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Abstract. The fields of eco-hydrological modelling and extreme flow prediction and management demand for detailed 

information of streamflow intermittency and its corresponding landscape controls. Innovative sensing technology for 

monitoring of streamflow intermittency in perennial rivers and intermittent reaches improve data availability, but reliable maps 10 

of streamflow intermittency are still rare. We used a large dataset of streamflow intermittency observations and a set of spatial 

predictors to create logistic regression models to predict the probability of streamflow intermittency for a full year, and, wet 

and dry periods for the entire 247 km² Attert catchment in Luxembourg. Similar climatic conditions across the catchment 

permit a direct comparison of the streamflow intermittency among different geological and pedological regions. We used 15 

spatial predictors describing land cover, track (road) density, terrain metrics, soil and geological properties. Predictors were 15 

included as local scale information, represented by the local value at the catchment outlet and as integral catchment information 

calculated as the mean catchment value over all pixels upslope of the catchment outlet. The terrain metrics catchment area and 

profile curvature were identified in all models as the most important predictors, and the model for the wet period was based 

solely on these two predictors. However, the model for the dry period additionally comprises soil hydraulic conductivity and 

bedrock permeability. The annual model with the most complex predictor set contains the predictors of the dry period model 20 

plus the presence of tracks. Classifying the spatially distributed streamflow intermittency probabilities into ephemeral, 

intermittent and perennial reaches allows the estimation of stream network extent under various conditions. This approach, 

based on extensive monitoring and statistical modeling, is a first step to provide detailed spatial information for hydrological 

modelling as well as management practice. 

1. Introduction 25 

Even though intermittent streams and rivers represent more than half of the global stream network (Datry et al., 2014) they 

have been studied to a far lesser degree than their perennial counterparts.  Research on streamflow intermittency concentrated 

mainly on arid and semi-arid regions where these streams represent the dominant stream type due to the climatic conditions 

(Buttle et al. 2013). These streams are largely controlled by the climatic conditions with generally low but spatially highly 
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variable precipitation as well as high rates of direct evaporation and evapotranspiration through plants (Datry et al., 2017). 

However, in temperate regions the occurrence of intermittent streams is commonly limited to headwaters, and the wetter 

climate generally provides enough overland flow and groundwater recharge to maintain perennial rivers for large parts of the 

river system (Jaeger et al., 2017). These intermittent streams in temperate regions have only recently gotten more attention 

(e.g. Buttle et al. 2013; Stubbington et al., 2017; Jensen et al., 2017, 2018, 2019; Kaplan et al., 2019; Prancevic and Kirchner, 5 

2019). Streamflow intermittency in these regions may change in time dependent on seasonal climate conditions or in response 

to rainfall or snowmelt events (Buttle et al., 2013), whereas in the spatial dimension it is controlled by the physiographic 

composition of the landscape, including geology, pedology, topography and land cover (Olson and Brouilette, 2006, Buttle et 

al., 2013, Goodrich et al., 2018, Jensen et al., 2018, Prancevic et al., 2019).  

Intermittency of streamflow, i.e. the drying and rewetting of streambeds, can be classified into ephemeral, intermittent and 10 

perennial by annual duration of streamflow (e.g. Hedman & Osterkamp, 1982; Matthews 1988; Jaeger & Olden, 2012), but 

also based on hydrological processes including the spatial dimensions of hydrological connectivity (e.g. Sophocleous, 2002; 

Svec et al., 2005; Nadeau & Rains, 2007; Shanafield and Cook, 2014), or by ecological indicators (e.g. Hansen 2001; Leigh 

et al., 2015; Stromberg & Merritt, 2015). From a hydrological point of view the most consistent and frequently used 

classification of intermittency is based on the share of baseflow/groundwater contribution to total streamflow and is thus 15 

interrelated with the vertical and lateral connectivity between reach and groundwater (e.g. Sophocleus, 2002; Nadeau & Rains, 

2007; Buttle et al., 2013; Godsey & Kirchner, 2014, Keesstra et al., 2018). Under regular conditions perennial streams gain 

groundwater throughout the year and maintain an almost permanent baseflow (Sophocleus, 2002). Thus, the groundwater table 

in perennial streams is above the level of the streambed throughout the year. In cold regions perennial streams can also be 

sustained from snowmelt (Nadeau & Rains, 2007). Intermittent rivers preserve continuous flow during certain times of the 20 

year when precipitation is high and/or evapotranspiration rates are lower and therefor the stream is receiving effluent 

groundwater while in the dry season the streams loses water to the groundwater (Sophocleous, 2002; Zimmer et al., 2017). In 

ephemeral streams the groundwater table never reaches the level of the streambed, so influent groundwater conditions can only 

occur during flow events as direct response to strong rainfall or snowmelt events (Sophocleous, 2002; Zimmer et al., 2017). A 

stream can change the degree of intermittency along the channel and transition zones between geological parent materials can 25 

also cause abrupt changes in intermittency (Goodrich et al., 2018). 

In contrast to the classification based on connection to the groundwater, the one based on streamflow duration is vague, because 

different climatic conditions result in climate specific proportional share of duration of streamflow presence throughout a year 

and thus lead to region-specific classification schemes (e.g. Hedman and Osterkamp, 1982; Hewlett, 1982; Matthews, 1988; 

Texas Forest Service, 2000). Hedeman and Osterkamp (1982) as well as Matthews (1988) classify streams as perennial when 30 

streamflow is present over 80 % of the time annually for the Western United States and the North American prairie respectively. 

The threshold below which streams are classified as ephemeral ranges from 10 % to 30 % of the year so that the intermittent 

stream class has a range of bounding thresholds: more than 10-30% and less than 80%.  
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The spatial dynamics of streams and their longitudinal connectivity can be quantified by observing the streamflow continuity 

(temporal scale) and the longitudinal connectivity (spatial scale) with multiple sensors (e.g. EC-/temperature-sensors or time 

lapse imagery) along the stream (e.g. Goulsbra et al., 2009; Jaeger & Olden, 2012; Bhamjee et al., 2016, Kaplan et al., 2019), 

or by mapping the wet stream network for several times at varying flow conditions (e.g. Godsey & Kirchner, 2014, Jensen et 

al., 2017). Despite of the existing classification schemes and advances in streamflow intermittency monitoring, accurate 5 

information of the spatial extent of intermittent stream network is sparse and often inaccurate (Hansen, 2001; Skoulikidis et 

al., 2017).  

Recently this information gap is tackled with models to predict spatially distributed streamflow intermittency by using spatial 

predictors (Olson and Brouillette, 2006, Jensen et al., 2018, Prancevic et al., 2019) but also metrics that help to assess the 

longitudinal hydrological connectivity of rivers (Lane et al., 2009; Lexartza-Artza and Wainwright, 2009; Ali & Roy, 2010; 10 

Bracken et al., 2013; Habtezion et al., 2016). Prancevic et al. (2019) modelled the dynamical changes of stream network length 

as a power function of the water discharge to the valley transmissivity. This transmissivity is represented through the 

topographic attributes slope, curvature and contributing drainage area. Olson and Brouillette (2006) used a logistic regression 

approach to differentiate between intermittent and perennial stream sites using a set of fifty basin characteristics as predictors. 

These included soil characteristics, geological grouping, mean elevation and land use as areal percentage of the contributing 15 

area but also terrain predictors like slope, relative relief and drainage area as well as climatological parameters like mean 

annual precipitation. The logistic regression model approach from Jensen et al. (2018) focused on terrain metrics as predictors 

for predicting the probability of a stream being wet or dry. Most of the terrain metrics in their study were included as predictor 

on “local scale” as well as “mean upslope area”. Among the most important predictors in these studies were topographic 

wetness index (TWI; Beven and Kirkby, 1979), topographic position index (TPI; Jensen et al., 2018), mean elevation, ratio of 20 

basin relief to basin perimeter, the areal percentage of well- and moderately well-drained soils in the basin (Olson and 

Brouillette, 2006), drainage area (Olson and Brouillette, 2006, Prancevic et al., 2019), slope and curvature (Prancevic et al., 

2019). The most successful predictors to model the spatiotemporal dynamics of the stream network are also part of the metrics 

developed to predict hydrological connectivity and are related to terrain (e.g. Lexartza-Artza and Wainwright, 2009; Ali and 

Roy, 2010), soil drainage and transmissivity (e.g. Nadeau and Rains, 2007; Lexartza-Artza and Wainwright, 2009; Ali and 25 

Roy; 2010). In addition, vegetation. land use and road network were investigated as control of hydrological connectivity (e.g. 

Lexartza-Artza and Wainwright, 2009; Jencso and McGlynn, 2011; Bracken et al., 2013).  

This study will build upon the work of Olson and Brouillette (2006) and Jensen et al. (2018) who aimed towards a separation 

of intermittent (dry) and perennial (wet) reaches using a logistic regression model (GLM) with a set of spatial predictors. In 

our study we present a new approach of using a GLM to predict not only the classes of intermittent/perennial or dry/wet but 30 

using probabilities of the model output to classify ephemeral, intermittent and perennial streams. Therefore, instead of using 

binary data of e.g. intermittent (0) and perennial (1) the dependent variable in our models is the measure of relative 

intermittency, which represents the probability of streams having flow in a defined period (e.g. annual period) ranging between 

0 and 1. In this way we can then classify the stream network into perennial, intermittent and ephemeral based on the statistical 
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classification schemes (Hedman and Osterkamp, 1982). The set of predictors used in this study comprises land cover, road 

network, geology, pedology and terrain metrics both on “local scale” and “upslope area”. The model was developed for the 

mesoscale Attert catchment which catchment size of 247 km² ranges between those used in the studies of Olson and Brouillette 

(2006; 24.902 km²;) and Jensen et al. (2018; 0.7 to 0.12 km²). 

2. Research area 5 

The Attert River originates in the eastern part of Belgium and flows westwards into Luxembourg receiving its water from a 

catchment area of 247 km² at the outlet at Useldange (Hellebrand et al., 2008). The prevalent geologies of the catchment consist 

roughly from north to south of Devonian slate of the Luxembourg Ardennes (North West), sandy Keuper marls (centre) and 

the Jurassic Luxembourg Sandstone formation (South) (Figure 1; Martínez-Carreras et al., 2012). Altitudes range from 245 m 

a.s.l. in Useldange to 549 m a.s.l. in the Luxembourg Ardennes. Lowlands with moderate relief dominate the topography in 10 

the Keuper marls with steeper slopes at the hilly Luxembourg Sandstone formation (Martínez-Carreras et al., 2012). Land use 

in the lowlands with Keuper marls is characterized by agriculture (41%) with considerable share of forest (29%) and grassland 

(26%) and small patches of urban areas (4%) while Sandstone areas are dominated by forest (55%) with lower proportions of 

grassland and agriculture (39%). Land use in the slate dominated region in the Ardennes split into the plateaus which are 

predominantly used for agriculture (42%) and urban areas (4%) whereas the steep hillslopes and valleys are covered by forest 15 

(48%) and pasture (6%).  

Soils in the Attert catchment include many of the major soil types of the temperate zone and are largely linked to lithology, 

land cover and land use (Cammeraat et al., 2018). Thus, dominant soils in regions with slate geology are stony silty soils 

whereas the soils in the central parts of the catchment comprise mainly of silty clayey soils based on the Keuper marl geology 

and in the south sandy and silty soils are dominant in the Luxembourg sandstone formation (Müller et al., 2016). Cammeraat 20 

et al. (2018) pointed out the influence of land use on soil development in the Keuper marls with Stagnosols or Planosols under 

forest and Regosols under agriculture.  

The climate in the Attert basin shows a strong impact of the westerly atmospheric circulation and temperate air masses from 

the Atlantic Ocean which results in similar climate conditions across the catchment (Pfister et al., 2017; Fig. S2). Mean annual 

precipitation varies slightly from 1000 mm/a in the north-west to 800 mm/a in the south-east (Pfister et al., 2017) with a mean 25 

for the whole catchment of about 850 mm/a for the years 1971-2000 (Pfister et al., 2005). Seasonal changes in soil moisture 

and surface hydrology are induced by seasonal fluctuations of mean monthly temperatures (min. 0°C in January, max. 17°C 

in July) and thus, amount of monthly potential evapotranspiration (min. 13 mm in Dec., max. 80 mm in July) which 

superimposes the low variability of monthly precipitation (min. 70 mm in Aug./Sep., max. 100 mm in Dec.-Feb; Pfister et al., 

2005; Wrede et al., 2014).  30 

Pfister et al. (2017) showed the strong impact of bedrock geology on the storage, mixing and release of water in the Attert 

catchment which determine the strong differences of seasonal flow regimes in areas of predominantly low-permeable bedrock 
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(slate and marls) compared to permeable sandstone bedrock or diverse geology. Geology may also cause the strong differences 

in the appearance of perennial and intermittent stream density which are visible in the topographic map (Le Gouvernment du 

Grand-Duché de Luxembourg, 2009). The catchment is subject to numerous anthropogenic alterations of surface flow. Surface 

and subsurface drainage, dams, ditches and river regulation measures changed the natural stream beds and flow conditions in 

the agricultural areas of the marly lowlands considerably. This can result in lower groundwater tables through drainage 5 

measures and increased runoff velocity through e.g. straightened stream channels ultimately changing the periods with 

streamflow presence in ephemeral and intermittent streams (Schaich et al., 2011). Shifts in hydrological regime from 

intermittent to perennial can appear on the plateaus of the Ardennes, where some wastewater treatment plants are located (Le 

Gouvernment du Grand-Duché de Luxembourg, 2018). 

 10 

 

Figure 1: Geology and stream network of the Attert catchment and streamflow monitoring sites. Monitoring sites comprise "Sites" 

which were equipped with monitoring devices and "Virtual Sites" which were not permanently monitored but were never found to 

have surface runoff during several field trips in a 2 year period and thus are included as “zero-flow” virtual sites. Sites marked with 

a purple triangle have an increased uncertainty concerning the delineation of the catchment area. Detailed maps show the more 15 
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densely equipped areas in each predominant geology: slate (blue box), marls (red box) and sandstone (green box). The geological 

map from 1947 was provided by the Geological Service of Luxembourg (Adapted from Kaplan et al., 2019). 

3. Methods 

3.1 Data 

3.1.1 Streamflow data 5 

We used the data set of binary information of presence and absence of streamflow at 182 measurement sites in the Attert 

catchment described and provided in Kaplan et al. (2019). The dataset combines streamflow data from various data sources 

including time-lapse imagery, electrical conductivity sensors and water level measurements. Data from one year (July 2016 - 

July 2017) with a temporal resolution of 30 minutes was used for this analysis. Sites were removed from the dataset if they 

were (A) located downstream of the Attert gauge in Useldange, (B) contained extensive no data periods (> 50%) within the 10 

selected one year period or (C) were located at positions where catchment calculations were not possible due to the relative 

coarse resolution of the DEM. The data set analysed in this study comprises 164 sites of monitored intermittency. 

The data set of the gauging sites is shown in Figure 2. In this study we model streamflow intermittency during a one-year 

period on the one hand and two selected periods of 3 months (representing wet and dry conditions) on the other hand. The 164 

sites chosen from Kaplan et al. (2019) contain 96 sites which show perennial flow and 50 sites with intermittent streamflow, 15 

14 sites with ephemeral streamflow and one site indicating zero flow conditions throughout the year. The high share of sites 

with perennial streamflow observations would lead to an overrepresentation of those sites in the statistical model. Thus, a total 

of 21 virtual gauges with zero flow were added to the dataset in locations where numerous field observations over a two-year 

period provide strong evidence of no surface flow conditions throughout the year. The majority of virtual sites were visited 

every two months during maintenance campaigns for the monitoring sites. Virtual sites located at the ridge of southern 20 

sandstone regions were visited less frequently, but showed no sign of surface flow during all visits. The sites were added to 

the dataset at locations which a) were frequently visited and thus known to have no-flow behavior and b) also in areas where 

no-flow observations are underrepresented in the dataset, such as ridges in the sandstone region or the riparian zone of valleys 

in the slate region and c) improved the model. Hence the total number of sites used in this study was 185 (Figure 1). The 

selection of the different modelling periods is based on the streamflow data and is closely related to the often-used winter and 25 

summer seasons. Due to the extraordinary dry winter season the wet period is defined from February to April whereas the dry 

period is defined from June to August, but consisting of the data from the years 2016 and 2017 due to the end of the available 

timeseries after July 2017 (Figure 2). 

We introduce the measure of relative intermittency of streamflow 𝐼𝑟  as the ratio of the duration of streamflow occurrence to 

the total duration of valid measurements in that given period: 30 

𝐼𝑟 =  
∑ 𝑡𝑤

∑ 𝑡𝑤+ ∑ 𝑡𝑑
            (1) 
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where 𝑡𝑤 are wet time periods with streamflow occurrence and 𝑡𝑑 are dry time periods without streamflow. Values between 0 

and 1 represent the relative intermittency, with a value of 1 meaning perennial flow. 

 

 



8 

 

 

Figure 2: Streamflow data used in this study. Gauge ID is a combination of the number on the left and the letters on the right. The 

data set combines data from different sources: Time-lapse camera (C), Conventional Gauges (CG) and Electric Conductivity 

measurements (EC). The wet and the combined dry period are indicated within the dark blue and orange boxes, respectivly. For the 

analysis of the dry period the summers 2016 and 2017 were combined. Discharge data (Q) at the outlet of the Attert catchment 5 
gauged in Useldange is shown at the top. 
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3.1.2 Spatial data 

3.1.2.1 Contributing area averages 

We tested a broad range of landscape feature data such as land use, topographical, pedological and geological properties with 

respect to their ability to predict 𝐼𝑟 . Streamflow intermittency at a certain location is not only dependent on local characteristics 

of the landscape represented by the pixel value of a raster layer at this location but also on the integral value of the upstream 5 

contributing area (CA). Therefore, the average value or proportion of landscape features in the contributing area was calculated 

for every cell of the associated landscape feature raster resulting in a new raster layer where every pixel value represents the 

average of the landscape feature of the contributing area. The SAGA GIS (version 2.3.2) tool “flow accumulation recursive” 

(Conrad et al., 2015) was used with the deterministic 8 algorithm and a DEM of 15 m resolution as elevation input to calculate 

the number of contributing cells (output: catchment area) and the accumulated cell values of the landscape feature (output: 10 

total accumulated material) for all cells in the Attert catchment. For a few measurement locations, the relatively coarse DEM 

resulted in uncertainty in the delineation of catchment area (see Figure 1)We assume that all upstream cells contribute equally 

to the value of a pour point cell, thus, no weighting was included when accumulating cell values. The number of contributing 

cells n was calculated from the contributing area divided by the cell size. Raster layers containing the landscape feature 

information (e.g. relative bedrock permeability, Figure 3) are used as input “material” 𝑀𝑣 for the “catchment area recursive” 15 

algorithm and accumulate along the flow path through the catchment. The total accumulated material 𝑀𝑡 into a cell xy for a 

given upslope area of n cells can be written for each cell xy as: 

𝑀𝑡,𝑥𝑦 =  ∑ 𝑀𝑣
𝑖= 𝑛𝑥𝑦

𝑖 = 1
           (2) 

The accumulated material 𝑀𝑡,𝑥𝑦  divided by the number of cells n contributing to the cell xy result in average values of the 

landscape feature in the sub-catchment: 20 

𝑀𝑣,𝑥𝑦
̅̅ ̅̅ ̅̅ ̅ =  

𝑀𝑡,𝑥𝑦 

𝑛𝑥𝑦
            (3) 

Proportions of landscape features in a catchment result from a special case of catchment averages with Mv values of 1 indicating 

the presence and values of 0 indicating the absence of selected landscape features. 
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Figure 3: Example for contributing area averages using relative bedrock permeability with values between 0 and 1.  The Digital 

Elevation Model (DEM) and the relative bedrock permeability are used as inputs to calculate the catchment area averages. The 

example is calculated for the pixel xy at the uper left of the catchment (red line). 

 5 

3.1.2.2 Tracks 

The “highway” class from the open street map (OSM) dataset (OSM Wiki, 2018) was downloaded using the integrated OSM 

download function in QGIS. A dataset for the category “tracks” was extracted from the original dataset which includes all 

OSM-values featured under the OSM-key “highway”. This dataset for tracks contains only the OSM-values track, escape, 

footway, bridleway and path, which usually characterize unsealed surfaces (Open Street Map Wiki, 2018). Fehler! 10 

Verweisquelle konnte nicht gefunden werden.Track densities around each cell [m/m²] of the different categories were 

calculated in ArcGIS for a radius of 25 m, 50 m and 100 m. The average track density per catchment was computed for all 

categories and radiuses using the approach of Eq. 3.  

 

Manning’s n for CORINE Landcover 15 

Average Manning’s roughness values were derived for all catchments based on the 2012 CORINE land cover dataset and land 

cover specific Manning’s roughness values (Philips and Tadayon, 2006; Kalyanapu et al. 2009) by using Eq. 3. Table 1 

provides an overview of the landcover classes and the respective Manning’s values. 

 

Table 1: CORINE Landcover classes and their corresponding Manning's n values adapted from Kalyanapu et al. (2009)1 and Philips 20 
and Tadayon (2006)2. 

CORINE Land Cover Class 1 CORINE Land Cover Class 3 Manning’s n value 

Forest Broad-leaved forest 0.0361 



11 

 

 Coniferous forest 0.0321 

 Mixed Forest 0.041 

 Transitional woodland-shrub 0.041 

Agriculture Complex cultivation patterns 0.0312 

 

Land principally occupied by 

agriculture, with significant 

areas of natral vegetation 

0.03681 

 Non-irrigated arable land 0.0302 

 Pastures 0.03251 

Artificial surfaces Discontinuous urban fabric 0.006781 

 Mineral extraction sites 0.006781 

 

 

3.1.2.3 Terrain 

Terrain analysis was based on a digital elevation model (DEM) with a grid size of 15 m and included catchment area (𝐴𝑐), 

catchment height (ℎ𝐶), catchment area volumes (CAV), slope, curvature, Topographic Wetness Index (TWI), Topographic 5 

Position Index (TPI), Vector Ruggedness Measure (VRM), Terrain Ruggedness Index (TRI) and the Mass Balance Index 

(MBI). 

Catchment area and height were computed with the SAGA GIS tool “catchment area recursive” (Conrad et al., 2015). Slope 

and curvature were computed using the corresponding tools from the ArcGIS 10.3 surface toolbox. Calculations for curvature 

comprise planar curvature (perpendicular to the direction of the maximum slope), profile curvature (parallel to the direction of 10 

maximum slope) and a combined measure of both planar and profile curvature (ESRI, 2020). Slope was also calculated as 

catchment averages according to Eq. 3. Computations for Topographic Wetness Index (TWI) were based on the Topmodel 

approach which is accessible as SAGA-GIS Hydrology-toolbox with slope and catchment area as input. Topographic Position 

Index (TPI, Guisan et al., 1999), Vector Ruggedness Measure (VRM, Conrad et al., 2015) and Terrain Ruggedness Index (TRI, 

Riley et al., 1999) were included as terrain roughness measures. All measures were determined with the SAGA-GIS 15 

Morphometry-toolbox and require the DEM data as input. Mass Balance Index (MBI, Friedrich; 1996, 1998) is a measure of 

landscape and sediment connectivity and was included as it can serve as a proxy for hydrological surface connectivity. MBI is 

available from the SAGA-GIS Morphometry-toolbox. 

Analogue to the hypsometric curve approach by Strahler (1952), catchment area volumes (CAV) represent the maximum 

possible upslope storage volume that can contribute to streamflow by gravimetric forcing. CAVs can either be calculated as a 20 

difference between surface and bedrock topography when focusing on soil processes or in a simpler approach as all material 

including bedrock and soil which is above and upslope of a given point in the catchment. We calculated the CAVs using the 

second approach under the assumption that the main processes of transferring water through the volume to the outlet follows 
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gravitational forcing and hence volume below the stream channel (𝑉𝑙) does not contribute to water storage capacity through 

capillary or artesian processes. CAV was calculated in QGIS. In a first step, the average catchment elevation (�̅�) was calculated 

for all cells using Eq. 3. Second, subtracting the elevation which is equal or lower than the lowest position in the catchment 

(the pour point at cell xy, fig. 2) from its average elevation gives the average elevation of the catchment above the respective 

outflow point which can be used to calculate the CAV as: 5 

𝐶𝐴𝑉 = (�̅� − 𝐸𝑚𝑖𝑛) ∗ 𝐴𝑐           (4) 

with Emin representing the minimal elevation of the catchment and 𝐴𝑐 as the catchment area. 

 

3.1.2.4 Soil 

Spatial information on soils is obtained from homogenized soil maps of Luxembourg and Belgium (see Table S1 in the 10 

Supplements). Homogenization was required due to slightly differing classification schemes in both national soil classification 

schemes. Available data includes information on soil texture, drainage behaviour and soil profile (see Table S2 in the 

Supplements). Saturated soil hydraulic conductivity (𝐾𝑠) and field capacity (𝜃𝑎) were derived from the homogenized soil maps 

and a set of soil hydrological parameters which is available from the combined field efforts of the CAOS research group 

(Catchments as Organized Systems, see e.g. Zehe et al., 2014). Detailed information about the process is provided in the 15 

supplement section S1.  

 

3.1.2.5 Geology 

Spatial information of bedrock geology is based on a 1:25.000 scale geological map from 1947 provided by the Service 

géologique de l'Etat (2018) in Luxembourg. Permeability classes were defined for all geological units and values of relative 20 

bedrock permeability assigned to each permeability class (Table 2). Relative bedrock permeability classes follow the approach 

of Pfister et al. (2017). 

 

Table 2: Classes of relative bedrock permeability for all geology units in the Attert catchment. Permeability classes were adapted 

from Pfister et al. (2017). 25 

Geology Permeability Class Relative Permeability Value 

Slates Impermeable 0 

Phyllades Impermeable 0 

Sandstone and Slates Impermeable 0 

Gypsiferous sandy marls Impermeable 0 

Gypsiferous marls (groupe de l’anhydrite) Impermeable 0 

Marls and sandstones (Schistes de Virton) Impermeable 0 

Marls and sandstones (Formation de Mortinsart) Semi-permeable 0.5 

http://www.geologie.lu/
http://www.geologie.lu/
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Marls and dolomites (Groupe de la Lettenkohle) Semi-permeable 0.5 

Alluvial deposits Semi-permeable 0.5 

Silts with quaritic concretions (Limons des Plateaux) Semi-permeable 0.5 

Marls and Limestones (Formation de Strassen) Semi-permeable 0.5 

Marls and clay-limestones (Elvange Formation) Semi-permeable 0.5 

Shelly sandstone Semi-permeable 0.5 

Sandstones, clay and conglomerates Semi-permeable 0.5 

Dolomites and sandstones Permeable 1 

Luxembourg Sandstone Permeable 1 

 

3.2 Statistical model 

The relative intermittency data Ir (Sec. 3.1.1) represents the likelihood of counts of the binary conditions flow or no flow, 

therefore this data can be modelled with a generalized linear model (GLM) using a quasibinomial link function. The 

quasibinomial link function is used to account for overdispersion. Spatial data described in section 3.1.2 was used as predictor 5 

dataset at all locations of the intermittency dataset (Table 3). Independence of predictors was checked by identifying linear 

correlation among the predictors. Predictors which showed no strong linear correlation with other predictors (threshold value 

at 0.8, e.g. Famiglietti et al. 1998) were selected for the final model development and are listed in Table 3. Among highly 

correlated predictors first predictors were selected that were also highly correlated with multiple others and thus, reduce the 

predictor set by those highly correlated predictors. Secondly, if predictors of two main predictor classes were highly correlated, 10 

the predictor with the lower number of predictors in the class was chosen. The GLM model was derived from automated model 

selection using a stepwise backwards model selection approach based on the quasi Akaike Information Criterion (qAIC). GLM 

and model selection were implemented in R software (R version 3.1.3) using the basic GLM functionality of R. In total 5 

different models were developed: One model with intermittency data obtained from the entire time period of one year (“Model 

Y”, 01.07.2016 – 01.07.2017), two independent models whose predictor sets were selected based on the intermittency data 15 

from data subsets representing the wet (“Model W1”, February-April) and dry (“Model D1”, June-August) periods, i.e. with 

high and low flows observed in the streamflow data. Finally, two models based on the predictors selected by the “YEAR-

Model” were set up and parameters and significance levels calculated by using the intermittency data of the wet (“Model W2”) 

and dry (“Model D2”) periods instead of the annual period. Evaluation of the models Y/D2/W2 allows for direct comparison 

of parameter importance among all simulated periods and to test the applicability of the predictor selection from the Model-Y 20 

to the wet and dry periods of the modelled year.  
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Figure 4: Correlations between predictors. Correlations are first shown for each subclass (left, mid) and the correlation of the 

independent predictors of all subclasses after final selection. Predictors which show a correlation coefficient ≤ 0.8 were selected 

from the subclasses. From strongly correlated predictors (correlation coefficient ≥ 0.8 ) those were selected which can be derived 

from basic analysis of the geospatial data. Characteristics that combine multiple predictors such as TWI (combination of slope and 5 
catchment area) were preferably rejected as predictors when strongly correlated to their corresponding combinations. The final 

predictor set of independent (not strongly correlated) predictors is shown on the right side. 
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Table 3: Predictors and their abbreviations for GLM development. All predictors are based on the available geodata. The scale of 

the predictors indicates whether the predictors were calculated on local scale (at the pixel scale) or represent an integral measure of 

the contributing area according to Eq. 3. Predictors with correlation coefficients of ≤0.8 (Figure 4) and a selection of the most 

representative predictors among the highly correlated predictors were included in the final model development and are written in 

bold. 5 

Predictor 

Main Class 

Predictor Sub-Class Abbreviation Scale 

Road Network Track Density 25 m Radius TD25 Local 

 Track Density 50 m Radius  TD50 Local 

 Track Density 100 m Radius  TD100 Local 

 Track Density 25 m Radius average of 

contributing area  

TD25A contributing area 

 Track Density 50 m Radius average of 

contributing area  

TD50A contributing area 

 Track Density 100 m Radius average of 

contributing area  

TD100A contributing area 

Landuse Manning’s n  n contributing area 

Soil Effective Saturated Hydraulic 

Conductivity  

 𝑲𝒔,𝑎𝑣𝑔 contributing area 

 Field Capacity  θ contributing area 

 Catchment Average Field Capacity  θavg contributing area 

Geology Relative Bedrock Permeability  𝑲𝒃𝒓 contributing area 

Terrain log(Catchment Area)  A contributing area 

 Catchment Area Volumes  CAV contributing area 

 Catchment Storage Height  CSH contributing area 

 Catchment Average Slope  β contributing area 

 Curvature Planar   𝑪𝒑𝒍 Local 

 Curvature Profile  𝑪𝒑𝒓  Local 

 Curvature Planar & Profile Combined  𝑪𝒄  Local 

 Topographic Wetness Index (Topmodel) TWI Local 

 Topographic Position Index  TPI Local 

 Vector Ruggedness Measure  VRM Local 

 Terrain Ruggedness Index  TRI Local 

 Mass Balance Index  MBI Local 
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The importance of predictors was determined by the automated selection based on the qAIC. The significance of each predictor 

for the model is rated through the p-values of the GLM-output. The model performance was analysed based on the McFadden 

peudo-R² measure in order to evaluate an overall model fit but also for the ability of each model to predict intermittency classes 

ranging from ephemeral over intermittent to perennial. Due to the small data set which does not allow for a split validation 

approach, a leave-one-out cross validation (LOOCV) approach (e.g. Akbar et al., 2019; Ossa-Moreno et al., 2019) was chosen 5 

to validate the model based on the original data set. Thus 185 models were calibrated, each leaving out one of the data points. 

Then, the GLM derived from n-1 data points is used to predict the value �̂� for the left-out point with the observed value y. This 

process is repeated for all observations. The measure of Root Mean Square Error RMSE is used to assess the model accuracy 

as follows: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑(𝑦𝑖 −  𝑦�̂�)

2

𝑛

𝑖=1

 10 

The bias of the model is determined by: 

𝐵𝑖𝑎𝑠 =
1

𝑛
∑(𝑦𝑖 −  𝑦�̂�)

𝑛

𝑖=1

 

where n is the number of observations, �̂� is the predicted and y the observed relative intermittency (Akbar et al., 2019). The 

observed and modelled data was classified according to the degree of intermittency into ephemeral (Ir < 0.1), intermittent (0.1 

≤ Ir < 0.8) and perennial (Ir ≥ 0.8). We used the same classification classes to describe the degree of intermittency for 15 

comparison of the three-month periods used to model the wet and dry period although the terms ephemeral, intermittent and 

perennial apply solely for the annual period. In order to additionally validate the results from the classified reaches we compare 

the stream length of the modelled streams with the length of the streams from the topographic map (Le Gouverment du Grand-

Duché de Luxembourg, 2009). We assume that the mapped stream network approximately represents the natural layout of the 

stream network in areas with lower human impacts. 20 

 

4. Results 

4.1 Predictor importance 

The results of all models show that the most important predictors for modelling relative intermittency are the logarithm of the 

catchment area log(A) and profile curvature Cpr (Table 4). The predictors of soil hydraulic conductivity, bedrock permeability 25 

and track density become important when modelling the dry period. Apart from are the logarithm of the catchment area log(A) 

and profile curvature Cpr as most significant predictors, the predictor set for Model-Y also included soil hydraulic conductivity 

and relative bedrock permeability, but with lower significance levels (Table 4). Track density within a 100m radius was only 

selected for Model-Y and contributes to the model on a rather low level of significance. The predictors found in the Model-Y 
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were used for the models W2 and D2 and showed differing significance for these two periods. While log(A) and Cpr had a 

significant contribution to both models, the predictor of soil hydraulic conductivity and bedrock permeability were only 

significant for the dry period (Table 4). Track density was not important in either of the two sub-periods. On the other hand, 

based on the full set of available predictors the automated model selection process for the models W1 and D1 only chose those 

predictors which were also significant in the corresponding models W2 and D2 without adding additional predictors from the 5 

overall set of predictors. For the wet period a predictor set including profile curvature and catchment area on log-scale was 

identified, while for the dry period soil hydraulic conductivity and bedrock permeability were added to the predictor set, 

resulting in a small increase of explained variance (Table 4). 
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Table 4: The significance of each predictor (curvature planar (Cpr), catchment area (log(A)), soil hydraulic conductivity (Ks,avg), 

relative bedrock permeability (Kbr) and track density within a 100m radius (TD100)) for each model. The intermittency values of 

the Model-Y was based on an annual period of flow observations whereas the models W1 and W2 represent the three wettest month 

of the annual period and the models D1 and D2 the three driest months. Significance codes represent the following P-Values for 

model predictors: 0.000 = *** ; 0.001 = ** ; 0.01 = * ; 0.05 = L; not significant = x. Positive and negative signs indicate the signs for 5 
the model parameter estimations. 

Parameter Model-Y D1 W1 D2 W2 

Intercept - (***) - (***) - (***) - (***) - (***) 

 𝐶𝑝𝑟 + (**) + (*) + (***) + (*) + (**) 

log(A) + (***) + (***) + (***) + (***) + (***) 

 𝐾𝑠,𝑎𝑣𝑔 + (*) + (*)  + (*) + (x) 

𝐾𝑏𝑟 . - (*) - (L)  - (*) - (x) 

TD100 - (L)   - (x) - (x) 

 

Table 5: Explained individual variance (McFadden pseudo-R²) of the models with predictors added to the model starting from a 

single predictor model using ln(Catchment Area) with the lowest pseudo-R². 

Parameter Model-Y W1 and W2 D1 and D2 

log(A) 0.148 0.130 0.111 

 𝐶𝑝𝑟 0.159 0.147 0.120 

𝐾𝑠,𝑎𝑣𝑔. 0.160 0.148 0.121 

𝐾𝑏𝑟 . 0.164 0.151 0.126 

TD100 0.168 0.153 0.127 

 10 

4.2 Model performances 

Considering the McFadden pseudo R² between 0.2 and 0.4 for a good model fit (Backhaus et al., 2006), low values for pseudo-

R² were found for all GLMs, ranging between 0.147 (W1) to 0.168 (Model-Y, Table 5) Nonetheless, the error matrix based on 

the classified data reveals the ability of the model to correctly classify the intermittency classes of ephemeral, intermittent and 

perennial sites (Table ). The Model-Y shows 59% correct classifications for intermittent streams and 89% for perennial 15 

streams. Ephemeral streams are not well represented by the model with only 18% correct classifications (Table 6). For the 

Models W1 and W2 80% of the intermittent, 21% (23%) of the ephemeral and 86% (83%) of the perennial stream sites were 

correctly classified. Similar performances show both Models D1 and D2 with 33% (29%) correct classifications for ephemeral, 

67% for intermittent and 70% for perennial stream sites.  

The overall accuracy for the modelled intermittency classes is increasing with a higher number of monitoring sites having 20 

perennial streamflow and is within the range of 58-60% for the dry period, to 68% for the year period and 72-73% for the wet 
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period. Correct classifications depend strongly on relative bedrock permeability with low classification performance for sites 

with high bedrock permeability and higher performance for sites with low bedrock permeability (Figure 5). The number of 

monitoring sites with ephemeral streamflow is low compared to the sites with intermittent and perennial streamflow (Figure 

6). In contrast to the observations the number of modelled ephemeral streams is overestimated by all models as the modelled 

intermittency values show a strong tendency towards the extreme values of flow or zero-flow (Figure 6). The RMSE for Model-5 

Y is with 0.26 the lowest among all models which are with 0.263 for W2 and 0.29 for D2 very similar. The bias of the models 

is very low and ranges around zero with values between - 9.6 * 10-4 (Model Y) and 4 * 10-5 (Model W2). Model residuals for 

all models are shown in Fig. 7. 

 

Table 6: Confusion matrix for the stream classification of ephemeral, intermittent and perennial. Counts within each class are shown 10 
in bold, the percentage of modelled class counts within each measured class are shown in brackets. Grey shaded values highlight the 

correct predictions for each class. 

  Measured Intermittency 

  Ephemeral Intermittent Perennial 

  Model-Y 

S
im

u
la

te
d

 

Ephemeral 7 (18%) 1 (3%) 0 (0%) 

Intermittent 31 (79%) 22 (59%) 12 (11%) 

Perennial 1 (3%) 14 (38%) 97 (89%) 

 Model W1 

Ephemeral 7 (21%) 0 (0%) 1 (1%) 

Intermittent 25 (73%) 24 (80%) 16 (13%) 

Perennial 2 (6%) 6 (20%) 104 (86%) 

 Model W2 

Ephemeral 9 (24%) 0 (0%) 1 (1%) 

Intermittent 22 (65%) 24 (80%) 19 (16%) 

Perennial 3 (9%) 6 (20%) 101 (83%) 

 Model D1 

Ephemeral 16 (33%) 0 (0%) 0 (0%) 

Intermittent 32 (67%) 18 (67%) 33 (30%) 

Perennial 0 (0%) 9 (33%) 77 (70%) 

 Model D2 

Ephemeral 14 (29%) 0 (0%) 1 (1%) 

Intermittent 33 (69%) 18 (67%) 32 (29%) 

Perennial 1 (2%) 9 (33%) 77 (70%) 
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Figure 5: Measured intermittency is plotted against modelled intermittency for each model. Relative bedrock permeability is color 5 
coded. The grey boxes indicate the classes of ephemeral (Ir < 0.1), intermittent (0.1 ≤ Ir < 0.8) and perennial (0.8 ≤ Ir < 1.0) 

streamflow. 
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Figure 6: Distribution of modelled and measured intermittency for each model. The measured intermittency values show a strong 

trend towards the higher intermittency values and contain for the year and for the wet models very low numbers in the zero-flow 

intermittency bin. The modelled intermittency values show a strong tendency towards the minimal and maximum intermittency 

values. 5 
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Figure 7: Model residuals for all models. The intermittency class is based on the classification scheme from Hedman & Osterkamp 

(1982). The relative intermittency is < 0.1 for the ephemeral, ≥0.1 and < 0.8 for the intermittent and ≥ 0.8 for the perennial class. 

 

4.3 Prediction Maps 5 

Intermittent and perennial streams were predicted for the entire Attert catchment based on spatially distributed predictor data 

(Figure 8). All modelled stream networks have a tendency to show many more first order streams compared to the stream 

network of the topographic map (Le Gouverment du Grand-Duché de Luxembourg, 2009). The model also predicts streams in 

areas of agricultural land use where the topographic map shows no streams. The W1 model set up for the wet period is driven 

by two predictors catchment area and curvature. The additional predictors in the W2 lead to a large increase of the modelled 10 

stream length of the intermittent streams (Table 7) which becomes visible in the mapped stream network with a high density 

of intermittent streams in areas of lower bedrock permeability (Figure 8). However, models for the dry period generally show 

lower numbers of first order streams compared to the other models (Figure 8) and thus, also the length of the intermittent 

stream network is also in higher agreement with the topographic map (Mapped Streams, Table 7). Though, the models for the 

dry periods underestimate the length of the perennial stream network compared to the topographic map (Table 7). Expansion 15 
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of the stream network with the change from dry to wet period becomes visible through the stream length of the modelled 

stream networks (Table 7). The total stream length for the dry period models are 684 and 833 km while the stream length for 

the models W1 and W2 ranges from 1317 to 2109 km. On average the modelled perennial stream network expands with a 

factor of 1.4 from dry to wet period while the intermittent streams show a change in stream length of a factor 2.5. Stream 

length of the perennial streams in Model-Y is with 227 km within the range of the mapped perennial stream length with 5 

274 km. However, the intermittent stream length is with 658 km for the Model-Y eight times higher than the mapped stream 

length with 82 km (Table 7). 

 

Table 7: Stream length [km] of modelled streams and mapped streams from the topographic map (Le Gouvernment du Grand-

Duché de Luxembourg, 2009). 10 

 Modelled Stream Length [km] 

Model Perennial Streams Intermittent Streams Total 

Model-Y 227 658 885 

W1 246 1071 1317 

W2 278 1831 2109 

D1 179 505 684 

D2 191 642 833 

Mapped Streams 274 82 356 
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Figure 8: Prediction maps of intermittency. Ephemeral streams are not displayed. Intermittent streams are defined for streamflow 

present between 10% and 80% of the modelled time period, perennial for streams with ≥80% streamflow presence. 
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5. Discussion 

5.1 Evaluation of GLM model predictors 

Intermittency of rivers results from superimposed interactions among climatic factors (ET, P), the physiographic layout of the 

landscape (geology, topography, topology, soil type, land cover) and possible artificial alterations (streets, land use, drainage, 

water supply) (Buttle et al., 2013; Costigan et al. 2016; Jaeger et al., 2019). Some of the physiographic attributes can be 5 

expressed in physically meaningful, yet simplifying representation, e.g. spatial information of hydraulic conductivity in soils 

simplifies soil heterogeneity and presence of macropore flow (van Genuchten, 1980; Weiler & McDonnell, 2007). For other 

predictors classified representations are necessary due to difficulties to gather representative data on larger scale. This applies 

to the hydraulic conductivity in bedrock represented in this study as relative bedrock permeability (Pfister et al., 2017) or 

terrain metrics such as terrain roughness which provide a measure for sources and sinks at the surface (Ali & Roy, 2010; 10 

Bracken et al., 2013; Boulton et al., 2017).  

We assume for the selection of predictor variables in this study that climatic heterogeneity plays a minor role in our catchment, 

which is supported by the small differences in annual precipitation (Pfister et al., 2005; Wrede et al., 2014; Fig. S3). Focusing 

on non-climatic predictors we find a general importance of the contributing area and profile curvature among all models tested. 

This finding is consistent with the studies of Prancevic & Kirchner (2019) who predicted the extension and retraction of stream 15 

networks based on the topographic attributes slope, curvature and contributing drainage area.  

The topographic wetness index (TWI) is frequently used as topographic attribute to predict streamflow permanence at the local 

scale and the extent of the perennial stream network (Hallema et al., 2016; Jensen et al., 2018; Jaeger et al., 2019). However, 

the TWI was not included as important predictor due to its high correlation (r = 0.99) with contributing area on log-scale. Thus, 

in this study the TWI is represented through the combination of catchment area and curvature, which was confirmed by a test 20 

run for model selection using the TWI instead of contributing area.  

Other important predictors include the soil hydraulic conductivity and the relative bedrock permeability both as integral 

measure for the contributing area. The importance of bedrock permeability was emphasized by Pfister et al. (2017) who 

identified bedrock permeability as major control for storage, mixing and release of water in the Attert and Alzette River basin. 

Both predictors control the storage of water in the catchment (Buttle et al., 2013; Pfister et al., 2017) and the transit time 25 

(Costigan et al., 2016; Zimmer & McGlynn 2017; Pfister et al., 2017) of water through the catchment. Generally, storage 

capacity of water in the catchment can determine the permanence of water availability and thus the permanence of flow. Also, 

the potential velocity of surface and subsurface flow facilitated by the catchment properties can have a direct impact on flow 

permanence.  

The fact that the predictors bedrock permeability and soil hydraulic conductivity were identified as important predictors in our 30 

study is in strong agreement with the study by Prancevic & Kirchner (2019) who modelled the extension and retraction of 

flowing streams and the study of Naedeau & Rains (2007) on initiation of fluvial erosion. As data of width, thickness and 

conductivity for the permeable zone underlying temporal channels is generally not available, Prancevic & Kirchner (2019) 



26 

 

derive the valley transmissivity (representing a combination of bedrock permeability, soil hydrological conductivity and the 

valley cross-sectional area) from topographic attributes. Besides the transmissivity of the soil and bedrock, the infiltration 

capacity of the surface can cause surface flow initiation. Not only paved surfaces but also logging tracks were identified as 

source areas of Hortonian overland flow (Ziegler & Giambelluca, 1997).  

In our study, the density of tracks in a 100m radius was identified as a predictor in the model for the annual period showing 5 

the potential importance of the low infiltration capacity of tracks during strong precipitation events. However, this predictor 

had no importance for the other periods. This could be attributed to the low proportion of tracks in the catchment with sufficient 

inclination to cause Hortonian overland flow. Additionally, most of the observed logging tracks are located in a geological 

setting with sandstone bedrock and sandy soils. Thus, observed events in the dry periods are limited to a low number of storm 

events with sufficient precipitation to generate surface runoff. Due to the very short time with flow these sites may reduce their 10 

weight in the automated predictor selection compared to no-flow sites. Nonetheless, for individual tracks Hortonian overland 

flow initiation can be important (Ziegler & Giambelluca, 1997).  

The use of integral information of averaged predictor values based on contributing area was helpful to predict point scale 

intermittency, although, abrupt changes of intermittency due to local scale geological layout have been reported by e.g. 

Goodrich et al. (2018). Bedrock permeability and soil hydraulic conductivity were included as averaged information of the 15 

catchment, while curvature and track density are point scale information. Although integral and point scale information are 

strongly correlated at the sites of this dataset the model benefits not only from the lower correlation among the predictors with 

integral information of bedrock permeability and soil hydraulic properties. By using integral predictors, we take into account 

that the streamflow intermittency at any point in the catchment can be influenced by the overall contributing area properties 

(see e.g. Olson and Brouilette 2006, Pfister et al., 2017, Jensen et al., 2018). Streamflow initiated upstream will be maintained 20 

when the longitudinal hydrological connectivity allows the propagation of the flow downstream. Therefore, vertical or lateral 

connectivity measures which are also strongly linked to permeability (Jensco et al., 2010; Boulton et al., 2017) need to be 

considered as integral component of the catchments that contributes to the probability of streamflow. The integral information 

of bedrock permeability and soil hydraulic conductivity may be able to serve as one of these measures. 

 25 

5.2 Variability and uncertainty in model predictions 

Spatially distributed model predictions of streamflow probabilities enable the comparison of model output with the mapped 

stream network from the topographic map covering the diverse geologies, soils, land cover and topography in the Attert 

catchment. Classification based on streamflow intermittency separates stream reaches into ephemeral, intermittent and 

perennial streamflow classes to derive a hierarchical stream network containing the intermittent and perennial reaches (Figure 30 

6). We are aware of the fact that the number of gauging sites limits the model evaluation with a split calibration-validation 

approach. We used 185 sites to develop the GLMs with up to five predictors which is within the range of necessary 20 to 50 

observations per variable proposed by van der Ploeg et al. (2014) for a good GLM setup. The number of sites allows for a 
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data-based leave-one-out cross validation. The RMSE values (0.26 – 0.31) obtained for the different models related to the 

maximum possible RMSE of 1 shows overall model deviations of around 26 to 30 %. The plotted residuals (fig. 7) reveal some 

extreme deviations of nearly 1. The majority of perennial streams seem to be well represented by the model, while many of 

the ephemeral streams have residuals of > 0.5. This could be due to the distribution of observation sites in the data set, which 

have a strong tendency towards permanent streamflow sites and thus to the perennial reaches, while intermittent and ephemeral 5 

reaches are underrepresented (Figure 6). The better representation of perennial streams becomes also visible in the model 

validation by its ability to predict the spatial distribution of intermittent/perennial streams compared to the mapped stream 

network.  

Changes between wet and dry periods of the year result in expansion and contraction of the stream network (Buttle et al., 

2012). This process is predicted in the model results of the changes in stream length of perennial and intermittent streams 10 

(Table 7). We use the classification of perennial and intermittent streamflow for all modelled periods to use a consistent 

classification although we are aware that the original definition is based on annual streamflow and does not address the 

streamflow intermittency of a 3-month period. Perennial here simply means that streamflow is permanent over the 3-month 

period. The accuracy of class predictions of perennial and intermittent streams varies significantly between the time periods 

used for the model setup (Table 6). Predictions of intermittent and perennial streams during the wet period are fairly well 15 

represented by the model. This goes hand in hand with a reduced number of predictors in the model with solely the two 

topographic predictors profile curvature and contributing area. The dominant role of terrain metrics, which are highly 

correlated with the TWI, reflects the importance of runoff generation processes leading to saturation and maintaining 

streamflow in wet conditions. Those processes include the rise of the groundwater table and high soil saturation during the wet 

period which enhance the vertical and lateral hydrological connectivity (Hallema et al., 2016; Zimmer er al, 2017; Keesstra et 20 

al., 2018).  

The comparison between models for the wet, dry and annual period reveals the additional complexity in the system as 

additional predictors are necessary to predict the dry system state. Model accuracy for classes with intermittent and perennial 

streamflow decreases slightly for models of the dry and annual period in comparison to the models for the wet period. 

Conversely, model accuracy for the ephemeral class increases. However, for the wet period, model accuracy of the intermittent 25 

and ephemeral classes is directly linked to the low number of sites that cease to flow during the wet period. The shift of the 

observed data towards conditions of perennial flow and the underrepresentation of intermittent sites leads to lower model 

accuracies for the models W1/W2.  

All models have a general tendency to overestimate the extremes of relative intermittency classes close to zero and perennial 

flow (Figure 5). Simulated intermittent stream length increases by 112 to 185 % between dry and wet model periods, whereas 30 

perennial stream length increases by 37 to 45 %. Prancevic et al. (2019) calculate a hypothetical change in stream length 

between 10 % for a low and 900 % for a highly dynamic stream network using similar model predictors as in this study. To 

increase the low predictive power of the ephemeral and intermittent model classes additional sites with information of sustained 

no-flow conditions could enhance the predictive power for these classes.  
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Bedrock permeability of the catchments is a major control of the hydrology of the catchment and is also identified as major 

predictor for the annual and dry period models. Nevertheless, catchments with high bedrock permeability lack proper 

representation by the model particularly for sites with low streamflow intermittency (Figure 4). One data-inherent reason for 

the low model accuracy in catchments with highly permeable geology results from the lower number of sites representing such 

geological condition. Process based reasons arise from the geological setup which is needed for the initiation of sources in the 5 

highly permeable geologies of Buntsandstein and Luxembourg Sandstone in the Attert. Springs were observed to be initiated 

at the boundary of rather impermeable marls and the thick layer of overlaying highly permeable sandstone. They usually 

maintain the perennial reaches in these catchments throughout the year due to large dynamic storages (Pfister et al., 2018). 

Thus, for predictions not only the information of the mean bedrock permeability of the bedrock is needed but also the thickness 

and orientation of subsurface layers differing in permeability. Less permeable geologies are better represented in all models 10 

(Figure 4) but would also benefit from a larger number of sites of intermittent streams to enhance the model accuracy for this 

class. Intermittent streams turned out to be more important in areas with less permeable geologies. This could result from 

smaller storage capacity which is not able to maintain perennial streamflow throughout the year in the marl and slate geologies 

of the catchment (Pfister et al., 2018). Intermittency in the marl geology can also be induced by land use. The modelled stream 

length of intermittent streams is significantly higher than the mapped streams of the topographic map (Table 10). The maps in 15 

Figure 6 reveal key areas with agricultural land use that contain substantially more modelled intermittent streams than the 

topographic map. The modelled streams may not be completely wrong when assuming a natural environment but streamflow 

in these areas was heavily altered by artificial surface and subsurface drainage (Schaich et al., 2011). Sites which are located 

in catchments with merely agricultural land use are underrepresented in our dataset. Thus, a higher spatial density of these 

sites may improve the representation of such areas. 20 

The predictors for soil hydraulic conductivity were derived from multiple soil maps and translated the soil attributes to 

saturated hydraulic conductivity and field capacity. Although deriving hydraulic properties from texture information using 

pedo-transfer functions is a common procedure (Wösten et al., 2001), spatial information of transmissivity in valleys based on 

hydraulic conductivity of soil and bedrock is often not available for all soils and rock formations in the area of interest 

(Prancevic et al., 2019). We tried to capture the effects of soil heterogeneity on effective soil hydraulic conductivity as much 25 

as possible by including factors that alter soil hydraulic conductivity such as soil drainage (Clausen and Pearson, 1995) and 

soil horizons (Zimmer and McGlynn, 2017). This required some assumptions for the parametrization of the soil maps which 

needed to be based on sparse data from literature and a small database of soil properties from the research area. These 

assumptions potentially introduce uncertainty to the effective soil hydraulic conductivity. Nonetheless, this data adds valuable 

information to the soil hydraulic properties and their representation in the statistical models. The predictor of relative bedrock 30 

permeability relies strongly on the classification of the underlying dataset. The dataset provides only a coarse classification of 

bedrock permeability and misses information of geological layering. Nonetheless, the permeability data both for soil and 

bedrock are crucial information to predict streamflow intermittency with in our models. 
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Further uncertainty in the predictions may arise from the quality of the geospatial predictor data. Terrain metrics are dependent 

on the quality and the resolution of the underlying DEM (Habtezion et al., 2016). In this study only a DEM with 15 m spatial 

resolution was availale to derive terrain metrics (e.g. contributing area, slope, curvature, TWI) which allowed delineation of 

most streams. However, some small channels in flat areas such as road ditches or tile drainages require a higher resolution of 

the DEM to calculate the exact terrain metrics in such areas. Coarser DEMs enhance hydrologic connectivity by reducing 5 

depression storage and therefore increase the probability of runoff (Habtezion et al. 2016). Thus, terrain predictors require 

DEMs with particular small cell-size when aiming for an adequate representation of intermittent and ephemeral reaches in 

models. Using a coarse cell-size DEM can result in a shift of sites into larger catchments which are actually located in smaller 

catchments in cases where accuracy of the site’s position is lower than the cell-size of the DEM. With a maximum spatial 

deviation of 8 m for the site position, mismatching between sites and cells can occur. With contributing area and curvature two 10 

predictors of the GLMs are dependent on DEM resolution and are prone to the discussed errors. Contributing area can be either 

overestimated or underestimated caused by inaccurate localisation of sites and the coarse cell size of the DEM. 

Misrepresentation of curvature can be caused from coarse cells that submerge micro-topographic information. Therefore, a 

DEM with smaller cell-size (2-3 m) can enhance model results and better representation of reaches with low relative 

intermittency (Habtezion et al. 2016; Jensen et al., 2018). In the dataset of this study 9 sites may be prone to non-accurate 15 

delineation of the catchment area, mainly in areas with very flat or highly detailed relief (Fig. 1). Unfortunately, such a finer 

resolution DEM was not available for the study area.  

The simulated performance of the GLMs is generally low compared to other studies which use GLMs to discriminate between 

intermittent and perennial streamflow (e.g. Olson and Brouilette, 2006; Jensen et al., 2018). The low performance arises from 

the higher model complexity with the aim to model relative intermittency instead of discriminating only between the two 20 

classes of intermittent and perennial streams.  In addition, the dataset used in this study is limited to point measurements instead 

of mapped stream reaches. Missing the complete information along the stream complicates also to trace the movement of 

channel heads over time. Thus, the highly dynamic transitions of streamflow intermittency at the most upstream sections of a 

reach are neither represented by the data nor can it reflect the sharp transition zone to areas with no-flow. The missing 

information of exact position of the channel heads is also leading to an overestimation of the length of the intermittent stream 25 

network (Fig. 6). This can be improved by defining areas of zero-flow when observing flow occurrence throughout the seasons 

(with e.g. time-lapse camera) and especially during strong precipitation events (e.g. visual observations). However, the model 

results for the three intermittency classes are promising and the performance of the model could benefit from denser monitoring 

networks and extended field observations mainly of sites with intermittent to no flow. Thus, our modelling approach advances 

from previous studies that used GLMs to discriminate between perennial and intermittent streamflow by adding the ability to 30 

discriminate between the full range of probabilities between zero- and perennial flow (e.g. Olson and Brouillette, 2006; Jensen 

et al., 2018).  
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6. Conclusion 

This study presents a novel approach of modelling streamflow intermittency using logistic regression models. In contrast to 

earlier studies we use the here newly introduced response variable of relative intermittency instead of binary streamflow classes 

(e.g. intermittent/perennial) which allows for modelling of streamflow probabilities. The comparable climatic conditions across 

the studied catchment permit a focus on quasi-static predictor variables such as geology, soil, terrain, land cover or tracks and 5 

roads. Significance and selection of model predictors varied among models of wet and dry periods, indicating a change of 

predictor importance for wet and dry states of the catchment. Models for the wet periods were mainly driven by the terrain 

metrics contributing area and profile curvature which represent a measure for saturation probability. Dry period models 

contained relative bedrock permeability and soil saturated conductivity as additional predictors, which are a measure of 

transmissivity and storage capacity of the system in the dry system state. The model for the annual period includes all the 10 

predictors from the dry period and additionally track density, which was recognized as potential indicator of local Hortonian 

overland flow. The innovative approach using integrated contributing area information for the predictors of soil hydraulic 

conductivity and bedrock permeability was valuable to describe upstream controls of intermittency like infiltration and storage 

capacity. 

Modelling results classified into ephemeral, intermittent and perennial streamflow are promising, yet the overall modelling 15 

accuracy needs to be improved by denser spatial information of streamflow intermittency ground truth and digital terrain 

models of higher resolution. After classification into ephemeral, intermittent and perennial reaches all models are able to 

discriminate between intermittent and perennial streams. Changes in length of the stream network when shifting from wet to 

dry state of the catchment are captured by the models but correct representation of the whole stream network was not yet 

achieved. Future testing the model in catchments of different sizes and climates with a higher data density could improve the 20 

classification thresholds and cumulate in a comprehensive and representative classification. A logistic regression model 

approach as presented in this study has the potential to provide the information of the streamflow probabilities throughout the 

year, but also for the wet and dry state of a catchment and therefore the dynamics of the stream network rather than a static 

stream network. The logistic regression model is simple to set up and can be trained with different predictor sets. We 

recommend a larger sample size for model application to achieve reliable modelling results. Maps of streamflow probability 25 

are rare but would be extremely beneficial for ecological modelling, operational implementation of water policies for 

catchment conservation and regulation as well as modelling of flash flood induced streamflow. The share of streams with non-

permanent streamflow within the total stream network and the spatial extent is critical information for researchers as well as 

for river ecosystem- and extreme-event management.  

 30 
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