Rebuttal
hess-2020-179
Climate change impacts model parameter sensitivity — What does
this mean for calibration?

We would like to thank the editor for organizing the review process. We received
three review reports. All three reviewers acknowledge the relevance of the study,
and find the methods appropriate. The main comment that we distilled from
the reviews is that the reviewers would appreciate a more thorough diagnostic
discussion of how and why the models differ in their results. Therefore, we have
broadened the scope of the revised manuscript. Below we provide a point-by-
point response (with our response indicated in étalic) to the issues raised by the
reviewers.

We hope that editor and the reviewers are satisfied with our revision of the
manuscript.

Best regards,
Lieke Melsen
Bjorn Guse



Reviewer 1

This study investigates the changes in parameter sensitivity for a hydrological
model under a plausible rate of climate change. This is considered in the con-
text of model calibration, i.e. what would happen if one were to calibrate only
the most sensitive parameters. This experiment is performed using the DELSA
sensitivity method across 605 catchments in the U.S. with the SAC-SMA, VIC,
and HBV models in a historical and future period forced by a GCM. Results
show that some parameters, especially snow, show decreasing sensitivity, while
others increase in unpredictable ways. This is an interesting and novel research
question that is addressed with a well-devised and executed experiment. The
large sample of catchments and comparison of Knoben indicators is very thor-
ough. I fully support its publication, but I have some minor questions about
the framing and interpretation of results.

We would like to thank the reviewer for the support and acknowledging the nov-
elty of the research question.

1. The motivation related to calibration is somewhat unexpected. I am not
sure how common is the practice of calibrating only the five most sensitive pa-
rameters. For these lumped catchment models, a calibration of 5, 15, or 30
parameters is computationally not very difficult, though there is the concern of
equifinality. It is probably not necessary because the paper would be just as
interesting if framed as the change in parameter sensitivity over long timescales
under climate change. The study does not perform a calibration, and does not
consider how the calibrated values of the parameters would change due to cli-
mate. For example, Section 3.3 is not really considering the impact on model
calibration, instead it is considering the impact of climate change on the rank-
ing of sensitive parameters. This is a minor clarification in a few places in the
paper, but it is one possible point of improvement.

We agree with the reviewer that we do not perform any calibration, and that the
title and headings could therefore be misleading. We still believe the calibration-
perspective is highly relevant in the context of our research question, but have
made sure that the word ‘calibration’ is everywhere replaced with ‘calibration
strategy’ or ‘calibration procedure’. Furthermore, we have broadened the scope
of the manuscript, with more attention for diagnostic model evaluation. This is
also reflected in the new title.

2. T imagine many readers will be interested in the diagnostic question: what
can the sensitivity analysis tell us about hydrologic processes changing in the
future? There are a few clear examples of this in the results, such as the de-
crease in snow processes, and the increase in ET processes. However, despite
the very thorough experiment and comparison across climate indicators, there



is not much relationship between the level of climate change and the change
in parameter sensitivity across models. The authors have a good discussion of
what this could mean, that perhaps there is no consensus how the hydrologi-
cal system will change in the future. My somewhat pessimistic interpretation
was that the increases in parameter sensitivity do not follow any process-based
reasoning, and are only the result of the simplified conceptual model structure.
Additionally, it is not possible to say whether parameters are more sensitive
because the processes are occurring more frequently, or with higher magnitude,
or only because some other process is not occurring and the residual sensitivity
had to go somewhere. There is nothing quantitative to do about this, but it
is a very interesting issue. I would encourage the authors to consider focusing
discussion more on this point, and perhaps a bit less on the calibration-related
issues.

We have taken this suggestion from the reviewer wholeheartedly and have broad-
ened the scope of the manuscript to not only focus on calibration, but also on
model diagnostic evaluation. This changed the tone and also puts more empha-
sis on the model disagreement.

3. There is some opportunity to relate this study to previous studies of time-
varying sensitivity on much shorter timescales (event or seasonal). In those
cases, the temporal dynamics of sensitivity can be directly linked to flood or
drought events. The change in parameter sensitivity here is expected, because
of course the catchment is not stationary on a daily timestep. However in the
climate change case, the driving processes are less clear, which raises more con-
cerns about structural issues. I am curious whether the authors view the current
study as part of a continuum across timescales, or as a separate matter entirely.

As we have now further clarified in the introduction (1.48-56 in the new manuscript),
we see the results of our sensitivity analysis as representative for a systemic
change: the result of a summation of events that have become more or less
frequent in a future climate.



Reviewer 2

Hydrological models play a crucial role in the projection of future water re-
sources and extremes including drought and high flows under climate change.
Parameter calibration is key to whether models could produce reliable simu-
lations. This study focuses on the change of parameter sensitivity based on
discharge under climate change through ideal experiments over 605 basins in
the U.S. and offers good guidance to modelers about parameter transferability
under different climates. This work is novel and clearly organized. However, it
still needs some revisions before publication.

We would like to thank the reviewer for acknowledging the novelty and the con-
structive suggestions to improve our study.

General comments:

1. The introduction is too short and did not give a full review of the literature.
The authors could add some studies about climate change and its impacts on
hydrology, especially in the U.S. There are only several studies about how cli-
mate influences parameter sensitivity that are cited in this study.

Whereas we acknowledge that our introduction was rather concise, we are also
fully aware that it will never be possible to be completely exhaustive in terms of
literature. We have added references about climate change in the US, and about
the relation between climate and parameter sensitivity.

2. In this study, the parameter range is defined as full, however, the range
of parameters influence the parameter sensitivity analysis. I wonder whether
the results are robust regardless of the selected ranges of parameters. Besides,
whether the change of parameter sensitivity is related to catchment physical
properties like catchment area, elevation, etc. (Saft et al., 2016)7

The parameter ranges might indeed impact the sensitivity analysis. Therefore,
we used the default ranges for each of the models, so that our study mimics
applications of these models as good as possible.

Concerning the impact of catchment physical properties: since we conducted a
global sensitivity analysis, the parameters have not been calibrated to the local
situation. Only the VIC models contain land-surface information that is usu-
ally not calibrated, but we also applied sensitivity analysis to these terms (LA
and rooting depth through a multiplication factor). In HBV, the only catchment
physical property that is (obviously) not included in the sensitivity analysis is
the elevation, but the effect of elevation is conveyed through the forcing. As
such, there might be a small effect of physical properties on sensitivity in VIC
(because multiplication factor is applied to the the initial LAI and rooting depth
values) but these parameters were found not to be highly sensitive anyways, and
we don’t expect any effect of physical properties for HBV and SAC, in this con-



text of global sensitivity analysis.

3. What is the change of precipitation, temperature in RCP8.5 over the se-
lected 605 basins? A deeper analysis of the meteorological forcings is needed
and would contribute to understanding the change of parameters and hydrolog-
ical processes in models under climate change.

This is a useful suggestion. We have added a boxplot that demonstrates the
mean temperature and precipitation change in the future across the 605 basins.
See Figure 8 of the updated manuscript.

Specific comments:

L10: The percentages of catchments with two parameter changes are quite
small and negligible.

Yes, they are indeed small. We mention them nonetheless, to indicate that there
are some cases where two parameters change.

L35: There is lacking literature reviews about the hydrological parameters un-
der different climates in the introduction. To my understanding, this work is
quite relevant to some studies about the temporal transfer of parameters (Coron
et al., 2012; Patil and Stieglitz, 2015; Shin et al., 2013).

The literature suggested by the reviewer refers to studies that have evaluated pa-
rameter stability across time/space. Whether the parameter value itself changes
is different from whether the sensitivity of the parameter changes (which is what
we evaluated in this study). We refer to the non-stationarity of parameter values
in the Discussion (I. 421 in new manuscript).

L75: Why this study selected the output of CCSM? Only one GCM is selected
in this work, however there are significant uncertainties in the outputs of GCMs
and some studies used the ensemble to reduce the uncertainties. It is better to
compare multiple outputs of GCMs.

We selected only one GCM as we see this study as a ‘proof of concept’, there-
fore we also talk about ‘a plausible climate change rate’ rather than an absolute
projection. Instead, we decided to put more effort in running three different
hydrological models. We have clarified this on I. 95-99 in the new manuscript.

L77: What is the specific bias correction method used in this study? And how
did you select 605 from 671 catchments derived from CAMELS?

The applied bias correction methods is the Bias Correction and Spatial Disaggre-
gation (BCSD) method of Wood et al. (2004). The selection of 605 catchments



compared to the 671 that are available in CAMELS is because at the time of
performing these calculations, the other 66 catchments still had some issues
with catchment area (two datasets disagreed more than 10% on catchment area,
thereby influencing the spatial averaging of the forcing). This has been clarified
in the text on l. 93 and l. 1053-104, respectively.

L118: “2.4 Analysis of sensitivity” is similar to “2.3 Sensitivity analysis”. It is
better to rename section 2.4.

We agree and have reformulated section 2.4.

L158: How meteorological fields are changed in RCP8.5 over the 605 basins is
still unclear. It may be better to show the change of meteorological variables
before sensitivity analysis.

We agree, this is now displayed in Fig. 3 and presented before the sensitvitiy
analysis results.

L175: “there are parameters associated to all four processes besides snow”, here
you mean to exclude snow process? And you may change the words as “. . .
expect snow” 7

This sentence has been reformulated (see l. 232 of new manuscript).

L182-L1183: The conclusion is too harsh, as there is no clear correlation between
AT and the change of sensitivity.

We were not sure where the reviewer was referring to, but have added the word
‘relatively’ to relax the statement.

Figure 4: the labels of the X-axis are all climate indicators, it is better that you
use Al, seasonality, and fraction of climate indicators.

The labels have been adapted. This is now Figure 5 in the new manuscript.

Figure 6: The figures could be labeled as “(a), (b), . . .” and it is not easy to
read correspondingly. The strong negative correlation is not quite obvious in
Fig 6.

The figure has been adapted to further clarify what is depicted. This is Figure 7
in the new manuscript.

4 Discussion: There are discrepancies among the changes of parameter sensi-
tivity based on HBV, SAC, and VIC. The authors could discuss how model
structures affect parameter sensitivity.



Yes, also in response to the other reviewer, we have elaborated on the role of
model structure on parameter sensitivity and change in parameter sensitivity in
the results and the discussion. This is now also better reflected in the title of

the manuscript.



Reviewer 3

This study analyses changes in sensitivity of model parameters due to changes
in climate projections. The sensitivity and its changes are evaluated by using 3
different models in large sample of catchments in U.S. (CAMELS dataset). In
general I agree with two previous reviews, i.e. study is potentially interesting,
but a revision/extension is needed/suggested.

We would like to thank the reviewer for the constructive feedback and acknowl-
edging that hte study is potentially interesting.

The main critical comments are:

1) Introduction does not fully cover studies that evaluated changes/temporal
stability /sensitivity of model parameters in (observed) varying climate condi-
tions, as well as studies evaluating different sensitivity approaches in hydrolog-
ical modelling (e.g. Devak, Dhanya, 2017). This can improve the formulation
the current state of the art of the problem and the research gaps.

Whereas we acknowledge that our introduction was rather concise, we are also
fully aware that it will never be possible to be completely exhaustive in terms
of literature. We have added references about the relation between climate and
parameter sensitivity and sensitivity analysis methods.

2) Methods are not described in a sufficient detail and rigorous way. It will be
very interesting to see similarities and differences between the models, including
differences in model inputs and calculation of different runoff generation pro-
cesses (snow accumulation and melt, evapotranspiration, soil moisture changes,
etc.).

We have expanded the description of the methodology. Furthermore, we have
added a summary of direct model output (the different states/fluzes) by means
of a boxplot to provide more insights on model functioning. This is Figure 8 in
the new manuscript.

3) I agree with reviewer #1 that there is a missed opportunity to expand the
sensitivity analysis to seasonal and event scales. The selection of target vari-
able (i.e. mean annual runoff) limits the significance and contribution of the
study. The impact of expected climate change on hydrological processes is in-
teresting mainly because of changes in seasonal and event-based characteristics.
The setup and results of using selected target variables is to some extent ob-
vious and technical (i.e. not related to changes in the main runoff generation
processes). For example for HBV model. It is clear (and expected) that in catch-
ments with snow influence it is the SCF parameter which is sensitive to annual
runoff, because it is the only one model parameter which can increase/decrease
the precipitation input to the model. This is not related to climate change,



it is a technical feature of the model. All the processes simulating accumula-
tion/melt /runoff generation and routing are practically insensitive to long-term
annual runoff. Similarly for arid catchments, it is only parameter representing
limit for potential evaporation which can somewhat change the overall water
balance. Why to test the sensitivity of other model parameters? For the reader
it will be interesting to see some strategy and research hypotheses which pa-
rameters and why are expected to be sensitive in relation to climate change.
So, this is why I fully support the comment asking to expand the analyses and
to use some other target variables representing seasonal of event based runoff
characteristics.

The goal of this study is to evaluate if within a plausible climate change rate, pa-
rameter sensitivity changes. FEvaluating variations in sensitivity at the seasonal
and event scale is therefore out of the scope of this study — as we now explain
in the introduction, we evaluate a longer period where the change in sensitivity
would be the result of changes in certain types of events occurring more or less
frequent. We refer to this as systemic change. This is a different approach from
the event-based sensitivity analysis studies.

The reviewer suggestion can also be read as a suggestion to evaluate timing-
metrics beyond the mean discharge within the climate change context. This
would indeed be interesting and valuable, but since we consider this study as a
‘proof of concept’ we limit ourselves to the most straight forward metric — mean
discharge. The reviewer s correct that parameter sensitivity depends on the
metric of interest — indeed SCF in HBV will logically have substantial influence
on the water balance in snow-dominated catchments. That is for the sensitivity
itself. However, the change in sensitivity can in this case most likely be assigned
to climate change. We evaluated two 23-year periods, with only the climate
changed. Indeed, when evaluating other metrics, other parameters might appear
sensitive or demonstrate different changes in sensitivity. In the discussion, we
have put more emphasize on the fact that our results are only valid for mean
discharge as target variable, see Section 4.1 in the new manuscript.

4) I would like to support the comment of reviewer #2 to expand the evaluation
of results and to assess “the role of model structure on parameter sensitivity
and change in parameter sensitivity”. This can be, in my opinion part of the
results not just part in the discussion. Comparison and more detailed evaluation
of three different types of models will for sure improve the significance of the
results.

We agree on this point and have therefore broadened the general scope of the
manuscript.
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Abstract. Hydrological models are useful tools to explore the hydrelogical-impact of climate change. Many-of-these-medels

ity To prioritize parameters for calibration and to evaluate
hydrological model functioning, sensitivity analysis can be conducted. Parameter sensitivity, however, varies over climate, and

therefore climate change could influence parameter sensitivity. In this study we explore the change in parameter sensitivity
within a plausible climate change rate;-and-, We investigate if changes in sensitivity propagate into the calibration strategy,
and diagnostically compare three hydrological models based on the sensitivity results. We employed three frequently used
hydrological models (SAC, VIC, and HBV), and explored parameter sensitivity changes across 605 catchments in the United
States by comparing a GCM-forced historical and future period. Consistent among all models is that the sensitivity of snow
parameters decreases in the future—Whieh-, and that evapotranspiration parameters have a tendency to increase. Which other
parameters increase in sensitivity is less consistent among the models. In 43% to 49% of the catchments, dependent on the
model, at least one parameter changes in the future in the top-5 most sensitive parameters. The maximum number of changes

in the parameter top-5 is two, in 2-4% of the investigated catchments. ?hewa}ueﬂﬁmeﬁafame{ef%eﬂfe%ﬂae«tepéeafmef

~This requires an adapted

calibration strategy for long-term projections, for which we provide several suggestions. The disagreement among the models

on precesses-beecoming-the processes that become more relevant in future projections also calls for a strict evaluation of the
adequacy of the model structure and-the-model-parametersimplemented-thereinfor long-term simulations.

1 Introduction

Earth and environmental computer models are indispensable tools to explore an uncertain future. In-the-field-of-hydrelogy-and

waterresotreesWhereas observational studies report on historical changes in streamflow patterns across the contiguous United
States (CONUS) that might be attributed to climate change (Stewart et al., 2005; Sagarika et al., 2014), hydrologlcal models
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in the same region to gain insights into long term changes in the future (e.g. Mizukami et al., 2016; Melsen et al., 2018; Chegwidden et al.,

. These model projections can support water resource managers to prepare for future changes. The models are thus related to
costly and impactful decisions (McMillan et al., 2017; Metin et al., 2018).

Many-hydrological-models-that-are-usedfor-Given the relevant role of models to support decision making, model functionin
should be thoroughly scrutinized. A frequently used tool to evaluate hydrological model functioning is sensitivity analysis
Pianosi et al., 2016; Devak and Dhanya

on model response. The results of a sensitivity analysis differs over models, target variable of the model response, and applied
Razavi and Gupta, 2015; Guse et al., 2016a; Haghnegahdar et al., 2017; Mai and Tolson, 2(

2017). Sensitivity analysis is aimed at identifying the relative impact of model parameters

sensitivity analysis methods (Shin et al., 2013;

However, parameter sensitivity also differs across climate, as for instance showed by Demaria et al. (2007) and Melsen and Guse (2019)
:In a cold catchment with a large fraction of the precipitation falling as snow, snow parameters are supposed to be sensitive,
while in a tropical catchment without snowfall, snow parameters are not supposed to show any sensitivity. As such. it is
common understanding that parameter sensitivity depends on climate. But reconsidering this fact, this would also imply that
parameter sensitivity could change in a changing climate. Therefore, the question is whether, within a plausible rate of climate
change, hydrological parameter sensitivity changes. This could have consequences for the way hydrological models should be

calibrated for long term projections; such-as the mode ployee i viotsty menti - Besides, it offers the

opportunity to compare different models to evaluate if the same mechanisms are simulated as being relevant for future changes.

Many hydrological models that are used for long term projections have parameters that require calibration to identify their

values for the catchment under study. Calibration-ean-be-neeessaryfor-several-reasons;for-instance-because-a-parameter-ha
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observation-of-the-parameter-(Beven;2042)-Hydrological model parameters are generally calibrated on discharge time series.
Bischarge But discharge is a lumped catchment response, and therefore only provides limited catchment information (Jakeman-and-Hornber
(Jakeman and Hornberger, 1993; Guse et al., 2016a). A rule of thumb suggested by Beven (1989) and employed by many
modelers is that, given the limited information available in a discharge time series, three to five parameters can be cal-
ibrated based on these data (and this might already be a high number, following the famous quote of von Neumann').

Global Sensitivity Analysis (GSA) can be employed to identify the parameters that have most influence on the model output

(Demaria et al.. 2007; van Werkhoven et a

. Subsequently, the three to five parameters that show most sensitivity are selected for calibration. However, if parameter
sensitivity changes with climate change, this could interfere with the parameter prioritization procedure for models used for

Y"With four parameters I can fit an elephant, with five I can make him wiggle his trunk", John von Neumann (1903-1957)
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long term projections.

otential consequence for calibration, evaluating the relation between change in parameter sensitivity and climate change
also provides the opportunity to diagnostically evaluate model functioning during long-term projections. Several studies

already investigated the change in parameter sensitivity over time, focusing on specific events or relatively short time scales
Reusser et al., 2011; Herman et al., 2013b;

Guse et al., 2014; Massmann and Holzmann, 2015; Pfannerstill et al.

2

it was demonstrated that certain parameters are triggered during specific discharge conditions such as high or low flow
events (Pfannerstill et al., 2015; Guse et al., 2016b). If certain events will prevail or become less frequent in a future climate,
this might change the average parameter sensitivity over the long run. As such, evaluating long-term changes in parameter
sensitivity can provide insights into systemic changes. By comparing changes among several model structures, the robustness
of simulated systemic changes can be evaluated.

In this study we investigate how parameter sensitivity changes as a consequence of climate change;—and-. We evaluate if
and how this has consequences for parameter prioritization for calibration—We-, and if systemic changes are robust across
different model structures. To this end, we apply a hybrid local-global sensitivity analysis method (Rakovec et al., 2014) to
three frequently used hydrological models in 605 basins across the US, and link changes in sensitivity to changes in climate.
Finally, we evaluate the impact on the top-5 most sensitive parameters in each basin, and investigate the transmission of sen-

sitivity from one parameter to the other. We end with a recommendation on how to account for changes in sensitivity when

calibrating models for long-term projections—, and an evaluation of the robustness in systemic changes across different models.

2 Methods

To investigate changes in parameter sensitivity, and-the-consequences—for-model-ealibration;-we employed three frequently

used hydrological models. The models were run for a historical and future period over 605 catchments, forced with a bias
corrected and statistically downscaled global circulation model. A hybrid local-global sensitivity analysis method was applied

to the simulations of both periods. Then, the differences in parameter sensitivity between the historical and future period were

2015). For instance,
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Figure 1. Summary of the methodological approach, to be read from left to right. The first three steps-panels are the calculations, the other
four steps-panels are the actual analyses.

explored in several ways. First, per parameter to investigate which parameters change, and over different climate indicators
to investigate how climate and climate change explain changes in sensitivity. Then, we assessed how the top-5 most sensitive
parameters would change in the future period, thereby impacting the calibration strategy. Finally, we investigated-conduct a
diagnostic model evaluation, amongst others by investigating the transmission of sensitivity from one parameter to the other.

An overview of the procedure is shown in Figure 1.
2.1 Models

We investigated for three models whether parameter sensitivity changes within a plausible climate change range: the TUW-
model following the structure of HBV (Parajka et al., 2007, hereafter referred to as HBV), SAC-SMA combined with SNOW-17
(Newman et al., 2015), and VIC 4.1.2h (Liang et al., 1994). All three models have previously been used for long-term climate
impact projections: e.g. Teutschbein et al. (2011); Wetterhall et al. (2011) for HBV; Koutroulis et al. (2013); Peleg et al. (2015)
for SAC-SMA; and Christensen et al. (2004); Wu et al. (2012) for VIC, and are therefore relevant models to consider. The

same suit of models was explored in another context in Melsen et al. (2018) and Melsen and Guse (2019).

A simplified representation of the model structures, including a description of the parameters that were accounted for in the
sensitivity analysis, are displayed in Figure 2. A more elaborate description of each model can be found in Melsen et al. (2018),
and in the respective references of each models: Bergstrom (1976, 1992) for HBV, Burnash et al. (1973); National Weather
Service (2002) for SAC-SMA, and Liang et al. (1994, 1996) for VIC.
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Figure 2. Simplified representation of the model structure of the three models employed in this study. All the parameters that are displayed
are included in the sensitivity analysis. Parameters are colored according to the flux or state they influence (evapotranspiration (ET), snow,
soil moisture and shallow layer, percolation, deep layer). The colors are used consistently throughout all the figures in this study. Parameter

boundaries can be found in Appendix Tables A1, A2, and A3.

2.2 Catchments and Forcing

All three models were run for a historical and future period of 28 years, of which the first five years were omitted from both
periods for spin up. As such, the historical period that is analyzed covers 1985-2008, and the future period 2070-2093, 23 years
each. The forcing for both periods was obtained from statistically downscaled and bias corrected output from the Community
Climate System Model 4.0 (CCSM4, Gent et al., 2011), from Climate Model Intercomparison CMIP5, using Representative
Concentration Pathway 8.5 (RCP8.5). Bias correction was done according to the Bias Correction and Spatial Disaggregation
(BCSD) method of Wood et al. (2004), based on the Maurer et al. (2002) forcing data. Subsequently-the-

We consider our study an investigation of the potential that a plausible climate change rate might impact hydrological model

arameter sensitivity. As such, we decided to use one climate model only, and conduct the analysis for several hydrological



models. CCSM4 is among the better performing climate models when evaluated against observed precipitation and temperature
Knutti et al., 2013; Sheffield et al., 2013) and is therefore selected as providing a ‘plausible’ projection, but other well performin
climate models might still have quite different dynamics (Sheffield et al., 2013).

120 Finally, the GCM forcing was lumped over the CAMELS basins. The CAMELS data set contains forcing, discharge observa-
tions, and catchment characteristics for 671 catchments throughout the contiguous United States with limited human impact

(Newman et al., 2014, 2015; Addor et al., 2017). We employed a subset of 605 catchment-averaged forcings, because at the
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time of calculation, there were still issues with determining the exact catchment area for the remaining 66 catchments.

125 Sinee-the-The hydrological models were not calibrated, since we employ global sensitivity analysis across the full parame-
ter range. Therefore, the 605 catchments should be perceived as 605 different climate instances with an individual level of
climate change, rather than as catchment representative models. The models are, however, able to achieve acceptable model
performance in these basins when forced with observations and confronted with discharge observations (Melsen et al., 2018),
providing credibility to the models to be used in this context.

130
The goal of this study is to investigate how climate might impact parameter sensitivity within a plausible climate change
range. As such, it is of second order importance whether the climate model gives highly accurate predictions or whether
the hydrological model can exactly capture catchment behavior. It is, however, important to note that we employed the highest
emission scenario (RCP8.5), thereby investigating the effect of the higher ranges of plausible climate change. It can be expected

135 that the impact of climate change on parameter sensitivity will be lower for lower emission scenarios. However, RCP 8.5 is
often used to provide an upper boundary for long-term projections, thereby demonstrating the relevance of choosing this

scenario.
2.3 Sensitivity analysis methodolo

In the selection of the sensitivity analysis method, a few points were considered. First, it had to be a global method, because

140 global sensitivity analysis methods are used to identify the most sensitive parameters for calibration (whereas local methods
are generally applied after calibration). Secondly, we had to account for a high number of runs (605 basins, two periods, three
models). Therefore, we selected the hybrid local-global method DELSA (Rakovec et al., 2014), which is computationally
cheaper than traditional (variance-based) global sensitivity analysis methods.

145 DELSA evaluates local sensitivity at several places throughout parameter space, as such mimicking global sensitivity analysis.
First, 100 parameter samples called base-runs were created based on a space filling sampling strategy. The models were run for

all 100 samples. Secondly, the parameters are
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erturbed with 1% compared to their base-run value. The effect of this perturbation on the model output, compared to the

corresponding base-run, represents the parameter sensitivity:
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where 1) denotes the model output that is evaluated, @ refers to the parameter value, k the number of parameters that is evaluated
18, and 17 for HBV, SAC, and VIC, respectivel

in the sensitivity analysis (in our case 15 and ¢ the number of base runs

2

(in_our case 100). We used the average sensitivity from the 100 samples per parameter per basin as a measure of parameter
sensitivity. Each parameter that is displayed in Figure 2 was accounted for in the sensitivity analysis. The applied parameter

boundaries for sampling are provided in Appendix Tables A1, A2 and A3 (see also Melsen and Guse, 2019).

Besides the selection of a sensitivity analysis method (which will influence the final results, Razavi and Gupta, 2015; Pianosi
et al., 2016), we also had to identify a target variable - the variable that is compared between the base-run and the perturbed
run. Whereas performance metrics are quite popular as target variable (Van Werkhoven et al., 2008; Herman et al., 2013a), they
are not well suited for global sensitivity analysis (Razavi and Gupta, 2015; Guse et al., 2016a), and besides, it is not possible to
obtain model performance for the future. Therefore, this study focuses on mean simulated discharge as target variable. Many
other streamflow signatures could have been of interest to evaluate, for instance related to high and low flows, but given the
goal of this study, an exploration on the effect of climate change on parameter sensitivity, mean discharge seems the most

neutral choice.

2.4 Analvsisof sensitivi

The sensitivity analysis was conducted for both the historical and future period, for all 605 basins. The first analysis of the

calculations was a simple exploration of which parameters increase and which parameters decrease in sensitivity in the future

over all 605 basins —to achieve a first insights into potential changes in parameter sensitivity in future and to see which
arameters are mainly affected.

2.4 Climate indicators to relate changes in sensitivit

The 605 climate instances from the 605 basins are ;-however,not a representative sample since certain climates might be over-
or underrepresented. Therefore, the difference in sensitivity was also related to climate indicators. Given their relevance for
discharge, we used the Knoben climate indicators (Knoben et al., 2018) to classify the changes in parameter sensitivity. The

Knoben indicators consist of three indicators: aridity index, seasonality, and fraction precipitation falling as snow.
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To determine the aridity index, first Thorntwaite’s Moisture Index (M I, Knoben et al., 2018; Willmott and Fedema, 1992)
is obtained based on mean monthly observations of precipitation, P(¢), and evapotranspiration E,(¢). Subsequently, average

aridity I,,, can be obtained.

MI(t)=<¢ 0, if P(t) = E,(t) (2)

L= > MI(t) 3)

Aridity index I,,, varies between -1, representing highly arid conditions, and 1, representing humid conditions. The seasonality

in the aridity index, I, ,, is determined based on the maximum difference in M I over the year:
Iy =max(MI(1,2,...12)) —min(MI(1,2,...12)) 4)

The seasonality varies between 0 and 2, with 0 indicating no intra-annual variation, and 2 indicating that climate varies from
fully arid to fully humid over the year. The last Knoben index is the fraction precipitation falling as snow, f.

_ S PT() <T)

fs —
=1 P(t)

®)

In this equation, T'(¢) is the mean monthly temperature, and T} the threshold temperature below which precipitation is assumed
to occur as snow. The threshold temperature was set to 0°C, in line with Knoben et al. (2018). fs can have a value between
0, no snow, and 1, all precipitation falling as snow. All three indicators were evaluated based on the climate in the historical
period, and based on the change in climate between the future and the historical period (future - historical), this latter one being

indicated as Aindicator.

Subsequently;to-

2.5 Evaluation of impact of sensitivity changes on calibration strate

To evaluate the impact of change in parameter sensitivity on calibration strategy, we

determined the top-5 most sensitive parameters per-basinchanged-for each basin, both for the historical and future period.

We analyzed which parameters left and entered the top-5 in the future compared to the historical period, as a consequence of
changes-a change in sensitivity. This was again related to the climate indicators of Sect. 2.4, to investigate if in certain climates

or climate change rates more changes can be expected in the calibration parameters.
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2.6 Diagnostic model evaluation based on changes in sensitivit

To diagnose how the results from the different models have come about, we relate the direct model output (several states and
fluxes) to changes in sensitivity. Furthermore, we introduce the concept of ‘parameter sensitivity transmission’: We evaluate
whether any negative correlations exist between the-deereasing-and-inereasing-parameters-parameters with increasing and
decreasing sensitivity. Strong negative correlations can be an indication that sensitivity is transmitted from one parameter to
the other, so we define transmission as a clear negative correlation in change in sensitivity between two parameters. However,

since we evaluate correlation, transmission does not refer to absolute sensitivity values.

The goal of this analysis is to investigate to what extent sensitivity is transmitted directly from the decreasing parameter to

the increasing parameter. When there is no direct relation, it can indicate that sensitivity changes at several places within the

model structure. The transmission of sensitivity can give insights into which processes become more relevant in the future, at
the expense of processes that become less relevant - a systemic change as a result of climate change. A comparison among the
different model structures will indicate their (dis)agreement on the change in relevant processes.

3 Results

To place the results into context, we first briefly discuss the change in climate between the historical and future period, and the
changes in several simulated water balance terms for both periods for the three employed hydrological models. Subsequently,
we discuss the change in sensitivity between the historical and future period, the relation between changes in sensitivity and
climate, the impact of sensitivity changes on calibration strategy, and finally the model diagnostic evaluation.

3.1 Changes in climate and simulated water balance terms between historical and future period

Fig. 3 provides an overview on the change in climate (expressed in temperature and precipitation) between the historical and
future period using CCSM4 and RCPS.5. In all the investigated basins the mean temperature will increase in the future with at
least 2.6°C. The median temperature increase across the 605 basins is 4.1°C, aligning with the most extreme emission scenario
that was employed to run the climate model. Most of the investigated basins will receive more precipitation in the future.

Fig. 3 also depicts several simulated water balance terms for the three employed hydrological models. Note that the models
were not calibrated and that for each of the 603 basins, the mean across the parameter ensemble was used for this figure. It
is therefore not an indication of what exactly might happen in the future in the investigated basins, but an indication of the
flexibility of the models in responding to changes in climate. There is consistency among the models that in most basins,
evapotranspiration will increase in the future. There is also agreement among the models that snow water equivalent will
decrease in all basins, although the magnitude of change differs among the models. The signal in discharge has a less clear
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Figure 3. Changes between historical (1985-2008) and future (2070-2093) period. The top left panels depict the change in temperature (AT
and precipitation (AP) across the 6035 basins, as obtained with CCSM4 (RCP8.5). The other boxplots depict the change in mean discharge
AQ), mean evapotranspiration (AET), mean soil moisture (ASM) and mean snow water equivalent (ASWE) between both periods for the

605 basins, as simulated by the three different hydrological models. Each model was run for a full parameter sample per basin, the average

change across the parameter sample per basin was used to create the boxplots.

direction, which is also consistent among the models, although VIC seems to hinge on a general increase in discharge while

HBYV has slightly more basins where discharge would decrease. Both HBV and SAC simulate a decrease in soil moisture in

most basins, whereas the median change in soil moisture across the 605 basins with VIC simulations is only -1.4 mm. The
models seem to broadly agree on the general direction of change in several of the simulated water balance terms, but differences
among models can already be observed and might be more pronounced for individual basins.

10
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3.2 Changes in sensitivity between historical and future period

Fig. 4 shows the distribution of change in sensitivity between the historical (1985-2008) and future period (2070-2093) over all
605 basins for the three employed models. Consistent over all three models is a decrease in the sensitivity of snow parameters in
the future. The parameters that show increasing sensitivity cannot consistently be associated to one specific process. Whereas
a strong decrease in sensitivity requires a high sensitivity in the historical period, this is not required for a strong increase in
sensitivity. It can be observed, however, that parameters that display an increase in sensitivity were also already sensitive in the

historical period.

In the HBV model especially the snow correction factor (SCF) displays a large decrease. This is also the parameter with the
highest sensitivity in the historical period, therefore having the highest potential to decrease. The other three snow parameters
in HBV displayed lower sensitivity in the historical period, and also show a less consistent decrease in the future. Also in
the SAC and VIC models, the snow parameter that displayed the highest sensitivity in the historical period (SCF in SAC and
Snowrough in VIC, respectively) show the strongest decrease, although less consistent than SCF in HBV.

Among the three models, different parameters related to different processes display an increase in sensitivity in the future. In
HBY, evapotranspiration and soil parameters increase in sensitivity in the future with the largest increase in the evapotranspi-
ration parameter PT, while there is hardly any observable change in sensitivity in percolation and deep layer parameters. In
the SAC and VIC model, there are parameters associated to all four-processes-besides-snowprocesses except snow, that tend
to mainly increase in sensitivity in the future. Like for HBV, also in SAC the evapotranspiration parameter PT has the highest

increase. In the VIC model, the depth of the second soil layer (Depth2) shows the largest positive change in sensitivity.
3.3 Relationship between climatic variables and sensitivity changes

Since the 605 basins employed in the previous section are not a representative, balanced sample over climates and climate
changes, the results are split out over climate indicators. Fig. 5 depicts how parameter sensitivity changes between historical
and future period, related to the three Knoben climate indicators. From the figure, it can be seen that the patterns relating
parameter sensitivity to climate and climate change indicators are weak. The aridity index seems to have relatively most ex-
planatory value, followed by seasonality and fraction precipitation falling as snow, respectively. The change in sensitivity of
snow and evapotranspiration parameters can be related to current mean temperature and precipitation ;-and projected changes

in mean temperature (Fig. A1), but the patterns vary per model.

In most cases, the patterns that can be identified relate to the projected change in climate. For instance in both SAC and HBYV,
the sensitivity of snow parameter SCF decreases especially in regions with a strong decrease in aridity index and in regions
that were humid (positive aridity index in our definition) in the historical period. Soil moisture/shallow layer parameter Depth2

(VIC) and percolation parameter Expt2 (VIC) demonstrate a more pronounced increase in regions with decreasing aridity in-

11
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dex. Sometimes also the historical climate, combined with the projected change, can show some organization. For example,
the sensitivity of the evapotranspiration parameter PT in both SAC and HBV is particularly increasing in regions with high
historical aridity index, and changes are more pronounced with larger projected changes, either an increase or a decrease, in

aridity index.

Given that no clear patterns were revealed based on the Knoben indicators, we also explored patterns related directly to cli-
mate: the mean temperature and mean precipitation and their projected changes. These results can be found in Figure A1 in the
Appendix. The snow parameters mainly decrease in sensitivity in basins with a historically mean temperature between 5 and
15°C, dependent on the model. In these basins, the fraction of snow will decrease in a warmer climate, whereas in basins with

a lower mean temperature, snow will remain a relevant process in the future (Fontrodona Bach et al., 2018).

In HBYV, the decrease in sensitivity in SCF is highest in catchments with a mean historical temperature between 5 and 10°C.
An increase in the sensitivity of evapotranspiration parameter PT occurs in basins with projected changes in precipitation (both
positive and negative). Also here, the largest increase is found in basins with a mean historical temperature between 5 and
10°C. An increase in the sensitivity of shallow layer parameter FC is related to no change or a decrease in precipitation in the

future.

In SAC, snow parameter SCF decreases in sensitivity in basins with a mean historical temperature of about 10°C. In these
basins, the sensitivity of evapotranspiration parameter PT and lower zone parameter UZTWM increases. Similar to HBYV,
evapotranspiration parameter PT changes in sensitivity in basins with both positive and negative changes in precipitation in the

future.

In VIC, the patterns are weakest. Here, we see a decrease of snow parameters in basins with mean temperatures lower than 5°C,
and even around zero combined with no change in precipitation. Evapotranspiration parameter Rmin increases in sensitivity in
basins with increase in precipitation and vice-versa. Shallow layer parameter Depth2 and to a lower extent percolation param-

eter Expt2 decreases in sensitivity in basins with mean temperatures between 0 and 10°C and with decreasing precipitation.
3.4 Impact of sensitivity changes on medel-calibration strategy

In this section we explore to what extent the changes in parameter sensitivity that were observed in the previous sections prop-
agate into the calibration procedure. Fig. 6 depicts the percentage of catchments in which parameters appeared in the top-5,
both historically and in the future. Snow parameters drop out of the top-5 in some cases, while the relevance of parameters
with already many top-5 notations further increases. This indicates that the variation among catchments in top-5 parameters
decreases in the future. Although changes in top-5 parameters are observed, the overall top-5 of the parameters is in most cases
maintained (51 to 57% of the catchments, dependent on the model). In 41 to 45% of the catchments, one parameter changes in

the top-5. The maximum number of changes in the parameter top-5 per catchment is two, which occurs only in 2 to 4% of the

13
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Figure 5. Change in parameter sensitivity versus historical climate indicators and change in climate indicators for 605 basins. The climate
indicators are aridity index (-1 highly arid, +1 highly humid), seasonality, and fraction of precipitation falling as snow, as defined by Knoben
et al. (2018). Parameter sensitivity for the historical period is expresge in dot size, change in parameter sensitivity in colour: red indicates

an increase in sensitivity, blue a decrease.
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investigated basins.

For HBV, snow parameter SCF historically has a top-5 notation in 76% of the basins, in the future this drops to 57% - a relative
drop of 24%. The largest increase in top-5 notations for HBV is found for evapotranspiration parameter LP (a relative increase
of 22%). In SAC, snow parameter SCF loses its top-5 notation in 11% of the basins where it used to be relevant. Lower zone
parameter LZTWM shows the strongest increase in top-5 notations (a relative increase of 24%). In VIC, mainly the snow pa-
rameter Snowrough loses top-5 notations (a relative decrease of 53%). Deep layer parameters gain most notations, especially

DS (a relative increase of 49%).

The results of the left three panels in Fig. 6 cannot directly be generalized because the 605 explored basins are not a well-
balanced sample in terms of climate and climate change. Therefore, the change in top-5 parameters is also again displayed
against the Knoben indicators (right panels in Fig. 6). It can be observed that one change in parameter top-5 can occur over
all climates and climate changes. Only VIC is showing fewer changes in basins in between constant and seasonal, and with
decreasing seasonality. Also two changes in parameter top-5 seems to occur across all climates and climate changes. Only for

HBY, this seems to be constrained to wet catchments that become drier (lower aridity index) in the future.

In conclusion, the impact of changes in parameter sensitivity on calibration strategy remains limited to a maximum of two
parameter changes in the parameter top-35, at least for the explored climates and climate changes. The changes in top-5 positions

are model dependent and do not demonstrate a clear relation to climate or climate change.
3.5 Transmissien-of-Diagnostic model evaluation based on changes in sensitivity

The evaluated changes in parameter sensitivity in response to climate change can be perceived as a way to evaluate models
diagnostically, especially since we can compare the results for three different hydrological models. The parameter sensitivity in

the historical period (the top panels in Fig. 4) already shows that the models activate different processes to simulate historical

discharge. Our analysis of change in sensitivity demonstrates that the models also respond differently to changes in forcing.

There are a few points where all three models agree: all models simulate a decrease in snow in the future across all basins, and

an increase in ET across most basins (Fig. 3). This is also visible in the change in sensitivity of the parameters related to these

rocesses. In all models, the snow parameters tend to decrease most in sensitivity (dependent on their historical sensitivity), and

a median increase in the sensitivity of ET parameters was found (Fig. 4). These results are robust across different formulations
for snow and ET processes: SAC and HBV share the same ET formulation and employ a comparable snow formulation, but
VIC employs a completely different formulation for both ET and snow. Yet, all three models agree on these signals.

However, many other changes in sensitivity can be observed where the models disagree, for instance the role of percolation and
soil moisture/the shallow layer. To further explore how the models respond to climate change in terms of parameter sensitivit
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future. The right panels relates the number of changes in the parameter top-5 to climate and climate change indicators.
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the transmission of sensitivity is explored by means of the negative correlation between change in sensitivity among two pa-
rameters. An example is the left panel of Fig. 7, depicting a negative correlation between the change in sensitivity of snow
parameter SCF and the change in sensitivity of evapotranspiration parameter LP for HBV, which can indicate a transmission
of sensitivity from SCF to LP. The chord diagrams in Fig. 7 show the correlations between the parameters with decreasing and
increasing sensitivities. All three models display a decrease in sensitivity of the snow parameters, but this sensitivity is trans-
mitted to different process parameters in the three models. In HBV, mainly to evapotranspiration and shallow layer parameters,
in SAC evapotranspiration, percolation, and deep layer parameters, and in VIC to shallow layer and deep layer parameters.
Weak transmissions indicate that parameter sensitivity changes at several places in the model structure, leading to a complete

reconfiguration of sensitivities in the model.

Besides the clear transmission from snow parameter SCF to evapotranspiration parameter LP in HBYV, it is also visible in Fig. 7
that snow parameter TS mainly transmits to evapotranspiration parameter PT: different snow parameters transmit to different
evapotranspiration parameters. What is also visible in the chord diagram is that snow parameter DDF is mainly transmitting to
snow parameter TR, explaining the increase in sensitivity in some regions for this snow parameter. Not displayed in the chord
diagram for clarity, is that snow parameter TR then again transmits to evapotranspiration parameters LP, PT, and shallow layer

parameter FC.

For SAC, the snow parameter SCF demonstrates a clear negative relation with many parameters that increase in sensitivity.
High correlations were found with percolation parameter PFREE (-0.63), deep layer parameter LZTWM (-0.72), and evapo-
transpiration parameter PT (-0.72). The correlations between snow parameter PXTEMP and the parameters with increasing
sensitivity are less pronounced. Two other parameters in SAC experienced a slight decrease in parameter sensitivity; snow
parameter MFMAX and shallow layer parameter UZFWM, especially visible in their loss of top-5 positions in Fig. 6. These
two parameters, however, did not display any negative correlation with any of the parameters that experience a clear increase

in top-5 positions.

For VIC, the negative correlations are generally weaker than what was found for the other two models, but still some insights
can be obtained from the chord diagram. For instance that snow parameter Newalb mainly transmits to shallow layer parameter
Depth2 (-0.59), while snow parameter Snowrough is the only one that shows a correlation with deep layer parameter DSmax
(-0.32). Shallow layer parameter Infilt increases in number of top-5 positions (Fig. 6) but did not display any clear relation with

the parameters that decrease in sensitivity.
Whereas the models agree on the decline in snow water equivalent and decreased sensitivity of snow parameters despite

employing different snow formulations, the models disagree on changes related to many other processes. Since the three
models differ in many aspects in their model structure, the difference in response to changing forcing cannot directly be related
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Figure 7. Indication of parameter sensitivity transmission. Fhe-panel-on-theleftshowsPanel a) an example for HBV: the decrease in
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transmits sensitivity to LP. In—the-Since we focus on transmission, we only evaluate negative correlations. Panel b) The chord (circle)

diagram-diagrams display transmission of HB-V-sensitivity, this-retationis-indicated with the-a band from SEF-the parameter that decreases

in sensitivity to EPthe parameter that increases in sensitivity. The width of the band indicates the strength of the negative correlation. The

example from panel a is indicated with an arrow in the chord diagram of HBV. The white number indicates the strength of the correlation;
-0.71 between SCF and LP. In all three chord diagrams, the lower part shows the parameters that decrease in sensitivity, and the upper part

the parameters that increase in sensitivity, with the white number indicating the strength of the correlation (for clarity, negative correlations
lower than 0.32 are not displayed). Colors are according to the process they represent (with different shades of blue used for snow parameters

for clarity). The chord diagrams are focused around the most relevant parameters based on Fig. 6.

to specifics of the model structure. The results, however, do show that the internal functioning of the models differ when used
for long term simulations, and this might impact the results and subsequently the conclusions of the model study.

4 Discussion

Tnthi by . . |

4.1 Changes in states, fluxes, and sensitivity between historical and future period

A first evaluation of the different states and fluxes that are simulated by the models for the future period demonstrates that the
three models agree that in general, snow water equivalent will decrease and evapotranspiration will increase under RCP 8.5 as
simulated by CCSM4. This same signal is propagated into the sensitivity of the parameters related to these processes: in all
three models, the sensitivity of snow parameters tends to decrease, and the sensitivity of evapotranspiration parameters tends to

increase (although the models disagree on the magnitude of change). Since we conducted parameter sensitivity evaluated for the
mean discharge, these results imply that the impact of snow on discharge will decrease, while the impact of evapotranspiration
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on discharge will increase.

For other states and fluxes simulated by the models, such as soil moisture and percolation, the models agree less on the change
in sensitivity (Fig. 4). This can first and foremost be attributed to a difference in model structure, but the impact of model
structure can be further emphasized by the target variable that we used for our sensitivity analysis. We evaluated the sensitivity.
of parameters to simulate mean discharge. For instance for HBY, percolation parameters historically already did not display a
strong sensitivity for mean discharge, and the sensitivity of percolation parameters does not change in the future. This does not
automatically imply that HBV does not simulate a change in percolation as a consequence of climate change, but mainly that
mean discharge and percolation are decoupled (at least in comparison to other processes) in the HBV model structure. Another
example is that all models simulate a substantial increase in evapotranspiration, but for VIC this does not lead to a substantial
increase in sensitivity of parameters related to ET. Other signatures as target variable might therefore give different results.

4.2 Climate indicators to relate changes in sensitivit

We evaluated change in sensitivity against three climate indicators; aridity index, seasonality, and fraction precipitation falling
as snow. We were not able to identify a clear relation between climate indicator, change in climate indicator. and change
in parameter sensitivity. In our approach, we investigated if any temporal relations exist. Another way to evaluate change in
sensitivity would be to evaluate spatial relations. van Werkhoven et al. (2018) for instance, demonstrate that spatial gradients in
model sensitivity exist that relate to climate. If we can establish a temporal relation in the same way van Werkhoven et al. (2018)
could demosntrate spatial relations, space-for-time trading would be an option to determine which parameters become sensitive

in the future.

4.3 Impact of sensitivity changes on ranking of sensitive parameters

We investigated how parameter sensitivity changes as a consequence of climate change. Hereby,—wefoeused-on-We also
explored the use of sensitivity analysis to provide the most relevant parameters (factor prioritisation) for an effective model
calibration (Saltelli et al., 2006; Reusser et al., 2011). Within this context, we have shown how changes in parameter sensitivity
propagate into the selection of relevant parameters for model calibration. We assumed a general calibration strategy where
the modeller selects the five most sensitive parameters for calibration. Certainly many other calibration strategies exist. For
example, one could select all the parameters that exceed a certain sensitivity-threshold as suggested by van Werkhoven et al.
(2009) or when compared to a dummy parameter as suggested by Zadeh et al. (2017), resulting in a higher or lower number of
parameters for the calibration, or simply include all the parameters in the model if the model is highly parsimonious (Melsen
et al., 2014). Our results are, however, still relevant in the context of other calibration strategies, as the changes in sensitivity
will still influence the calibration results. That is, it is difficult to calibrate a parameter if the model is hardly or not sensitive to

changes in its values in current-day climate.
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The implication of our result is that, the more the parameter sensitivity changes, the more parameter identifiability decreases

for long-term projections. Accordingly, we can expect that in particular the parameters that will enter the top-5 in the future
are probably not well identified in the historical period. Therefore, we provide suggestions to account for changing sensitivi-
ties in the calibration strategy of hydrological models for long-term projections. A first strategy, related to methods that have
been suggested for changing parameters over time (Merz et al., 2011; Vaze et al., 2010), is to conduct sensitivity analysis over
different parts of the observation-period, and calibrate the model on the period that best resembles the parameter sensitivity
of the future scenario. A risk, however, is that the calibration period becomes too short to determine stable parameter values
(Yapo et al., 1996). A second strategy is to sample the parameters that will become sensitive in the future. Provided that, in the
current climate, the model is not sensitive to changes in parameter 6;, the value of 6; cannot be inverted through calibration.
However, in the future the value of 6; does become relevant. In order to correctly capture spread in long-term projections that
results from uncertainty in this parameter-value, the value of §; should be sampled. Hereby, we have to emphasise that in this
context, parameter uncertainty is specifically related to expected changes in the relevance of the associated processes in future.
A third option could be to increase the effort in finding data to be able to calibrate a parameter directly to the associated pro-
cess. Sensitivity analyses on different processes demonstrate that the sensitivity signal increases using the associated process
as target variable (Guse et al., 2016a). In this way, it can be expected that parameters are better identifiable and more robust for

future simulations.

4.4 Diagnostic interpretation

In the previous sub-section we provide suggestions to further validate the calibration procedure of models employed for
long-term projections. It seems a valid question, however, whether our models are fit for this purpose at all. The results
of the sensitivity analysis indicate a change in relevant processes in the future which is captured differently among the

three investigated models. This emphasizes the need to improve model structure for long term projections, as suggested b
Fowler et al. (2018); Grigg and Hughes (2018); Westra et al. (2014).
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Assuming that a sensitivity analysis conducted over 23 years of daily data is robust and thus that the observed changes in
sensitivity can be attributed to a changing climate rather than to noise, our results demonstrate that parameter sensitivity is non-
stationary (Koutsoyiannis and Montanari, 2015). Nonstationarity of parameter sensitivity fits in the growing body of literature
identifying nonstationarity when simulating the hydrological system on the long term (e.g. Milly et al., 2008; Thirel et al., 2015;
Fowler et al., 2016, 2018). Nonstationarity is not only disclosed through a change in sensitivity, but also through a change in pa-
rameter values over time (Vaze et al., 2010; Merz et al., 2011). The identification of nonstationarity in parameter values is the re-
sult of the simplified model representations, not capturing dynamics and/or processes that are relevant in the real world. Fowler
et al. (2018) provides a framework to evaluate model improvement under nonstationary conditions; Grigg-and-Hughes{(2018)-
and-Westra-et-al-«2044)-Grigg and Hughes (2018); Westra et al. (2014) and Duethmann et al. (2020) adapted model structure
to account for nonstationarity, leading to improved model results. This study reinforces this direction of research; even though
the decrease in sensitivity among all three models can consistently be found for the snow parameters, the increase in sensitivity
can be attributed to completely-different processes in the three models, which might indicate that a relevant process is missing
in any of the models, stressing the need to carefully assess whether these models are appropriate for long-term projections.

The differences in which processes and associated parameters becomes more relevant among the models shows that there is no

consensus how the hydrological system will change in future.

of sensitivity of snow parameters and an increase in the sensitivity of evapotranspiration parameters in a warming climate
could be expected based on expert judgement, and at least the three models agree on those signals despite employing different
formulations to compute these processes. However, the models disagree on the other processes that will become more or less

relevant in the futurewhich-

S3 S S S S g

moedel-straeture, while changes in these processes are not straight forward to estimate based on expert judgement. It is, for

instance, not easy to judge whether the relatively higher amount of rain in the future (due to a decrease in snow) goes on
average more to higher evaporation or to higher infiltration. As such, we have to acknowledge that the models differ in the
rocesses they use to simulate future changes, and that we cannot easily differentiate the right from the wrong models.

5 Conclusions

The sensitivity of the parameters in three investigated hydrological models changes within a plausible changing climate.

In—the-three-models—The three models agree that especially the snow parameters decline in sensitivity—Whieh—, while
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evapotranspiration parameters show a tendency to increase. However, which other parameters increase in sensitivity is less
consistent among the models; sometimes mainly ET and soil moisture/shallow layer parameters, sometimes mainly percola-
tion and/or deep layer parameters. We were not able to identify a clear pattern in which kind of climates and expected climate
changes most changes in parameter sensitivity take place.

The change in parameter sensitivity propagates into the calibration strategy. Typically, a global sensitivity analysis is conducted
to determine the most sensitive parameters, and based on that, the top-5 most sensitive parameters are selected for calibration.
Dependent on the model, 43% to 49% of the 605 investigated catchments has at least one parameter changing in the top-5 in
the future. The maximum number of changes in the top-5 parameters is two, in 2-4% of the catchments. Since these results

were obtained for the highest emission scenario (RCP8.5), fewer changes might be expected for lower emission scenario’s.

Some parameters become sensitive in the future, but are currently not sensitive. Therefore, their value cannot be obtained

through calibration based on current data. One way to account for changes in sensitivity is to identify a historical period that
mimicks the future projected sensitivity. Another approach is to sample the parameter that becomes sensitive in the future, to
account for predictive uncertainty as a consequence of the uncertainty in this parameter value. A third approach is to invert the

value of this parameter based on observations specifically related to the process that the parameter is related to.

when using models for long-term projections—Hewever-theresults-also-, our results also have implications for model selection
for this purpose. The results demonstrate that the three employed models consider different processes as relevant;stressing-the

: i ir-vatidity-becoming more or less relevant in the future; they simulate
different systemic changes. Whereas the models agree on systemic changes that can be excepted based on expert judgement
(decreased relevance of snow and increased relevance of evapotranspiration in a warming climate), the models disagree on
other processes that are more difficult to judge. These results not only stress the need, but also the challenge in carefully
assessing model structure adequacy when applying models for long-term projections. In-the-end;—we-should-perhaps-aim-for
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Appendix A: Parameter ranges

Table A1. Selected parameters, their classification, and their boundaries for the HBV model. The parameters and their boundaries are based

on Parajka et al. (2007); Uhlenbrook et al. (1999); Abebe et al. (2010). The Priestley-Taylor parameter is based on Lhomme (1997).

Name Unit Lower boundary Upper boundary Description
1 Tm °C -3.0 3.0 Temperature where melt starts
2 Ts °C Tr-0.01 Tr-3 Temp. below which precipitation is snow
3 Tr °C 0.0 3.0 Temp. above which precipitation is rain
4 DDF mm °C—1d-1! 0.04 12 Degree day factor
5 SCF - 0.1 5.0 Snow correction factor
6 LP - 0.0 1.0 Evaporation reduction threshold
7 PT - 1.0 1.74 Priestley-Taylor coefficient
8 FC mm 0.0 2000 Max soil moisture storage
9 BETA - 0.0 20 Non-linear shape coefficient
10 KO day 0.0 2.0 Storage coefficient of very fast response
11 K1 day 2.0 30 Storage coefficient of fast response
12 L mm 0.0 100 Reservoir threshold
13 PERC mmd—! 0.0 100 Percolation rate
14 K2 day 30 250 Storage coefficient of slow response
15 BMAX day 0.0 30 Max baseflow of low flows
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Table A2. Selected parameters and their boundaries for the SAC model. The parameter boundaries are based on Newman et al. (2015), the

Priestley-Taylor parameter has been adapted based on Lhomme (1997).

Name Unit Lower boundary Upper boundary Description
1 MFMAX mm°C~!'6h~! 08 3.0 Max melt factor
2  MFMIN mm °C~!6h=1  0.01 0.79 Min melt factor
3  UADJ km 6h ! 0.01 0.40 Wind adjustment factor for rain on snow
4 SI mm 1.0 3500 snow water equivalent for 100% snow area
5 SCF - 0.1 5.0 Snow undercatch correction factor
6 PXTEMP °C -3.0 3.0 Temperature for rain/snow transition
7 PT - 1.0 1.74 Priestley-Taylor coefficient
8 UZTWM mm 1.0 800 Upper zone max storage of tension water
9 UZFWM mm 1.0 800 Upper zone max storage of free water
10 UZK day—?! 0.1 0.7 Upper zone free water lateral depletion rate
11 ZPERC - 1.0 250 Max percolation rate
12 REXP - 0.0 6.0 Exponent of the percolation equation
13 PFREE - 0.0 1.0 Frac. percolating from upper to lower zone
14 LZTWM mm 1.0 800 Lower zone max storage of tension water
15 LZFPM mm 1.0 800 Lower zone max storage of free water
16 LZFSM mm 1.0 1000 Lower zone max storage of sec. free water
17 LZPK day ! 1-° 0.025 Lower zone prim. free water depletion rate
18 LZSK day—! -3 0.25 Lower zone sec. free water depletion rate
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Table A3. Selected parameters and their boundaries for the VIC model based on Demaria et al. (2007); Chaney et al. (2015); Melsen et al.
(2016); Mendoza et al. (2015).

Name Unit LB UB Description
1 Tsmax °C 0.0 3.0 Max temp. where snowfall can occur
2 Tsmin °C Tsmax-0.01 Tsmax-3.0 Min temp. where rainfall can occur
3 SR - 5.107° 0.5 Surface roughness of the snow pack
4 NewAlb - 0.7 0.99 New snow albedo
5 albaa - 0.88 0.99 Base in snow albedo function for accum.
6 albtha - 0.66 0.98 Base in snow albedo function for melt
7 RZT1 - 0.5 2 Multipl. factor rootzone thickness layer 1
8 RZT2 - 0.5 2 Multipl. factor rootzone thickness layer 2
9 RZT3 - 0.5 2 Multipl. factor rootzone thickness layer 3
10 Rmin - 0.1 10 Multipl. factor min. stom. res. vegetation
11 Bi - 10—° 0.4 Infiltration shape parameter
12 Depth2 m 0.1 3.0 Depth of soil layer 2
13 Expt2 - 4.0 30 Exponent of the Brooks-Corey relation
14 Ds - 10—4 1.0 Frac. Dsmax non-linear baseflow starts
15 Dsmax mmd—! 0.1 50 Max velocity of the baseflow
16 Ws - 0.2 1.0 Frac. Wsmax non-linear baseflow starts
17 Depth3 m 0.1 3.0 Depth of soil layer 3

Appendix B: Change in sensitivity versus temperature and precipitation
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