and also display the largest overall biases from 2003–2011. After FLUXCOM and GLDAS-Noah, two primarily remote 

sensing-based products (MOD16A2 and GLEAM) achieve relatively high Taylor scores and Pearson coefficients, supporting 
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previous reports that they approximate actual ET fairly well in tropical Africa (Schüttemeyer et al., 2007; Opoku-Duah et al., 

2008; Andam-Akorful et al., 2015; Liu et al., 2016). Weerasinghe et al. (2020) found that FLUXNET-MTE and SSEBop 

exhibit very low long-term biases over the Congo Basin, but their low Taylor skill scores and standard deviations suggest a 570 

significant underestimation of month-to-month ET variability. Finally, ET from MERRA2 was found to possess the greatest 

temporal variability over the basin and, as a result, tied with FLUXCOM and GLDAS-Noah for the highest Taylor score; 

however, MERRA2 also produced the worst correlation coefficient and highest RMSE out of the seven global products. 

Our results show some disagreements with the previous model comparison efforts of Liu et al. (2016). As part of a 

global water balance-based assessment of ET products, Liu et al. (2016) also compare ETwb (estimated using a different 575 

approach; see below) to ET from GLEAM, FLUXNET-MTE, GLDAS-Noah, and MERRA in the Congo Basin. However, in 

our calculation, the Taylor skill score of GLDAS-Noah appears to far outperform its value in Liu et al. (2016),   FLUXNET-

MTE and MERRA2 both show modest improvements in their Taylor scores, and only GLEAM falls into its previously-

assigned score bin. These discrepancies were likely caused by a) the different study period used by Liu et al. (2016), which 

necessitated an extrapolation of GRACE data prior to 2002, b) the exclusive use of the GPCC Version 6 product to constrain 580 

P in their water balance models, and c) the use of different versions of the four datasets common to both Liu et al. (2016) and 

the present study. Nonetheless, comparison of these Taylor scores indicates that the most recent generation of ET products 

generally improved upon the previous generation: FLUXCOM outperforms its predecessor, FLUXNET-MTE; GLDAS-Noah 

Version 2.1 outperforms Version 2.0; and MERRA Version 2 improves upon MERRA Version 1’s skill score.  

4.4 Effects of long-term climatic shifts on ET 585 

From 2002–2016, no significant trend is detectable in the deseasonalized ETwb data, nor in any of the other water balance 

component fluxes (Fig. 6). The lack of significant trends in water balance components over the fifteen-year study period is 

surprising given the numerous reports of declining precipitation in the Congo Basin, both in magnitude (Asefi-Najafabady and 

Saatchi, 2013; Diem et al., 2014; Zhou et al., 2014; Hua et al., 2016; Dezfuli, 2017) and in wet season duration (Jiang et al., 

2019). However, the absence of a trend in PTC does not prove the absence of a longer-term drying trend that began in the 20th 590 

century—rather, it probably results from our study period, which is shorter and generally more recent than those of the 

aforementioned studies; from our analysis of rainfall over all seasons rather than during certain three-month windows; and 

from the fact that rainfall declines mainly affect the northern portion of the basin (Zhou et al., 2014; Hua et al., 2016) whereas 

our study is dominated by the basin area south of the equator (Fig. S2). Indeed, careful examination of long-term precipitation 

records from the literature reveals marked declines in rainfall during the 1990s and early 2000s that did not continue 595 

significantly into our 2002–2016 study period (Diem et al., 2014; Dezfuli, 2017; Hua et al., 2019). The lack of an interannual 

ETwb trend is consistent with the recent findings of Weerasinghe et al. (2020). 

The lack of long-term trends in ETwb and EVI is intriguing given the changes detectable in the other environmental 

variables (Figs. 7, S7): PARdiff, PARdir, Rn, and VPD all increase significantly from 2002–2016, meaning the Congo Basin has 

become sunnier and less humid in recent years. While these findings should be viewed with caution because meteorological 600 
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data are quite sparse in the basin during the fifteen-year study period, the increasing VPD and irradiance trends are consistent 

with long-term projections over the 21st century in CMIP5 models (Yuan et al., 2019; Zou et al., 2019). Sunnier and less humid 

conditions caused by increasing PAR, Rn, and VPD would typically lead to lower WUE in plants, which would in turn lead to 

increased ET and/or decreased EVI. Given the seasonal dependence of productivity and transpiration on irradiance levels (see 

Sect. 4.2.3), the apparent lack of a corresponding long-term relationship suggests that some mechanism may be counteracting 605 

the biological impacts of rising irradiance and VPD. 

Carbon fertilization offers one possible explanation for the lack of ETwb and EVI trends. Rising VPD can indeed 

reduce the WUE of vegetation, but conversely, rising atmospheric CO2 levels can increase WUE in tropical forests by 

catalyzing stomatal closure (De Kauwe et al., 2013; Keenan et al., 2013; Van Der Sleen et al., 2015). Ukkola and Prentice 

(2013)’s vegetation dynamics simulations yield a sizeable decrease in stomatal conductance between 1960 and 2000 in the 610 

Congo Basin, consistent with altered stomatal behavior from CO2 fertilization and increasing VPD. Increasing PAR levels also 

could have helped support forest productivity rates as stomatal conductance declined, although the PAR data in Fig. S7 suggest 

a continual decrease in diffuse PAR fraction that could adversely affect the WUE and LUE of Congolese forests (Kanniah et 

al., 2013). In summary, even as VPD and irradiance have increased and driven up evaporative demand in plant stomata, the 

rising concentration of atmospheric CO2 may have allowed the Congo’s forests to lower stomatal conductance without 615 

significantly impacting growth or ET (Peñuelas et al., 2011; Van Der Sleen et al., 2015). But the effects of present and future 

carbon fertilization on WUE remain highly uncertain (Guerrieri et al., 2019), and a recent study of herbarium samples from 

Congolese evergreen forest trees found that while stomatal density has decreased from 1938 to 2013, inherent WUE has 

paradoxically decreased over the same period (Bauters et al., 2020). While the results of Bauters et al. (2020) pertain to a much 

longer time period and smaller spatial extent than our study and are thus difficult to compare here, they hint at the complexity 620 

of photosynthetic responses to environmental factors like VPD, CO2 fertilization, temperature, and water availability, and 

suggest that Congolese forests may feature unique ecophysiological functions that warrant further study. Ultimately, even if 

ET did not show any statistically-significant trends during our 2002–2016 study period as a result of CO2 fertilization, future 

ET rates could nevertheless start to change if the compensation between decreasing radiation quality and rising VPD on the 

one hand and increasing CO2 on the other hand becomes imbalanced, or if long-term declines in precipitation continue.  625 

4.5 Opportunities for further study 

This study demonstrates the value in combining in-situ observations with remote sensing in data-sparse regions like the Congo 

Basin. However, there are clear limitations to the water-balance approach employed here that suggest several opportunities for 

further study of the region. For instance, applying the inverted water balance model at the basin scale masks differences in the 

magnitude and variability of ET across the diverse regions of the Congo Basin, but the availability of river discharge data from 630 

tributaries of the Congo River could allow for modeling of ET at the sub-basin scale (Alsdorf et al., 2016). Similarly, the 

monthly temporal resolution of the GRACE data prevents examination of diurnal and sub-monthly variations in ET. While 

GRACE data also represent a relatively short time span, the GRACE Follow-On (GRACE-FO) mission promises to extend 



25 

 

the global S dataset well into the future. Ultimately, improved in-situ observations of hydrologic and climatic fluxes are 

necessary to understand the ecohydrology of central Africa in greater detail and at finer scales—eddy covariance towers, 635 

weather stations, and long-term phenological surveys would all be of great benefit to the growing field of research on the 

Congo Basin. 

5 Conclusions 

This study leverages several remotely-sensed and gauge-based precipitation datasets, river gauge data, and terrestrial water 

storage anomalies from GRACE to produce ET estimates for the Congo Basin in central Africa at the monthly timescale. This 640 

technique has been successfully applied to the Amazon Basin in recent years, but to the authors’ knowledge it has not yet been 

used in the Congo Basin except as part of global-scale reviews of major river basins. The Congo Basin is greatly understudied 

despite its importance as one of the world’s largest river basins and one of three major humid tropical forest regions, and 

quantification of basin-wide ET and its variability is imperative for understanding the basin’s climatic influence as well as its 

susceptibility to environmental disturbances. We find annual ETwb to equal 117.2±3.5 cm/year, on average, from 2003–2015—645 

well in line with many historical estimates of basin-wide ET. 

Triple collocation was applied to determine the accuracy of P products over the sparsely-gauged Congo Basin, finding 

that the recently-developed NIC131-gridded dataset is the most accurate over our study period (RMSE of 0.65 cm/month). 

NIC131-gridded is followed by CHIRPS2 in terms of accuracy (RMSE of 0.93 cm/month), while three separate products that 

incorporate GPCC rain gauge data feature similar variability and RMSEs (1.60 to 1.67 cm/month). RMSEs from TC were also 650 

used to create a unified PTC time series with a mean annual precipitation of 150.4±2.6 cm/year. A suite of global ET products 

is also evaluated versus ETwb, with FLUXCOM and GLDAS-Noah Version 2.1 displaying the closest agreement with the 

variability of ETwb from 2003–2011 and SSEBop most closely reproducing long-term mean ET. However, all ET models 

underestimated the seasonal and interannual variability of ETwb. 

In good agreement with existing literature, rainfall appears to exert a primary control on ET, but other environmental 655 

drivers appear to modulate ET and cause unexpected seasonal features, such as the MAM peak in ET recently explored by 

Crowhurst et al. (2020). Several possible causes for this MAM ET peak were investigated, but neither VPD, temperature, 

phenology, nor leaf age seasonalities could explain this MAM peak. Instead, the amount and quality of radiative energy and 

the availability of water in the terrestrial system appear to offer the most plausible explanations for the seasonal imbalance in 

peak ETwb—higher diffuse PAR fractions and lower Rn during SON allow for higher WUE, while depleted terrestrial water 660 

stores limit the amount of water available for transpiration. On interannual timescales, VPD, Rn, and both direct and diffuse 

PAR increased from 2002–2016 while no trend was detectable in EVI and ETwb, implying the rising concentration of 

atmospheric CO2 may have compensated for the increasingly dry conditions facing the Congo Basin’s forests. However, these 

effects may not remain balanced in a future of higher CO2 levels, increased VPD and temperatures, and spreading deforestation 

within the basin. 665 
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