
Dear Prof. Dr. Hendricks-Franssen, 
 
We would like to sincerely thank you for handling the manuscript and the reviewers and 
Korbin Nelson for their valuable comments. We have provided detailed responses to the 
reviewers one week before the closure of the open discussion, so the reviewers have 
already been given an opportunity to respond. Additionally, we have submitted a revised 
version of the manuscript, including a tracked-changes version. The main changes are 
as follows: 
 

1. Explained the calculation of the correlations using instantaneous satellite soil 
moisture retrievals; in response to all reviewers. 

 

2. Added Kruskal-Wallis test probability values to Table 1; in response to reviewer 3. 
 

3. Added a justification for our product selection; in response to reviewers 1 and 3 and 
Korbin Nelson. 

 

4. Added information about the sensor types included in the ISMN archive; in 
response to reviewer 3 and Korbin Nelson. 

 

5. Recalibrated HBV for ERA5 and IMERG and modified the discussion; in response 
to reviewers 2 and 3. 

 

6. Discussed the layer depths of the models in the main text; in response to reviewer 1 
and Korbin Nelson. 

 

7. Added a statement about the generalizability of the performance of the calibrated 
models; in response to reviewers 2 and 3. 

 

8. Added more precise latency values to Table 1; in response to reviewer 2. 
 

9. Improved all maps (Figs. 1, 4, 5, and S2); in response to reviewer 3. 
 

10. Provided information about the product quality flags; in response to reviewer 1. 
 

11. Added a statement regarding the difficulty of satisfying the assumptions underlying 
triple collocation techniques; in response to reviewer 2. 

 

12. Added details about the ERA5 temperature bias correction and the low- and 
high-frequency correlation coefficients; in response to reviewer 2. 

 

13. Added details about the ​in situ ​data for the calibration; in response to reviewer 2. 
 
Sincerely, 

 
Hylke Beck (on behalf of all co-authors) 



Review by Korbin Nelson 
 
The manuscript of Beck et al. evaluated the temporal dynamics of 18 state-of-the-art 
(quasi-)global near-surface soil moisture products. I this study very interesting and 
up-to-date. Overall, the paper is well organized and well written, and provides new 
insights about the advantages and disadvantages of different soil moisture products and 
on the merit of various technological and methodological innovations. 
 
We thank Dr. Nelson for reviewing our manuscript and providing thoughtful comments. 
 
However, the introduction is not well written and more discussion and comparison to 
recent studies should be provided. In my opinion, the paper deserves publication once 
the following points are addressed with some more details. 
 
We appreciate the comment; we have re-read the introduction with this in mind and 
made some improvements. 
 
line 4-12: Provide the reason why you would like to address these questions. I like your 
way to express your purposes of your study. However, it’s not appropriate to pose so 
many questions here without giving any reason. 
 
We agree and have added that these questions are ​“frequently faced by researchers 
and end-users alike.​” References and further background on each question is provided 
in the subsections discussing addressing the questions (Sections 3.1 to 3.9). 
 
Section 2: Why these datasets are chosen out for comparison? What are main 
differ-ences among the products within each group (i.e., satellites, open-loop models, 
and models with DA)? 
 
Good question. We have added the following to justify our product selection: “​We 
evaluated six products per category, which was sufficient to compare the performance 
among and within product categories and address the questions posed in the 
introduction. We only considered widely used products with (quasi-)global coverage and 
we attempted to keep the selection of products in each category as diverse as possible. 
For example, we considered products based on several major satellite missions used 
for global soil moisture mapping (AMSR2, ASCAT, SMAP, and SMOS), models of 
various type and complexity (with and without calibration), different sources of 



precipitation data (satellites, reanalyses, gauges, and combinations thereof), and 
various data merging and assimilation techniques (with different inputs).​” 
 
The authors missed some recent publications on soil moisture evaluation. For example: 
 
Chen, Y., & Yuan, H. (2020). Evaluation of nine sub-daily soil moisture model products 
over China using high-resolution in situ observations. Journal of Hydrology, 
125054.https://doi.org/10.1016/j.jhydrol.2020.125054 
 
Tavakol, A., Rahmani, V., Quiring, S. M., & Kumar, S. V. (2019). Evaluation analysis of 
NASA SMAP L3 and L4 and SPoRT-LIS soil moisture data in the United States. 
Remote Sensing of Environment, 229, 234-246. 
https://doi.org/10.1016/j.rse.2019.05.006 
 
Add a review on these publications in introduction and more discussions with these 
papers in Section 4 will add much value to this manuscript. 
 
Thanks for pointing us to these very interesting studies. We have added them to the 
introduction and to other relevant sections of the paper. Even though our paper has 
already well over 200 references, the body of literature on soil moisture estimation is so 
vast that it’s easy to miss studies. 
 
line 30: What are the sensor types? Are there all FDR sensors? 
 
We have added the following text: ​“The measurements were performed using various 
types of sensors, including time-domain reflectometry sensors, frequency-domain 
reflectometry sensors, capacitance sensors, and cosmic-ray neutron sensors, among 
others.​” 
 
Add a map showing the observation length and the frequency of in-situ observation. 
 
Please see Supplementary material Fig. S1 for a figure showing the observation length 
and the frequency of ​in situ​ observation. 
 
Table 1: Add one column to describe the vertical layers for the soil moisture products. 
Since soil moisture data of model products or satellites are not representative at 5 cm, 
have you done some vertical interpolation? 
 



The depths of the soil layers of the models are provided in the “Details” column. The 
penetration depth of microwave signals can differ significantly depending on the 
observation frequency and the land surface conditions, and therefore cannot be listed in 
the table. To improve the vertical representation of the satellite products, we used the 
SWI filter (see Section 2.1). We have added the following text to the revised manuscript 
to discuss the vertical support of the models: ​“The vertical support is physically 
consistent with in situ soil moisture measurements at 5-cm depth for most models. The 
average depth of the soil layer (i.e., half the depth of the lower boundary) is 2.5 cm for 
SMAPL4, 3.5 cm for ERA5 and ERA5-Land, 5 cm for GLEAM, 8.5 cm for HBV-ERA5, 
6.6 cm for HBV-IMERG, 7.3 cm for HBV-MSWEP, and 15 cm for VIC-PGF (Table 1; 
Supplement Table S1). The soil layers of HBV may seem too deep, especially since 
they represent conceptual “buckets” that can be fully filled with water, in contrast to the 
soil layers of the other models which additionally consist of mineral and organic matter. 
However, the soil layer depths of HBV were calibrated (see Section 2.3) and are thus 
empirically consistent with in situ measurements at 5-cm depth.​” 



Review #1 
 
This paper describes the performance of various gridded soil moisture products within 
situ surface soil moisture measurements. There is a lot thrown into this comparison and 
the methodology seems solid, but I am not sure about what we learned in the end. 
 
We thank the reviewer for their thorough assessment and helpful comments.  
 
Briefly summarized, we evaluated the largest and most diverse selection of soil 
moisture products to date, to the best of our knowledge. This allowed us to gain several 
novel insights into the relative advantages and disadvantages of a broad range of 
methodologies and data sources used to estimate soil moisture, as well as into 
techniques to evaluate the estimates. Of course, one outcome of our comparison is 
quantitative information on the relative performance of different products, which will be 
helpful for researchers deciding which product(s) to use in their analysis. However, 
there are several other findings: 
 

● a smoothing filter helps to avoid disadvantaging noisy satellite products in 
product evaluations; 
 

● the new ERA5 reanalysis precipitation data provide performance close to 
gauge-based precipitation estimates; 
 

● satellite products perform worse in cold climates than in warmer climates, and so 
do model products; 
 

● a simple, calibrated model can outperform substantially more complex, 
data-intensive models; 
 

● precipitation data quality is the main factor determining the benefit of data 
assimilation; 
 

● satellite data assimilation provides greater performance improvements for 
models with a poor soil moisture simulation efficiency; 
 

● model calibration can be more beneficial than satellite data assimilation into an 
uncalibrated model; 
 

● satellite products tend to exhibit larger regional performance differences than 
models; 

 



We believe that these findings, which are succinctly summarized in the conclusions, are 
of value to the general readership of HESS. 
 
1. Why is this particular subset of products selected? It is mixing spatial (horizontal & 
vertical) resolutions, operational and research products, etc., and makes a fair 
comparison questionable. Furthermore, it is not possible to stratify the results based on 
this random mix of features. Please provide more justification for the evaluation setup or 
refocus the paper. 
 
This is a good question. We have added the following to the revised manuscript to 
justify our product selection: “​We evaluated six products per category, which was 
sufficient to compare the performance among and within product categories and 
address the questions posed in the introduction. We only considered widely used 
products with (quasi-)global coverage, and we attempted to keep the selection of 
products in each category as diverse as possible. For example, we considered products 
based on several major satellite missions used for global soil moisture mapping 
(AMSR2, ASCAT, SMAP, and SMOS), models of various type and complexity (with and 
without calibration), different sources of precipitation data (satellites, reanalyses, 
gauges, and combinations thereof), and various data merging and assimilation 
techniques (with different inputs).​” 
 
For example, why was SMAPL3E included and not the coarser-scale L2/3 product, why 
SMOS v650 and not SMOS-IC, why GLEAM, etc. There is no reason given for the 
chosen products, even though the various products serve different purposes and have 
very different characteristics (e.g. SMOS retrievals offer both SM and VOD, DA 
products offer much more than only surface soil moisture, just to name a few). 
 
Please see our preceding response. There are too many candidate soil moisture 
products available for us to include all of them in our analysis. Some admittedly 
subjective selection is therefore necessary. 
 
We appreciate that different products have different design objectives and 
characteristics and offer different auxiliary data, but do not see how that invalidates our 
evaluation. 
 
Perhaps this paper should move its focus towards evaluating the new MeMo product 
and its underlying HBV modeling system, rather than shuffling that product into a 
general analysis that tries to vaguely address a list of too general questions for 
anon-representative or inconsistent subset of data products? 



 
Thanks for the comment. A paper just about MeMo and HBV would be of interest to a 
much smaller part of the community than the present evaluation. The MeMo product 
was included primarily to assess the effectiveness of a different merging approach 
compared to ESA-CCI. The HBV model products were added to (i) examine how well a 
simple calibrated model performs, (ii) assess the impact of different precipitation forcing 
datasets on the overall performance, and (iii) quantify the benefits of satellite data 
assimilation for different precipitation forcing datasets. 
 
We believe the nine questions posed in the paper are pertinent to numerous 
researchers and end users of soil moisture data and not “too general.” We are not 
entirely sure why the reviewer refers to our way of addressing the questions “vague” as 
we provide clear, concise, and well-referenced objectives and findings. 
 
As an aside, HBV is not underlying the MeMo product, they are completely independent 
products. 
 
Random example: what is the relative performance of the single-sensor satellite 
products? If “all” available soil moisture products would be compared, or some 
meaningful features would be targeted, then we could learn something from this, but for 
the 4 discussed products, more than half of the answer was already given in earlier 
papers and the added value of the answer in this paper is minimal. 
 
This example pertains to just one of the nine questions addressed in the paper. Earlier 
papers did not apply smoothing filters, stratified the results in different ways, most did 
not explicitly assess high- and low-frequency fluctuations, and most did not compare the 
performance of these single-sensor products to other types of products. As such, we 
believe our analysis does provide significant added value. Furthermore, even if part of 
our answer to this question was already given in earlier papers, we do not see it as a 
bad thing to replicate the findings of previous papers. 
 
2. The 5-day filter is used to reduce noise, but has also been used to derive root-zone 
soil moisture in the past. Why are the results compared to surface soil moisture and not 
root-zone in situ measurements? Would that not be fairer? 
 
We actually applied the 5-day filter to make the comparison with the ​in situ 
measurements at 5-cm depth more fair. The 5-day filter serves two purposes, to reduce 
noise and to deepen the vertical support of the superficial satellite observations (not to 
the root zone but to approximately 5 cm). Without the 5-day filter, the satellite products 



would perform, on average, significantly worse than the two other major product 
categories, and some particularly noisy satellite products would be severely 
disadvantaged (e.g., SMOS; see Fig. 2). If we had used ​in situ​ measurements of the 
root zone as reference we probably would have used a filter with a longer temporal 
window.  
 
3. In general, there is very little mentioning of the vertical representativity of the various 
products. It cannot possibly be that all products produce a consistent∼5 cm surface 
product. For example, how deep is the HBV soil moisture store? Is it comparable in 
volume to the volume observed by satellite data or other model-satellite surface soil 
moisture products? Due to their different wavelengths, the AMSR2, ASCAT and 
SMOS/SMAP products must be sensitive to different vertical surface layers. Is it fair to 
compare them all to the same ∼5-cm surface in situ measurements? 
 
Thanks for the comment. We believe our study represents a fair comparison. The 5-day 
filter deepens the vertical support to make the superficial satellite observations more 
representative of ​in situ​ measurements at 5-cm depth (please see our previous 
response). Previous soil moisture product evaluations tended to compare soil moisture 
retrievals directly to ​in situ​ measurements at 5-cm depth, and therefore may have 
underestimated the ‘true’ skill of products. We considered optimizing the time lag 
constant ​T​ for each product but decided against this, because we wanted to make 
statements about the accuracy of the original data, not a post-processed product. 
 
We have added the following text to the revised manuscript regarding the vertical 
support of the models: ​“The vertical support is physically consistent with in situ soil 
moisture measurements at 5-cm depth for most models. The average depth of the soil 
layer (i.e., half the depth of the lower boundary) is 2.5 cm for SMAPL4, 3.5 cm for ERA5 
and ERA5-Land, 5 cm for GLEAM, 8.5 cm for HBV-ERA5, 6.6 cm for HBV-IMERG, 7.3 
cm for HBV-MSWEP, and 15 cm for VIC-PGF (Table 1; Supplement Table S1). The soil 
layers of HBV may seem too deep, especially since they represent conceptual “buckets” 
that can be fully filled with water, in contrast to the soil layers of the other models which 
additionally consist of mineral and organic matter. However, the soil layer depths of 
HBV were calibrated (see Section 2.3) and are thus empirically consistent with in situ 
measurements at 5-cm depth.​” 
 
4. The temporal resolution is also questionable: how is it possible to do a 3-hourly 
evaluation for all products (p.3, L.20)? Satellites only pass over every so many days. 
 



Thank you for the comment. We have added the following text into the revised 
manuscript: ​“For the satellite products without SWI filter, we matched the instantaneous 
soil moisture retrievals with coincident 3-hourly in situ measurements to compute the R 
values.​” 
 
5. Please provide more information on the quality screening of the satellite data. The 
text only mentions screening for frozen conditions, but each product comes with its own 
flags that need to be applied. For example, it is mentioned that AMSR2 and SMOS are 
more vulnerable to RFI: how did you screen these data for RFI? Did you screen for 
dense vegetation, topographic complexity, etc? 
 
We appreciate the suggestion. We will provide more information about the quality flags 
used for the satellite products in the revised manuscript. Thanks for the suggestion. 
 
6. The consideration of both high and low frequency signals for the calculation of R is a 
good idea, but why is there no evaluation of the interannual variability, using a simple 
state-of-the-art anomaly R? 
 
The “state-of-the-art anomaly R” measures both the (seasonal-scale) interannual 
variability and short-term deviations from the long-term mean seasonal cycle.  The skill 
of short-term variations in the soil moisture products is assessed in our high-frequency 
filter. 
 
We did not separately evaluate the (seasonal-scale) interannual variability due to the 
short temporal span of some of the products (less than 5 years), which precludes us 
from calculating reliable correlation coefficients. 
 
7. Not understood: “only HBV and the Catchment model underlying SMAPL4 have been 
calibrated”. Is it fair to say that Catchment would be “calibrated” (for soil moisture,just 
like HBV?) in order to hardwire a single parameter (a constant)? Wouldn’t all models 
then ever have been ’calibrated’ to chose some hardwired parameters? 
 
Both HBV and Catchment have been explicitly calibrated  against independent ​in situ 
soil moisture measurements by optimizing a certain performance metric. The same may 
be true but has not been similarly documented for the other models included in the 
evaluation. The calibration procedure of HBV is described in Section 2.3, while the 
calibration procedure of Catchment is described in Reichle et al. (2019b). 



Review #2 
 
This is my first review of the manuscript “Evaluation of 18 satellite- and model-based 
soil moisture products using in situ measurements from 826 sensors”.The study is very 
interesting and fits well with the scope of the HESS journal. It is well written and 
structured with relevant research questions answered in details in the results section. 
The literature cited is updated and figures and tables well formatted. 
 
We thank Dr. Massari for his thorough assessment of our manuscript. 
 
Despite this I have different MAJOR comments the authors should seriously consider: 
 
1. 826 sensors is quite a large number for soil moisture stations and gives the 
impression that this evaluation is very general. However, by looking at the locations 
where these sensors are located the reader realizes that the majority are located over 
US and Europe, that is, over very data rich regions (i.e., where models tend to perform 
better). I think in title is much more important to highlight where the analysis is carried 
out rather than the number of sensors used. This give also a clearer picture of the 
results obtained in the study. 
 
Thanks for the suggestion. We considered replacing ​“from 826 sensors”​ with ​“from the 
US, Europe, and Australia”​ in the title. However, since this would make the title less 
concise, we did not make this change. We do, however, clearly highlight in the paper 
that our results may not generalize to the entire global land surface and have devoted 
an entire subsection (3.9) to this issue. 
 
We do not fully agree with the generalization that models perform better over data-rich 
regions, as this depends on the precipitation forcing used to drive the models. Our 
evaluation includes six models with non-gauge-based precipitation forcings (ERA5, 
ERA5-Land, HBV-ERA5 with and without data assimilation, and HBV-IMERG with and 
without data assimilation), and the performance of these models is largely 
representative of data-poor regions. 
 
2. Following point 1 the results can be a bit biased towards models (also considering the 
type of evaluation the authors chose, see my comment 3e) and product that require use 
calibration (e.g., HBV runs). The product evaluation is in practice carried out exactly 
where in situ observations are more dense and where are more dense more calibration 



stations are present. This is partly highlighted by the authors but only at the end of the 
document while I would add more discussion about this issue. 
 
Thanks for the comment. We have changed several existing sentences and added the 
following sentence to Section 3.9: ​“The calibrated models (HBV and the Catchment 
model underlying SMAPL4) may, however, perform slightly worse in regions with 
climatic and physiographic conditions dissimilar to the in situ sensors used for 
calibration (but probably still better than the uncalibrated models).​” 
 
3.The overall methodology needs to be strongly improved and detailed as many aspects 
are not clear and/or not well discussed and justified: 
 
a.The evaluation is carried by considering the temporal dynamic which is fine for the 
considerations done in the paper and from previous literature (see Koster et al. 2009), 
however, it is not clear how the evaluation at 3 hour resolution is done for satellite data 
with a revisit time larger than 1 day (e.g. SMAP, SMOS) and for model forced with 
rainfall with daily resolution. This must be clarified. 
 
We agree and have added the following text to explain this more clearly in the revised 
manuscript: ​“For the satellite products without SWI filter, we matched the instantaneous 
soil moisture retrievals with coincident 3-hourly in situ measurements to compute the R 
values.​” 
 
b.The Triple Collocation (TC) is a foundation of one integration technique (i.e., the one 
of MeMo) and is a well known technique for the readers this manuscript point to. I am 
surprised that its theoretical foundation has not introduced in a more rigorous way and 
the assumptions made not tested. For instance, line 24 page 4 reads “with ASCATSWI 
and HBV-MSWEP, which are independent from each other and from the passive 
products”. First the requirements are not the independence among the products but 
independence of their errors as well as their mutual linearity. These assumptions might 
not hold even for the products chosen (Gruber et al. 2016) as here, in addition, also 
SWI is systematically applied to at least two products of the triplet. This can falsify the 
results obtained via TC. I think some additional discussion and testing of the validity of 
the assumption is needed. The authors can consider the application of the Quadruple 
collocation technique (Gruber et al. 2016) for testing this assumption which many 
authors of this manuscript are familiar with. 
 
We thank the reviewer for his comment. We do not entirely agree with the statement 
that ​“the requirements are not the independence among the products but independence 



of their errors,”​ because if the products are fully independent, it follows that the errors 
will be fully independent as well. Unless of course the reference is imperfect (which is 
the case if ​in situ ​data are used as reference), in which case the errors reflect both the 
product and the reference. 
 
We recognize that the error independence assumption and other assumptions may not 
be fully satisfied in our study and we have therefore added the following statement to 
the revised paper: “​Triple collocation-based merging techniques rely on several 
assumptions (linearity, stationarity, error orthogonality, and zero cross-correlation; 
Gruber et al., 2016) which are generally difficult to fully satisfy in practice, affecting the 
optimality of the merging procedure.​” 
 
We carefully examined the Quadruple Collocation (QC) methodology presented in 
Gruber et al. (2016). They note that QC still requires ​"zero error cross covariance 
between some specific data set combinations"​ (Section 2.4), which means that expert 
judgement is still needed to determine which products have correlated errors and which 
don’t prior to estimating the correlations between two products. Pan et al. (2015) also 
highlighted the need for expert pre-judgement. QC is therefore only useful to estimate 
the correlation after already having "assumed" that particular products are more likely to 
be correlated than others. In light of this, we believe QC offers limited independent 
insight into the TC assumptions. The developer of QC makes a similar statement in 
Gruber et al. (2017): ​“Recently, Gruber et al. (2016) proposed an extension to TCA 
where the inclusion of more than three data sets in the analysis allows for — at least 
partly — resolving nonzero error cross-correlation structures, yet a demonstration of the 
robustness of the method on a global scale is still pending. Therefore, one may for 
practical reasons neglect error cross correlations between different active or passive 
data sets at the cost of non optimal SNR improvements, or make a conservative 
educated guess for error cross-correlation levels for data sets where they are 
expected.​” 
 
The application of the SWI filter was necessary to temporally match the different 
satellite products, which would not have been possible using instantaneous retrievals at 
non-overlapping irregular times (Gruber et al., 2020). We agree, however, that the SWI 
filter does not need to be applied to both satellite products in the triplets, and therefore 
in the revised manuscript we use unfiltered ASCAT data. 
 
c.Maybe this is just a technical matter and nothing major but talking about the 
climatology of SMAP sounds quite weird with only four four/ five years of observations. 



From an evaluation point of view I think it still fine, however, from a longer perspective 
this climatology is likely to not consider the real climate variability. 
 
We agree and have replaced ​“climatologies”​ with ​“averages.” 
 
d.Many terms and procedures are just mentioned without specifying important details. 
This makes the study hardly reproducible. Examples: line 17 pag. 5 “Temperature 
estimates were taken from ERA5, downscaled to 0.1 and bias-corrected on a monthly 
basis through an additive approach”. How the downscaling and the bias correction has 
been done exactly? “Additionally, we calculated Pearson correlation coefficients for the 
low- and high-frequency fluctuations of the 3-hourly time series...”. Please tell what 
correlations of high and low fluctuations would provide in addition to classical 
correlation? 
 
Thanks for bringing this up; we read the manuscript again to make sure no details are 
missing. We added the following to explain the ERA5 correction: ​“To improve the 
representation of mountainous regions and ameliorate potential biases, the ERA5 air 
temperature data were matched on a monthly climatological basis using an additive (as 
opposed to multiplicative) approach to the comprehensive station-based WorldClim 
climatology (V2; 1-km resolution; Fick and Hijmans, 2017).​” 
 
The following sentence was added to better highlight the added value of the Pearson 
correlation coefficients for the low- and high-frequency fluctuations: ​“Additionally, to 
quantify the performance of the products at different time scales, we calculated Pearson 
correlation coefficients for the low-frequency fluctuations (i.e., the slow variability at 
monthly and longer time scales; R​lo​) and the high-frequency fluctuations (i.e., the fast 
variability at 3-hourly to monthly time scales; R​hi​). ​” 
 
e.This is an important aspect: “We did not average sites with multiple sensors to avoid 
potentially introducing discontinuities in the time series.” Line 31 pag. 6. This means that 
if the satellite footprint of a specific product includes multiple in situ stations multiple 
correlations values are considered? If so, this makes the process of evaluation very 
random and not really under control as different products are characterized by a 
different spatial sampling and might include a different number of stations. Moreover, 
this exacerbates the problem of biased results towards model or products working well 
over US as many correlation values would originates from stations located in United 
States with an additional penalization of other locations which have already less 
stations. For a fair evaluation each pixel must count one correlation value. In this 
respect the product collocation is a crucial aspect that has not properly discussed and 



described in the manuscript. For example in Su et al. (2015) and Massari et al. (2017) 
the co-location of the satellite data and model data was determined by 
nearest-neighbour association and a screening step for removing ground sensors 
non-representative at the coarse scale was implemented. In their study, if multiple valid 
stations co-located in a satellite pixel were present, the station with the highest mean 
correlation was retained (see section 2.6 of Su et al. 2015 for further details). 
 
We thank the reviewer for this thoughtful comment. This issue is commonly referred to 
as the collocation issue (Gruber et al., 2020) and unfortunately there are no satisfactory 
solutions, particularly when the products have such a wide range of grid-cell and 
footprint sizes. After much deliberation we decided not to change the current approach 
for the following reasons: 
 

1. A coarser spatial sampling should, in our opinion, be penalized (as is currently 
the case), since it reflects a technical limitation in the ability of the product to 
represent heterogeneous areas. 
 

2. We believe that grid-cells or footprints with multiple ​in situ​ sensors should be 
assigned more weight (as is currently the case), because the presence of 
multiple sensors reduces the sampling uncertainty and thus leads to a more 
reliable performance estimate. 
 

3. The removal of ​in situ​ sensors that are not representative of the coarse scale is 
not straightforward in our evaluation due to the substantial variety in model 
grid-cell and satellite footprint sizes. We are not in favor of resampling all 
products to a common grid as this would penalize products with a higher spatial 
resolution. 
 

4. The removal of ‘unrepresentative’ ​in situ ​sensors is further confounded by the 
fact that the location of satellite footprints varies over time (i.e., the footprint of 
today’s satellite overpass is not exactly the same as the footprint of the next 
overpass). Su et al. (2015) and Massari et al. (2017) did not have this issue as 
their products were all gridded. 
 

5. Retaining only the ​in situ ​sensors with the best performance may paint an overly 
rosy picture of the products. 

 
We would like to note that our approach has also been used by numerous other 
researchers (e.g., Albergel et al., 2012; Karthikayan et al., 2017; Al-Yaari et al., 2019), 
which thus implicitly agreed with our view. Nevertheless, we agree about the importance 
of highlighting that several dense measurement networks exert a strong influence on 



the overall results and we therefore expanded the first sentence of Section 3.9 as 
follows: ​“The large majority (98 %) of the in situ soil moisture measurements used as 
reference in the current study were from dense monitoring networks in the USA and 
Europe (Fig. 1) and therefore our results will be most applicable to these regions.​” 
 
f.“We calibrated the 7 relevant parameters of HBV using in situ soil moisture 
measurements between 2010 and 2019 from 177 independent sensors from the 
International Soil Moisture Network (ISMN) archive that were not used for performance 
assessment (Section 2.5; Supplement Fig. S2).” Line 20 pag. 5. How the selection of 
these stations was carried out? Why 177? Why such a spatial distribution? Does a 
different choice provide similar results? I think all these aspects need to be clarified. 
 
We have added the following to the revised manuscript: ​“These sensors did not have 
enough measurements during the evaluation period (March 31, 2015, to September 16, 
2019) and thus were available for an independent calibration exercise.​” A different 
selection of ​in situ ​sensors would have provided similar results due to the low degrees 
of freedom (just 7 parameters were calibrated using 177 sensors). Note that HBV has 
been recalibrated for ERA5 and IMERG in the revised paper. 
 
g.“T was set to 5 days for all products, as the performance did not change markedly 
using different values, as also reported in previous studies”. The application of the 
exponential filter with a constant parameter T=5 days might be not appropriate for all the 
satellite products as the different products have a different vertical support. Since the 
calibration was carried out for the model why T was not calibrated also for the satellite 
products? 
 
We strongly considered optimizing the time lag constant ​T​ for each product in the 
revised manuscript but in the end decided against this for two main reasons. First, we 
did not want to deviate too much from the original data because we want to make 
statements about the accuracy of the original data, not a post-processed product. 
Secondly, we did not want to give the satellite products an unfair advantage compared 
to the uncalibrated models, which would likely also benefit from the application of the 
SWI filter (though likely not as much). 
 
The calibration of HBV was carried out because the model cannot be run without 
calibration, as it is a conceptual model with parameters that do not represent physical 
properties of the land surface. Note that we added the following regarding the 
generalization of the performance of the calibrated models to Section 3.9: ​“The 
calibrated models (HBV and the Catchment model underlying SMAPL4) may, however, 



perform slightly worse in regions with climatic and physiographic conditions dissimilar to 
the in situ sensors used for calibration (but likely still better than the uncalibrated 
models).​” 
 
4.“As forcing, we used the MSWEP precipitation dataset because of its favourable 
performance in numerous evaluations .... The calibrated parameter set was used for all 
HBV runs, including those forced with ERA5 or IMERG precipitation.” I think proceeding 
in this way is not fair for the cross-validation. As HBV is basically a conceptual model, 
its parameters tend to correct also for errors contained in the data used to force it. 
Indeed, it has been largely demonstrated in the scientific literature (e.g., Zeng et al., 
2018) that the impact of imperfect precipitation estimates on model efficiency can be 
reduced to some extent through the adjustment of model parameters. In other words, If 
you calibrate the parameters for MSWEP rainfall, then, when you force HBV with others 
precipitation inputs the results might be sub-optimal. Thus for a fair evaluation different 
sets of parameters should be used each one referring to the specific rainfall product 
used to force the hydrological model. 
 
Our initial reason for not recalibrating HBV for ERA5 and IMERG was that we did not 
expect the resulting parameters to realistically represent the transformation of 
precipitation to soil moisture, because ERA5 and IMERG do not incorporate any gauge 
data and exhibit systematic errors (in mean, occurrence, and magnitude; Beck et al., 
2019a). Conversely, the calibration of MSWEP has likely resulted in parameters that 
relatively realistically represent the transformation of precipitation to soil moisture, since 
MSWEP incorporates vast amounts of daily gauge data and exhibits almost no 
systematic errors in the study area (Beck et al., 2019a). 
 
However, since we agree that the recalibration of HBV for ERA5 and IMERG might 
potentially lead to a small performance improvement, we followed the reviewer’s 
suggestion and carried out the recalibration. The following text was added: ​“To avoid 
giving one of the precipitation datasets an unfair advantage, we recalibrated the model 
for each of the three precipitation datasets (ERA5, IMERG, and MSWEP).​“ The 
negligible performance improvement after calibration for ERA5 and IMERG (0.00 and 
0.01, respectively) probably reflects the low degrees of freedom (just 7 model 
parameters were calibrated using data from 177 sensors) and thus limited ability of the 
parameters to correct for systematic errors. 
 
5.MeMo integration. The study is based on similar conceptual framework presented in 
Kim et al. 2018 here (maximization of correlation) with the difference that in Kim et al. 
correlations are calculated with a benchmark while here are obtained from TC. Beside 



the satisfaction of the underlying assumptions related to TC which I have discussed on 
point 3b, Eq. 3-5 of the study of Kim et al. demonstrates that for the maximization of R 
when merging two products (but this holds for multiple products also), cross-correlation 
terms must be taken into account (it is also demonstrated in Gruber et al. 2017 already 
cited in the manuscript) thus the framework described in MeMo integration is not 
theoretically optimal. However, if the products are independent the framework collapses 
into a simple weighing average as cross-correlation are zero. I assume the authors 
consider null cross correlations within SMAP, SMOS and AMSR2 which I think is 
statistically not demonstrated. So i strongly suggest to provide some additional details 
and justifications about the integration framework used. This can explain why MeMo “ 
MeMo performed only marginally better in terms of R than the best-performing 
single-sensor product SMAPL3ESWI” (Line 15 pag. 12). 
 
We do indeed, implicitly, assume null cross-correlations among AMSR2, SMAPL3E, 
and SMOS. This is an assumption to all TC applications that may not be fully met, 
similar to the assumption of perfectly Gaussian distributions. The null cross-correlations 
assumption cannot be formally tested as the truth is not known. One could evaluate the 
correlation in deviations versus ​in situ​ data but of course they do not represent the truth 
either and they are not available everywhere, so this does not solve the issue.  
 
6.“The satellite products provided the least reliable soil moisture estimates and 
exhibited the largest regional performance differences on average, whereas the models 
with satellite data assimilation provided the most reliable soil moisture estimates and 
exhibited the smallest regional performance differences on average.”. I think the authors 
should highlight again here that this result is expected given the high density gauge 
observations used in the study area. Highlighting this is very important as for instance 
ground validation conducted in data-rich areas does not adequately reflect the added 
values of satellite observations (Dong et al. 2019). 
 
Thanks for the comment. Even when excluding the three models with data assimilation 
using gauge-corrected precipitation forcings (GLEAM, SMAPL4, 
HBV-MSWEP+SMAPL3E), the remaining three models with data assimilation (ERA5, 
HBV-ERA5+SMAPL3E, and HBV-IMERG+SMAPL3E) still provide more reliable soil 
moisture estimates and smaller regional performance differences on average. This 
conclusion is thus not simply attributable to the inclusion of gauge observations in some 
of the precipitation forcings. 
 
Minor comments:  
 



Line 24 pag. 3. Every satellite product contains proper quality flags for removing these 
low quality data while doing this with an external dataset might not guarantee optimal 
results. Please at least discuss this. 
 
We will expand our discussion of this. 
 
Line 12 pag. 4. “Three-hourly soil moisture time series of AMSR2SWI, SMAPL3ESWI, 
SMOSSWI”. No clear how these time series are created or extracted from products 
having revisit times larger than 1 day. This is unknown in the paper. 
 
The last paragraph of Section 2.1 explains that the SWI filter was applied on a 3-hourly 
basis and that ​“the SWI at time t was only calculated if ≥1 retrievals were available in 
the interval (t−T; t] and ≥3 retrievals were available in the interval [t−3T; t−T].​” 
Application of the SWI filter is thus certainly possible for products with revisit times 
longer than 1 day. 
 
Line 20 pag. 6. So the triplet is the same as above except for the presence of SMAPL3E 
in place of SMAPL3ESWI? 
 
This is correct. 
 
Figure 1 caption: Stations in Europe are not really visibile (e.g., Denmark). Can you 
make a bit darker?  
 
Thank you for the comment. We have increased the size of the stations and completely 
revised the figures. 
 
Figure 2 caption: Please explain better panels b, c and d. 
 
We have expanded the caption with a few additional details. 
 
Line 6-9 pag. 11. I think this is the main reason. 
 
The vertical representativeness could well be the main reason, however, we believe the 
noise reduction is also an important reason, given the often substantial seemingly 
random variability between consecutive instantaneous retrievals. 
 
Line 24 pag. 12, “First, ESA-CCISWI incorporates ASCAT, which performed less well in 
the present evaluation, whereas”. This cannot be a reason if the integration is "optimal" 



as the different parent products are weighed according to their relative performance. So 
the second one is more likely the reason. Please rephrase or justify with more solid 
arguments. 
 
The reviewer is right in theory; as discussed earlier in our response, given the difficulty 
of satisfying all triple collocation assumptions, our merging approach is unlikely to be 
fully “optimal,” and we did not claim it was. For this reason, the inclusion of a product of 
lower quality results in a performance degradation. As mentioned before, we have 
added the following statement to the preceding paragraph to highlight this: “​Triple 
collocation-based merging techniques rely on several assumptions (linearity, 
stationarity, error orthogonality, and zero cross-correlation; Gruber et al., 2016) which 
are generally difficult to fully satisfy in practice, affecting the optimality of the merging 
procedure.​” 
 
Line 3 pag. 13. “and satellite-based GPCP V1.3 Daily Analysis (Huffman et al., 2001)” 
How a daily rainfall can provide 3-hourly estimates? 
 
Good question. This is explained in Section 2.1: ​“S​ince the evaluation was performed 
at a 3-hourly resolution, we downscaled the two products with a daily temporal 
resolution (VIC-PGF and GLEAM) to a 3-hourly​ ​resolution using nearest neighbor 
resampling.​” We realize that this is not ideal, but there was no other solution. 
 
Line 20 pag. 14. Please explain what is the meaning of efficiency here. 
 
Thanks for the comment. By efficiency we refer to how realistically the model represents 
the transformation of precipitation into soil moisture. We have rephrased ​“the model 
efficiency”​ to ​“the soil moisture simulation efficiency.​” 
 
Line 11 pag. 16. Check this sentence, it appears out of place. 
 
Deleted, thanks. 
 
Table 3: Latency of the products. Change to a more precise value or remove. Several 
does not provide enough information. I think ERA5 is now available with a delay of three 
days. 
 
We have provided more precise latency values. The latency of ERA5 appears to be 6 
days at this moment. 
 



Table 3: Spatial and temporal resolution. With such a diverse range of products I 
suggest to replace “temporal resolution and spatial resolution” with spatial and temporal 
sampling. 
 
Done. 
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Review #3 
 
This is a very interesting and promising paper certainly useful to document the 
biblio-graphical effort on soil moisture evaluation. I feel however that authors have 
skimmed over some essential explanations and was sometimes wondering if I had the 
latest version of the manuscript from HESSD (?). The bullet points format of the 
manuscript does not help and a lot of discussion is missing prior it can be considered for 
publication. I recommend major revisions, please see below an attempt to help. 
 
We thank the reviewer for their thorough assessment and helpful comments. 
 
Although very important, this kind of evaluation is by design almost never in favour of 
the satellite based products. It has been highlighted several time in the literature in the 
past decade that in data rich areas where models are highly constrained by high quality 
observations, their soil moisture is of better quality that the one retrieved from spatial 
remote sensing. As the in situ measurements sensors you are using are largely located 
in those data rich areas, this should be emphasize in the manuscript. 
 
We agree that this issue affects many previous studies. We designed our study to give 
the satellite products a fair opportunity in two ways: 
 

1. We included six models with non-gauge-based precipitation forcings (ERA5, 
ERA5-Land, HBV-ERA5 with and without data assimilation, and HBV-IMERG 
with and without data assimilation). The performance of these models is largely 
representative of data-poor areas. 
 

2. We evaluated versions of the satellite products processed with SWI filter which 
generally performed substantially better (Section 3.2). Previous soil moisture 
product evaluations tended to compare instantaneous soil moisture retrievals 
directly to the ​in situ​ measurements, and may therefore have underestimated the 
‘true’ skill of satellite products. 

 

However, despite this, the satellite products still generally performed worse. 
 
We agree with the reviewer that it is important to highlight that models with 
gauge-based precipitation forcings may not perform as well in data-poor areas, which 
we have done multiple times in the paper: 
 



● “It should be kept in mind, however, that these studies, including the present one, 
used in situ soil moisture measurements from regions with dense rain gauge 
networks, and hence likely overestimate model performance (Dong et al., 2019).​”  
 

● “In sparsely gauged areas the four models using precipitation forcings that 
incorporate daily gauge observations (GLEAM, HBV-MSWEP, 
HBV-MSWEP+SMAPL3E, and SMAPL4; Table 1) will inevitably exhibit lower 
performance (but not necessarily lower than the other models).​” 

 
Page 1, Lines 9-8 : a) It gives the false impressions that data assimilation brings an 
improvement going from 0.69 to 0.72 while models with data assimilation do not all have 
open-loop counterparts (the opposite being true as well). I know it is the abstract but 
perhaps you should already give scores that can highlight the added value of data 
assimilation by considering the mean R values of their open-loop counterpart 
(HBV+ERA5, HBV+IMERG, HBV+MSWEP). b) I am personally not a big fan of such 
statement in an abstract and I am not sure it is well supported by your results 
particu-larly regarding the large distribution of your scores (boxplots of figures 2 & 3) 
and the lack of discussions on score difference significance 
 
We appreciate the comment. Since the abstract is already quite long we won’t be able 
to present median ​R​ improvement scores for each of the products with and without data 
assimilation. As suggested, we have deleted the statement referred to by the reviewer. 
 
We have added probability (​p​) values (calculated using the Kruskal-Wallis test) in the 
manuscript to Table 1 where we compare the performance of ascending and 
descending overpasses of the single-sensor products. However, we follow the soil 
moisture product validation recommendations set out by Gruber et al. (2020) and avoid 
making any statement or interpretation about statistical significance or non-significance, 
because ​“a label of statistical significance does not mean or imply that an association or 
effect is highly probable, real, true, or important. Nor does a label of statistical 
nonsignificance lead to the association or effect being improbable, absent, false, or 
unimportant.​”  
 
We did not present ​p​-values for all 254 product combinations for all three performance 
metrics (​R​, ​R​hi​, and ​R ​lo​) and did not explicitly report ​p​-values when comparing the 
medians scores of different products, as this would significantly hamper the readability 
of the paper. Additionally, we carried out some experiments using the Kruskal-Wallis 
test on synthetic ​R​ distributions with properties similar to the actual ​R​ distributions, and 
found that even small differences in median ​R​ of just 0.02 tend to be statistically 



significant at the ​p​=0.05 level, whereas greater differences of 0.03 tend to be 
statistically significant at the ​p​=0.001 level. Thus, the reviewer can safely assume that 
differences in median ​R​ of ≥0.02 will be statistically significant at (at least) the ​p​=0.05 
level. 
 
Regarding the medians of the major product categories (discussed in section 3.8), these 
are all significantly different at at least the ​p​=10​-11​ level. 
 
Page 1, Line 14 (also Line 16 and true for many part of the manuscript): Are those 
differences significant? why didn’t you provide confidence intervals? Also according to 
figure 2 it is ESA-CCI_SWI that has a median R value of 0.67 while ESA-CCI has a 
median R value of 0.56, please clarify. The notion of with/without SWI does not appear 
in the abstract (?). 
 
The SWI subscript was indeed missing in the abstract and was added to ESA-CCI and 
the other satellite products in the revised manuscript. Additionally, we added a line 
about the SWI results. Thanks for the comment. 
 
The difference in median ​R​ between ESA-CCI​SWI​ and MeMo is quite large and indeed 
highly statistically significant (​p​=10​-7​). As explained in the preceding response, we prefer 
to refrain from making statements about statistical significance or non-significance.  
 
Page 2, Line 14 “Additionally, many had a regional (sub-continental) focus [​...​]” I 
would not say yours is different (?) Particularly looking at figure 1, please clarify. Also 
you could add a lot of recent references that had looked at very similar dataset to like to 
yours. You are only slightly discussing towards the end of your manuscript, please 
revised 
 
There are numerous soil moisture product evaluations that focused on a single country 
or a small area (i.e., a sub-continental region), whereas we tried to use all available ​in 
situ ​data globally to draw the most generalizable conclusions possible. Our ​in situ ​data 
covers the entire conterminous US and thus can be considered at least “continental.” 
We recognize, of course, that the coverage of the ​in situ ​sensors is far from fully global, 
and to we have devoted an entire subsection to discussing the generalizability of our 
results. Our study has already well over 200 references and we cite numerous recent 
studies that also use ISMN data as reference. We are not sure which recent references 
are missing. 
 



Page 2, Lines 25-26 “Furthermore, several new or recently reprocessed products have 
not been thoroughly evaluated yet, such as ERA5 (Hersbach et al., 2020), ERA5-Land 
(C3S, 2019), and ESA-CCI V04.4 (Dorigo et al., 2017).” For ERA5, Li et al have used 
842 qualified sites covering 25 networks (rather recent paper I must admit): 
https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.6549 For ESA-CCI, Did you check 
the product website and documentation? ​https://www.esa-soilmoisture-cci.org/validation 
 
Thanks for pointing us to the paper and website which are both very interesting. 
However, our paper was already finalized before Li et al. (2020) appeared online. We 
were aware of the online ESA-CCI evaluation, but we did not include it in the paper 
primarily because it has not been peer-reviewed.  
 
Page 3, Line 1 “[​...​] from 826 sensors located primarily in the USA and Europe [​...​]” 
Thus as for previous studies you have mentioned the extent to which your findings can 
be generalized is unclear (?), please revise as this sentence could be misleading. 
 
Agreed. We have replaced ​“and thus the extent to which their findings can be 
generalized is unclear”​ with ​“potentially leading to conclusions with limited 
generalizability.​” 
 
Page 3, Line 5 Question on SWI appears only here, seems a bit out of the blue 
(?)please introduce SWI earlier not to confuse readers. 
 
We agree, and have added the following to introduce the SWI: ​“There is also still 
uncertainty around [...] the impact of smoothing filters such as the Soil Wetness index 
(SWI; Wagner et al., 1999; Albergel et al., 2008) on the performance ranking of 
products.​” 
 
Page 3, Line 14, section 2.1 I am wondering here if I have the correct version of the 
manuscript as several dataset are not presented? It is a general comment that you have 
to justify why you have used those 18 dataset and not others, otherwise it looks like 
cherry-picking. While some are state-of-the arts, others are self-made, please revised 
the choice and presentation of the dataset. 
 
All products are introduced in Table 1, which we refer to in the first sentence of Section 
2.1. We have added the following to justify our selection of products: ​“We evaluated six 
products per category, which was sufficient to compare the performance among and 
within product categories and address the questions posed in the introduction. We only 
considered widely used products with (quasi-)global coverage and we attempted to 

https://www.esa-soilmoisture-cci.org/validation


keep the selection of products in each category as diverse as possible. For example, we 
considered products based on several major satellite missions used for global soil 
moisture mapping (AMSR2, ASCAT, SMAP, and SMOS), models of various type and 
complexity (with and without calibration), different sources of precipitation data 
(satellites, reanalyses, gauges, and combinations thereof), and various data merging 
and assimilation techniques (with different inputs).​” 
 
Page 3, Line 24 I assume you have used soil temperature of the first layer of soil 
between 1-7cm, is so please say it. Alternatively you could have discarded in situ 
measurements of soil moisture when associated measurements of soil temperature (if 
available) was < 4 dC 
 
We agree and have added 0–7 cm in reference to the ERA5 soil temperature estimates. 
 
Page 4, Lines 16-17 Add references I appropriate 
 
We would be happy to add relevant references but we are not aware of any. This is a 
relatively simple part of our methodology that we believe can be understood and 
replicated without references. 
 
Page 5, Line 10 “The model was run twice for 2010–2019 [​...​]” Please clarify if this 
was done for each forcing dataset (I assume so) 
 
Yes, the initialization was performed for each precipitation dataset. In the revised 
manuscript HBV is recalibrated for each precipitation dataset. We have added the 
following text: ​“To avoid giving one of the precipitation datasets an unfair advantage, we 
recalibrated the model for each of the three precipitation datasets (ERA5, IMERG, and 
MSWEP).​” 
 
Page 5, Line 20 “We calibrated the 7 relevant parameters of HBV [​...​]” This will have 
to be discuss further already if it impacts your results wrt to the land surface model 
based product? 
 
We have added the following to the revised manuscript: ​“The calibrated models (HBV 
and the Catchment model underlying SMAPL4) may, however, perform slightly worse in 
regions with climatic and physiographic conditions dissimilar to the in situ sensors used 
for calibration (but likely still better than the uncalibrated models).​” Section 3.7 
discusses the benefits and limitations of model calibration in detail, including 



implications with respect to the land surface model-based products, as suggested by 
the reviewer. 
 
Page 6, section 2.5 Are they all using the same measurement methodology?  
 
Thanks for the comment. We added the following text: ​“The measurements were 
performed using various types of sensors, including time-domain reflectometry sensors, 
frequency-domain reflectometry sensors, capacitance sensors, and cosmic-ray neutron 
sensors, among others.​” 
 
Page 7, figure 1 In such study this kind of global maps tend to show areas with no data 
more than areas with data. It is not obvious than 2 two zooms over North America and 
Europe add anything, perhaps you could have one figure with 3 panels, North 
America,Europe and Australia (?) 
 
Agreed; we have revised this figure (as well as the other figures) as proposed by the 
reviewer, but with four panels instead of three (Alaska, Europe, conterminous US, and 
Southeastern Australia). Thanks for the suggestion. 
 
Also I suspect here that most of the stations in the "cold" class over North America are 
from the SNOTEL network located in mountainous area where the retrieval of soil 
moisture from space is rather complex. This should be emphasise in the text at it is 
biasing your results. 
 
We agree; thanks for the comment. The retrieval may indeed be more complex in cold 
regions, which we mention in the paper: ​“the confounding influence of dense vegetation 
cover (de Rosnay et al., 2006; Gruhier et al., 2008; Dorigo et al., 2010), highly organic 
soils (Zhang et al., 2019b), and standing water (Ye et al., 2015; Du et al., 2018) on soil 
moisture retrievals.​” The influence of mountainous terrain on the retrievals is also 
mentioned in the paper: ​“Most satellite products performed worse in terms of R in areas 
of steep terrain (Fig. 2d), consistent with previous evaluations (Paulik et al.,2014; 
Karthikeyan et al., 2017a; Ma et al., 2019), and attributed to the confounding effects of 
relief on the upwelling microwave brightness temperature observed by the radiometer 
(Mialon et al., 2008; Pulvirenti et al., 2011; Guo et al., 2011).​" 
 
An additional explanation for the lower performance in cold regions (missing from our 
original submission) may be that the sensors are less representative of the coarse scale 
of the products. We therefore added the following: ​“it could also be that the in situ 
measurements are [...] less representative of satellite footprints or model grid-cells.​”  



 
Page 9, figure 2 I may have missed a point but I did not understand how did you obtain 
3-hourly data for e.g. ASCAT, SMOS, ESA-CCI, SMAP...please revise. 
 
This was indeed not clearly explained. We have added the following text: ​“For the 
satellite products without SWI filter, we matched the instantaneous soil moisture 
retrievals with coincident 3-hourly in situ measurements to compute the R values.​”  
 
It would have been easier to have them close to one another (SWI and not SWI) on 
your figures but has you have several questions to answer it was probably not easy to 
pick up the correct order of products for those figures. 
 
We agree that having the SWI and non-SWI products close to each other in the figure 
would be useful for answering the SWI-related question but less useful for the other 
questions addressed in the study. 
 
Page 11, section 3.2 My personal opinion is that this is a low pass filter smoothing the 
time-series, nothing more 
 
We agree with this observation; the SWI filter is in essence a low-pass filter smoothing 
the time series. 
 
Page 11, section 3.3 Are you R values significant? I may have missed something here 
but from your figures 2 and 3 (boxplots distribution) it is difficult for me to give a clear 
answer to this question (while you are doing it in the abstract) 
 
The large majority of ​R​ values are highly statistically significant, since an ​R​ value of just 
0.14 tends to be needed to obtain a statistically significant correlation (at the 0.05 level) 
for a sample size of 200 (the minimum sample size before an ​R​ value is calculated in 
this study; see Figure 1). Our ​R​ values are, however, generally much higher (Fig. 2) and 
our sample sizes much greater, and therefore our ​R​ values will be much more 
statistically significant. 
 



 
Figure 1.​ Plot showing the minimum value of Pearson's correlation coefficient (​R​) that would be significant at the 0.05 
level for a given sample size. Source: https://commons.wikimedia.org/wiki/File:Correlation_significance.svg. 
 
As explained in the beginning of this response letter, following recommendations of 
Gruber et al. (2020) we refrain from making statements about statistical significance or 
non-significance. 
 
Page 12, section 3.4 Line 21 “[​...​] the central Rocky Mountains [​...​]” This are usually 
area where it is difficult to retrieve soil moisture form space. Memo perhaps does better 
than ESA-CCI but is it good? are we talking about R values going from 0.2 to 0.3 orfrom 
0.6 to 0.8? From figure 4 it is difficult to see anything (at least to me). Again, are the 
differences significant? Lines 22-23 Confidence interval would help Line 29 Please 
clarify “[​...​] from the best sensor each day[​...​]” 
 
Please see Fig. 2d of our paper for median ​R​ values for mountainous versus flat areas 
(denoted by the letters S and F, respectively) for the different products. The median ​R​ is 
0.61 for ESA-CCI​SWI​ versus 0.73 for MeMo, which is a substantial difference (statistically 
significant at the ​p​=10​-6​ level). 
 
Page 12, Lines 31-32 Is it surprising to find the 3 calibrated HBV models leading this 
ranking? Again I would not claim such a best to worst ranking without discussing the 
significance of scores. 
 
This was somewhat surprising given the simplicity of HBV and the fact that HBV has 
been designed for runoff estimation in cold regions. Conversely, numerous studies have 
demonstrated the flexibility and effectiveness of HBV, and the model has been 
calibrated against ​in situ ​soil moisture measurements. See our discussion in the second 
paragraph of the subsection in question: ​“This demonstrates that soil moisture 
estimates from complex, data-intensive models (H-TESSEL underlying ERA5 and 
ERA5-Land, GLEAM, and the Catchment model underlying SMAPL4) are not 



necessarily more accurate than those from relatively simple, calibrated models (HBV).​” 
Note that we have devoted an entire subsection to discussing the benefits and 
limitations of calibration (Section 3.7).  
 
Page 13, figure 4 (also true for figure 5) Not sure this figure is very helpful as hardly 
visible (?) Perhaps you could use scatterplots, e.g. x-axis R for ESA-CCI vs in 
situ,y-axis R for MeMo vs in situ and then use color-codes for any classification you like. 
 
We appreciate the comment but a scatterplot would not tell us ​where​ the products 
perform better or worse and thus would be much less informative. We could indeed use 
color codes to denote the locations, but we feel a map is more clear. That said, we have 
completely redesigned the figure and hope it is more useful now. 
 
Page 13, Line 1 ERA5 is a coupled land atmosphere system where ASCAT has been 
assimilated. Could you comment on the impact it may (or may not) have when using it 
to force HTESSEL land surface model in ERA5-Land? is it fully independent from 
ASCAT? 
 
The assimilation of ASCAT soil moisture is unlikely to have influenced the precipitation 
generated by ERA5, given (i) the small influence of the assimilation on the soil moisture 
simulations (Muñoz Sabater et al., 2019) and (ii) the vast amounts of other observations 
(ground and satellite) also assimilated (Hersbach et al., 2020).  
 
P.14, Line 1 Data intensive models could also be calibrated don’t you think? I personally 
thing it is wrong to oppose land surface model and calibrated hydrological models. Their 
objectives are different. 
 
We may be misunderstanding the comment, but we do not consider it unfair to include 
both land surface models and calibrated hydrological models in the same evaluation. 
For users simply looking for the most accurate product — probably the most common 
type of end-user — the data source or modeling approach is not important. We fully 
agree that the design objectives can be different and that data-intensive models can be 
calibrated as well. The calibration of computationally demanding models is however 
more challenging, as mentioned at the end of Section 3.7. 
 
P.14, Line 8 There is more to say from such figure as figure 5 (?) e.g. discuss the 
geographical patterns 
 



Thank you for the suggestion. We have added the following: “​For HBV-IMERG, the 
greatest improvements were found over the central Rocky Mountains (Fig. 5), where 
IMERG performs relatively poorly (Beck et al., 2019a).​” 
 
P.14, Lines 21-23 Please discuss if it is likely to be because of the inputs quality 
(AS-CAT/SMOS) or a methodological matter. 
 
We explain in the sentence thereafter that it is probably a methodological issue: ​“They 
attributed this to the adverse impact of simultaneously assimilated screen-level 
temperature and relative humidity observations on the soil moisture estimates.​”  
 
P.14, Lines 26 There is also a study showing that the assimilation of ESA CCI inGLEAM 
leads to a decrease of quality (Brecht et al., 2018 GMD?) 
 
We suspect the reviewer might be referring to Martens et al. (2016). However, this study 
shows small (not negligible) improvements in the soil moisture simulations after DA. 
 
Page 14, Lines 32-33 Which was expected right? 
 
This was indeed in accordance with our expectations, but this has not been explicitly 
discussed in previous studies (to our knowledge). 
 
P.15, section 3.7 Perhaps this could be moved few sections above? 
 
We appreciate the comment. However, since we compare the benefits of model 
calibration and data assimilation in this section, we have to discuss the data assimilation 
results first. It is therefore not possible to move this subsection. 
 
P.16, Lines 16-19 In agreement with many previous studies (e.g. Albergel et al., 
2010,HESS, Dorigo et a;., 2017, RSE...) 
 
We agree and list eight previous studies that agree with our results: ​“Our performance 
ranking of the major product categories is consistent with previous studies for the 
conterminous USA (Liu et al., 2011; Kumar et al., 2014; Fang et al., 2016; Dong et al., 
2020), Europe (Naz et al., 2019), and the globe (Albergel et al., 2012; Tian et al., 2019; 
Dong et al., 2019).​” 
 



P.17, section 3.9 Perhaps worth referencing / discussing Reichle et al,. 2019 ? 
Verification of the SMAP Level-4 Soil Moisture Analysis Using Rainfall Observations in 
Australia, https://ieeexplore.ieee.org/document/8898398 
 
Thanks for the suggestion. We are not sure which statement of Section 3.9 is supported 
by the results of Reichle et al. (2019). Note that the author of that study, Rolf Reichle, is 
also co-author of the present study. 
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Abstract. Information about the spatiotemporal variability of soil moisture is critical for many purposes, including monitoring

of hydrologic extremes, irrigation scheduling, and prediction of agricultural yields. We evaluated the temporal dynamics of 18

state-of-the-art (quasi-)global near-surface soil moisture products, including six based on satellite retrievals, six based on models

without satellite data assimilation (referred to hereafter as “open-loop” models), and six based on models that assimilate satellite

soil moisture or brightness temperature data. Seven of the products are introduced for the first time in this study: one multi-sensor5

merged satellite product called MeMo and six estimates from the HBV model with three precipitation inputs (ERA5, IMERG,

and MSWEP) and with and without assimilation of SMAPL3E satellite retrievals, respectively. As reference, we used in situ soil

moisture measurements between 2015 and 2019 at 5-cm depth from 826 sensors, located primarily in the USA and Europe.

The 3-hourly Pearson correlation (R) was chosen as the primary performance metric. The median R ± interquartile range

across all sites and products in each category was 0.66± 0.30 for the satellite products, 0.69± 0.25 for the open-loop models,10

and 0.72± 0.22 for the models with satellite data assimilation
:::::::::
Application

::
of

:::
the

::::
Soil

:::::::
Wetness

::::::
Index

:::::
(SWI)

:::::::::
smoothing

:::::
filter

::::::
resulted

::
in
:::::::::

improved
::::::::::
performance

:::
for

:::
all

:::::::
satellite

:::::::
products. The best-to-worst performance ranking of the four single-sensor

satellite products was SMAPL3E
:::SWI,:::::::::

SMOSSWI, SMOS, AMSR2
:::SWI, and ASCAT

::SWI, with the L-band-based SMAPL3E
:::SWI

(median R of 0.72) outperforming the others at 50 % of the sites. Among the two multi-sensor satellite products (MeMo and

ESA-CCI
::SWI), MeMo performed better on average (median R of 0.72 versus 0.67), mainly due to the inclusion of SMAPL3E

:::SWI.15

The best-to-worst performance ranking of the six open-loop models was HBV-MSWEP, HBV-ERA5, ERA5-Land, HBV-IMERG,

VIC-PGF, and GLDAS-Noah. This ranking largely reflects the quality of the precipitation forcing. HBV-MSWEP (median R

of 0.78) performed best not just among the open-loop models but among all products. The calibration of HBV improved
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the median R by +0.12 on average compared to random parameters, highlighting the importance of model calibration. The

best-to-worst performance ranking of the six models with satellite data assimilation was HBV-MSWEP+SMAPL3E, HBV-

ERA5+SMAPL3E, GLEAM, SMAPL4, HBV-IMERG+SMAPL3E, and ERA5. The assimilation of SMAPL3E retrievals into

HBV-IMERG improved the median R by +0.06, suggesting that data assimilation yields significant benefits at the global scale.

1 Introduction5

Accurate and timely information about soil moisture is valuable for many purposes, including drought monitoring, water

resources management, irrigation scheduling, prediction of vegetation dynamics and agricultural yields, forecasting floods and

heatwaves, and understanding climate change impacts (Wagner et al., 2007; Vereecken et al., 2008; Ochsner et al., 2013; Dorigo

and de Jeu, 2016; Brocca et al., 2017; Miralles et al., 2019; Tian et al., 2019; Karthikeyan et al., 2020; Chawla et al., 2020).

Over recent decades, numerous soil moisture products suitable for these purposes have been developed, each with strengths10

and weaknesses (see Table 1 for a non-exhaustive overview). The products differ in terms of design objective, spatiotemporal

resolution and coverage, data sources, algorithm, and latency. They can be broadly classified into three major categories:

(i) products directly derived from active- or passive-microwave satellite observations (Zhang and Zhou, 2016; Karthikeyan et al.,

2017b), (ii) hydrological or land surface models without satellite data assimilation (referred to hereafter as “open-loop” models;

Cammalleri et al., 2015; Bierkens, 2015; Kauffeldt et al., 2016
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Cammalleri et al., 2015; Bierkens, 2015; Kauffeldt et al., 2016; Chen and Yuan, 202015

), and (iii) hydrological or land surface models that assimilate soil moisture retrievals or brightness temperature observations from

microwave satellites (Moradkhani, 2008; Liu et al., 2012; Lahoz and De Lannoy, 2014; Reichle et al., 2017)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Moradkhani, 2008; Pan et al., 2009; Pan and Wood, 2010; Liu et al., 2012; Lahoz and De Lannoy, 2014; Reichle et al., 2017)

.

A plethora of studies addressed the important task of evaluating
:::::::::
Numerous

::::::
studies

::::
have

::::::::
evaluated these soil moisture products

using in situ soil moisture measurements (e.g., Dorigo et al., 2011; Bindlish et al., 2018
:::::::::::::::::::::::::::::::::
Jackson et al., 2010; Bindlish et al., 201820

), other independent soil moisture products (e.g., Chen et al., 2018; Dong et al., 2019), remotely-sensed vegetation green-

ness data (e.g., Tian et al., 2019), or precipitation data (e.g., Crow et al., 2010; Karthikeyan and Kumar, 2016). Pronounced

differences in spatiotemporal dynamics and accuracy were found among the products, even among those derived from the

same data source. However, most studies evaluated only one specific product or a small subset (≤ 3) of the available products (e.g.,

Martens et al., 2017; Liu et al., 2019; Zhang et al., 2019b
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Martens et al., 2017; Liu et al., 2019; Zhang et al., 2019b; Tavakol et al., 201925

). Additionally, many had a regional (sub-continental) focus (e.g., Albergel et al., 2009; Gruhier et al., 2010; Griesfeller et al.,

2016), and thus the extent to which their findings can be generalized is unclear
:::::::::
potentially

::::::
leading

::
to
::::::::::
conclusions

:::::
with

::::::
limited

::::::::::::
generalizability. Furthermore, several new or recently reprocessed products have not been thoroughly evaluated yet, such as

ERA5 (Hersbach et al., 2020), ERA5-Land (C3S, 2019), and ESA-CCI V04.4 (Dorigo et al., 2017). There is also still uncertainty

around, for example, the effectiveness of multi-sensor merging techniques (Petropoulos et al., 2015), the impact of model30

complexity on the accuracy of soil moisture simulations (Fatichi et al., 2016), and the degree to which model deficiencies and

precipitation data quality affect the added value of data assimilation (Xia et al., 2019),
:::
and

:::
the

::::::
impact

:::
of

::::::::
smoothing

::::::
filters

::::
such

::
as

:::
the

:::
Soil

:::::::
Wetness

:::::
index

::::::
(SWI;

:::::::::::::::::::::::::::::::::
Wagner et al., 1999; Albergel et al., 2008

:
)
::
on

:::
the

:::::::::::
performance

:::::::
ranking

::
of

:::::::
products.

2



Our main objective was to undertake a comprehensive evaluation of 18 state-of-the-art (sub-)daily (quasi-)global near-surface

soil moisture products in terms of their temporal dynamics (Section 2.1). Our secondary objective was to introduce seven new soil

moisture products (one multi-sensor merged satellite product called MeMo introduced in Section 2.2 and six HBV model-based

products introduced in Sections 2.3 and 2.4). As reference for the evaluation, we used in situ soil moisture measurements5

between 2015 and 2019 from 826 sensors located primarily in the USA and Europe (Section 2.5). We aim to shed light on

the strengths and weaknesses
:::::::::
advantages

::::
and

:::::::::::
disadvantages

:
of different soil moisture products and on the merit of different

::::::
various technological and methodological innovations by addressing nine pertinent questions

:::
key

::::::::
questions

::::::::
frequently

:::::
faced

:::
by

:::::::::
researchers

:::
and

:::::::::
end-users

::::
alike:

1. How do the ascending and descending retrievals perform (Section 3.1)?10

2. What is the impact of the Soil Wetness Index (SWI )
:::
SWI

:
smoothing filter (Section 3.2)?

3. What is the relative performance of the single-sensor satellite products (Section 3.3)?

4. How do the multi-sensor merged satellite products perform (Section 3.4)?

5. What is the relative performance of the open-loop models (Section 3.5)?

6. How do the models with satellite data assimilation perform (Section 3.6)?15

7. What is the impact of model calibration (section 3.7)?

8. How do the major product categories compare (Section 3.8)?

9. To what extent are our results generalizable to other regions (Section 3.9)?

2 Data and methods

2.1 Soil moisture products20

We evaluated in total 18 near-surface soil moisture products, including six based on satellite observations, six based on open-loop

models, and six based on models that assimilate satellite data (Table 1).
::
We

::::::::
evaluated

:::
six

::::::::
products

:::
per

::::::::
category,

:::::
which

::::
was

:::::::
sufficient

::
to
::::::::
compare

:::
the

::::::::::
performance

::::::
among

:::
and

::::::
within

::::::
product

:::::::::
categories

:::
and

:::::::
address

::
the

::::::::
questions

::::::
posed

::
in

::
the

:::::::::::
introduction.

:::
We

::::
only

:::::::::
considered

::::::
widely

::::
used

::::::::
products

::::
with

:::::::::::
(quasi-)global

::::::::
coverage

::::
and

::
we

:::::::::
attempted

::
to

::::
keep

:::
the

::::::::
selection

::
of

::::::::
products

::
in

::::
each

:::::::
category

::
as

:::::::
diverse

::
as

:::::::
possible.

::::
For

::::::::
example,

::
we

::::::::::
considered

:::::::
products

:::::
based

:::
on

::::::
several

:::::
major

:::::::
satellite

::::::::
missions

::::
used

:::
for25

:::::
global

:::
soil

::::::::
moisture

:::::::
mapping

::::::::
(AMSR2,

::::::::
ASCAT,

::::::
SMAP,

:::
and

:::::::
SMOS),

::::::
models

::
of

:::::::
various

::::
type

:::
and

:::::::::
complexity

:::::
(with

:::
and

:::::::
without

::::::::::
calibration),

:::::::
different

:::::::
sources

::
of

::::::::::
precipitation

::::
data

:::::::::
(satellites,

:::::::::
reanalyses,

:::::::
gauges,

:::
and

::::::::::::
combinations

:::::::
thereof),

:::
and

:::::::
various

::::
data

:::::::
merging

:::
and

::::::::::
assimilation

:::::::::
techniques

:::::
(with

:::::::
different

:::::::
inputs).

The units differed among the products; some are provided in volumetric water content (typically expressed in m3 m−3; e.g.,

ERA5) and others in degree of saturation (typically expressed in %; e.g., ASCAT). We did not harmonize the units among the
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products, because the Pearson correlation coefficient — the performance metric used in the current study (Section 2.6) — is

insensitive to the units. Since the evaluation was performed at a 3-hourly resolution, we downscaled the two products with a

daily temporal resolution (VIC-PGF and GLEAM) to a 3-hourly resolution using nearest neighbor resampling. In contrast to the5

model products, the satellite products (with the exception of ASCAT) often do not provide retrievals when the soil is frozen

or snow-covered (Supplement Fig. S1). To keep the evaluation consistent , we discarded
:::::::::::::::::
(Gruber et al., 2020),

:::
we

::::
used

::::::
ERA5

:::::::::::::::::::
(Hersbach et al., 2020)

:
to

:::::::
discard the estimates of all 18 products when the near-surface soil temperature

::
of

:::::
layer

:
1
::::
(0–7

::::
cm)

was < 4◦C and/or the snow depth was > 1 mm(both determined using ERA5; Hersbach et al., 2020).

For all satellite products with the exception of MeMo10

::
To

::::::
deepen

:::
the

::::::
vertical

:::::::
support

::
of

:::
the

:::::::::
superficial

::::::
satellite

:::::::::::
observations

:::
and

:::::::
suppress

:::::
noise, we also evaluated 3-hourly versions

::
of

:::
the

::::::
satellite

::::::::
products processed using the Soil Wetness Index (SWI )

::::
SWI exponential smoothing filter (Wagner et al., 1999;

Albergel et al., 2008), which reduces noise and improves the consistency with in situ measurements. MeMo was not processed

as it was derived from SWI-filtered products. The SWI filter is defined according to:

SWI(t) =

∑
i

SMsat(ti)e
− t−ti

T∑
i

e−
t−ti
T

, (1)15

where SMsat (units depend on the product) is the soil moisture retrieval at time ti, T (days) represents the time lag constant, and

t represents the 3-hourly time step. T was set to 5 days for all products, as the performance did not change markedly using

different values, as also reported in previous studies (Albergel et al., 2008; Beck et al., 2009; Ford et al., 2014; Pablos et al.,

2018). Following Pellarin et al. (2006), the SWI at time t was only calculated if ≥ 1 retrievals were available in the interval

(t−T, t] and ≥ 3 retrievals were available in the interval [t− 3T, t−T ].20

:::
The

:::::::
vertical

::::::
support

::
is
:::::::::
physically

:::::::::
consistent

::::
with

::
in

::::
situ

:::
soil

::::::::
moisture

::::::::::::
measurements

::
at

:::::
5-cm

:::::
depth

:::
for

::::
most

:::::::
models.

::::
The

::::::
average

:::::
depth

:::
of

:::
the

::::
soil

::::
layer

:::::
(i.e.,

:::
half

::::
the

:::::
depth

::
of

:::
the

::::::
lower

::::::::
boundary)

:::
is

:::
2.5

:::
cm

:::
for

:::::::::
SMAPL4,

:::
3.5

:::
cm

:::
for

::::::
ERA5

::::
and

::::::::::
ERA5-Land,

::
5
:::
cm

:::
for

:::::::::
GLEAM,

:::
8.5

:::
cm

:::
for

:::::::::::
HBV-ERA5,

:::
6.6

:::
cm

::::
for

::::::::::::
HBV-IMERG,

:::
7.3

:::
cm

:::
for

:::::::::::::
HBV-MSWEP,

::::
and

:::
15

:::
cm

::
for

:::::::::
VIC-PGF

::::::
(Table

::
1;

::::::::::
Supplement

:::::
Table

::::
S1).

::::
The

:::
soil

::::::
layers

::
of

:::::
HBV

::::
may

:::::
seem

:::
too

:::::
deep,

:::::::::
especially

:::::
since

::::
they

::::::::
represent

:::::::::
conceptual

::::::::
“buckets”

::::
that

:::
can

:::
be

::::
fully

:::::
filled

::::
with

:::::
water,

:::
in

:::::::
contrast

::
to

:::
the

:::
soil

::::::
layers

::
of

:::
the

:::::
other

::::::
models

::::::
which

::::::::::
additionally25

::::::
consist

::
of

:::::::
mineral

:::
and

:::::::
organic

::::::
matter.

::::::::
However,

:::
the

:::
soil

:::::
layer

::::::
depths

::
of

:::::
HBV

:::::
were

::::::::
calibrated

::::
(see

::::::
Section

::::
2.3)

::::
and

:::
are

::::
thus

:::::::::
empirically

:::::::::
consistent

::::
with

::
in

:::
situ

:::::::::::
measurements

::
at

:::::
5-cm

:::::
depth.

:

2.2 Merged soil Moisture (MeMo) product

Merged soil Moisture (MeMo) is a new 3-hourly soil moisture product derived by merging the soil moisture anomalies of three

single-sensor passive-microwave satellite products with SWI filter (AMSR2SWI, SMAPL3ESWI, and SMOSSWI; Table 1). MeMo30

was produced for 2015–2019 (the period with data for all three products) as follows:

1. Three-hourly soil moisture time series of AMSR2SWI, SMAPL3ESWI, SMOSSWI, the active-microwave satellite product

ASCATSWI, and the open-loop model HBV-MSWEP were normalized by subtracting the long-term means and dividing

by the long-term standard deviations of the respective products (calculated for the period of overlap).
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2. Three-hourly anomalies were calculated for the five products by subtracting their respective seasonal climatologies
:::::::
averages.

The seasonal climatology was calculated by taking the multi-year mean for each day of the year, after which we applied a5

30-day central moving mean to eliminate noise. The moving mean was only calculated if > 21 days with values were

present in the 30-day window. Due to the large number of missing values in winter (Supplement Fig. S1), we were not

able to compute the seasonality and, in turn, the anomalies in winter for some satellite products.

3. Time-invariant merging weights for AMSR2SWI, SMAPL3ESWI, and SMOSSWI were calculated using extended triple

collocation (McColl et al., 2014), a technique to estimate Pearson correlation coefficients (R) for independent products10

with respect to an unknown truth. The R values for the respective products were determined using the triplet consisting of

the product in question in combination with ASCAT SWI and HBV-MSWEP, which are independent from each other and

from the passive products. The R values were only calculated if > 200 coincident anomalies were available. The weights

were calculated by squaring the R values.

4. For each 3-hourly time step, we calculated the weighted mean of the available anomalies of AMSR2SWI, SMAPL3ESWI,15

and SMOSSWI. If only one anomaly was available, this value was used and no averaging was performed. The climatology

of SMAPL3E — the best-performing product in our evaluation — was added to the result, to yield the MeMo soil moisture

estimates.

2.3 HBV hydrological model

Six new 3-hourly soil moisture products were produced using the Hydrologiska Byr Vattenbalansavdelning (HBV) conceptual20

hydrological model (Bergström, 1976, 1992) forced with three different precipitation datasets and with and without assimilation

of SMAPL3E soil moisture estimates, respectively (Table 1). HBV was selected because of its low complexity, high agility,

computational efficiency, and succesful application used in numerous studies spanning a wide range of climate and physiographic

conditions (e.g., Steele-Dunne et al., 2008; Driessen et al., 2010; Beck et al., 2013; Vetter et al., 2015; Jódar et al., 2018). The

model has one soil moisture store, two groundwater stores, and 12 free parameters. Among the 12 free parameters, 7 are relevant25

for simulating soil moisture as they pertain to the snow or soil routines, while 5 are irrelevant for this study as they pertain to

runoff generation or deep percolation. The soil moisture store has two inputs (precipitation and snowmelt) and two outputs

(evaporation and recharge). The model was run twice for 2010–2019; the first time to initialize the soil moisture store, and the

second time to obtain the final outputs.

HBV requires time series of precipitation, potential evaporation, and air temperature as input. For precipitation, we used three30

different datasets: (i) the reanalysis ERA5 (hourly 0.28◦ resolution; Hersbach et al., 2020); (ii) the satellite-based IMERG dataset

(Late Run V06; 30-minutes 0.1◦ resolution; Huffman et al., 2014, 2018); and (iii) the gauge-, satellite-, and reanalysis-based

MSWEP dataset (V2.4; 3-hourly 0.1◦ resolution; ??). We calculated 3-hourly accumulations for
::::::::::::::::::::
Beck et al., 2017b, 2019b

::
).

:::
For

the ERA5 and IMERG datasets,
:::
we

:::::::::
calculated

:::::::
3-hourly

:::::::::::
precipitation

::::::::::::
accumulations. Daily potential evaporation was estimated

using the Hargreaves (1994) equation from daily minimum and maximum air temperature. Temperature
::::
The

::::
daily

::::::::
potential

:::::::::
evaporation

::::
data

:::::
were

:::::::::
downscaled

:::
to

:::::::
3-hourly

:::::
using

::::::
nearest

::::::::
neighbour

::::::::::
resampling.

::::
Air

::::::::::
temperature estimates were taken from
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ERA5, downscaled to 0.1◦ and bias-corrected .
:::
To

:::::::
improve

:::
the

::::::::::::
representation

::
of

:::::::::::
mountainous

::::::
regions

:::
and

:::::::::
ameliorate

::::::::
potential

:::::
biases,

:::
the

::::::
ERA5

:::
air

::::::::::
temperature

::::
data

:::::
were

:::::::
matched

:
on a monthly basis through an additive approach using

::::::::::::
climatological

::::
basis

:::::
using

::
an

:::::::
additive

:::
(as

:::::::
opposed

::
to

::::::::::::
multiplicative)

::::::::
approach

::
to the comprehensive station-based WorldClim climatology (V2;5

1-km resolution; Fick and Hijmans, 2017). The daily potential evaporation data were downscaled to 3-hourly using nearest

neighbour resampling.

We calibrated the 7 relevant parameters of HBV using in situ soil moisture measurements between 2010 and 2019 from

177 independent sensors from the International Soil Moisture Network (ISMN) archive that were not used for performance

assessment (Section 2.5; Supplement Fig. S2).
:::::
These

::::::
sensors

:::
did

:::
not

::::
have

:::::::
enough

::::::::::::
measurements

:::::
during

:::
the

:::::::::
evaluation

::::::
period10

::::::
(March

:::
31,

:::::
2015,

:::
to

:::::::::
September

:::
16,

::::::
2019)

:::
and

::::
thus

:::::
were

::::::::
available

:::
for

::
an

:::::::::::
independent

:::::::::
calibration

::::::::
exercise.

:
The parameter

space was explored by generating N = 500 candidate parameter sets using Latin hypercube sampling (McKay et al., 1979),

which splits the parameter space up into N equal intervals and generates parameter sets by sampling each interval once

in a random manner. The model was subsequently run for all candidate parameter sets, after which we selected the pa-

rameter set with the best overall performance across the 177 sites (Supplement Table S1). As objective function, we used15

the median Pearson correlation coefficient (R) calculated between 3-hourly in situ and simulated soil moisture time series.

As forcing, we used the MSWEP precipitation dataset because of its favourable performance in numerous evaluations (e.g.,

Alijanian et al., 2017; Sahlu et al., 2017; Bai and Liu, 2018; Casson et al., 2018; Beck et al., 2017c, 2019a; Zhang et al., 2019a; Satgé et al., 2019

). The calibrated parameter set was used for all HBV runs, including those forced with ERA5 or IMERG precipitation.
::
To

::::
avoid

::::::
giving

:::
one

::
of

:::
the

:::::::::::
precipitation

:::::::
datasets

::
an

:::::
unfair

:::::::::
advantage,

:::
we

::::::::::
recalibrated

:::
the

::::::
model

::
for

:::::
each

::
of

:::
the

::::
three

:::::::::::
precipitation20

::::::
datasets

:::::::
(ERA5,

:::::::
IMERG,

::::
and

:::::::::
MSWEP).

2.4 Soil moisture data assimilation

Instantaneous soil moisture retrievals (without SWI filter) from SMAPL3E (Table 1) were assimilated into the HBV model

forced with the three above-mentioned precipitation datasets (ERA5, IMERG, and MSWEP). Previous regional studies that

successfully used HBV to assess the value of data assimilation include Parajka et al. (2006), Montero et al. (2016), and Lü et al.25

(2016). We used the simple Newtonian nudging technique of Houser et al. (1998) that drives the soil moisture state of the model

towards the satellite observations. Nudging techniques are computationally efficient and easy to implement, and have therefore

been used in several studies (e.g., Brocca et al., 2010b; Dharssi et al., 2011; Capecchi and Brocca, 2014; Laiolo et al., 2016;

Cenci et al., 2016; Martens et al., 2016). For each grid-cell, the soil moisture state of the model was updated when a satellite

observation was available according to:30

SM+
mod(t) = SM−

mod(t)+ kG
[
SMsc

sat(t)−SM−
mod(t)

]
, (2)

where SM+
mod and SM−

mod (mm) are the updated and a priori soil moisture states of the model, respectively, SMsc
sat (mm) are the

rescaled satellite observations, and t is the 3-hourly time step. The satellite observations were rescaled to the open-loop model

space using cumulative distribution function (CDF) matching (Reichle and Koster, 2004).
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The nudging factor k (−) was set to 0.1 as this gave satisfactory results. The gain parameter G (−) determines the magnitude

of the updates and ranges from 0 to 1. G is generally calculated based on relative quality of the satellite retrievals and the5

open-loop model. Most previous studies used a spatially and temporally uniform G (e.g., Brocca et al., 2010b; Dharssi et al.,

2011; Capecchi and Brocca, 2014; Laiolo et al., 2016; Cenci et al., 2016). Conversely, Martens et al. (2016) used the triple

collocation technique (Scipal et al., 2008) to obtain spatially variable G values. Here we calculated G in a similar fashion

according to:

G=
R2

sat

R2
sat +R2

mod
, (3)10

where Rsat and Rmod (−) are Pearson correlation coefficients with respect to an unknown truth for SMAPL3E and HBV,

respectively, calculated using extended triple collocation (Section 2.2). Rsat was determined using 3-hourly anomalies of the

triplet SMAPL3E, ASCATSWI, and HBV-MSWEP (Table 1) which are based on passive microwaves, active microwaves, and an

open-loop model, respectively. Rmod was determined using 3-hourly anomalies of the triplet HBV (forced with either ERA5,

IMERG, or MSWEP), ASCATSWI, and SMAPL3ESWI. The anomalies were calculated by subtracting the seasonal climatologies

:::::::
averages of the respective products. The seasonal climatologies

:::::::
averages were determined as described in Section 2.2. The Rsat

and Rmod values were only calculated if > 200 coincident anomalies were available. The resulting G values vary in space but

are constant in time.5

2.5 In situ soil moisture measurements

As reference for the evaluation, we used harmonized and quality-controlled in situ volumetric soil moisture measurements

(m3 m−3) from the ISMN archive (Dorigo et al., 2011, 2013; Appendix Table A1).
:::
The

::::::::::::
measurements

::::
were

:::::::::
performed

:::::
using

::::::
various

:::::
types

::
of

:::::::
sensors,

::::::::
including

:::::::::::
time-domain

:::::::::::
reflectometry

:::::::
sensors,

:::::::::::::::
frequency-domain

::::::::::::
reflectometry

:::::::
sensors,

::::::::::
capacitance

::::::
sensors,

::::
and

:::::::::
cosmic-ray

:::::::
neutron

:::::::
sensors,

::::::
among

:::::
others.

:
Similar to numerous previous evaluations (e.g., Albergel et al., 2009;10

Champagne et al., 2010; Albergel et al., 2012; Wu et al., 2016), we selected measurements from sensors at a depth of 5 cm

(±2 cm). Since the evaluation was performed at a 3-hourly resolution, the measurements in the ISMN archive, which have

a hourly resolution, were resampled to a 3-hourly resolution. We only used sensors with a 3-hourly record length > 1 year

(not necessarily consecutive) during the evaluation period from March 31, 2015, to September 16, 2019. We did not average

::
the

:::::::::::::
measurements

::
of sites with multiple sensors to avoid potentially introducing discontinuities in the time series. In total15

826 sensors, located in the USA (692), Europe (117), and Australia (17), were available for evaluation (Fig. 1). The median

record length was 3.0 years.

2.6 Evaluation approach

We evaluated the 18 near-surface soil moisture products (Table 1) for the 4.5-year long period from March 31, 2015 (the

date on which SMAP data became available), to September 16, 2019 (the date on which we started processing the prod-20

ucts). As performance metric, we used the Pearson correlation coefficient (R) calculated between 3-hourly soil moisture

time series from the sensor and the product
:
in
::::

situ
::::::
sensors

::::
and

:::
the

::::::::
products, similar to numerous previous studies (e.g.,
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(A)
(B)
(C)
(D)
(E)

Tropical (n=9)
Arid (n=313)
Temperate (n=183)
Cold (n=321)
Polar (n=3)

Figure 1. Major Köppen-Geiger climate class (Beck et al., 2018) of the 826 sensors used as reference. n denotes the number of sensors in

each class.

Karthikeyan et al., 2017a; Al-Yaari et al., 2017; Kim et al., 2018). R measures how well the in situ and product time

series correspond in terms of temporal variability, and thus evaluates the most important aspect of soil moisture time se-

ries for the majority of applications (Entekhabi et al., 2010; Gruber et al., 2020). It is insensitive to systematic differences25

in mean and variance, which can be substantial due to: (i) the use of different soil property maps as input to the retrieval

algorithms and hydrological models (Koster et al., 2009)
:::::::::::::::::::::::::::::::::
(Teuling et al., 2009; Koster et al., 2009); and (ii) the inherent scale dis-

crepancy between in situ point measurements and satellite footprints or model grid-cells (Miralles et al., 2010; Crow et al., 2012)

::::::::::::::::::::::::::::::::::::::::::::::::
(Miralles et al., 2010; Crow et al., 2012; Gruber et al., 2020).

Additionally,
::
to

:::::::
quantify

:::
the

:::::::::::
performance

:::
of

:::
the

:::::::
products

::
at
::::::::

different
::::
time

::::::
scales,

:
we calculated Pearson correlation co-30

efficients for the low- and
::::::::::::
low-frequency

::::::::::
fluctuations

::::
(i.e.,

:::
the

::::
slow

:::::::::
variability

::
at
::::::::
monthly

:::
and

::::::
longer

::::
time

::::::
scales;

::::
Rlo)

::::
and

::
the

:
high-frequency fluctuations of the

:::
(i.e.,

:::
the

::::
fast

:::::::::
variability

::
at 3-hourly time series (Rlo and

::
to

:::::::
monthly

::::
time

::::::
scales;

:
Rhi,

respectively). The low-frequency fluctuations were isolated using a 30-day central moving mean, similar to previous studies

(e.g., Albergel et al., 2009; Al-Yaari et al., 2014; Su et al., 2016). The moving mean was calculated only if > 21 days with values

8



:::::::
estimates

:
were present in the 30-day window. The high-frequency fluctuations were isolated by subtracting the low-frequency

fluctuations from the original
:::::::
3-hourly time series. We

::
To

::::::
ensure

:
a
::::
fair

:::::::::
evaluation,

:::
we discarded the estimates of all products when the near-surface soil temperature was < 4◦C

and/or the snow depth was > 1 mm (both determined using ERA5; Hersbach et al., 2020). For each sensor and product
:::
the5

::::::
satellite

::::::::
products

:::::::
without

::::
SWI

:::::
filter,

:::
we

:::::::
matched

:::
the

::::::::::::
instantaneous

:::
soil

::::::::
moisture

::::::::
retrievals

::::
with

:::::::::
coincident

::::::::
3-hourly

::
in

::::
situ

:::::::::::
measurements

:::
to

:::::::
compute

:::
the

::
R

::::::
values.

:::::
Since

:::
the

:::::::::
evaluation

::::
was

::::::::
performed

::
at
::

a
:::::::
3-hourly

:::::::::
resolution,

:::
we

::::::::::
downscaled

:::
the

::::
two

:::::::
products

::::
with

::
a

::::
daily

::::::::
temporal

:::::::::
resolution

:::::::::
(VIC-PGF

:::
and

:::::::::
GLEAM;

:::::
Table

::
1)

::
to

::
a

:::::::
3-hourly

:::::::::
resolution

:::::
using

::::::
nearest

::::::::
neighbor

:::::::::
resampling.

:::
To

::::::
ensure

::::::
reliable

::
R

::::::
values, we only calculated R, Rhi, or Rlo values if > 200 coincident soil moisture estimates

from the sensor and the product were present. Since the spatiotemporal coverage differed among the products (Table 1), the10

::::::::
available.

:::
The

:
final number of R, Rhi, and Rlo values

:::
thus

:
varied depending on the product.

To derive insights into the reasons for the differences in performance, median R values were calculated separately for different

Köppen-Geiger climate classes, leaf area index (LAI) values, and topographic slopes. To determine the Köppen-Geiger climate

classes, we used the 1-km Köppen-Geiger climate classification map of Beck et al. (2018; Fig. 1), which represents the period

1980–2016. To determine LAI, we used the 1-km Copernicus LAI dataset derived from SPOT-VGT and PROBA-V data (V2;15

Baret et al., 2016; mean over 1999–2019). To determine the topographic slope, we used the 90-m MERIT DEM (Yamazaki

et al., 2017). The
::
To

::::::
reduce

:::
the

:::::
scale

::::::::
mismatch

:::::::
between

:::::
point

::::::::
locations

:::
and

:::::::
satellite

:::::
sensor

:::::::::
footprints

::
or

:::::
model

:::::::::
grid-cells,

:::
we

:::::::
upscaled

:::
the Köppen-Geiger, LAI, and topographic slope maps were upscaled to 0.25◦ using majority, average, and average

resampling, respectively, to make them more representative of satellite sensor footprints and model grid-cells.
:
.

3 Results and discussion20

3.1 How do the ascending and descending retrievals perform?

Microwave soil moisture retrievals from ascending and descending overpasses may exhibit performance differences due to

diurnal variations in land surface conditions (Lei et al., 2015) and radio-frequency interference (RFI; Aksoy and Johnson,

2013). Table 2 presents R values for the instantaneous ascending and descending retrievals of the four single-sensor products

(AMSR2, ASCAT, SMAPL3E, and SMOS; Table 1). Descending (local night) retrievals were more reliable for the passive25

microwave-based AMSR2, in agreement with several previous studies (Lei et al., 2015; Griesfeller et al., 2016; Bindlish

et al., 2018), and consistent with the notion that soil-vegetation temperature differences during day-time interfere with passive

microwave soil moisture retrieval (Parinussa et al., 2011). Descending (local morning) retrievals were more reliable for the active

microwave-based ASCAT (Table 2), in agreement with Lei et al. (2015). The ascending and descending retrievals performed

similarly for the passive microwave-based SMAPL3E and SMOS (Table 2). For the remainder of this analysis, we will use30

only descending retrievals of AMSR2. We did not discard the ascending retrievals of ASCAT as they helped to improve the

performance of ASCATSWI.
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B
C
D

Satellite products
Open-loop models 
Models with DA

(a) Overall performance

(b) Median performance for Köppen-Geiger climate classes

(c) Median performance for sparse and dense vegetation cover

(d) Median performance for flat and steep terrain

S
D

F
S

Arid
Temperate 
Cold

Sparse vegetation (LAI <2 m2 m-2 )
Dense vegetation (LAI >2 m2 m-2)

Flat terrain (mean slope <2°)
Steep terrain (mean slope >2°)

Figure 2. (a) Performance of the soil moisture products in terms of 3-hourly Pearson correlation (R). The products were sorted in ascending

order of median R. Outliers are not shown. The number above the median line in each box represents the number of sites with R values and

the number below the median line represents the median R value. Also shown are median R values for different (b)
::::
major Köppen-Geiger

climate classes, (c)
::::
mean

:::
leaf

::::
area

::::
index

:
(LAI

:
) values, and (d)

::::
mean

:
topographic slopes.
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(c) Monthly high-pass filtered time series

(a) Performance in terms of low-frequency fluctuations

(b) Performance in terms of high-frequency fluctuationsSatellite products
Open-loop models 
Models with DA

Figure 3. Performance of the soil moisture products in terms of 3-hourly Pearson correlation for (a) low-frequency fluctuations (Rlo) and

(b) high-frequency fluctuations (Rhi). The products were sorted in ascending order of the median. The number above the median line in each

box represents the number of sites with Rlo or Rhi values and the number below the median line represents the median Rlo or Rhi value.

Outliers are not shown.
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3.2 What is the impact of the Soil Wetness Index (SWI) smoothing filter?

The application of the SWI filter resulted in higher median R, Rhi, and Rlo values for all satellite products (Figs. 2a and 3;

Table 1). The median R improvement was +0.12 for AMSR2, +0.10 for ASCAT, +0.07 for SMAPL3E, +0.17 for SMOS, and

+0.11 for ESA-CCI (Fig. 2a). The improvements are probably mainly because the SWI filter reduces the impact of random5

errors and potential differences between ascending and descending overpasses (Su et al., 2015; Bogoslovskiy et al., 2015).

Additionally, since the SWI filter simulates the slower variability of soil moisture at deeper layers (Wagner et al., 1999; Albergel

et al., 2008; Brocca et al., 2010a), it improves the consistency between the in situ measurements at 5-cm depth and the microwave

signals, which often have a penetration depth of just 1–2 cm depending on the observation frequency and the land surface

conditions (Long and Ulaby, 2015; Shellito et al., 2016a; Rondinelli et al., 2015; Lv et al., 2018). Our results suggests that10

previous near-surface soil moisture product assessments (e.g., Zhang et al., 2017; Karthikeyan et al., 2017a; Cui et al., 2018;

Al-Yaari et al., 2019; Ma et al., 2019), which generally did not use smoothing filters, may have underestimated the true skill of

the products.

3.3 What is the relative performance of the single-sensor satellite products?

Among the four single-sensor products with SWI filter (AMSR2SWI, ASCATSWI, SMAPL3ESWI, and SMOSSWI; Table 1),15

SMAPL3ESWI performed best in terms of median R, Rlo, and Rhi by a wide margin (Figs. 2a and 3), in agreement with previous

studies using triple collocation (Chen et al., 2018) and in situ measurements from the USA (Karthikeyan et al., 2017a; Zhang

et al., 2017; Cui et al., 2018; Al-Yaari et al., 2019), the Tibetan Plateau (Chen et al., 2017), the Iberian Peninsula (Cui et al.,

2018), and across the globe (Al-Yaari et al., 2017; Kim et al., 2018; Ma et al., 2019). The good performance of SMAPL3ESWI

is likely attributable to the deeper ground penetration of L-band signals (Lv et al., 2018), the sensor’s higher radiometric20

accuracy (Entekhabi et al., 2010), and the application of an RFI mitigation algorithm (Piepmeier et al., 2014). SMOSSWI is also

an L-band product, while the AMSR2SWI product used here was derived from X-band observations, which have a shallower

penetration depth (Long and Ulaby, 2015). Both AMSR2SWI and SMOSSWI are more vulnerable to RFI, which may have

reduced their overall performance (Njoku et al., 2005; Oliva et al., 2012). The active microwave-based ASCATSWI performed

significantly better in terms of high-frequency than low-frequency fluctuations (Fig. 3), likely due to the presence of seasonal25

vegetation-related biases (Wagner et al., 2013). ASCATSWI showed a relatively small spread in Rhi values (Fig. 3b), although

it showed the largest spread in R and Rlo values not just among the single-sensor products but among all products (Figs. 2a

and 3a).

All single-sensor satellite products achieved lower R values in cold climates (Figs. 1 and 2b), in agreement with other global

evaluations using ISMN data (Kim et al., 2018; Al-Yaari et al., 2019; Zhang et al., 2019b; Ma et al., 2019), and previously at-30

tributed to the confounding influence of vegetation dynamics
::::
dense

:::::::::
vegetation

:::::
cover

::::::::::::::::::::::::::::::::::::::::::::::::::::
(de Rosnay et al., 2006; Gruhier et al., 2008; Dorigo et al., 2010)

:
,
:::::
highly

::::::
organic

::::
soils

::::::::::::::::::
(Zhang et al., 2019b),

:::
and

::::::::
standing

::::
water

:::::::::::::::::::::::::::
(Ye et al., 2015; Du et al., 2018) on soil moisture retrievals(de Rosnay et al., 2006; Gruhier et al., 2008; Dorigo et al., 2010)

. However, since the models also tend to exhibit lower R values in cold regions (Fig. 2b), it could also be that the in situ

measurements are of lower quality and/or
::
or

::::
less

:::::::::::
representative

::
of

:::::::
satellite

::::::::
footprints

:::
or

:::::
model

:::::::::
grid-cells,

::
or that our procedure
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to screen for frozen or snow-covered soils is imperfect. AMSR2 and particularly AMSR2SWI performed noticeably better in

terms of R in arid climates (Figs. 1 and 2b), as reported in previous studies (Wu et al., 2016; Cho et al., 2017), and likely due

to the availability of coincident Ka-band brightness temperature observations which are used
::
as input to the LPRM retrieval

algorithm (Parinussa et al., 2011). AMSR2 and SMOS (with and without SWI filter) showed markedly lower R values for5

sites with mean leaf area index > 2 m2 m−2 (Fig. 2c), confirming that their retrievals are affected by dense vegetation cover

(Al-Yaari et al., 2014; Wu et al., 2016; Cui et al., 2018). Most satellite products performed worse in terms of R in areas of

steep terrain (Fig. 2d), consistent with previous evaluations (Paulik et al., 2014; Karthikeyan et al., 2017a; Ma et al., 2019), and

attributed to the confounding effects of relief on the upwelling microwave brightness temperature observed by the radiometer

(Mialon et al., 2008; Pulvirenti et al., 2011)
:::::::::::::::::::::::::::::::::::::::::::::::::
(Mialon et al., 2008; Pulvirenti et al., 2011; Guo et al., 2011).10

3.4 How do the multi-sensor merged satellite products perform?

The multi-sensor merged product MeMo (based on AMSR2SWI, SMAPL3ESWI, and SMOSSWI) performed better than the

four single-sensor products for all three metrics (R, Rlo, and Rhi; Figs. 2a and 3; Table 1). These results highlight the value

of multi-sensor merging techniques, in line with prior studies that merged satellite retrievals (Gruber et al., 2017; Kim et al.,

2018), model outputs (Guo et al., 2007; Liu and Xie, 2013; Cammalleri et al., 2015), and satellite retrievals with model outputs

(Yilmaz et al., 2012; Anderson et al., 2012; Tobin et al., 2019; Vergopolan et al., 2020). However, MeMo performed only

marginally better in terms of
:::::
median

:
R than the best-performing single-sensor product SMAPL3ESWI (which was incorporated5

in MeMo; Fig. 2a). The most likely reason for this is probably that since all products incorporated in MeMo are based on

passive-microwave remote sensing, their errors may to a certain degree be cross-correlated and hence may not fully cancel

each other out (Yilmaz and Crow, 2014)
:::
that

:::::
triple

::::::::::::::
collocation-based

:::::::
merging

:::::::::
techniques

::::
rely

::
on

::::::
several

:::::::::::
assumptions

::::::::
(linearity,

:::::::::
stationarity,

:::::
error

::::::::::::
orthogonality,

:::
and

::::
zero

:::::::::::::::
cross-correlation)

:::::
which

:::
are

::::::::
generally

:::::::
difficult

::
to

:::::
fully

::::::
satisfy

::
in

:::::::
practice,

::::::::
affecting

::
the

:::::::::
optimality

::
of

:::
the

:::::::
merging

:::::::::
procedure

:::::::::::::::::::::::::::::::::::::
(Yilmaz and Crow, 2014; Gruber et al., 2016).10

Additionally, MeMo performed better than the multi-sensor merged product ESA-CCISWI (based on AMSR2, ASCAT, and

SMOS) for all three metrics (Figs. 2a and 3). MeMo performed better in terms of R at 68 % of the sites, and performed

particularly well across the central Rocky Mountains, although ESA-CCISWI performed better in eastern Europe (Fig. 4). The

two products performed similarly in terms of high-frequency fluctuations (median Rhi of 0.55 for MeMo versus 0.53 for

ESA-CCISWI; Fig. 3b). The better overall performance of MeMo compared to ESA-CCISWI (Figs. 2a, 3, and 4) is probably15

due to two factors. First, ESA-CCISWI incorporates ASCAT, which performed less well in the present evaluation, whereas

MeMo incorporates SMAPL3ESWI, which performed best among the single-sensor products (Figs. 2a and 3). The median R of

MeMo dropped by 0.04 after we excluded
::::::::
excluding SMAPL3ESWI (data not shown), which supports this explanation. The next

version of ESA-CCI (V5) is anticipated to incorporate SMAP soil moisture estimates, and is therefore expected to perform better

(Gruber et al., 2019). Secondly, MeMo merges soil moisture estimates from multiple sensors each day, whereas ESA-CCISWI20

uses only the soil moisture estimate from the ‘best’ sensor each day, resulting in a loss of information.
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Figure 4. Three-hourly Pearson correlations (R) obtained by MeMo minus those obtained by ESA-CCI. Blue indicates that MeMo performs

better, whereas red indicates that ESA-CCI performs better. A map of
:::::::
long-term mean LAI (Baret et al., 2016) is plotted in the background.

3.5 What is the relative performance of the open-loop models?

The ranking of the six open-loop models in terms of median R (from best to worst) was (i) HBV-MSWEP, (ii) HBV-ERA5,

(iii) ERA5-Land, (iv) HBV-IMERG, (v) VIC-PGF, and (vi) GLDAS-Noah (Fig. 2a; Table 1). The models were forced with pre-

cipitation from, respectively: (i) the gauge-, satellite-, and reanalysis-based MSWEP V2.4 (??)
::::::::::::::::::::::
(Beck et al., 2017b, 2019b)25

, (ii) and (iii) the ERA5 reanalysis (Hersbach et al., 2020), (iv) the satellite-based IMERGHHE V06 (Huffman et al.,

2014, 2018), (v) the gauge- and reanalysis-based PGF (Sheffield et al., 2006), and (vi) the gauge- and satellite-based

GPCP V1.3 Daily Analysis (Huffman et al., 2001). This order matches the overall performance ranking of precipitation

datasets in a comprehensive evaluation over the conterminous USA carried out by Beck et al. (2019a). Furthermore, the

performance of HBV-ERA5 did not depend on the terrain slope, while HBV-IMERG performed worse in steep terrain30

(Fig. 2d), which is also consistent with the evaluation of Beck et al. (2019a). HBV-IMERG performed worse for low-

frequency than for high-frequency fluctuations (Fig. 3), which likely reflects the presence of seasonal biases in IMERG

(Beck et al., 2017c; Wang and Yong, 2020). Overall, these results confirm that precipitation is by far the most important determi-

nant of soil moisture simulation performance (Gottschalck et al., 2005; Liu et al., 2011; Beck et al., 2017c; Dong et al., 2019)
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::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Gottschalck et al., 2005; Liu et al., 2011; Beck et al., 2017c; Dong et al., 2019; Chen and Yuan, 2020). The superior performance

of MSWEP is primarily attributable to the daily gauge corrections (?)
:::::::
inclusion

::
of

:::::
daily

:::::
gauge

:::::::::::
observations

::::::::::::::::
(Beck et al., 2019b)

.

Among the three soil moisture products derived from ERA5 precipitation (ERA5, ERA5-Land, and HBV-ERA5), and among

the three products forced with daily gauge-corrected precipitation (GLEAM, HBV-MSWEP+SMAPL3E, and SMAPL4; Table 1),5

the ones based on HBV performed better overall in terms of all three metrics (R, Rlo, and Rhi; Figs. 2a and 3). This demonstrates

that soil moisture estimates from complex, data-intensive models (H-TESSEL underlying ERA5 and ERA5-Land, GLEAM,

and the Catchment model underlying SMAPL4) are not necessarily more accurate than those from relatively simple, calibrated

models (HBV). This is in line with several previous multi-model evaluations focusing on soil moisture (e.g., Guswa et al., 2002;

Cammalleri et al., 2015; Orth et al., 2015), the surface energy balance (e.g., Best et al., 2015), evaporation (e.g., McCabe et al.,10

2016), runoff (e.g., Beck et al., 2017a), and river discharge (e.g., Gharari et al., 2020).

3.6 How do the models with satellite data assimilation perform?

The performance ranking of the models with satellite data assimilation in terms of median R (from best to worst) was HBV-

MSWEP+SMAPL3E, HBV-ERA5+SMAPL3E, GLEAM, SMAPL4, HBV-IMERG+SMAPL3E, and ERA5 (Fig. 2a; Table 1).

The assimilation of SMAPL3E retrievals resulted in a substantial improvement in median R of +0.06 for HBV-IMERG, a

minor improvement of +0.01 for HBV-ERA5, and no change for HBV-MSWEP (Fig. 2a). Improvements in R were obtained5

for 90 %, 65 %, and 56 % of the sites for HBV-IMERG, HBV-ERA5, and HBV-MSWEP, respectively.
::::
For

::::::::::::
HBV-IMERG,

::
the

:::::::
greatest

::::::::::::
improvements

:::::
were

:::::
found

::::
over

:::
the

::::::
central

::::::
Rocky

:::::::::
Mountains (Fig. 5). These ,

::::::
where

:::::::
IMERG

::::::::
performs

::::::::
relatively

:::::
poorly

::::::::::::::::
(Beck et al., 2019a)

:
.
:::::::
Overall,

:::::
these results suggest that data assimilation provides greater benefits when the precipitation

forcing is more uncertain(Beck et al., 2019a). Since rain gauge observations are not available over the large majority of the

globe (Kidd et al., 2017), we expect data assimilation to provide significant added value at the global scale, as also concluded10

by Bolten et al. (2010), Dong et al. (2019), and Tian et al. (2019). The lack of improvement for HBV-ERA5+SMAPL3E and

HBV-MSWEP+SMAPL3E suggests that the gain parameter G (Eq. 3), which quantifies the relative quality of the satellite and

model soil moisture estimates, can be refined further.

The ERA5 reanalysis, which assimilates ASCAT soil moisture (Hersbach et al., 2020), obtained a lower overall performance

(median R= 0.68) than the open-loop models ERA5-Land (median R= 0.72) and HBV-ERA5 (median R= 0.74), which were15

both forced with ERA5 precipitation (Fig. 2a). This suggests that assimilating satellite soil moisture estimates (ERA5) was less

beneficial than either increasing the model resolution (ERA5-Land) or improving the model
:::
soil

::::::::
moisture

:::::::::
simulation efficiency

(HBV). In line with these results, Muñoz Sabater et al. (2019) found that the joint assimilation of ASCAT soil moisture retrievals

and SMOS brightness temperatures into an experimental version of the Integrated Forecast System (IFS) model underlying

ERA5 did not improve the soil moisture simulations. They attributed this to the adverse impact of simultaneously assimilated20

screen-level temperature and relative humidity observations on the soil moisture estimates.

In line with our results for HBV-MSWEP+SMAPL3E, Kumar et al. (2014) did not obtain improved soil moisture estimates

after the assimilation of ESA-CCI and AMSR-E retrievals into Noah forced with highly accurate NLDAS2 meteorological

15



Figure 5. Three-hourly Pearson correlations (R) obtained by HBV-IMERG+SMAPL3E minus those obtained by HBV-IMERG. Blue indicates

improved performance after data assimilation, whereas red indicates degraded performance after data assimilation. The sites in
:::::
Alaska

:::
and

Finland are not shown because
:
as

:
IMERG does not cover high latitudes. A map of

:::::::
long-term

:
mean LAI (Baret et al., 2016) is plotted in the

background.

data for the conterminous USA. Conversely, several other studies obtained substantial performance improvements after data

assimilation despite the use of high-quality precipitation forcings (Liu et al., 2011; Koster et al., 2018; Tian et al., 2019). We25

suspect that this discrepancy might reflect the lower performance of their open-loop models compared to ours. Using different

:::
(but

:::::::::::
overlapping) in situ measurements

:::::::
datasets, Koster et al. (2018) and Tian et al. (2019) obtained mean daily open-loop R

values of 0.64 and 0.59, respectively, while we obtained a mean daily open-loop R of 0.75 (slightly lower than the 3-hourly

median value shown in Fig. 2a). Overall, it appears that the benefits of data assimilation are greater for models that exhibit

structural or parameterization deficiencies.30

3.7 What is the impact of model calibration?

Among the models evaluated in this study, only HBV and the Catchment model underlying SMAPL4 have been calibrated,

although only a single parameter out of more than 100 was calibrated for the Catchment model (Reichle et al., 2019b).
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::::::::::
HBV-ERA5,

::::::::::::
HBV-IMERG,

::::
and HBV-MSWEP with calibrated parameters obtained a median R of

:::::
values

::
of

:::::
0.74,

::::
0.65,

::::
and

0.78,
::::::::::
respectively

:
(Fig. 2a), whereas HBV-MSWEP

::
the

:::::
same

:::::
three

::::::
models

:
with randomly generated parameters obtained a

:::::::::::
(uncalibrated)

:::::::::
parameters

::::::::
obtained mean median R of 0.66 (standard deviation 0.07

:::::
values

::
of

::::
0.59,

:::::
0.53,

:::
and

:::::
0.62,

::::::::::
respectively

:::::::
(standard

:::::::::
deviations

:::::
0.17,

::::
0.16,

::::
and

::::
0.16,

::::::::::
respectively; data not shown). The calibration thus resulted in a mean increase

:::::
mean

:::::::
increases

:
in median R of

:::::
+0.15,

:
+0.12, which represents a substantial improvement

:::
and

:::::::
+0.16,

::::::::::
respectively,

:::
for

:::
the

:::::
three5

::::::
models,

::::::
which

::::::::
represent

:::::::::
substantial

:::::::::::
improvements

:
in performance. These results are in line with previous studies calibrating

different models using soil moisture from in situ sensors (e.g., Koren et al., 2008; Shellito et al., 2016b; Thorstensen et al., 2016;

Reichle et al., 2019b) or remote sensing (e.g., Zhang et al., 2011; Wanders et al., 2014; López López et al., 2016; Koster et al.,

2018).

The mean improvement10

:::
The

:::::
mean

::::::::::::
improvements in median R obtained for

::::::::::
HBV-ERA5,

::::::::::::
HBV-IMERG,

::::
and HBV-MSWEP after calibration (

::::::
+0.15,

+0.12) was double the improvement obtained for HBV-IMERG ,
::::
and

::::::
+0.16,

:::::::::::
respectively)

::::
were

:::::::::::
significantly

::::::
greater

::::
than

:::
the

:::::::::::
improvements

::::::::
obtained

:::
for

:::
the

:::::
same

:::::
three

::::::
models

:
after satellite data assimilation (

::::::
+0.01,

:
+0.06,

::::
and

::::::
−0.00,

::::::::::
respectively;

Fig. 2a; Section 3.6), which suggests that model calibration is more beneficial
:::::
results

:::
in

:::::
more

::::::
benefit

:
overall than data

assimilation. Additionally, model calibration is likely to benefit
::::::
benefits

:
regions with both sparse and dense rain gauge networks,15

whereas data assimilation mainly benefits regions with sparse rain gauge networks (Section 3.6). Conversely, only data

assimilation is capable of ameliorating potential deficiencies in the meteorological forcing data (e.g., undetected precipitation).

Our calibration approach was relatively simple and yielded only a single spatially uniform parameter set (Section 2.3). Previous

studies focusing on runoff have demonstrated the value of more sophisticated calibration approaches yielding ensembles of param-

eters that vary according to climate and landscape characteristics (Beck et al., 2016, accepted)
::::::::::::::::::::::::::::::::::::::::::
(Samaniego et al., 2010; Beck et al., 2016, accepted)20

. Whether these approaches have value for soil moisture estimation as well warrants further investigation. It should be noted,

however, that many current models have rigid structures, insufficient free parameters, and/or a high computational cost and are

therefore
:::::
which

:::::
makes

:::::
them less amenable to calibration (Mendoza et al., 2015). Moreover,

:::
the

::::::
validity

::
of
:
calibrated parameters

may become less valid
::
be

:::::::::::
compromised

:
when the model is subjected to climate conditions it has never experienced before

(Knutti, 2008). Care should also be taken that calibration of one aspect of the model does not degrade another aspect and that we25

get “the right answers for the right reasons” (Kirchner, 2006).

3.8 How do the major product categories compare?

The median R ± interquartile range across all sites and products in each category was 0.53± 0.32 for the satellite soil moisture

products without SWI filter, 0.66±0.30 for the satellite soil moisture products with SWI filter including MeMo, 0.69±0.25 for

the open-loop models, and 0.72± 0.22 for the models with satellite data assimilation (Fig. 2a; Table 1). The satellite products30

thus provided the least reliable soil moisture estimates and exhibited the largest regional performance differences on average,

whereas the models with satellite data assimilation provided the most reliable soil moisture estimates and exhibited the smallest

regional performance differences on average. Our performance ranking of the major product categories is consistent with

previous studies for the conterminous USA (Liu et al., 2011; Kumar et al., 2014; Fang et al., 2016; Dong et al., 2020), Europe
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(Naz et al., 2019), and the globe (Albergel et al., 2012; Tian et al., 2019; Dong et al., 2019). It should be kept in mind, however,

that these studies, including the present one, used in situ soil moisture measurements from regions with dense rain gauge5

networks, and hence likely overestimate model performance (Dong et al., 2019).

The large spread in performance across the satellite products reflects the large number of factors that affect soil moisture

retrieval, including,
::::::
among

::::::
others,

:
vegetation cover, surface roughness, soil texture

::::::::::
composition, diurnal variations in land

surface conditions, and RFI , among others (Zhang and Zhou, 2016; Karthikeyan et al., 2017b). The spread in performance

across the open-loop models is lower as it depends primarily on the precipitation data quality, which, in turn, depends mostly on10

a combination of gauge network density and prevailing precipitation type (convective versus stratiform; Gottschalck et al., 2005;

Liu et al., 2011; Beck et al., 2017c; Dong et al., 2019). The smaller spread in performance across the models with satellite data

assimilation is due to the fact that individual errors in satellite retrievals and model estimates are cancelled out, to a certain

degree, when they are combined, confirming the effectiveness of the data assimilation procedures (Moradkhani, 2008; Liu et al.,

2012; Reichle et al., 2017).15

3.9 To what extent are our results generalizable to other regions?

The large majority (98 %) of the in situ soil moisture measurements used as reference in the current study were from
:::::
dense

:::::::::
monitoring

::::::::
networks

::
in

:
the USA and Europe (Fig. 1)

:::
and

::::::::
therefore

:::
our

::::::
results

::::
will

::
be

:::::
most

:::::::::
applicable

::
to

::::
these

:::::::
regions. We

speculate that our results for the models (with and without data assimilation; Figs. 2, 3, and 5) apply to other regions with dense

rain gauge networks and broadly similar climates (e.g., parts of China and Australia, and other parts of Europe; Kidd et al.,20

2017).
:::
The

::::::::
calibrated

:::::::
models

:::::
(HBV

:::
and

:::
the

:::::::::
Catchment

::::::
model

:::::::::
underlying

:::::::::
SMAPL4)

::::
may,

::::::::
however,

:::::::
perform

::::::
slightly

::::::
worse

::
in

::::::
regions

::::
with

:::::::
climatic

:::
and

::::::::::::
physiographic

:::::::::
conditions

:::::::::
dissimilar

::
to

:::
the

::
in

:::
situ

::::::
sensors

::::
used

:::
for

:::::::::
calibration

::::
(but

:::::
likely

::::
still

:::::
better

:::
than

:::
the

:::::::::::
uncalibrated

:::::::
models).

:
In sparsely gauged areas the

::::
four model products based on precipitation forcings that incorporate

daily gauge observations (GLEAM, HBV-MSWEP, HBV-MSWEP+SMAPL3E, and SMAPL4; Table 1) will inevitably exhibit

reduced performance
::::
lower

:::::::::::
performance

:::
(but

::::
not

:::::::::
necessarily

:::::
lower

::::
than

:::
the

:::::
other

:::::
model

::::::::
products). In convection-dominated25

regions models driven by precipitation from satellite datasets such as IMERG may well outperform those driven by precipita-

tion from reanalyses such as ERA5 (Massari et al., 2017; Beck et al., 2017c; ?)
:::::::::::::::::::::::::::::::::::::::
(Massari et al., 2017; Beck et al., 2017c, 2019b).

Conversely, in mountainous and snow-dominated regions models driven by precipitation from reanalyses are likely to outperform

those driven by precipitation from satellites (Ebert et al., 2007; ?; Beck et al., 2019a)
::::::::::::::::::::::::::::::::
(Ebert et al., 2007; Beck et al., 2019b, a).

Our results for the satellite soil moisture products may be less generalizable, given the large spread in performance across

different regions and products revealed in the current study (Figs. 2 and 3) and in previous quasi-global studies using triple collo-

cation (Al-Yaari et al., 2014; Chen et al., 2018; Miyaoka et al., 2017). Some predictors of retrieval performance were identified,

with the most accurate estimates found for low-relief terrain with sparse vegetation (cf. Tian et al., 2019). Furthermore, outside

densely-gauged
::::::
Outside

:::::::::
developed regions we expect the lower prevalence of RFI to lead to more reliable retrievals for those5

satellite products susceptible to it (Njoku et al., 2005; Oliva et al., 2012; Aksoy and Johnson, 2013; Ticconi et al., 2017). At low

latitudes the lower satellite revisit frequency will inevitably increase the sampling uncertainty and reduce the overall value of

satellite products relative to models. In tropical
:::::
forest regions passive products often do not provide

:::
soil

:::::::
moisture

:
retrievals,
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and when they do, the retrievals are typically less reliable than those from active products due to the dense vegetation cover

(Al-Yaari et al., 2014; Chen et al., 2018; Miyaoka et al., 2017; Kim et al., 2018). Shedding more light on the strengths and10

weaknesses of soil moisture products in regions without dense measurement networks — for example using independent soil

moisture products (Chen et al., 2018; Dong et al., 2019) or by expanding measurement networks (Kang et al., 2016; Singh et al.,

2019) — should be a key priority for future research (Ochsner et al., 2013; Myeni et al., 2019).

4 Conclusions

To elucidate the strengths and weaknesses
::::
shed

::::
light

:::
on

:::
the

:::::::::
advantages

::::
and

:::::::::::
disadvantages

:
of different soil moisture products

and
::
on

:
the merit of different

::::::
various technological and methodological innovations, we evaluated 18 state-of-the-art (sub-)daily

(quasi-)global near-surface soil moisture products using in situ measurements from 826 sensors located primarily in the USA

and Europe. Our main findings related to the nine questions posed in the introduction can be summarized as follows:

1. Local night retrievals from descending overpasses were more reliable overall for AMSR2, whereas local morning retrievals5

from descending overpasses were more reliable overall for ASCAT. The ascending and descending retrievals of SMAPL3E

and SMOS performed similarly.

2. Application of the SWI smoothing filter resulted in improved performance for all satellite products. Previous near-surface

soil moisture product assessments generally did not apply smoothing filters and therefore may have underestimated the

true skill of the products.10

3. SMAPL3ESWI performed best overall among the four single-sensor satellite products with SWI filter. ASCATSWI

performed markedly better in terms of high-frequency than low-frequency fluctuations. All satellite products tended to

perform worse in cold climates.

4. The multi-sensor merged satellite product MeMo performed best among the satellite products, highlighting the value of

multi-sensor merging techniques. MeMo also outperformed the multi-sensor merged satellite product ESA-CCISWI, likely15

due to the inclusion of SMAPL3ESWI.

5. The performance of the open-loop models depended primarily on the precipitation data quality. The superior performance

of HBV-MSWEP is due to the calibration of HBV and the daily gauge corrections of MSWEP. Soil moisture simulation

performance did not improve with model complexity.

6. In the absence of model structural or parameterization deficiencies, satellite data assimilation yields substantial perfor-20

mance improvements mainly when the precipitation forcing is of relatively low quality. This suggests that data assimilation

provides significant benefits at the global scale.

7. The calibration of HBV against in situ soil moisture measurements resulted in substantial performance improvements.

The improvement due to model calibration tends to exceed the improvement due to satellite data assimilation and is not

limited to regions of low quality precipitation.25

19



8. The satellite products provided the least reliable soil moisture estimates and exhibited the largest regional performance

differences on average, whereas the models with satellite data assimilation provided the most reliable soil moisture

estimates and exhibited the smallest regional performance differences on average.

9. We speculate that our results for the models (with and without data assimilation) apply to other regions with dense rain

gauge networks and broadly similar climates. Our results for the satellite products may be less generalizable due to the30

large number of factors that affect retrievals.

Appendix: In situ soil moisture measurement networks

Table A1 lists the measurement networks part of the ISMN archive from which we have used in situ soil moisture data.
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Table 2. Median Pearson correlations (R) between in situ measurements and retrievals from ascending and descending overpasses for the

single-sensor soil moisture products (Table 1). The approximate local solar times
:::
time

:
(LST) of the overpasses are

:
is reported between

::
in

parentheses.
::::::::
Probability

:::
(p)

:::::
values

::::
were

::::::::
determined

::::
using

:::
the

::::::::::::::::::::
Kruskal and Wallis (1952)

:::
test.

::
A

::::
small

::::::
p-value

::::::
indicates

::::
that

::
the

::::::::
difference

::
in

:::::
median

::
R

::
is

::::::
unlikely

::
to

::
be

:::
due

::
to

::::::
chance.

Correlation (R)

Product Ascending (LST) Descending (LST)
::::
p-value

AMSR2 0.40 (13:30) 0.50 (01:30)
:::
0.000

ASCAT 0.41 (21:30) 0.47 (09:30)
:::
0.000

SMAPL3E 0.65 (18:00) 0.65 (06:00)
:::
0.643

SMOS 0.49 (06:00) 0.48 (18:00)
:::
0.271

Table A1. The measurement networks part of the ISMN archive from which we have used in situ soil moisture data.

Network Reference(s) or website

ARM www.arm.gov

BIEBRZA www.igik.edu.pl

BNZ-LTER Van Cleve et al. (2015)

COSMOS Zreda et al. (2008, 2012)

CTP Yang et al. (2013)

DAHRA Tagesson et al. (2015)

FMI http://fmiarc.fmi.fi

FR www.inrae.fr

HOBE Kang et al. (2014); Jin et al. (2014)

HYDROL-NET Morbidelli et al. (2014)

iRON Osenga et al. (2019)

LAB-net Mattar et al. (2014)

MySMNet Kang et al. (2016)

ORACLE https://gisoracle.inrae.fr

OZNET Smith et al. (2012)

REMEDHUS http://campus.usal.es/~hidrus/

RISMA Ojo et al. (2015)

RSMN http://assimo.meteoromania.ro

SCAN www.wcc.nrcs.usda.gov

SMOSMANIA Calvet et al. (2007); Albergel et al. (2008)

SNOTEL www.wcc.nrcs.usda.gov

SOILSCAPE Moghaddam et al. (2010); Moghaddam et al. (2016)

SWEX Marczewski et al. (2010)

TERENO Zacharias et al. (2011)

UDC Loew et al. (2009)

USCRN Bell et al. (2013)

VAS http://nimbus.uv.es

WSMN Petropoulos and McCalmont (2017)
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