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Abstract. Hydrological models are useful tools to explore the impact of climate change. To prioritize parameters for cali-

bration and to evaluate hydrological model functioning, sensitivity analysis can be conducted. Parameter sensitivity, however,

varies over climate, and therefore climate change could influence parameter sensitivity. In this study we explore the change in

parameter sensitivity for the mean discharge and the timing of the discharge, within a plausible climate change rate. We inves-

tigate if changes in sensitivity propagate into the calibration strategy, and diagnostically compare three hydrological models5

based on the sensitivity results. We employed three frequently used hydrological models (SAC, VIC, and HBV), and explored

parameter sensitivity changes across 605 catchments in the United States by comparing GCM(RCP8.5)-forced historical and

future periods. Consistent among all hydrological models and both for the mean discharge and the timing of the discharge, is

that the sensitivity of snow parameters decreases in the future. Which other parameters increase in sensitivity is less consistent

among the hydrological models. In 45% to 55% of the catchments, dependent on the hydrological model, at least one param-10

eter changes in the future in the top-5 most sensitive parameters for mean discharge. For the timing, this varies between 40%

and 88%. This requires an adapted calibration strategy for long-term projections, for which we provide several suggestions.

The disagreement among the models on the processes that become more relevant in future projections also calls for a strict

evaluation of the adequacy of the model structure for long-term simulations.

1 Introduction15

Earth and environmental computer models are indispensable tools to explore an uncertain future. Whereas observational stud-

ies report on historical changes in streamflow patterns across the contiguous United States (CONUS) that might be attributed

to climate change (Stewart et al., 2005; Sagarika et al., 2014), hydrological models are applied in the same region to gain

insights into long term changes in the future (e.g. Mizukami et al., 2016; Melsen et al., 2018; Chegwidden et al., 2019; Brunner

et al., 2020). These model projections can support water resource managers to prepare for future changes. The models are thus20

related to costly and impactful decisions (McMillan et al., 2017; Metin et al., 2018).
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Given the relevant role of models to support decision making, model functioning should be thoroughly scrutinized. A fre-

quently used tool to evaluate hydrological model functioning is sensitivity analysis (Pianosi et al., 2016; Devak and Dhanya,

2017). Sensitivity analysis is aimed at identifying the relative impact of model parameters on model response. The results of a25

sensitivity analysis differs over models, target variable of the model response, and applied sensitivity analysis methods (Shin

et al., 2013; Razavi and Gupta, 2015; Guse et al., 2016a; Haghnegahdar et al., 2017; Mai and Tolson, 2019).

However, parameter sensitivity also differs across climate, as for instance showed by Demaria et al. (2007), Van Werkhoven

et al. (2008) and Melsen and Guse (2019): In a cold catchment with a large fraction of the precipitation falling as snow, snow30

parameters are supposed to be sensitive, while in a tropical catchment without snowfall, snow parameters are not supposed to

show any sensitivity. As such, it is common understanding that parameter sensitivity depends on climate. But reconsidering this

fact, this would also imply that parameter sensitivity could change in a changing climate. Therefore, the question is whether,

within a plausible rate of climate change, hydrological parameter sensitivity changes. This could have consequences for the

way hydrological models should be calibrated for long term projections. Besides, it offers the opportunity to compare different35

models to evaluate if the same mechanisms are simulated as being relevant for future changes.

Many hydrological models that are used for long term projections have parameters that require calibration to identify their

values for the catchment under study. Hydrological model parameters are generally calibrated on discharge time series. But

discharge is a lumped catchment response, and therefore only provides limited catchment information (Jakeman and Horn-40

berger, 1993; Guse et al., 2016a). A rule of thumb suggested by Beven (1989) and employed by many modelers is that, given

the limited information available in a discharge time series, three to five parameters can be calibrated based on these data (and

this might already be a high number, following the famous quote of von Neumann1). Global Sensitivity Analysis (GSA) can

be employed to identify the parameters that have most influence on the model output (Demaria et al., 2007; van Werkhoven

et al., 2009; Pianosi et al., 2016; Borgonovo et al., 2017; Zadeh et al., 2017). Subsequently, the three to five parameters that45

show most sensitivity are selected for calibration. However, if parameter sensitivity changes with climate change, this could

interfere with the parameter prioritization procedure for models used for long term projections.

Besides the potential consequence for calibration, evaluating the relation between change in parameter sensitivity and climate

change also provides the opportunity to diagnostically evaluate model functioning during long-term projections. Several stud-50

ies already investigated the change in parameter sensitivity over time, focusing on specific events or relatively short time scales

(Reusser et al., 2011; Herman et al., 2013b; Guse et al., 2014; Massmann and Holzmann, 2015; Pfannerstill et al., 2015). For

instance, it was demonstrated that certain parameters are triggered during specific discharge conditions such as high or low flow

events (Pfannerstill et al., 2015; Guse et al., 2016b). If certain events will prevail or become less frequent in a future climate,

this might change the average parameter sensitivity over the long run. As such, evaluating long-term changes in parameter55

sensitivity can provide insights into systemic changes. By comparing changes among several model structures, the robustness

1"With four parameters I can fit an elephant, with five I can make him wiggle his trunk", John von Neumann (1903-1957)
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Figure 1. Summary of the methodological approach, to be read from left to right. The first three panels are the calculations, the other four

panels are the actual analyses.

of simulated systemic changes can be evaluated.

In this study we investigate how parameter sensitivity changes as a consequence of climate change. We evaluate if and how this

has consequences for parameter prioritization for calibration, and if systemic changes are robust across different hydrological60

model structures. To this end, we apply a hybrid local-global sensitivity analysis method to three frequently used hydrological

models in 605 basins across the US. We evaluate two signatures (mean discharge and timing of the discharge), and link changes

in sensitivity to changes in climate. To sample plausible climate change space, we employ forcings from three different GCMs.

Finally, we evaluate the impact on the top-5 most sensitive parameters in each basin, and investigate the transmission of sen-

sitivity from one parameter to the other. We end with a recommendation on how to account for changes in sensitivity in the65

calibration strategy of models used for long-term projections, and an evaluation of the robustness of systemic changes across

different models.

2 Methods

To investigate changes in parameter sensitivity, we employed three frequently used hydrological models. The models were run70

for a historical and a future period over 605 catchments, forced with three bias corrected and statistically downscaled global

circulation model. A hybrid local-global sensitivity analysis method was applied to the simulations of both periods, evaluating

two target variables; the mean discharge, and the day of the year on which half of the yearly discharge has passed (discharge

timing). Then, the differences in parameter sensitivity between the historical and future period were explored in several ways.
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Figure 2. Simplified representation of the model structure of the three models employed in this study. All the parameters that are displayed

are included in the sensitivity analysis. Parameters are colored according to the flux or state they influence (evapotranspiration (ET), snow,

soil moisture and shallow layer, percolation, deep layer). The colors are used consistently throughout all the figures in this study. Parameter

boundaries can be found in Appendix Tables A1, A2, and A3.

First, per parameter to investigate which parameters change, and over different climate indicators to investigate how climate75

and climate change explain changes in sensitivity. Then, we assessed how the top-5 most sensitive parameters would change

in the future period, thereby impacting the calibration strategy. Finally, we conduct a diagnostic model evaluation, amongst

others by investigating the transmission of sensitivity from one parameter to the other. An overview of the procedure is shown

in Figure 1.

2.1 Models80

We investigated for three models whether parameter sensitivity changes within a plausible climate change range: the TUW-

model following the structure of HBV (Parajka et al., 2007, hereafter referred to as HBV), SAC-SMA combined with SNOW-17

(Newman et al., 2015), and VIC 4.1.2h (Liang et al., 1994). All three models have previously been used for long-term climate

impact projections: e.g. Teutschbein et al. (2011); Wetterhall et al. (2011) for HBV; Koutroulis et al. (2013); Peleg et al. (2015)
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for SAC-SMA; and Christensen et al. (2004); Wu et al. (2012) for VIC, and are therefore relevant models to consider. The85

same suit of models was explored in another context in Melsen et al. (2018) and Melsen and Guse (2019).

A simplified representation of the model structures, including a description of the parameters that were accounted for in the

sensitivity analysis, are displayed in Figure 2. A more elaborate description of each model can be found in Melsen et al. (2018),

and in the respective references of each models: Bergström (1976, 1992) for HBV, Burnash et al. (1973); National Weather90

Service (2002) for SAC-SMA, and Liang et al. (1994, 1996) for VIC.

2.2 Catchments and Forcing

All three models were run for a historical and future period of 28 years, of which the first five years were omitted from both

periods for spin up. As such, the historical period that is analyzed covers 1985-2008, and the future period 2070-2093, 23 years

each. The forcing for both periods was obtained from statistically downscaled and bias corrected output from three GCMs: the95

Max Planck Institute for Meteorology Earth System Model MR (MPI-ESM-MR, Giorgetta, 2013), the Community Climate

System Model 4.0 (CCSM4, Gent et al., 2011) and the The Institut Pierre Simon Laplace model (IPSL-CM5A-MR, Dufresne,

2013). All GCMs are from the Climate Model Intercomparison 5 (CMIP5), using Representative Concentration Pathway 8.5

(RCP8.5). Bias correction was done according to the Bias Correction and Spatial Disaggregation (BCSD) method of Wood

et al. (2004), based on the Maurer et al. (2002) forcing data.100

Our study is an investigation of the potential that a plausible climate change rate might impact hydrological model parameter

sensitivity. As such, we only selected a subset of three GCMs to sample plausible climate change rates. The three selected

GCMs represent different climate model families as identified by Knutti et al. (2013), to capture the spread among the differ-

ent GCMs. Within each family, the selected models are among the better performing ones when evaluated against observed105

precipitation and temperature (Sheffield et al., 2013).

Finally, the GCM forcing was lumped over the CAMELS basins. The CAMELS data set contains forcing, discharge observa-

tions, and catchment characteristics for 671 catchments throughout the contiguous United States with limited human impact

(Newman et al., 2014, 2015; Addor et al., 2017). We employed a subset of 605 catchment-averaged forcings, because at the110

time of calculation, there were still issues with determining the exact catchment area for the remaining 66 catchments.

The hydrological models were not calibrated, since we employed global sensitivity analysis across the full parameter range.

Therefore, the 605 simulated catchments should be perceived as 605 different climate instances with an individual level of

climate change, rather than as catchment representative models. Given that each catchment was forced with the three GCMs115

means that in total, 605·3=1815 different evaluations of changes in sensitivity were conducted. The models are, however, able

to achieve acceptable model performance in these basins when forced with observations and confronted with discharge obser-
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vations (Melsen et al., 2018), providing credibility to the models to be used in this context.

The goal of this study is to investigate how climate might impact parameter sensitivity within a plausible climate change120

range. We are thus particularly interested in to which extent we can expect changes in the sensitivities of model parameters

as a consequence of changes in the climate. As such, it is of second order importance whether the climate model gives highly

accurate predictions or whether the hydrological model can exactly capture catchment behavior. It is, however, important to

note that we employed the highest emission scenario (RCP8.5), thereby investigating the effect of the higher ranges of plausible

climate change. It can be expected that the impact of climate change on parameter sensitivity will be lower for lower emission125

scenarios. However, RCP 8.5 is often used to provide an upper boundary for long-term projections, thereby demonstrating the

relevance of choosing this scenario.

2.3 Sensitivity analysis methodology

In the selection of the sensitivity analysis method, a few points were considered. First, it had to be a global method, because

global sensitivity analysis methods are used to identify the most sensitive parameters for calibration (whereas local methods130

are generally applied after calibration). Secondly, we had to account for a high number of runs (605 basins, three GCMs, two

periods, three hydrological models). Therefore, we selected the hybrid local-global method DELSA (Rakovec et al., 2014),

which is computationally cheaper than traditional (variance-based) global sensitivity analysis methods.

DELSA evaluates local sensitivity at several places throughout parameter space, as such mimicking global sensitivity analysis.135

First, 100 parameter samples called base-runs were created based on a space filling sampling strategy. The models were run for

all 100 samples. Secondly, the parameters are one-at-a-time perturbed with 1% compared to their base-run value. The effect of

this perturbation on the model output, compared to the corresponding base-run, represents the parameter sensitivity:

∂ψ

∂θk

∣∣∣∣
θbase−runi

=
ψbase−runi

−ψperturbedi
θbase−runi,k − θbase−runi,k · 1.01

, (1)

where ψ denotes the model output that is evaluated, θ refers to the parameter value, k the number of parameters that is evaluated140

in the sensitivity analysis (in our case 15, 18, and 17 for HBV, SAC, and VIC, respectively), and i the number of base runs

(in our case 100). In total, this leads to 1500+100, 1800+100, and 1700+100 runs per basin for the three hydrological models,

totalling to 9,619,500 model runs considering the forcing of three different GCMs.

We used the average sensitivity from the 100 samples per parameter per basin as a measure of parameter sensitivity. Each145

parameter that is displayed in Figure 2 was accounted for in the sensitivity analysis. The applied parameter boundaries for

sampling are provided in Appendix Tables A1, A2 and A3 (see also Melsen and Guse, 2019).
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Besides the selection of a sensitivity analysis method (which will influence the final results, Razavi and Gupta, 2015; Pianosi

et al., 2016), we also had to identify a target variable - the variable that is compared between the base-run and the perturbed150

run. Whereas performance metrics are quite popular as target variable (Van Werkhoven et al., 2008; Herman et al., 2013a), they

are not well suited for global sensitivity analysis (Razavi and Gupta, 2015; Guse et al., 2016a), and besides, it is not possible

to obtain model performance for the future. Therefore, this study focuses on mean simulated discharge and the day of the year

that half of the discharge has passed (hereafter referred to as ‘discharge timing’) as target variables. Many other streamflow

signatures could have been of interest to evaluate, for instance related to high and low flows, but given the goal of this study, an155

exploration on the effect of climate change on parameter sensitivity, a volume and a timing signature based on discharge seem

the most neutral choice.

The sensitivity analysis was conducted for both the historical and future period, for all 605 basins forced with three different

plausible climate change rates (based on the three GCMs). The first analysis of the calculations was a simple exploration of160

which parameters increase and which parameters decrease in sensitivity in the future over all 605 basins to achieve a first

insights into potential changes in parameter sensitivity in future and to see which parameters are mainly affected.

2.4 Climate indicators to relate changes in sensitivity

The 605 climate instances from the 605 basins are not a representative sample since certain climates might be over- or un-

derrepresented. Therefore, the difference in sensitivity was also related to climate indicators. This also allows to combine the165

results obtained with the three different GCMs: if there is a relation between a climate indicator and parameter sensitivity, this

should be visible regardless of which GCM was used. Basically, the three GCMs were used to sample the plausible climate

change space.

Given their relevance for discharge, we employed the Knoben climate indicators (Knoben et al., 2018) to classify the changes170

in parameter sensitivity. The Knoben indicators consist of three indicators: aridity index, seasonality, and fraction precipitation

falling as snow.

To determine the aridity index, first Thorntwaite’s Moisture Index (MI , Knoben et al., 2018; Willmott and Fedema, 1992)

is obtained based on mean monthly observations of precipitation, P (t), and evapotranspiration Ep(t). Subsequently, average175

aridity Im can be obtained.

MI(t) =


1− Ep(t)

P (t) , ifP (t)>Ep(t)

0, if P (t) = Ep(t)
P (t)
Ep(t)

− 1, if P (t)<Ep(t)

(2)
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Im =
1

12

t=12∑
t=1

MI(t) (3)

Aridity index Im varies between -1, representing highly arid conditions, and 1, representing humid conditions. The seasonality180

in the aridity index, Im,r, is determined based on the maximum difference in MI over the year:

Im,r = max(MI(1,2, ...12))−min(MI(1,2, ...12)) (4)

The seasonality varies between 0 and 2, with 0 indicating no intra-annual variation, and 2 indicating that climate varies from

fully arid to fully humid over the year. The last Knoben index is the fraction precipitation falling as snow, fs.

fs =

∑
P (T (t) ≤ T0)∑t=12
t=1 P (t)

(5)185

In this equation, T (t) is the mean monthly temperature, and T0 the threshold temperature below which precipitation is assumed

to occur as snow. The threshold temperature was set to 0◦C, in line with Knoben et al. (2018). fs can have a value between

0, no snow, and 1, all precipitation falling as snow. All three indicators were evaluated based on the climate in the historical

period, and based on the change in climate between the future and the historical period (future - historical), this latter one being

indicated as ∆indicator.190

2.5 Evaluation of impact of sensitivity changes on calibration strategy

To evaluate the impact of change in parameter sensitivity on calibration strategy, we determined the top-5 most sensitive

parameters for each basin, both for the historical and future period. We analyzed which parameters left and entered the top-

5 in the future compared to the historical period, as a consequence of a change in sensitivity. This was again related to the

climate indicators of Sect. 2.4, to investigate if in certain climates or climate change rates more changes can be expected in the195

calibration parameters.

2.6 Diagnostic model evaluation based on changes in sensitivity

To diagnose how the results from the different models have come about, we relate the direct model output (several states and

fluxes) to changes in sensitivity. Furthermore, we introduce the concept of ‘parameter sensitivity transmission’: We evaluate

whether any negative correlations exist between parameters with increasing and decreasing sensitivity. Strong negative corre-200

lations can be an indication that sensitivity is transmitted from one parameter to the other, so we define transmission as a clear

negative correlation in change in sensitivity between two parameters. However, since we evaluate correlation, transmission

does not refer to absolute sensitivity values.

The goal of this analysis is to investigate to what extent sensitivity is transmitted directly from the decreasing parameter to205

the increasing parameter. When there is no direct relation, it can indicate that sensitivity changes at several places within the
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model structure. The transmission of sensitivity can give insights into which processes become more relevant in the future, at

the expense of processes that become less relevant - a systemic change as a result of climate change. A comparison among the

different model structures will indicate their (dis)agreement on the change in relevant processes.

3 Results210

To place the results into context, we first briefly discuss the change in climate between the historical and future period, and the

changes in several simulated water balance terms for both periods for the three employed hydrological models. Subsequently,

we discuss the change in sensitivity between the historical and future period, the relation between changes in sensitivity and

climate, the impact of sensitivity changes on calibration strategy, and finally the model diagnostic evaluation.

215

3.1 Changes in climate and simulated water balance terms between historical and future period

Fig. 3 provides an overview on the change in climate (expressed in temperature and precipitation) between the historical and

future period for the three employed GCMs (RCP8.5). In all the investigated basins the mean temperature will increase in the

future with at least 2.6◦C. IPSL clearly simulates a warmer climate than the other two GCMs. IPSL also shows a decrease in

precipitation for half of the basins, whereas most basins will receive more precipitation in the future in the MPI and CCSM220

projections.

Fig. 3 also depicts several simulated water balance terms for the three employed hydrological models (subdivided for the

three different GCMs). Note that the hydrological models were not calibrated and that for each of the 605 basins, the mean

across the parameter ensemble was used for this figure. It is therefore not an indication of what exactly might happen in the225

future in the investigated basins, but an indication of the flexibility of the models in responding to changes in climate. There

is consistency among the models that in most basins, evapotranspiration will increase in the future. Here, the differences are

larger among the GCMs than among the hydrological models. There is also agreement among the hydrological models that

snow water equivalent will decrease in the vast majority of the basins, although the magnitude of change differs among the

hydrological models - more than across the GCMs. The signal in discharge has a less clear direction, which is also consistent230

among the models, although VIC seems to hinge on a general increase in discharge while HBV and SAC have slightly more

basins where discharge would decrease. Both HBV and SAC simulate a decrease in soil moisture in most basins, especially in

the IPSL forced runs, whereas the decrease in soil moisture for the VIC simulations is much lower. The hydrological models

seem to broadly agree on the general direction of change in several of the simulated water balance terms, but differences

among hydrological models can already be observed and might be more pronounced for individual basins. For soil moisture235

and evapotranspiration, the GCM forcing seems more relevant to explain the differences, while for snow water equivalent,

differences are mainly found between the hydrological models.
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Figure 3. Changes between historical (1985-2008) and future (2070-2093) period. The left two panels depict the change in temperature (∆T)

and precipitation (∆P) across the 605 basins, as obtained with MPI, CCSM, and IPSL (RCP8.5). The right four panels depict the change

in mean discharge (∆Q), mean evapotranspiration (∆ET), mean soil moisture (∆SM) and mean snow water equivalent (∆SWE) between

both periods for the 605 basins, as simulated by the three different hydrological models and forced with the three different climate models.

Each model was run for a full parameter sample per basin, the average change across the parameter sample per basin was used to create the

boxplots.

3.2 Changes in sensitivity between historical and future period

Fig. 4 and Fig. B1 show the distribution of change in sensitivity between the historical (1985-2008) and future period (2070-

2093) over all 605 basins for the three hydrological models for three GCMs, for mean discharge and discharge timing as target240

variable, respectively.

Consistent over all three hydrological models when evaluating the mean discharge as target variable, is a decrease in the sensi-

tivity of snow parameters in the future. The parameters that show increasing sensitivity cannot consistently be associated to one

specific process. Whereas a strong decrease in sensitivity requires a high sensitivity in the historical period, this is not required245

for a strong increase in sensitivity. It can be observed, however, that model parameters that display an increase in sensitivity

were also already sensitive in the historical period.

In the HBV model especially the snow correction factor (SCF) displays a large decrease. This is also the parameter with the

highest sensitivity in the historical period, therefore having the highest potential to decrease. The other three snow parameters250

in HBV displayed lower sensitivity in the historical period, and also show a less consistent decrease in the future. Also in

the SAC and VIC models, the snow parameter that displayed the highest sensitivity in the historical period (SCF in SAC and

Snowrough in VIC, respectively) show the strongest decrease.

Among the three hydrological models, different parameters related to different processes display an increase in sensitivity in255

the future. In HBV, evapotranspiration and soil parameters increase in sensitivity in the future with the largest increase in the

evapotranspiration parameter PT, while there is hardly any observable change in sensitivity in percolation and deep layer pa-
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rameters. In the SAC and VIC model, there are parameters associated to all processes except snow, that tend to mainly increase

in sensitivity in the future. Like for HBV, also in SAC the evapotranspiration parameter PT has the highest increase. In the VIC

model, the depth of the second soil layer (Depth2) shows the largest positive change in sensitivity. Consistent with the results260

in the previous section on water balance terms, it can be seen that changes in sensitivity are quite consistent among the three

different GCMs when it considers snow related parameters, whereas more differences can be observed in parameters related to

soil moisture and evapotranspiration processes.

Fig. B1 shows that for the discharge timing, many more processes in the hydrological models display changes in sensitivity.265

The decrease in sensitivity of snow parameters is less pronounced although still present, while many other parameters show

small increases in sensitivity. This is consistent among the three hydrological models, and consistent among the three GCM

forcings.

3.3 Relationship between climatic variables and sensitivity changes

Since the 605 basins employed in the previous section are not a representative, balanced sample over climates and climate270

changes, the results are split out over the three Knoben climate indicators. Fig. 5 depicts how parameter sensitivity changes

between historical and future period for six relevant model parameters for the mean discharge, Fig. B2 for discharge timing.

The results obtained from the three different GCMs have been combined, because they can be perceived as different samples

of plausible climate change space.

275

From Fig. 5, it can be seen that the patterns relating parameter sensitivity to climate and climate change indicators are weak,

except for evapotranspiration parameters. The projected change in aridity index seems to have explanatory value for the change

in sensitivity of evapotranspiration parameters PT (both in HBV and SAC) and Rmin (VIC). The change in sensitivity of snow

parameters cannot be explained with the Knoben climate indicators, but can be related to current mean temperature and pre-

cipitation, and projected changes in mean temperature (Fig. A1). The patterns, however, vary per model.280

In most cases, the patterns that can be identified relate to the projected change in climate. For instance, soil moisture/shallow

layer parameter Depth2 (VIC) and percolation parameter Expt2 (VIC) demonstrate a more pronounced increase in regions with

decreasing aridity index. Sometimes also the historical climate, combined with the projected change, can show organization.

For example, the sensitivity of the evapotranspiration parameter PT in both SAC and HBV is particularly increasing in regions285

with high historical aridity index, and the direction of change relates to the change in aridity index.

Given that no clear patterns were revealed based on the Knoben indicators, we also explored patterns related directly to climate:

the mean temperature and mean precipitation and their projected changes. These results for mean discharge as target variable

can be found in Figure A1 in the Appendix. The snow parameters mainly decrease in sensitivity in basins with a historically290

mean temperature between 0 and 15◦C, dependent on the model. In these basins, the fraction of snow will decrease in a warmer

11
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Figure 5. Change in parameter sensitivity versus historical climate indicators and change in climate indicators for 605 basins. The climate

indicators are determined for all three GCMs. Disaplayed are aridity index (-1 highly arid, +1 highly humid), seasonality, and fraction of

precipitation falling as snow, as defined by Knoben et al. (2018). Parameter sensitivity for the historical period is expressed in dot size,

change in parameter sensitivity in colour: red indicates an increase in sensitivity, blue a decrease.13



climate, whereas in basins with a lower mean temperature, snow will remain a relevant process in the future (Fontrodona Bach

et al., 2018). Also the evapotranspiration parameters (PT for HBV and SAC, and Rmin for VIC) demonstrate a clear relation

with temperature and precipitation, in the same fashion as was found for the aridity index.

295

With discharge timing as target variable, we found overall similar sensitivity patterns (Fig. B2 and B3): change in aridity shows

most organisation when related to change in sensitivity, and change in snow parameters can be related to historical temperature.

However, the absolute values of the changes in sensitivity for discharge timing are lower compared to the sensitivity changes

in mean discharge.

3.4 Impact of sensitivity changes on calibration strategy300

In this section we explore to what extent the changes in parameter sensitivity that were observed in the previous sections prop-

agate into the calibration procedure. To this end, we evaluate the top-5 most sensitive parameters, and how this top-5 changes

between the historical and future period.

Fig. 6 depicts which parameters leave the top-5 in the future, and which parameters enter the top-5 in the future for the mean305

discharge as target variable. Mainly snow parameters drop out of the top-5 in all three models, while parameters related to

many other processes enter the top-5. Although changes in top-5 parameters are observed, the overall top-5 of the parameters

is maintained in 45% to 55% of the catchments, dependent on the hydrological model. In 41 to 49% of the catchments, one

parameter changes in the top-5, in 3 to 6% of the catchments two parameters change in the top-5. The maximum number of

changes in the parameter top-5 per catchment is three, which occurs only in max 0.2% of the investigated basins.310

For HBV, especially snow parameters SCF and TR exit the top-5 in the future runs. The largest increase in top-5 notations for

HBV is found for evapotranspiration parameter LP. Remarkably, snow parameter TR (threshold temperature where precipita-

tion falls as rain) also appears as a parameter that enters the top-5: this parameter leaves the top-5 in many basins, but also

enters the top-5 in many other basins. In SAC, snow parameter PXTEMP loses the most top-5 notations. Lower zone parameter315

LZTWM shows the strongest increase in top-5 notations. In VIC, mainly the snow parameter Snowrough decreases in top-5

notations. Deep layer parameters gain most notations, especially DS.

The results of the pie charts in Fig. 6 cannot directly be generalized because the 605 explored basins are not a well-balanced

sample in terms of climate and climate change. Therefore, the change in top-5 parameters is also again displayed against the320

Knoben indicators (right panels in Fig. 6). It can be observed that one change in parameter top-5 can occur across all climates

and climate changes. Two changes in parameter top-5 already show some clustering, at least for HBV and VIC this seems to

be related to a high historical aridity index (wet conditions). For HBV, also a cluster of two and three parameter changes can

be found in the catchments that display high seasonality.

325
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The same results are displayed in Fig. B4 but then for the discharge timing as variable of interest. Also for the discharge timing,

across all three models mainly the snow parameters leave the top-5, although also parameters related to other processes leave

top-5 positions - more than for mean discharge where snow parameters really dominate in losing their top-5 position. The type

of parameters entering top-5 positions varies a lot among the three models; evapotranspiration parameters for HBV, percolation

parameters for SAC, and soil moisture/shallow layer parameters for VIC. Also the change in top-5 positions in general varies330

highly between the models; for VIC, 61% of the catchments does not experience any change in parameter top-5, while in SAC,

only 12% of the catchments maintains the same top-5 in the future. Two changes in the parameter top-5 are more frequent than

for mean discharge (varying between 7 and 34%). There are even some exceptional cases (0.06% in HBV) where the complete

parameter top-5 has changed.

335

In conclusion, changes in parameter sensitivity as a consequence of climate change can propagate into the calibration strategy.

For the mean discharge, one change in the parameter top-5 is common and can occur across all climates and climate changes,

whereas about 4% of the explored catchments experiences at least two but max three changes in parameter top-5. As such, the

impact seems limited. This is, however, very much dependent on the signature that is evaluated, and the hydrological model

employed. For the discharge timing (defined as the day of the year that half of the discharge has passed) as target variable,340

changes in the top-5 are much more common for some models, and up to 5 changes in the top-5 were found for exceptional

cases.

3.5 Diagnostic model evaluation based on changes in sensitivity

The evaluated changes in parameter sensitivity in response to climate change can be perceived as a way to evaluate models

diagnostically, especially since we can compare the results for three different hydrological models. The parameter sensitivity345

in the historical period (the top panels in Fig. 4) already shows that the models activate different processes to simulate histor-

ical discharge. Our analysis of change in sensitivity demonstrates that the models also respond differently to changes in forcing.

There are a few points where all three hydrological models agree: all models simulate a decrease in snow in the future across all

basins, and an increase in ET across most basins (Fig. 3). This is also visible in the change in sensitivity for the mean discharge350

of the parameters related to these processes. In all models, the snow parameters tend to decrease most in sensitivity (dependent

on their historical sensitivity), and a tendency to increase in sensitivity for ET parameters was found (although clearly weakest

for VIC, Fig. 4, and dependent on GCM). These results are robust across different formulations for snow and ET processes:

SAC and HBV share the same ET formulation and employ a comparable snow formulation, but VIC employs a completely

different formulation for both ET and snow. Yet, all three models agree on these signals.355

However, many other changes in sensitivity for mean discharge can be observed where the models disagree, for instance the

role of percolation and soil moisture/the shallow layer. To further explore how the models respond to climate change in terms

of parameter sensitivity, the transmission of sensitivity is explored by means of the negative correlation between change in

15
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sensitivity among two parameters. An example is the left panel of Fig. 7, depicting a negative correlation between the change360

in sensitivity of snow parameter SCF and the change in sensitivity of evapotranspiration parameter LP for HBV (combining all

three GCM forcings), which can indicate a transmission of sensitivity from SCF to LP. The chord diagrams in Fig. 7 show the

correlations between the parameters with decreasing and increasing sensitivities. All three models display a decrease in sen-

sitivity of the snow parameters, but this sensitivity is transmitted to different process parameters in the three models. In HBV,

mainly to evapotranspiration and shallow layer parameters, in SAC evapotranspiration, percolation, and deep layer parameters,365

and in VIC to shallow layer and deep layer parameters. Weak transmissions can indicate that parameter sensitivity changes at

several places in the model structure.
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Figure 7. Indication of parameter sensitivity transmission. Panel a) an example for HBV: the change in sensitivity of parameter SCF shows

a strong negative correlation with the change in sensitivity of parameter LP, which can indicate that SCF transmits sensitivity to LP. Since

we focus on transmission, we only evaluate negative correlations. Panel b) The chord (circle) diagrams display transmission of sensitivity,

indicated with a band from the parameter that decreases in sensitivity to the parameter that increases in sensitivity. The width of the band

indicates the strength of the negative correlation. The example from panel a is indicated with a red arrow in the chord diagram of HBV. The

white number indicates the strength of the correlation; -0.53 between SCF and LP. In all three chord diagrams, the lower part shows the

parameters that decrease in sensitivity, and the upper part the parameters that increase in sensitivity, with the white number indicating the

strength of the correlation (for clarity, lower correlations are not displayed). Colors are according to the process they represent (with different

shades of blue used for snow parameters for clarity). The chord diagrams are focused around the most relevant parameters based on Fig. 6.

Fig. B5 displays the chord diagram for the discharge timing as target variable. The results are very comparable to the results for

the mean discharge: mainly the snow parameters decrease in sensitivity, and this sensitivity is transmitted to parameters rep-370

resenting different processes across different hydrological models: Evapotranspiration and shallow layer parameters in HBV,

percolation and deep layer parameters in SAC and mainly deep layer parameters in VIC. Interesting is the role of shallow layer

parameter INFILT in VIC. This parameter transmits sensitivity to three different deep layer parameters. But in Fig. B4, it is also

visible that INFILT is one of the parameters that frequently enters the top-5 in the future and therefore this parameter could also

be displayed at the top of the chord diagram. There is, however, no parameter in VIC that displays a clear negative correlation375

in sensitivity change with INFILT: the strongest correlation that was found was -0.16, between snow parameter Newalb and

INFILT. INFILT thus mainly transmits sensitivity to deep layer parameters, but gains sensitivity from several different sources.

Whereas the models agree on the decline in snow water equivalent and decreased sensitivity of snow parameters despite

employing different snow formulations, the models disagree on changes related to many other processes. Since the three380

models differ in many aspects in their model structure, the difference in response to changing forcing cannot directly be related

to specifics of the model structure. The results, however, do show that the internal functioning of the models differ when used

for long term simulations, and this might impact the results and subsequently the conclusions of the model study.
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4 Discussion

4.1 Changes in states, fluxes, and sensitivity between historical and future period385

A first evaluation of the different states and fluxes that are simulated by the hydrological models for the future period demon-

strates that the three models agree that in general, snow water equivalent will decrease under RCP 8.5 using three different

GCMs. This same signal is propagated into the sensitivity of the parameters related to this process: in all three models, the

sensitivity of snow parameters tends to decrease for the mean discharge. All models also agree on the tendency that evapo-

transpiration will increase in the future, although this varies across GCM forcing. Also this signal is reflected in the sensitivity390

of evapotranspiration parameters for mean discharge: their sensitivity tends to increase (although the models disagree on

the magnitude of change). These results imply that the impact of snow on mean discharge will decrease, while the impact of

evapotranspiration on mean discharge will increase. The results for discharge timing are much more variable across the models.

For other states and fluxes simulated by the models, such as soil moisture and percolation, the models agree less on the395

change in sensitivity when using mean discharge as target variable (Fig. 4). This can first and foremost be attributed to a

difference in model structure, but the impact of model structure can be further emphasized by the target variable that we

used for our sensitivity analysis. We evaluated the sensitivity of parameters to simulate mean discharge. For instance for

HBV, percolation parameters historically already did not display a strong sensitivity for mean discharge, and the sensitivity of

percolation parameters does not change in the future. This does not automatically imply that HBV does not simulate a change400

in percolation as a consequence of climate change, but mainly that mean discharge and percolation are decoupled (at least in

comparison to other processes) in the HBV model structure. Another example is that all models simulate a substantial increase

in evapotranspiration, but for VIC this does not lead to a substantial increase in sensitivity of parameters related to ET. Other

signatures as target variable therefore will lead to different results: Fig. B1 demonstrates that when using the timing of the

discharge as target variable, both historic sensitivity and change in sensitivity is substantially different from the results for the405

mean discharge. The results of this study should thus be seen conditional on the explored target variables: for studies focusing

on long-term projections of flood and drought, flood and drought specific variables should be explored to investigate changes

in sensitivity.

4.2 Climate indicators to relate changes in sensitivity

We evaluated change in sensitivity against three climate indicators; aridity index, seasonality, and fraction precipitation falling410

as snow. We were not able to identify a clear, robust relation between climate indicator, change in climate indicator, and change

in parameter sensitivity. In our approach, we investigated if any temporal relations exist. Another way to evaluate change in

sensitivity would be to evaluate spatial relations. van Werkhoven et al. (2008) for instance, demonstrate that spatial gradients

in model sensitivity exist that relate to climate. If we can establish a temporal relation in the same way van Werkhoven et al.

(2008) could demonstrate spatial relations, space-for-time trading would be an option to determine which parameters become415
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sensitive in the future. The lack of a clear relation between climate, climate change, and parameter sensitivity however, also

demonstrates that we should critically evaluate the adequacy of the model structures for long-term projections.

4.3 Impact of sensitivity changes on ranking of sensitive parameters

We investigated how parameter sensitivity changes as a consequence of climate change. We also explored the use of sensitivity

analysis to provide the most relevant parameters (factor prioritisation) for an effective model calibration (Saltelli et al., 2006;420

Reusser et al., 2011). Within this context, we have shown how changes in parameter sensitivity propagate into the selection

of relevant parameters for model calibration. We assumed a general calibration strategy where the modeller selects the five

most sensitive parameters for calibration. Certainly many other calibration strategies exist. For example, one could select all

the parameters that exceed a certain sensitivity-threshold as suggested by van Werkhoven et al. (2009) or when compared to a

dummy parameter as suggested by Zadeh et al. (2017), resulting in a higher or lower number of parameters for the calibration,425

or simply include all the parameters in the model if the model is highly parsimonious (Melsen et al., 2014). Our results are,

however, still relevant in the context of other calibration strategies, as the changes in sensitivity will still influence the cali-

bration results. That is, it is difficult to calibrate a parameter if the model is hardly or not sensitive to changes in its values in

current-day climate.

430

The implication of our result is that, the more the parameter sensitivity changes, the more parameter identifiability decreases

for long-term projections. Accordingly, we can expect that in particular the parameters that will enter the top-5 in the future

are probably not well identified in the historical period. Therefore, we provide suggestions to account for changing sensitivi-

ties in the calibration strategy of hydrological models for long-term projections. A first strategy, related to methods that have

been suggested for changing parameters over time (Merz et al., 2011; Vaze et al., 2010), is to conduct sensitivity analysis over435

different parts of the observation-period, and calibrate the model on the period that best resembles the parameter sensitivity

of the future scenario. A risk, however, is that the calibration period becomes too short to determine stable parameter values

(Yapo et al., 1996). A second strategy is to sample the parameters that will become sensitive in the future. Provided that, in the

current climate, the model is not sensitive to changes in parameter θi, the value of θi cannot be inverted through calibration.

However, in the future the value of θi does become relevant. In order to correctly capture spread in long-term projections that440

results from uncertainty in this parameter-value, the value of θi should be sampled. Hereby, we have to emphasise that in this

context, parameter uncertainty is specifically related to expected changes in the relevance of the associated processes in future.

A third option could be to increase the effort in finding data to be able to calibrate a parameter directly to the associated pro-

cess. Sensitivity analyses on different processes demonstrate that the sensitivity signal increases using the associated process

as target variable (Guse et al., 2016a). In this way, it can be expected that parameters are better identifiable and more robust for445

future simulations.
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4.4 Diagnostic interpretation

In the previous sub-section we provide suggestions to further validate the calibration procedure of models employed for long-

term projections. It seems a valid question, however, whether our models are fit for this purpose at all. The results of the450

sensitivity analysis indicate a change in relevant processes in the future which is captured differently among the three inves-

tigated models. This emphasizes the need to improve model structure for long term projections, as suggested by Fowler et al.

(2018), Grigg and Hughes (2018) and Westra et al. (2014).

Assuming that a sensitivity analysis conducted over 23 years of daily data is robust and thus that the observed changes in455

sensitivity can be attributed to a changing climate rather than to noise, our results demonstrate that parameter sensitivity is

nonstationary (Koutsoyiannis and Montanari, 2015). Nonstationarity of parameter sensitivity fits in the growing body of lit-

erature identifying nonstationarity when simulating the hydrological system on the long term (e.g. Milly et al., 2008; Thirel

et al., 2015; Fowler et al., 2016, 2018). Nonstationarity is not only disclosed through a change in sensitivity, but also through a

change in parameter values over time (Vaze et al., 2010; Merz et al., 2011). The identification of nonstationarity in parameter460

values is the result of the simplified model representations, not capturing dynamics and/or processes that are relevant in the real

world. Fowler et al. (2018) provides a framework to evaluate model improvement under nonstationary conditions; Grigg and

Hughes (2018); Westra et al. (2014) and Duethmann et al. (2020) adapted model structure to account for nonstationarity, lead-

ing to improved model results. This study reinforces this direction of research; even though the decrease in sensitivity among

all three models can consistently be found for the snow parameters, the increase in sensitivity can be attributed to different465

processes in the three models, which might indicate that a relevant process is missing in any of the models, stressing the need

to carefully assess whether these models are appropriate for long-term projections. The differences in which processes and

associated parameters becomes more relevant among the models shows that there is no consensus how the hydrological system

will change in future.

470

A decrease of sensitivity of snow parameters and an increase in the sensitivity of evapotranspiration parameters in a warming

climate (considering enough moisture being available) could be expected based on expert judgement, and at least the three

models agree on those signals despite employing different formulations to compute these processes. However, the models

disagree on the other processes that will become more or less relevant in the future, while changes in these processes are not

straight forward to estimate based on expert judgement. It is, for instance, not easy to judge whether the relatively higher475

amount of rain in the future (due to a decrease in snow) goes on average more to higher evaporation or to higher infiltration. As

such, we have to acknowledge that the models differ in the processes they use to simulate future changes, and that we cannot

easily differentiate the right from the wrong models. This calls for a more process-based evaluation of historical changes, to

evaluate their plausibility for future changes to guide model selection.
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5 Conclusions480

In this study we investigated if hydrological model parameter sensitivity changes within a plausible climate change rate. This

is relevant for parameter prioritization in the calibration procedure for long-term projections, and can be insightful for model

diagnostic evaluation to investigate how the models simulate systemic changes as a consequence of climate change.

The sensitivity of the parameters in three investigated hydrological models changes within a plausible changing climate. The485

three models agree that especially the snow parameters decline in sensitivity, while evapotranspiration parameters show a

tendency to increase (dependent on the employed GCM). Which other parameters increase in sensitivity is, however, less con-

sistent among the models; sometimes mainly ET and soil moisture/shallow layer parameters, sometimes mainly percolation

and/or deep layer parameters. These differences occur due to differences in the three hydrological model structures. We did not

identify a clear pattern in which kind of climates and expected climate changes most changes in parameter sensitivity take place.490

The change in parameter sensitivity propagates into the calibration strategy. Typically, a global sensitivity analysis is conducted

to determine the most sensitive parameters, and based on that, the top-5 most sensitive parameters are selected for calibration.

Dependent on the model, 45% to 55% of the 605 investigated catchments has at least one parameter changing in the top-5 in

the future when mean discharge is evaluated, and between 40% and 88% of the catchments when discharge timing is evaluated.495

For the mean discharge, the highest number of changes in the parameter top-5 was three, while for discharge timing, in some

exceptional cases the complete top-5 consisted of different parameters in the future. Since these results were obtained for the

highest emission scenario (RCP8.5), fewer changes might be expected for lower emission scenarios.

Some parameters become sensitive in the future, but are currently not sensitive. Therefore, their value cannot be obtained500

through calibration based on current data. One way to account for changes in sensitivity is to identify a historical period that

mimics the future projected sensitivity. Another approach is to sample the parameter that becomes sensitive in the future, to

account for predictive uncertainty as a consequence of the uncertainty in this parameter value. A third approach is to invert the

value of this parameter based on observations specifically related to the process that the parameter is related to.

505

Besides implications for the calibration strategy when using models for long-term projections, our results also have implications

for model selection for this purpose. The results demonstrate that the three employed models consider different processes

as becoming more or less relevant in the future; they simulate different systemic changes. Whereas the models agree on

systemic changes that can be excepted based on expert judgement (decreased relevance of snow and increased relevance of

evapotranspiration in a warming climate), the models disagree on other processes that are more difficult to judge. These results510

not only stress the need, but also the challenge in carefully assessing model structure adequacy when applying models for

long-term projections.
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Appendix: A. Parameter ranges

Table A1. Selected parameters, their classification, and their boundaries for the HBV model. The parameters and their boundaries are based

on Parajka et al. (2007); Uhlenbrook et al. (1999); Abebe et al. (2010). The Priestley-Taylor parameter is based on Lhomme (1997).

Name Unit Lower boundary Upper boundary Description

1 Tm ◦C -3.0 3.0 Temperature where snow melt starts

2 Ts ◦C Tr-0.01 Tr-3 Temp. below which precipitation is snow

3 Tr ◦C 0.0 3.0 Temp. above which precipitation is rain

4 DDF mm ◦C−1 d−1 0.04 12 Degree day factor

5 SCF - 0.1 5.0 Snow correction factor

6 LP - 0.0 1.0 Evaporation reduction threshold

7 PT - 1.0 1.74 Priestley-Taylor coefficient

8 FC mm 0.0 2000 Max soil moisture storage

9 BETA - 0.0 20 Non-linear shape coefficient

10 K0 day 0.0 2.0 Storage coefficient of very fast response

11 K1 day 2.0 30 Storage coefficient of fast response

12 L mm 0.0 100 Reservoir threshold

13 PERC mm d−1 0.0 100 Percolation rate

14 K2 day 30 250 Storage coefficient of slow response

15 BMAX day 0.0 30 Max baseflow of low flows
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Table A2. Selected parameters and their boundaries for the SAC model. The parameter boundaries are based on Newman et al. (2015), the

Priestley-Taylor parameter has been adapted based on Lhomme (1997).

Name Unit Lower boundary Upper boundary Description

1 MFMAX mm ◦C−1 6h−1 0.8 3.0 Max snow melt factor

2 MFMIN mm ◦C−1 6h−1 0.01 0.79 Min snow melt factor

3 UADJ km 6h−1 0.01 0.40 Wind adjustment factor for rain on snow

4 SI mm 1.0 3500 snow water equivalent for 100% snow area

5 SCF - 0.1 5.0 Snow undercatch correction factor

6 PXTEMP ◦C -3.0 3.0 Temperature for rain/snow transition

7 PT - 1.0 1.74 Priestley-Taylor coefficient

8 UZTWM mm 1.0 800 Upper zone max storage of tension water

9 UZFWM mm 1.0 800 Upper zone max storage of free water

10 UZK day−1 0.1 0.7 Upper zone free water lateral depletion rate

11 ZPERC - 1.0 250 Max percolation rate

12 REXP - 0.0 6.0 Exponent of the percolation equation

13 PFREE - 0.0 1.0 Frac. percolating from upper to lower zone

14 LZTWM mm 1.0 800 Lower zone max storage of tension water

15 LZFPM mm 1.0 800 Lower zone max storage of free water

16 LZFSM mm 1.0 1000 Lower zone max storage of sec. free water

17 LZPK day−1 1−5 0.025 Lower zone prim. free water depletion rate

18 LZSK day−1 1−3 0.25 Lower zone sec. free water depletion rate
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Table A3. Selected parameters and their boundaries for the VIC model based on Demaria et al. (2007); Chaney et al. (2015); Melsen et al.

(2016); Mendoza et al. (2015).

Name Unit LB UB Description

1 Tsmax ◦C 0.0 3.0 Max temp. where snowfall can occur

2 Tsmin ◦C Tsmax-0.01 Tsmax-3.0 Min temp. where rainfall can occur

3 SR - 5 · 10−5 0.5 Surface roughness of the snow pack

4 NewAlb - 0.7 0.99 New snow albedo

5 albaa - 0.88 0.99 Base in snow albedo function for accum.

6 albtha - 0.66 0.98 Base in snow albedo function for melt

7 RZT1 - 0.5 2 Multipl. factor rootzone thickness layer 1

8 RZT2 - 0.5 2 Multipl. factor rootzone thickness layer 2

9 RZT3 - 0.5 2 Multipl. factor rootzone thickness layer 3

10 Rmin - 0.1 10 Multipl. factor min. stom. res. vegetation

11 Bi - 10−5 0.4 Infiltration shape parameter

12 Depth2 m 0.1 3.0 Depth of soil layer 2

13 Expt2 - 4.0 30 Exponent of the Brooks-Corey relation

14 Ds - 10−4 1.0 Frac. Dsmax non-linear baseflow starts

15 Dsmax mm d−1 0.1 50 Max velocity of the baseflow

16 Ws - 0.2 1.0 Frac. Wsmax non-linear baseflow starts

17 Depth3 m 0.1 3.0 Depth of soil layer 3
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Appendix: B. Change in sensitivity versus temperature and precipitation
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Figure A1. Change versus historical values in mean temperature and mean precipitation over 605 basins, with change in parameter sensitivity

indicated using mean discharge as target variable. All three climate scenarios are shown together in each subplot. Parameter sensitivity for

the historical period is expressed as dot size. Change in parameter sensitivity in colour. Red colours indicate an increase in sensitivity, blue a

decrease.
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Appendix: C. Results for discharge timing as target variable
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Figure B1. The distribution of change in parameter sensitivity (∆sensitivity) over 605 basins for the period 2070-2093 compared to 1985-

2008, displayed per parameter per model, for three different GCM forcings for the discharge timing. Above each ∆sensitivity panel, historical

sensitivity is displayed. The panels on the right show the data for a selected case per model.
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Figure B2. Change in parameter sensitivity versus historical climate indicators and change in climate indicators for 605 basins using dis-

charge timing as target variable. All three climate scenarios are shown in the plots. The climate indicators are aridity index (-1 highly arid,

+1 highly humid), seasonality, and fraction of precipitation falling as snow, as defined by Knoben et al. (2018). Parameter sensitivity for the

historical period is expressed in dot size, change in parameter sensitivity in colour: red indicates an increase in sensitivity, blue a decrease.30
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Figure B3. Change versus historical values in mean temperature and mean precipitation over 605 basins, with change in parameter sensitivity

indicated using discharge timing as target variable. All three climate scenarios are shown together in each subplot. Parameter sensitivity for

the historical period is expressed as dot size. Change in parameter sensitivity in colour. Red colours indicate an increase in sensitivity, blue a

decrease.
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parameters enter the top-5 (right). The right panels relates the number of changes in the parameter top-5 to climate and climate change

indicators.
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Figure B5. Indication of parameter sensitivity transmission for the discharge timing - the day of the year that half of the discharge has passed.

The chord (circle) diagrams display transmission of sensitivity, indicated with a band from the parameter that decreases in sensitivity to the

parameter that increases in sensitivity. The width of the band indicates the strength of the negative correlation. The example from panel a is

indicated with an arrow in the chord diagram of HBV. The white number indicates the strength of the correlation. In all three chord diagrams,

the lower part shows the parameters that decrease in sensitivity, and the upper part the parameters that increase in sensitivity, with the white

number indicating the strength of the correlation (for clarity, negative correlations lower than 0.32 are not displayed). Colors are according

to the process they represent (with different shades of blue used for snow parameters for clarity). The chord diagrams are focused around the

most relevant parameters based on Fig. 6.
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