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Dear Editor, dear Nadav Peleg, 
 
 
We thank you for positively assessing our manuscript. In the revised version, we have reduced the 
information content of several figures and shortened/clarified several text sections. However, we have 
kept the diversity of our detailed analyses as this was a strength strongly emphasized by Uwe Ehret 
(Referee #4). We have emphasized in the Abstract, Introduction and Discussion that the novelty of our 
study lies in the comprehensive and systematic quantification of differences between multiple state and 
flux variables of multiple models. Furthermore, we added a supplement to show the heatmap of the 
ranked models for the selection of criteria, as suggested by the Referee #5.  
 
Please find below our replies to the referees’ comments and the second revision of our manuscript (with 
latest track-changes since the first revision).  
 
 
Kind regards, 
 
Laurène Bouaziz and co-authors 
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Referee #4 (Uwe Ehret) 
 
We thank Dr.-Ing. Uwe Ehret for his positive and critical evaluation of our manuscript. We highly 
appreciate his recommendation to publish the manuscript and his suggestion for a follow-up study.  
 
We agree with the overall evaluation of Dr.-Ing. Uwe Ehret. The main conclusions of the study are 
indeed not unexpected. It has been known for a long time that different models can exhibit substantial 
differences in their internal dynamics. This can have a considerable impact on the results and 
interpretations/conclusions drawn in many hydrological studies, while potentially not being clearly 
communicated. To our knowledge there are no studies that have simultaneously quantified the 
differences in several internal model dynamics for multiple models, in a comprehensive and systematic 
way. With this study, we want to further emphasize and raise awareness that these differences can 
affect subsequent interpretations in hydrological modeling studies/applications.  
 
We have emphasized this in the Introduction, Abstract and Implication sections of the revised 
manuscript.   
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Referee #5 

 

We thank the anonymous referee #5 for carefully reading our manuscript and his/her valuable 
suggestions that helped us improve the manuscript.  

 

Comment 1 

The four variables streamflow, evapotranspiration, root zone soil moisture content, and total 

water storage are used in very different ways to evaluate model performance. For example, i) the 

temporal resolution varies from multiple years, to one year, to one season, or to a single month; 

ii) some variables are evaluated using magnitude related metrics others using dynamic related 

metrics; and iii) a different number of aspects of a particular variable is analysed. This diversity 

can be confusing and makes it difficult to understand the big picture as one is confronted with 

something new in every figure. I highly recommend to think about a way to analyse and present 

the data/results in a more consistent way. 

 

Reply 1 

 

We agree with the referee that the data are used in very different ways to evaluate model 

performance. This enables us to give a diverse and detailed overview of model performance by 

getting the most out of the available data. The different temporal signatures to evaluate model 

performance highlight each a different aspect of the hydrological response. Additionally, each 

variable should be appreciated in a different way. Depending on the uncertainty of the remote 

sensing product, it is sometimes only possible to evaluate the dynamics and not the magnitudes. 

As also stressed by Referee #4, the thoroughly conducted analyses are making the strength of 

the study. This makes us reluctant to reduce the diversity of our analyses. However, we reduced 

the information content of several figures to make it more concise (see reply to comment 2).  

 

In the revised manuscript we have now clarified in Section 4.5 that we are summarizing the 

main findings (‘the big picture’) in Figure 9. The detailed analysis for each of the five evaluated 

variables (streamflow, evaporation, snow, root-zone soil moisture and total water storage) are 

shown in a separate figure per variable (Figures 3 to 7). The interactions between these 

variables for a low-flow period (therefore excluding snow) are shown in Figure 8. The main 

overall findings from these analyses are then synthesized in Figure 9 together with the 

uncertainty estimates of the remote sensing data.  
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Comment 2 

 

The manuscript describes and presents the methods and results in quite some detail. This 

makes it difficult to separate the key messages from the more “nice to know” aspects. For 

example, i) the manuscript contains a total of 46 (sub)figures. Do you really think every single 

sub(figure) is needed to tell your story?; ii) there are multiple text sections that could easily 

be shortened by removing details that are not important for understanding the story (see 

detailed comments). I strongly encourage the authors to better filter information in order to 

improve the clarity of the manuscript. 

 

Reply 2 

 

We agree and thank the referee for these suggestions. We have looked in detail at the various 

subplots and agree that several of them can be removed to make the figures more concise. 

We also agree with the suggestions of the referee to shorten some sections of the text, as 

outlined in the detailed comments.  

 

In the revised version, we have removed the following subplots: 

• Figure 1c: we agree with the referee that the description in the text is already very 

detailed. 

• Figure 6b: this subplot can be removed as we mention in Section 3.3 that it is difficult 

to meaningfully compare the range of modeled and remote sensing root-zone soil 

moisture.  

• Figure 7b: we now show the two GRACE pixels in Figure 1b.  

• Figure 7d: the description of the difference in precipitation between both catchments 

is detailed in the text and does not necessarily need to be shown in the Figure. 

 

Additionally, we have shortened some text sections (see replies to the detailed comments).  

 

As also mentioned in Reply 1, we have clarified in Section 4.5 that Figure 9 is summarizing the 

main findings of model performance in relation to the remote sensing products and their 

uncertainty.  
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Comment 3 

 

The results are often only presented for one of the three catchments, which is related to the 

rather qualitative model evaluation. Showing the results for all three catchments would enhance 

the robustness and relevance of the results. 

 

Reply 3:  

 

As also outlined in the discussion with Referee #3 (https://doi.org/10.5194/hess-2020-176-AC4), 

we have deliberately chosen to balance depth with breadth and perform a thorough analysis of 

twelve models and five variables in a limited number of catchments. The catchments are 

relatively similar, and the results are not very different for the two neighboring/nested 

catchments. Our study is therefore not a large sample study of many catchments, as there is only 

so much one can convey in a single study. By showing the results for mainly one catchment, we 

perform a thorough in-depth analysis. We are reluctant to show the results for the three 

catchments, as this would not contribute to making the study more concise, as was suggested by 

the referee in Comment 2 (above).  

 
 
Comment 4 
 

The study has two main objectives, whereby the second one is to evaluate models using “soft” 

measures. I didn’t have the feeling that the “soft” measures were really an aim of this study – 

they were rather a tool (that was actually only used in the very last figure). If the use of “soft” 

measures was one of the objectives, then I would argue that you would have to do some serious 

testing of this measure that includes a comparison against other typically used evaluation 

metrics. 

 

Reply 4 

 

We agree that the soft measures are not an objective. The objective is to evaluate the models by 

introducing a set of soft measures, as described in the last paragraph of the introduction.  

 

It is not entirely clear to us what the referee exactly means with the other typically used 

evaluation metrics. The measures shown in Figure 9 are either single values or binary metrics, 

which would not enable us to calculate ‘typical’ measures as Nash-Sutcliffe Efficiency. Instead, 

we are showing the deviation between model behavior and a specific aspect of the hydrological 

response using streamflow, remote-sensing data or expert knowledge.  

 

Furthermore, we think this comment relates to the discussion we had with Prof. Keith Beven 

(Referee #1, https://doi.org/10.5194/hess-2020-176-AC1). The problem we are facing is that 

there is a large and often unknown uncertainty in the evaluation data. For this reason, we are 

highly reluctant to determine hard rejection thresholds from these data. We therefore opt for a 

soft evaluation of the relative merits of the several models by ranking them for a selection of 

criteria based on soft, expert judgement of the trustworthiness of the individual types of remote-

sensing data. It is a compromise between not using these data at all due to the significant 

uncertainty and commensurability issues, versus using them in an over-confident way (e.g. for 

calibration purposes). With the introduced soft measures, we want to make the most of the 

available data.  
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Comment 5 
 

Model calibration was based on hourly streamflow data, whereas the evaluation was based on 

data with daily or monthly resolution. Don’t you think that the discrepancy in temporal 

resolutions will lead to an even stronger “overfitting” to streamflow? In other words, would the 

performance for the internal states and fluxes be better if the model was calibrated against daily 

streamflow? Furthermore, model evaluation was conducted in a different period than model 

calibration, which introduces additional uncertainty. Do you think the results would be different 

if you did the evaluation in the calibration period? 

 

Reply 5 

 

This is an interesting point of discussion raised by the referee. The fast response time (less than 1 

day) in these catchments of the Belgian Ardennes explains our choice to calibrate the models using 

hourly data in the previous study (de Boer-Euser et al., 2017). We then evaluate model 

performance in an evaluation period outside the calibration period. We did not test the differences 

between modeled results from a calibration on daily data and a calibration on hourly data with 

aggregated results to daily values. However, considering the relatively high model performance in 

the evaluation period, aggregating the hourly values to daily values will necessarily yield a good 

representation of the hydrological response at the daily (or higher) time step as aggregating 

results to a coarser time step will always lead to a better performance by averaging out the most 

extreme errors.  

 

Even if there is a mismatch between the time step used in our calibration and the coarser temporal 

resolution of the remote sensing data, this is still valuable information that we can use.  

 

Furthermore, we argue that evaluating the results in an evaluation period outside the calibration 

period should provide a more robust overview of model performance. A rigorous model test 

strategy is the differential split-sample test, described e.g. by Klemeš (1986). While the original 

differential split-sample test, tests a model during a time period not used for calibration at a 

location different than the location used for calibration, we here adapt the strategy to test the 

model during a time period not used for calibration but not (or only partly) at a different location 

but rather with respect to different variables/signatures.  
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Comment 

P2 L36-45: This paragraph lists a lot of studies on multi-variable calibration. However, as the list is not 

complete, I recommend to use “e.g.” when listing references. 

Reply 

We agree and have added “e.g.” to the listed references. 

 

Comment 

P3 L66-74: The use of “we” is confusing. Please make sure that it is clear what was part of the 

previous study and what is part of the current study. Furthermore, this is one of these paragraphs 

that could be shortened, also because the same information will be repeated in the methods section. 

Reply: 

Thank you for pointing out this specific paragraph, we completely agree to shorten this part to avoid 

repetition. We have adapted this in the revised version and clarified what was part of the previous 

study as opposed to the current study.  

 

Comment 

P4 L83-107: The reference for the land cover information is missing. 

Reply 

We agree and added the reference in the revised version.  

 

Comment 

P5 L117: “…follow the same approach to extend the dataset…”. Do your refer to temperature or ET? 

Reply 

We have clarified in the revised version that we refer to the meteorological forcing dataset 
(precipitation, temperature and potential evaporation).  

 

Comment 

P8 L234-252: i) This is one of the sections that could be shortened. E.g., the information about the 

proxy-basin test or about the evaluation from 2001-2003 and 2008-2010 is not relevant for this 

study; ii) How many parameter sets did you have per model?; iii) How similar are the calibration and 

validation period in terms of streamflow, evapotranspiration, root zone soil moisture content, and 

total water storage? 

Reply 

i) We agree with this suggestion and have removed some details on the evaluation procedures of the 

previous study in the revised version of the manuscript.  
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ii) For each model, the modelers were asked to provide an ensemble of 20 feasible parameter sets, 

the selection method was not imposed by the protocol as long as it relied on the two objective 

functions (NSE and NSElogQ).  

iii) In Figure-A below, we show the observed streamflow time series for the Ourthe at Tabreux. The 

calibration years can be qualified as relatively normal years in terms of streamflow. Also in terms of 

the overall water balance, differences in the aridity index and runoff coefficient are minor, as shown 

in the representation of the Budyko framework in Figure-B. Time series of GLEAM evaporation for 

the period 2008-2017 (Figure 4b of the manuscript) show a relatively constant behavior, which is 

also representative of the calibration period. Time series of MODIS snow cover (Figure 5a) show that 

the calibration period contains both years with relatively much and little snow. GRACE total storage 

anomalies show a relatively constant behavior for the entire period and therefore also during the 

calibration period (Figure 7a). The three years where root-zone soil moisture is available are shown 

in Figure 8a,b, but can, however, not be compared with the calibration years. We also refer to the 

supplement of the previous study (de Boer-Euser et al. 2017) for additional time series of 

precipitation, evaporation and streamflow for the calibration and evaluation periods.  

 

Figure-A: Observed streamflow between 2000 and 2017 for the Ourthe at Tabreux. The grey part of the hydrograph 
represents the calibration period.  
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Figure-B: Plotting position of the Ourthe catchment at Tabreux for the calibration and evaluation periods within the Budyko 
framework.   

 

Comment 

P9 L275-280: The description of the confusion matrix is rather confusing. I would directly jump to 

L280, where you actually say what you will evaluate (i.e, “…ratio of days when snow observed by 

MODIS is correctly identified by the model,…”). 

Reply 

We fully agree with this suggestion and we shortened and clarified the explanation on the 

confusion matrix in the revised version of the manuscript. We kept the definitions of hits, miss, 

false alarm and correct rejections as all readers might not be familiar with these concepts. We 

then jumped into the two aspects that we show in Figure 5d and 5e. Instead of referring to 1-

recall and 1-precision rates, we now refer to these entities as the miss rate and the false 

discovery rate to increase the clarity throughout the text and in the Figure.  

 

Comment 

P10 L289: Is SR the range of relative root-zone soil moisture or the relative range of root-zone soil 

moisture? The equation shows a ratio and not a range. 

Reply 

The variable 𝑆𝑅̅̅ ̅ refers to the relative root-zone soil moisture, a dimensionless variable calculated 

as SR/SR,max. The description of this symbol is shown in Table 1. In our analyses we compare the 

range of the variable 𝑆𝑅̅̅ ̅ for the different models. We understand the possible confusion and have 

tried to clarify this part in the revised version of the manuscript.  
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Comment 

P11 L318: You later mention that your goal was not the reject models or to find the best one. 

However, ranking models inevitably leads to a comparison. Therefore, wouldn’t it be better to make 

a binary classification, i.e., accept or reject models for a particular variable? 

Reply 

Here, we refer to the discussion we had with Prof. Keith Beven (Referee #1, 

https://doi.org/10.5194/hess-2020-176-AC1) and to our answer on Comment 4. Considering the 

significant uncertainty in the evaluation variables, we are reluctant to use these data to determine 

hard rejection thresholds. Instead, we deliberately chose for an approach where the models are 

compared through a ranking to evaluate how plausible it is to consider them behavioral based on 

the streamflow, remote-sensing data and expert knowledge.  

Additionally, accepting or rejecting models for a particular variable would not be enough, as we 

would still not get the right answer for the right reasons if all other variables were rejected. 

Eventually, we look for models that get the overall response right by having a better performance 

for all variables, this also supports the chosen ranking approach.  

 

Comment 

P11 L 324: The results section is often mixed with discussion. Examples are L346-349, L356-359, L39- 

440, L 465-467, L481-483, L500-503. 

Reply 

We agree that some explanations could be perceived as discussion. It is always difficult to clearly 

separate results from discussion. To better guide the reader through the results, it is sometimes 

necessary to directly place them in a broader context. Some statements may also be very specific 

and would not need to be repeated in a separate Discussion section. To clarify this for the reader, we 

have adapted the ‘Results’ section to ‘Results and Discussion’. The broader Implications and 

Knowledge gaps and limitations are described in the subsequent sections.  

 

Comment 

P17 L535-536: Where do you show that the calibration strategy influences model performance?  

Reply 

We agree that we do not explicitly show that the calibration strategy influences model 

performance. This statement reflects some discussions that we had amongst several modelers 

during our analyses. In order to keep the manuscript more concise, we have removed this 

statement from the revised version of the manuscript to avoid confusion.   
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Comment 

P19 L575: Is it spatial resolution or spatial coverage? 

Reply 

This is an interesting point, both coverage and resolution apply here. We have clarified this in the 

revised version of the manuscript.  

 

Comment 

 

Fig. 1: I think Fig. 1c is not needed as your description in the text is very clear. The variable EA in Fig. 

1c is not defined. 

 

Reply 

We agree with the suggestion of the referee to remove Figure 1c, as it is perhaps ‘nice to have’, but 

not strictly needed. We have removed Figure 1c in the revised version.  

 

Comment 

Fig. 2: I would suggest to add labels to the individual tanks and fluxes, because colours are not 

intuitive. Why do wflow_hbv and FLEX-Topo have a different number of elevation bands? 

Reply 

While we agree that adding labels to the individual tanks and fluxes would make the 

schematization more complete, we also think it will make this already busy figure less 

readable. Therefore, we decided to stick with the color scheme, which is intended to provide a 

quick overview of the different stores and fluxes of each model. For detailed model 

descriptions, we refer to the references provided in the text.  

The parallel stores represented for the FLEX-Topo model represent three parallel hydrological 

response units (wetland, hillslope and plateau) connected through the groundwater reservoir. 

The parallel stores for wflow_hbv represent the distributed spatial discretization of the model 

(as also indicated in Table 2). We have clarified this in the caption of the Figure.  
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Comment 

Fig. 3: Why is the range in model performance much larger for NSE,logQ than for NSE,Q? What are 

the feasible parameter set? How many are they? How representative is Fig. 3d for all the other 

models (or what do we learn from it)? 

Reply 

We agree that some models show a larger range of NSElog,Q than NSE. We have not analyzed this 

specifically in our manuscript. However, we see that the slope of the recession curve can show 

some substantial differences among feasible parameter sets. While this difference in slope does 

not affect the NSE because flows during the recession period are very low, it has a large influence 

on the NSElogQ. This is illustrated in Figure-C, for a model with relatively large difference in the slope 

of the recession (FLEX-Topo) and a model with relatively similar slopes of the recession among the 

ensemble of feasible parameter sets (wflow_hbv). 

 

Figure-C: Modeled streamflow (log-scale) for the 2010 and 2011 recession of the Ourthe at Tabreux for a model with slight 
variability in slope of the recession among feasible parameter sets (wflow_hbv) as opposed to a model with a larger spread in 
slope of the recession among feasible parameter sets (FLEX-Topo).    

For each model, we retained an ensemble of 20 feasible parameter set based on a free to choose 

selection method relying on the two objective functions NSE and NSElogQ.  

We included Figure 3d to show the hydrograph of the studied catchment. The use of different 

signatures to aggregate the hydrological response is very valuable to evaluate model performance. 

However, we think a visual representation of the hydrograph cannot be omitted from the 

manuscript, as it can give the readers a quick general visual impression of the type of hydrological 

response in this catchment.  
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Comment 

Fig. 4: I would chose boxplots to show the interception values to be consistent with 

evapotranspiration. It is not clear what exactly the bars show (i.e, is it the 25-50% quantile?). 

Reply 

We agree that showing boxplot would make it more consistent, but we are afraid that it 

might also make it more confusing as there is already a lot of information in the figure. As 

the bars are indicated in the legend, we have kept them in the revised version of the 

manuscript. We have clarified in the caption that the bars represent the minimum and 

maximum range.  

 

Comment 

Fig. 9: Could you turn this figure into a heatmap? For which catchment is this figure? 

Reply 

We thank you for this very nice suggestion. We have created a heatmap (Figure-D shown below) 
showing the ranks of the models for each of the criteria shown in Figure 9. We decided to add this 
figure in the supplement and keep Figure 9 in the main text, as Figure 9 provides not only information 
on the ranking, but also on the deviations from the remote-sensing data and the associated estimated 
uncertainty of each criterion.  

We clarified in the caption of Figure 9 that the results are shown for the Ourthe at Tabreux except for 
the snow analysis which is shown for the Ourthe Orientale at Mabompré.  

 

Figure-D: Model ranks for each of the criteria shown in Figure 9. The results are shown for the Ourthe at Tabreux (ID 1), except 
for the snow days analysis which is shown for the Ourthe Orientale at Mabompré (ID 2). Blank spots indicate that the models 
do not include a separate interception module or/and a snow module. 
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Abstract. Streamflow is often the only variable used to evaluate hydrological models. In a previous international comparison

study, eight research groups followed an identical protocol to calibrate twelve hydrological models using observed streamflow

of catchments within the Meuse basin. In the current study, we hypothesize that
:::::::
quantify

:::
the

:::::::::
differences

::
in

:::
five

:::::
states

::::
and

:::::
fluxes

::
of these twelve process-based models with similar streamflow performancehave similar representations of internal states and

fluxes,
::
in

::
a

:::::::::
systematic

:::
and

:::::::::::::
comprehensive

:::
way. Next, we assess model behavior plausibility by ranking the models for a set of5

criteria using remote sensing products
:::::::::
streamflow

:::
and

::::::
remote

:::::::
sensing

::::
data of evaporation, snow cover, soil moisture and total

storage anomalies. We found substantial dissimilarities between models for annual interception and seasonal evaporation rates,

the annual number of days with water stored as snow, the mean annual maximum snow storage and the size of the root-zone

storage capacity. These differences in internal process representation imply that these models cannot all simultaneously be close

to reality. Modeled annual evaporation rates are consistent with GLEAM estimates. However, there is a large uncertainty in10

modeled and remote sensing annual interception. Substantial differences are also found between MODIS and modeled number

of days with snow storage. Models with relatively small root-zone storage capacities and without root water uptake reduction

under dry conditions tend to have an empty root-zone storage for several days each summer, while this is not suggested by

remote sensing data of evaporation, soil moisture and vegetation indices. On the other hand, models with relatively large root-

zone storage capacities tend to overestimate very dry total storage anomalies of GRACE. None of the models is systematically15

1



consistent with the information available from all different (remote sensing) data sources. Yet, we did not reject models given

the uncertainties in these data sources and their changing relevance for the system under investigation.

1 Introduction

Hydrological models are valuable tools for short-term forecasting of river flows, long-term predictions for strategic water

management planning but also to develop a better understanding of the complex interactions of water storage and release20

processes at the catchment-scale. In spite of the wide variety of existing hydrological models, they mostly include similar

functionalities of storage, transmission and release of water to represent the dominant hydrological processes of a particular

river basin (Fenicia et al., 2011), differing mostly only in the detail of their parametrizations (Gupta et al., 2012; Gupta and

Nearing, 2014; Hrachowitz and Clark, 2017).

In all of these models, each individual model component constitutes a separate hypothesis of how water moves through25

that specific part of the system. Frequently, the individual hypotheses remain untested. Instead only the model output, i.e.

the aggregated response of these multiple hypotheses, is confronted with data of the aggregated response of a catchment to

atmospheric forcing. Countless applications of different hydrological models in many different regions across the world over

the last decades have shown that these models often provide relatively robust estimates of streamflow dynamics, for both

calibration and evaluation periods. However, various combinations of different untested individual hypotheses, can and do lead30

to similar aggregated outputs, i.e. model equifinality (Beven, 2006; Clark et al., 2016).

To be useful for any of the above applications, it is thus of critical importance that not only the aggregated but also the

individual behaviors of the respective hypotheses are consistent with their real-world equivalents. Given the complexity and

heterogeneity of natural systems together with the general lack of suitable observations, this remains a major challenge in

hydrology (e.g., Jakeman and Hornberger, 1993; Beven, 2000; Gupta et al., 2008; Andréassian et al., 2012).35

Studies have addressed the issue by constraining the parameters of specific models through the use of additional data sources

besides streamflow. Beven and Kirkby (1979); Güntner et al. (1999) and Blazkova et al. (2002) mapped saturated contributing

areas during field surveys to constrain model parameters, while patterns of water tables in piezometers were used by Seibert

et al. (1997); Lamb et al. (1998) and Blazkova et al. (2002). Other sources include satellite-based total water storage anomalies

(Winsemius et al., 2006; Werth and Güntner, 2010; Yassin et al., 2017), evaporation (Livneh and Lettenmaier, 2012; Rakovec et al., 2016a; Bouaziz et al., 2018; Demirel et al., 2018; Hulsman et al., 2019)40

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Winsemius et al., 2006; Werth and Güntner, 2010; Yassin et al., 2017),

::::::::::
evaporation

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Livneh and Lettenmaier, 2012; Rakovec et al., 2016a; Bouaziz et al., 2018; Demirel et al., 2018; Hulsman et al., 2019)

, near-surface soil moisture (Franks et al., 1998; Brocca et al., 2010; Sutanudjaja et al., 2014; Adnan et al., 2016; Kunnath-Poovakka et al., 2016; López López et al., 2017; Bouaziz et al., 2020)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Franks et al., 1998; Brocca et al., 2010; Sutanudjaja et al., 2014; Adnan et al., 2016; Kunnath-Poovakka et al., 2016; López López et al., 2017; Bouaziz et al., 2020)

, snow cover information (Gao et al., 2017; Bennett et al., 2019; Riboust et al., 2019)
::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Gao et al., 2017; Bennett et al., 2019; Riboust et al., 2019)

, or a combination of these variables (Nijzink et al., 2018; Dembélé et al., 2020)
::::::::::::::::::::::::::::::::::::::
(e.g., Nijzink et al., 2018; Dembélé et al., 2020)45

. Reflecting the results of many studies, Rakovec et al. (2016b) showed that streamflow is necessary but not sufficient to con-

strain model components to warrant partitioning of incoming precipitation to storage, evaporation and drainage.
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Hydrological simulations are, however, not only affected by model parameter uncertainty, but also by the selection of a

model structure and its parameterization (i.e. the choice of equations). Modeling efforts over the last four decades have led

to a wide variety of hydrological models providing flexibility to test competing modeling philosophies, from spatially lumped50

model representations of the system to high-resolution small-scale processes numerically integrated to the catchment scale

(Hrachowitz and Clark, 2017). Haddeland et al. (2011) and Schewe et al. (2014) compared global hydrological models and

found that differences between models are a major source of uncertainty. Nonetheless, model selection is often driven by

personal preference and experience of individual modelers rather than detailed model test procedures (Holländer et al., 2009;

Clark et al., 2015; Addor and Melsen, 2019).55

A suite of comparison experiments tested and explored differences between alternative modeling structures and parameter-

izations (Perrin et al., 2001; Reed et al., 2004; Duan et al., 2006; Holländer et al., 2009; Knoben et al., 2020). However, these

studies mostly restricted themselves to analyses of the models’ skills to reproduce streamflow ("aggregated hypothesis"), with

little consideration for the model internal processes ("individual hypotheses"). The Framework for Understanding Structural

Errors (FUSE) was one of the first initiatives towards a more comprehensive assessment of model structural errors, with special60

consideration given to individual hypotheses (Clark et al., 2008).

Subsequent efforts towards more rigorous testing of competing model hypotheses, partially based on internal processes

include Smith et al. (2012a, b) who tested multiple models for their ability to reproduce in-situ soil moisture observations as

part of the Distributed Model Intercomparison Project 2 (DMIP2). They found that only two out of sixteen models provided

reasonable estimates of soil moisture. In a similar effort, Koch et al. (2016) and Orth et al. (2015) also compared modeled65

soil moisture to in-situ observations of soil moisture for a range of hydrological models in different environments. In contrast,

Fenicia et al. (2008) and Hrachowitz et al. (2014) used groundwater observations to test individual components of their models.

:::::
There

:::
are

:::::::
actually

::::::::
relatively

::::
few

::::::
studies

::::
that

::::::::::::::
comprehensively

:::::::::
quantified

::::::::::
differences

::
in

:::::::
internal

:::::::
process

::::::::::::
representation

:::
by

::::::::::::
simultaneously

::::::::
analyzing

::::::::
multiple

::::::
models

:::
and

:::::::
multiple

:::::
state

:::
and

::::
flux

::::::::
variables.

Here, in this model comparison study, we instead use globally available remote sensing data to evaluate five different model70

state and flux variables of twelve process-based models with similar overall streamflow performance, which are calibrated

by several research groups following an identical protocol. The calibration on streamflow was conducted in our previous

study (de Boer-Euser et al., 2017), in which eight research groups working on the Meuse basin applied their rainfall-runoff

model(s) according to a defined protocol using the same forcing data to reduce the degrees of freedom and enable a fair

comparison (Ceola et al., 2015). All models had a high overall streamflow performance based on commonly used metrics. We75

were able to attribute differences in performance to model structure components by focusing on specific hydrological events

(de Boer-Euser et al., 2017). Our analyses were then limited to comparisons with
:::
we

::::::::
compared

::::::
models

:::::
using hourly streamflow

observationsand
:
,
::::::
leaving

:
the modeled response of internal processes remained unused.

In a direct follow-up of the above study, we here hypothesize that process-based models with similar overall streamflow per-

formance rely on similar representations of their internal states and fluxes. We test our hypothesis by
::::::::::::
simultaneously quantify-80

ing the differences in the magnitudes and dynamics of five internal state and flux variables of twelve models,
::
in

:
a
:::::::::::::
comprehensive

:::
and

:::::::::
systematic

::::
way. Our primary aim is to test if models calibrated to streamflow with similar high-performance levels in re-
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producing streamflow, follow similar pathways to do so, i.e. represent the system in a similar way. A secondary objective is to

evaluate the plausibility of model behavior by introducing a set of "soft" measures based on expert knowledge in combination

with remote sensing data of evaporation, snow cover, soil moisture and total water storage anomalies.85

2 Study area

We test our hypothesis using data from three catchments in the Belgian Ardennes; all of them are part of the Meuse River

basin in North-West Europe: the Ourthe upstream of Tabreux (ID1), the nested Ourthe Orientale upstream of Mabompré (ID2)

and the Semois upstream of Membre-Pont (ID3), as shown in Figure 1a,b. The Ardennes Massif and Plateau are underlain by

relatively impermeable metamorphic Cambrian rock and Early Devonian sandstone. The pronounced streamflow seasonality90

of these catchments is driven by high summer and low winter evaporation (defined here as the sum of all evaporation com-

ponents including transpiration, soil evaporation, interception, sublimation and open water evaporation when applicable), as

precipitation is relatively constant throughout the year. Snow is not a major component of the water balance, but occurs almost

every year with mean annual number of days with precipitation as snow estimated between 35 and 40 days yr−1 (Royal Mete-

orological Institute Belgium, 2015). Even if mean annual snow storage is relatively small, snow can be important for specific95

events. For example in 2011, when rain on snow caused widespread flooding in these catchments.

The rain-fed Ourthe River at Tabreux (ID1) is fast-responding due to shallow soils and steep slopes in the catchment. Agricul-

ture is the main land cover (27 % crops and 21 % pasture), followed by 46 % forestry and 6 % urban cover in an area of 1607 km2

and an elevation ranging between 107 m and 663 m (de Boer-Euser et al., 2017)
:::::::::::::::::::::::::::::::::::::::::::::::::::::
(European Environment Agency, 2000; de Boer-Euser et al., 2017)

. Mean annual precipitation, potential evaporation and streamflow are 979 mm yr−1, 730 mm yr−1 and 433 mm yr−1 respec-100

tively for the period 2001–2017.

Nested within the Ourthe catchment (ID1), the Ourthe Orientale upstream of Mabompré (ID2) is characterized by a narrow

elevation range from 294 m to 662 m, with 65 % of the catchment falling within a 100 m elevation band, making this catchment

suitable to analyze snow processes modeled by lumped models. The Ourthe Orientale upstream of Mabompré has an area of

317 km2 which corresponds to 20 % of the Ourthe area upstream of Tabreux and has similar land cover fractions. Mean annual105

precipitation, potential evaporation and streamflow for the period 2001–2017 are also relatively similar with 1052 mm yr−1,

720 mm yr−1 and 462 mm yr−1, respectively.

Forest is the main land cover in the Semois upstream of Membre-Pont (ID3) with 56 %, followed by agriculture (18 %

pasture and 21 % crop) and 5 % urban cover. The Semois upstream of Membre-Pont is 24 % smaller than the Ourthe upstream

of Tabreux with 1226 km2 and elevation ranges between 176 m and 569 m. Mean annual precipitation, potential evaporation110

and streamflow are respectively 38 %, 4 % and 46 % higher in the Semois at Membre-Pont with 1352 mm yr−1, 759 mm yr−1

and 634 mm yr−1.
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3 Data

3.1 Hydrological and meteorological data

Hourly precipitation gauge data are provided by the Service Public de Wallonie (Service Public de Wallonie, 2018) and are115

spatially interpolated using Thiessen polygonsfor the period 2000-2017. Daily minimum and maximum temperatures are re-

trieved from the 0.25◦ resolution gridded E-OBS dataset (Haylock et al., 2008) and disaggregated to hourly values by linear

interpolation using the timing of daily minimum and maximum radiation at Maastricht (Royal Netherlands Meteorological In-

stitute, 2018). Daily potential evaporation is calculated from daily minimum and maximum temperatures using the Hargreaves

formula (Hargreaves and Samani, 1985) and is disaggregated to hourly values using a sine function during the day and no120

evaporation at night. We use the same forcing for 2000–2010 as in the previous comparison study (de Boer-Euser et al., 2017)

and follow the same approach to extend the
::::::::::::
meteorological

:
dataset for the period 2011–2017. Uncertainty in meteorological

data is not explicitly considered, but our primary aim is to compare the models forced with identical data. Observed hourly

streamflow data for the Ourthe at Tabreux, Ourthe Orientale at Mabompré and Semois at Membre-Pont are provided by the

Service Public de Wallonie for the period 2000–2017.125

3.2 Remote sensing data

3.2.1 GLEAM evaporation

The Global Land Evaporation Amsterdam Model (GLEAM, Miralles et al., 2011; Martens et al., 2017) provides daily estimates

of land evaporation by maximizing the information recovery on evaporation contained in climate and environmental satellite

observations. The Priestley and Taylor (1972) equation is used to calculate potential evaporation for bare soil, short canopy130

and tall canopy land fractions. Actual evaporation is the sum of interception and potential evaporation reduced by a stress

factor. This evaporative stress factor is based on microwave observations of vegetation optical depth and estimates of root-zone

soil moisture in a multi-layer water-balance model. Interception evaporation is estimated separately using a Gash analytical

model and only depends on precipitation and vegetation characteristics. GLEAM v3.3a relies on reanalysis net radiation and

air temperature from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 data, satellite and gauge-135

based precipitation, satellite-based vegetation optical depth, soil moisture and snow water equivalent. The data are available at

0.25◦ resolution (Figure 1b) and account for subgrid heterogeneity by considering three land cover types. We spatially average

GLEAM interception and total actual evaporation estimates over the Ourthe catchment upstream of Tabreux for the period

2001–2017.

3.2.2 MODIS Snow Cover140

The Moderate Resolution Imaging Spectroradiometer (MODIS) AQUA (MYD10A1, version 6) and TERRA (MOD10A1,

version 6) satellites provide daily maps of the areal fraction of snow cover per 500 m × 500 m cell (Figure 1b) based on the

Normalized Difference Snow Index (Hall and Riggs, 2016a, b). For each day, AQUA and TERRA observations are merged into
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a single observation by taking the mean fraction of snow cover per day. The percentage of cells with a fractional snow cover

larger than zero and fraction of cells without missing data (i.e. due to cloud cover) for the catchment of the Ourthe Orientale145

upstream of Mabompré is calculated for each day. For this study, we disregard observations during the summer months (JJA,

when temperatures did not drop below 4◦C) and only use daily observations in which at least 40 % of the catchment area has

snow cover retrievals not affected by clouds, implying that we have 1463 valid daily observations of mean fractional snow

cover. This corresponds to 32 % of all observations of the Ourthe Orientale catchment upstream of Mabompré between 2001

and 2017.150

3.2.3 SCATSAR-SWI1km Soil Water Index

SCATSAR-SWI1km is a daily product of soil water content relative to saturation at a 1 km × 1 km resolution (Figure 1b) ob-

tained by fusing spatio-temporally complementary radar sensors (Bauer-Marschallinger et al., 2018). Estimates of the moisture

content relative to saturation at various depths in the soil, referred to as Soil Water Index (SWI), are obtained through temporal

filtering of the 25 km METOP ASCAT near-surface soil moisture (Wagner et al., 2013) and 1 km Sentinel-1 near-surface soil155

moisture (Bauer-Marschallinger et al., 2018). The Soil Water Index features as single parameter the characteristic time length

T (Wagner et al., 1999; Albergel et al., 2008). The T -value is required to convert near-surface soil moisture observations to

estimates of root-zone soil moisture. The T -value increases with increasing root-zone storage capacities (Bouaziz et al., 2020),

resulting in more smoothing and delaying of the near-surface soil moisture signal. The Copernicus Global Land Service (2019)

provides the Soil Water Index for T -values of 2, 5, 10, 15, 20, 40, 60 and 100 days. Since Sentinel-1 was launched in 2014,160

the Soil Water Index is available for the period 2015–2017. We calculate the mean soil moisture over all SCATSAR-SWI1km

pixels within the Ourthe upstream of Tabreux for the available period.

3.2.4 GRACE Total Water Storage anomalies

The Gravity Recovery and Climate Experiment (GRACE, Swenson and Wahr, 2006; Swenson, 2012) twin satellites, launched

in March 2002, measure the Earth’s gravity field changes by calculating the changes in the distance between the two satellites165

as they move one behind the other in the same orbital plane. Monthly total water storage anomalies (in mm) relative to the

2004–2009 time-mean baseline are provided at a spatial sampling of 1◦ (approximately 78 km x 110 km at the latitude of

the study region, Figure 1b) by three centers: U. Texas / Center for Space Research (CSR), GeoForschungsZentrum Potsdam

(GFZ) and Jet Propulsion Laboratory (JPL). These centers apply different processing strategies which lead to variations in the

gravity fields. These gravity fields require smoothing of the noise induced by attenuated short wavelength. The spatial smooth-170

ing decreases the already coarse GRACE resolution even further through signal "leakage" of one location to surrounding areas

(Bonin and Chambers, 2013), which increases the uncertainty especially at the relatively small scale of our study catchments.

We apply the scaling coefficients provided by NASA to restore some of the signal loss due to processing of GRACE observa-

tions (Landerer and Swenson, 2012). The data of the three processing centers are each spatially averaged over the catchments

of the Ourthe upstream of Tabreux and the Semois upstream of Membre-Pont for the period April 2002 to February 2017.175
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3.3 Data uncertainty

The hydrological evaluation data are all subject to uncertainties (Beven, 2019). Streamflow is not measured directly but depends

on water level measurements and a rating curve. Westerberg et al. (2016) quantify a median streamflow uncertainty of ±12 %,

±24 % and ±34 % for average, high and low streamflow conditions, respectively, using a Monte Carlo sampling approach of

multiple feasible rating curve for 43 UK catchments. We sample from these uncertainty ranges to transform the streamflow180

observations (100 realizations). We then quantify signature uncertainty originating from streamflow data uncertainty using the

100 sampled time series for a selection of streamflow signatures (Section 4.2). The 5-95th uncertainty bounds of median annual

streamflow, baseflow and flashiness indices result in ±11 %, ±9 % and ±12 %, respectively. These magnitudes are similar to

those reported by Westerberg et al. (2016).

GLEAM evaporation estimates are inferred from models and forcing data which are all affected by uncertainty. Yet, uncer-185

tainty estimates of GLEAM evaporation are not available. However, GLEAM evaporation was evaluated against FLUXNET

data by Miralles et al. (2011). For the nearby station of Lonzee in Belgium, they report similar annual rates and a high cor-

relation coefficient of 0.91 between the daily time series. GLEAM mean annual evaporation was compared to the ensemble

mean of five evaporation datasets in Miralles et al. (2016) and shows higher than average values in Europe (of approximately

60 mm yr−1 or 10 % of mean annual rates for our study area). The partitioning of evaporation in different components (tran-190

spiration, interception and soil evaporation) differs substantially between different evaporation datasets, as shown by Miralles

et al. (2016). GLEAM interception currently only considers tall vegetation and underestimates in-situ data (Zhong et al., 2020)

and is ∼50 % lower than estimates from other datasets (Miralles et al., 2016). These uncertainties underline that GLEAM (and

other remote sensing data) cannot be considered as a reliable representation of real-world quantities. However, the comparison

of daily dynamics and absolute values of this independent data source with modeled results is still valuable to detect potential195

outliers and understand their behavior. Besides, the different methods used to estimate potential evaporation of GLEAM and

our model forcing should not impede us from testing the consistency between the resulting actual evaporation (Oudin et al.,

2005).

Most frequent errors within the MODIS snow cover products are due to cloud/snow discrimination problems. Daily MODIS

snow maps have an accuracy of approximately 93 % at the pixel scale, with lower accuracy in forested areas, complex terrain200

and when snow is thin and ephemeral and higher accuracy in agricultural areas (Hall and Riggs, 2007). However, here, MODIS

data is used to estimate the number of days with snow at the catchment scale. We expect lower classification errors at the

catchment scale as it would require many pixels to be misclassified at the same time. For each day and each pixel of valid

MODIS observations, we sample from a binomial distribution with a probability of 93 % that MODIS is correct when the pixel

is classified as snow and assume a higher probability of 99 % that MODIS is correct when the pixel is classified as no-snow to205

prevent overestimating snow for days without snow (Ault et al., 2006; Parajka and Blöschl, 2006). We repeat the experiment

for 1000 times in a Monte Carlo procedure. This results in less than ±2 % uncertainty in the number of days when MODIS

observes snow at the catchment scale.
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The soil water content relative to saturation of SCATSAR-SWI1km is estimated from observed radar backscatter through a

change detection approach, which interprets changes in backscatter as changes in soil moisture, while other surface properties210

are assumed static (Wagner et al., 1999). The degree of saturation of the near-surface is given in relative units from 0 % (dry

reference) to 100 % (wet reference) and is converted to deeper layers through an exponential filter called the Soil Water Index.

The smoothing and delaying effect of the Soil Water Index narrows the range of the near-surface degree of saturation. Therefore,

data matching techniques are often used to rescale satellite data to match the variability of modeled or observed data (Brocca

et al., 2010), which suggests the difficulty to meaningfully compare the range of modeled and remote sensing estimates of215

root-zone soil moisture content relative to saturation. However, the dynamics of SCATSAR-SWI1km data have been evaluated

against in-situ stations of the International Soil Moisture Network, despite commensurability issues of comparing in-situ point

measurements and areal satellite data. Spearman rank correlation coefficients of 0.56 are reported for T -values up to 15 days

and 0.43 for T -value of 100 days (Bauer-Marschallinger, 2020).

GRACE estimates of total water storage anomalies suffer from signal degradation due to measurement errors and noise.220

Filtering approaches are applied to reduce these errors, but induce leakage of signal from surrounding areas. The uncertainty

decreases as the size of the region under consideration increases. However, time series of a single pixel may still be used to

compare dynamics and amplitudes of total water storage anomalies despite possible large uncertainty (Landerer and Swenson,

2012). We estimate an uncertainty in total water storage anomalies of ∼18 mm in the pixels of our catchments by combining

measurement and leakage errors in quadrature, which are both provided for each grid location (Landerer and Swenson, 2012).225

4 Methods

4.1 Models and Protocol

Eight research groups (Wageningen University, Université de Lorraine, Leuven University, Delft University of Technology,

Deltares, Irstea (now INRAE), Eawag and Flanders Hydraulics Research) participated in the comparison experiment and ap-

plied one or several hydrological models (Figure 2). The models include WALRUS (Wageningen Lowland Runoff Simulator,230

Brauer et al., 2014a, b), PRESAGES (PREvision et Simulation pour l’Annonce et la Gestion des Etiages Sévères, Lang et al.,

2006), VHM (Veralgemeend conceptueel Hydrologisch Model, Willems, 2014), FLEX-Topo which was still under develop-

ment when it was calibrated for our previous study (Savenije, 2010; de Boer-Euser et al., 2017; de Boer-Euser, 2017), a

distributed version of the HBV model (Hydrologiska Byråns Vattenbalansavdelning, Lindström et al., 1997), SUPERFLEX

M2 to M5 models (Fenicia et al., 2011, 2014), dS2 (distributed simple dynamical systems, Buitink et al., 2019), GR4H (Génie235

Rural à 4 paramètres Horaire, Mathevet, 2005; Coron et al., 2017, 2019) combined with the CemaNeige snow module (Valéry

et al., 2014) and NAM (NedborAfstrommings Model, Nielsen and Hansen, 1973). Main differences and similarities between

models in terms of snow processes, root-zone storage, total storage and evaporation processes are summarized in Tables 1-3.

In our previous study (de Boer-Euser et al., 2017), we defined a modeling protocol to limit the degrees of freedom in the

modeling decisions of the individual participants (Ceola et al., 2015), allowing us to meaningfully compare the model results.240

The protocol involved forcing the models with the same input data and calibrating them for the same time period, using the
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same objective functions. However, participants were free to choose a parameter search method, as we considered it to be

part of the modelers experience with the model, even if this would make comparison less straightforward. The models were

previously calibrated using streamflow of the Ourthe at Tabreux
:::::
(ID1) for the period 2004 to 2007, using 2003 as a warm-up

year (de Boer-Euser et al., 2017). The Nash-Sutcliffe efficiencies of the streamflow and the logarithms of the streamflow were245

simultaneously used as objective functions to select an ensemble of feasible parameter sets to account for parameter uncertainty

and ensure a balance between the models’ ability to reproduce both high and low flows. The models were subsequently tested

and evaluated for the periods 2001 to 2003 and 2008 to 2010. In addition, by carrying out a proxy-basin differential split-sample

test (Klemeš, 1986), not only the models’ temporal but also their spatial transferability
:::::::
temporal

::::
and

::::::
spatial

:::::::::::
transferability

:::
of

::
the

:::::::
models

:
was tested by

:::::::::
evaluating

:::
the

::::::
models

::
in
::

a
::::
pre-

:::
and

::::::::::::::
post-calibration

:::::
period

::::
and

:::
by applying the calibrated model250

parameter sets to nested and neighboring catchmentsfor the period 2001 to 2017, using 2000 as a warm-up year
:
,
::::::::
including

::::::::
catchment

::::
ID2

:::
and

::::
ID3

:::::::::::::
(Klemeš, 1986). Results thereof are presented in de Boer-Euser et al. (2017)

:
.

In the current study, we run the calibrated models for an additional period from 2011 to 2017 for the Ourthe at Tabreux

(ID1), the Ourthe Orientale at Mabompré (ID2) and the Semois at Membre-Pont (ID3). The modeling groups have provided

simulation results for each catchment in terms of streamflow, groundwater losses/gains, interception evaporation, root-zone255

evaporation (transpiration and soil evaporation), total actual evaporation, snow storage, root-zone storage and total storage as a

sum of all model storage volumes (Table 2) at an hourly time step for the total period 2001–2017. We compare these modeled

states and fluxes and evaluate them against their remote sensing equivalents as further explained in Sections 4.2 and 4.3.

4.2 Model evaluation: water balance

All models are evaluated in terms of the long-term water balance, which indicates the partitioning between drainage and260

evaporative fluxes and allows us to assess long-term conservation of water and energy. We compare mean annual streamflow

with observations and mean annual actual evaporation and interception evaporation with GLEAM estimates for the Ourthe at

Tabreux during the evaluation period 2008–2017. A detailed description of streamflow performance for specific events (low

and high flows, snowmelt event, transition from dry to wet period) has been detailed in the previous paper (de Boer-Euser et al.,

2017). In the current study, differences in streamflow dynamics are briefly summarized by assessing observed and modeled265

baseflow indices (Ibaseflow, van Dijk, 2010) and flashiness indices (Iflashiness, Fenicia et al., 2016), as these are representative

of the partitioning of drainage into fast and slow responses. Seasonal dynamics of actual evaporation over potential evaporation

and runoff coefficients during winter (Oct-Mar) and summer (Apr-Sep) are compared between models.

4.3 Model evaluation: internal states

We compare modeled snow storage, root-zone soil moisture and total storage between models and with remote sensing es-270

timates of MODIS snow cover, SCATSAR-SWI1km Soil Water Index and GRACE total storage anomalies, respectively, as

shown in Tables 2-3and Figure 1c.
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4.3.1 Snow days

As most models used in this study are lumped, it is not possible to spatially evaluate modeled snow cover versus MODIS snow

cover. However, we can classify each day in a binary way according to the occurrence of snow, based on a threshold for the275

percentage of cells in the catchment where snow cover is detected. MODIS snow cover observations are classified as days with

and without snow using thresholds of both 10 and 15 % of snow-covered cells in the catchment to be counted as a day with

snow, in a sensitivity analysis. For each model, snow days are distinguished from non-snow days whenever the water stored

as snow is above 0.05 mm to account for numerical rounding. For each model (and each retained parameter set), we then

compare if modeled snow coincides with ’truly’ observed snow by MODIS, for each day with a valid MODIS observation.280

We create a confusion matrix with counts of true positives when observations and model results agree on the presence of snow

(hits), false positives when the model indicates the presence of snow but this is not observed by MODIS (false alarms), false

negatives when the model misses the presence of snow observed by MODIS (miss) and true negatives when observations and

model results agree on the absence of snow (correct rejections). From this matrix, we calculate the recall
:::
This

::::::
allows

:::
us

::
to

::::::
identify

:::
the

::::::::
trade-off

::::::::
between,

::
on

:::
the

::::
one

:::::
hand,

:::
the

::::
miss

:::
rate

::::::::
between

:::::
model

::::
and

::::::
remote

:::::::
sensing

::::::::::
observation,

:
as the ratio of285

hits
:::::
misses

:
over actual positives (number of days when snow is observed by MODIS) andthe precision ,

:::
on

:::
the

:::::
other

:::::
hand,

::
the

:::::
false

::::::::
discovery

:::
rate

:
as the ratio of hits

::::
false

::::::
alarms over predicted positives (number of days when snow is modeled). This

allows us to identify, on the one hand, the ratio of days when snow observed by MODIS is correctly identified by the model

and, on the other hand, the ratio of days when snow is modeled that is actually observed by MODIS. We therefore not only

account for hits, but also for false alarms between model and remote sensing observations. We also
:::
We

:::
also

:
compare annual290

maximum snow storage and number of days with snow between the seven models with a snow module (GR4H, M5, NAM,

wflow_hbv, M4, FLEX-Topo, WALRUS). The snow analysis is performed in the catchment of the Ourthe Orientale upstream

of Mabompré as it features the narrowest elevation range among the study catchments (i.e. 294-662 m a.s.l. versus 108-662 m

for the Ourthe upstream of Tabreux) and thus plausibly permits a lumped representation of the snow component.

4.3.2 Root-zone soil moisture295

We compare the range of
::
the

:
relative root-zone soil moisture

::
SR:

(SR = SR/SR,max,
:::::
Table

::
1) between models for the period

in which SCATSAR-SWI1km is available (2015–2017). Time series of catchment-scale root-zone soil moisture are available

for all models except WALRUS and dS2 as these models have a combined soil reservoir (Figure 2). The dS2 model only relies

on the sensitivity of streamflow to changes in total storage. In WALRUS, the state of the soil reservoir (which includes the

root zone) is expressed as a storage deficit and is therefore not bound by an upper limit (Table 2). Root-zone storage capacities300

(SR,max, mm) are available as calibration parameter for all other models. We relate the range in relative root-zone soil moisture

to the maximum root-zone storage capacity SR,max, because we expect models with small root-zone storage capacities SR,max

to entirely utilize the available storage, through complete drying and saturation.

We then compare the similarity of the dynamics of modeled time series of the relative root-zone soil moisture with remotely

sensed SCATSAR-SWI1km Soil Water Index for several values of the characteristic time length parameter (T in days). The305
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T -value has previously been positively correlated with root-zone storage capacity, assuming a high temporal variability of root-

zone soil moisture and therefore a low T -value for small root-zone storage capacities SR,max (Bouaziz et al., 2020). For each

model and feasible realization, we identify the T -value that yields the highest Spearman rank correlation between modeled

root-zone soil moisture and Soil Water Index. We then relate the optimal T -value to the root-zone storage capacity SR,max.

This analysis enables us to identify potential differences in the representation and the dynamics of root-zone storage between310

models.

4.3.3 Total storage anomalies

For each model, we calculate time series of total storage (Table 2) and mean monthly total storage anomalies relative to the

2004-2009 time-mean baseline for comparison with GRACE estimates for the Ourthe upstream of Tabreux (ID1) and the

Semois upstream of Membre-Pont (ID3). Both catchments coincide with two neighboring GRACE cells, allowing us to test315

how well the models reproduce the observed spatial variability. We further relate the modeled range of total storage (maximum

minus minimum total storage over the time series) to Spearman rank correlation coefficients between modeled and GRACE

estimates of total storage anomalies.

4.4 Interactions between storage and fluxes during dry periods

The impact of a relatively large (> 200 mm) versus relatively small (< 150 mm) root-zone storage capacity on actual evapo-320

ration, streamflow and total storage is assessed during a dry period in September 2016 by selecting two representative models

with high streamflow model performance (GR4H and M5). The plausibility of the hydrological response of these two model

representations is evaluated against remote sensing estimates of root-zone soil moisture and actual evaporation.

4.5 Plausibility of process representations

The models are subsequently ranked and evaluated in terms of their consistency with observed streamflow, remote sensing data325

and expert knowledge with due consideration of the uncertainty in the evaluation data, as detailed in Section 3.3. We evaluate

:::::::::
summarize

:::
our

::::
main

:::::::
findings

:::
by

::::::::
evaluating

:
the models in terms of their deviations around median annual streamflow, flashiness

and baseflow indices, median annual actual evaporation and interception compared to GLEAM estimates, the number of days

with snow over valid MODIS observations, the number of days per year with empty root-zone storage and the very dry total

storage anomalies compared to GRACE estimates.330
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5 Results
:::
and

:::::::::
Discussion

5.1 Water balance

5.1.1 Streamflow

All models show high Nash-Sutcliffe Efficiencies of the streamflow and the logarithm of the streamflow (ENS,Q and ENS,logQ)

with median values of above 0.7 for the post-calibration evaluation period 2008–2017 (Figure 3a and Table 2 for the calculation335

of the Euclidean distances). The interannual variability of streamflow agrees strongly with observations for each model in the

period 2008–2017 (Figure 3b). The difference between modeled and observed median streamflow varies between -5.6 % and

5.6 % and the difference in total range varies between -9.6 % and 20 %. This is in line with our results in the previous paper, in

which we also showed that all models perform well in terms of commonly used metrics (de Boer-Euser et al., 2017). However,

there are differences in the partitioning of fast and slow runoff, as shown by the flashiness and baseflow indices (Iflashiness and340

Ibaseflow) in Figure 3c. Largest underestimation of the flashiness index occurs for M2 and dS2 (∼20 %), while FLEX-Topo

shows the highest overestimation (26 %). FLEX-Topo and WALRUS underestimate the baseflow index most (41 % and 70 %

respectively), while GR4H and M5 show the highest overestimation (15 % and 21 % respectively). There is a strong similarity

between modeled and observed hydrographs for one of the best performing models M5, as quantified by its low Euclidean

distance (Figure 3d and Table 2). The GR4H model is the only model which includes deep groundwater losses, but they are345

very limited and represent only 1.6 % of total modeled streamflow of the Ourthe at Tabreux, or approximately 7 mm yr−1.

5.1.2 Actual evaporation

Modeled median annual actual evaporation EA (computed as the sum of soil evaporation, transpiration, (separate) interception

evaporation and, if applicable, sublimation, Table 3) for hydrological years between October 2008 and September 2017 varies

between 507 and 707 mm yr−1 across models, with a median of 522 mm yr−1, which is approximately 10 % lower than the350

GLEAM estimate of 578 mm yr−1, as shown in Figure 4a. Annual actual evaporation of the VHM model is very high compared

to the other models, with a median of 707 mm yr−1 and approximates potential evaporation (median of 732 mm yr−1).

Calibration of the VHM model is meant to follow a manual stepwise procedure including the closure of the water balance

during the identification of soil moisture processes (Willems, 2014). However, in the automatic calibration prescribed by the

current protocol, this step was not performed, which explains the unusual high actual evaporation in spite of relatively similar355

annual streamflow compared to the other models, as there is no closure of the water balance (Figure 3a).

Interception evaporation is included in four models, with GR4H showing the lowest annual interception evaporation of

100 mm yr−1 (19 % of EA or 10 % of P ), FLEX-Topo and wflow_hbv have relatively similar amounts of approximatively

250 mm yr−1 (∼45 % of EA or 26 % of P ) and NAM has the highest annual interception evaporation of 340 mm yr−1 (65 %

of EA or 36 % of P ), as shown in Figure 4a. Differences are related to the presence and maximum size of the interception360

storage (Imax), as shown in Table 3. GLEAM interception estimates of 189 mm yr−1 are almost twice as high as GR4H

estimates, 25 % lower than FLEX-Topo and wflow_hbv, and 44 % lower than NAM values, suggesting a large uncertainty
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in the contribution of interception and transpiration to actual evaporation. For comparison, measurements of the fraction of

interception evaporation over precipitation in forested areas vary significantly depending on the site location, with estimates of

37 % for a Douglas fir stand in the Netherlands (Cisneros Vaca et al., 2018), 27 %, 32 % and 42 % for three coniferous forests of365

Great Britain (Gash et al., 1980) and 50 % for a forest in Puerto Rico (Schellekens et al., 1999) and are difficult to extrapolate

to other catchments due to the heterogeneity and complexity of natural systems.

GLEAM estimates of actual evaporation show relatively high evaporation rates in winter and are never reduced to zero in

summer, as opposed to modeled M5 estimates, as shown in Figure 4b. GLEAM actual evaporation minus the separately calcu-

lated interception is 94 % of potential evaporation, implying almost no water limited conditions, as opposed to our models in370

which actual evaporation in summer (Apr–Sep) is, due to water stress, reduced to approximatively 73 % of potential evapora-

tion on average for all models except VHM (Figure 4c). Larger differences between models occur in the ratio EA/EP during

winter (Oct–Mar), when FLEX-Topo, wflow_hbv and VHM show EA/EP ratios close to unity, and dS2 the lowest values of

EA/EP ∼ 0.75 as shown in Figure 4c. The dS2 model differs from all other models as it relies on a year-round constant water

stress coefficient (Ccst), independent of water supply, while the stress coefficient depends on root-zone soil moisture content375

in all other models (Table 3).

Most models slightly overestimate summer runoff coefficients with values between 0.22 and 0.26 which are very close to the

observed value of 0.22, as shown in Figure 4d. During winter, runoff coefficients vary between 0.55 and 0.71, which is close

to the observed value of 0.66. This implies a relatively high level of agreement between models in reproducing the medium- to

long-term partitioning of precipitation into evaporation and drainage and thus in approximating at least long-term conservation380

of energy (Hrachowitz and Clark, 2017).

5.2 Internal model states

5.2.1 Snow days

MODIS snow cover is detected over most of the catchment area for some time each year between November 2001 and Novem-

ber 2017, except for the periods of November 2006 to March 2007 and November 2007 to March 2008, when snow is detected385

in less than half of the catchment cells, as shown in Figure 5a. The number and magnitude of modeled snow storage events

varies between models (Figure 5b). The modeled number of snow days per hydrological year varies from ∼28 days for FLEX-

Topo, WALRUS and wflow_hbv to ∼62 days for GR4H and ∼90 days for NAM, M4 and M5, as shown in Figure 5c. The

variability in median annual maximum snow storage varies from 3 mm for wflow_hbv and ∼5-6 mm for FLEX-Topo and

WALRUS to ∼10 mm for GR4H, M4, M5 and 15 mm for NAM. We further evaluate the plausibility of these modeled snow390

processes by comparing modeled and observed snow cover, for days when a valid MODIS observation is available.

The presence of snow modeled by FLEX-Topo, wflow_hbv and WALRUS coincides for 92 % with the presence of snow

observed by MODIS. However, these models fail to model snow for ∼62 % of days when MODIS reports the presence of snow,

implying that these models miss many observed snow days, but when they predict snow, it was also observed (Figure 5d).
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NAM, M4 and M5, on the other side, predict the presence of snow which coincides with observed snow by MODIS in ∼68 %395

of the positive predictions, implying a relatively high probability of false alarm snow prediction of ∼32 %. However, they miss

only ∼29 % of actual positive snow days observed by MODIS (Figure 5d). This suggests that these models miss fewer observed

snow days, but they also overpredict snow days numbers, which could be related to the use of a single temperature threshold

to distinguish between snow and rain, as opposed to a temperature interval in the other models (Table 2).

GR4H is in between the two previously mentioned model categories, with a snow prediction which coincides with observed400

snow by MODIS in 79 % of the positive predictions and therefore only 21 % of false alarms. The model misses 42 % of actual

positive snow days observed by MODIS. GR4H therefore shows a more balanced trade-off between the number of false alarms

and the amount of observed snow events missed. This is illustrated in Figure 5d.

With an increased threshold to distinguish snow days in MODIS, from 10 % to 15 % of cells in the catchment with a detected

snow cover (Figure 5d and Figure 5e respectively), we decrease the number of observed snow days. For all models, this leads405

to an increase in the ratio of false alarms over predicted snow days but also a decrease of the ratio of missed events over actual

observed snow days by MODIS. However, as all models are similarly affected by the change in threshold, our findings on the

differences in performance between models show little sensitivity to this threshold.

Despite the large variability in snow response between models, snow processes are represented by a degree-hour method in

all models, suggesting a high sensitivity of the snow response to the snow process parametrization (Table 2).410

5.2.2 Root-zone soil moisture

Vegetation accessible water volumes that can be stored in the root zone largely control the long-term partitioning of precip-

itation into evaporation and drainage. Most hydrological models include a representation of this root-zone storage capacity

SR,max, which is estimated through calibration (Table 2). The calibrated root-zone storage capacities vary between 74 mm

and 277 mm across studied models. The root-zone soil moisture content relative to saturation of models with relatively large415

root-zone storage capacities (here defined as SR,max > 200 mm) tends to never fully dry out (>0.20) and saturate (<0.94) as

opposed to models with lower root-zone storage capacities (SR,max <150 mm), in which the storage tends to either dry out

completely and/or fully saturate (Figure 6a). If the vegetation accessible water storage dries out, this will lead to water stress

and reduced transpiration. On the other hand, if the root-zone storage is saturated, no more water can be stored, resulting in

fast drainage. The size of the root-zone storage capacity is therefore a key control of the hydrological response, allowing us420

to explain some of the observed variability between models. The range of SCATSAR-SWI1km Soil Water Index (SWI) varies

between 0.29 and 0.82 for a value of the characteristic time length (T -value) of 15 days and the range reduces as the T -value

increases (Figure 6b).

We compare the dynamics of modeled and remote sensing estimates of root-zone soil moisture by calculating Spearman rank

correlations between modeled root-zone soil moisture and remote sensing estimates of the Soil Water Index for the available425

T -values of 2, 5, 15, 20, 40, 60 and 100 days. As the T -value increases, the Soil Water Index is more smoothed and delayed.

For each model realization, we identify the T -value which yields the highest Spearman rank correlation between Soil Water

Index and modeled root-zone soil moisture (Figure 6c
:
b). The optimal T -value increases with the size of the calibrated root-
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zone storage capacity and varies between 15 and 60 days. A small root-zone storage capacity is indeed likely to fill through

precipitation and empty through evaporation and drainage more rapidly than a large water storage capacity, leading to a higher430

temporal relative soil moisture variability. The mismatch between the relatively high root-zone storage capacities of VHM

(SR,max ∼ 200 mm) in relation to the relatively low optimal T -values of 20 days is likely related to the unclosed water balance

(Section 5.1.2). The similarity between modeled root-zone soil moisture and Soil Water Index with optimal T -values is high,

as implied by Spearman rank correlations varying between 0.88 and 0.90 across models. However, the disparity in optimal

T -values between models underlines the different temporal representations of root-zone soil moisture content across models,435

implying that all these models cannot simultaneously provide a plausible representation of the catchment-scale vegetation

accessible water content.

5.2.3 Total storage anomalies

Total water storage anomalies obtained from GRACE are compared to the storage as simulated by the models, showing rel-

atively similar seasonal patterns, as illustrated in Figure 7a for model M5. GRACE total storage anomalies of the Semois440

upstream of Membre-Pont and the Ourthe upstream of Tabreux are mainly represented by two neighboring cells (Figure 7
:
1b),

allowing us to test how models represent the observed spatial variability. The range of anomalies in the Semois upstream of

Membre-Pont is larger than in the Ourthe upstream of Tabreux, implying 18 %, 3 % and 7 % less summer and 19 %, 19 %

and 10 % more winter storage in the Semois upstream of Membre-Pont for each of the three GRACE processing centers (Fig-

ure 7c
:
b). Median precipitation is also 37 % higher in the Semois upstream of Membre-Pont than in the Ourthe upstream of445

Tabreux during winter months (Oct-Mar), but relatively similar during summer months (Apr-Sep), as shown in Figure 7d. This

difference in precipitation potentially leads to a wider range of modeled anomalies in the Semois upstream of Membre-Pont

than in the Ourthe upstream of Tabreux for all models, as shown in Figure 7e
:
c. This implies that all models reproduce the

spatial variability between both catchments observed by GRACE. As the models were calibrated for the Ourthe at Tabreux and

parameter sets were transferred to the Semois upstream of Membre-Pont, the forcing data is the main difference to explain the450

modeled spatial variability.

The models are also able to represent the observed temporal dynamics of total storage anomalies, as suggested by Spearman

rank correlation coefficients ranging between 0.62 and 0.80 for the Ourthe upstream of Tabreux (Figure 7f
:
d). There is, however,

no relation between the Spearman rank correlations of the anomalies and the total modeled storage range (difference between

maximum and minimum values), as shown in Figure 7f
:
d. PRESAGES, WALRUS, VHM and dS2 have the largest ranges of455

total modeled storage, varying between 260 and 280 mm and are also characterized by a relatively large root-zone storage

capacities (PRESAGES and VHM) or no separate root zone (WALRUS and dS2), while the total storage range of all other

models is between 200 and 220 mm. The similarity in total storage range between most models is likely related to the identical

forcing data and the similarity in the long-term partitioning of precipitation into drainage and evaporation (Section 5.1.2).

However, the absolute values of total storage during a specific event or the partitioning in internal storage components may460

vary between models (Section 5.3).
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5.3 Interactions between storage and fluxes during dry periods

As previously seen in Figure 6a, the relative root-zone soil moisture content of the GR4H model is always above 0.2 for the

three years for which SCATSAR-SWI1km data are available, as opposed to M5 which fully dries out for some time during the

summers of 2015–2017. The Normalized Difference Vegetation Index of MODIS (NDVI, Didan, 2015a, b) also does not show465

a sharp decrease during these periods (Figure 8a,b). Actual evaporation in M5 is strongly reduced during these dry soil moisture

periods unlike GR4H, as shown in Figure 8c,d. When zooming into the dry period around September 2016, Figure 8e,f shows

median relative root-zone soil moisture in GR4H of ∼0.24 versus ∼0.01 for M5, while SCATSAR-SWI1km has a higher

median value of ∼0.55 (for both optimal T -values of 20 and 40 days). The dryness of root-zone soil moisture in M5 leads to

median daily evaporation of 0.8 mm d−1 against 1.3 mm d−1 for GR4H and prolonged periods of almost zero evaporation in470

M5 (e.g. 31/08–03/09, 09/09–15/09 and 22/09–30/09), while this neither occurs in GR4H nor in GLEAM actual evaporation, as

shown in Figure 8g,h. Despite the high streamflow performance of model M5 (Figure 3, Table 2), it is unlikely that transpiration

is reduced to almost zero for several days in a row each summer in a catchment where approximately half of the area is covered

by forests. This is also not supported by the remote-sensing data of soil moisture, NDVI and evaporation. High streamflow

performances, therefore, do not warrant the plausibility of internal process representation. Despite the dried-out root-zone475

storage in M5, there is still water available in the slow storage to sustain a baseflow close to observed values, as shown in

Figure 8j,l. The streamflow responses of GR4H and M5 are both close to observations (Figure 8i,j) in spite of differences

in storage and evaporation, suggesting different internal process representations for a similar aggregated streamflow response

during a low flow period.

5.4 Plausibility of process representations480

The models are ranked and evaluated for a selection of criteria using observed streamflow, remote sensing data and expert

knowledge (Figure 9
:::
and

::::::
Figure

::
S1

:::
in

:::
the

::::::::::
Supplement). All models deviate less than ±6 % from observed median annual

streamflow (Figure 9a), which is less than the estimated uncertainty of 11 % (Section 3.3). In contrast, the modeled flashiness

and baseflow indices of most models deviate more than the estimated uncertainty (Figure 9b,c). FLEX-Topo is the only model

with a clear overestimation of the flashiness index, which relates to the calibration aim of having a flashy model to reproduce485

small summer peaks (de Boer-Euser et al., 2017).

Modeled median annual total actual evaporation deviates by approximately -10 % from GLEAM estimates, except for the

+22 % overestimation of the VHM model due to the issue of the unclosed water balance, as shown in Figure 9d. These results

are consistent with the evaluation study of GLEAM compared to other evaporation products (Miralles et al., 2016) which

reports higher than average values for GLEAM in Europe (∼+10 % at our latitude).490

Four models explicitly account for interception with a separate module. Median annual interception rates deviate substan-

tially from GLEAM estimates (-47 % to +80 %) as shown in Figure 9e. There is a high uncertainty in the partitioning of

evaporation into different components in evaporation products and GLEAM likely underestimates interception rates (Miralles

et al., 2016; Zhong et al., 2020). Therefore, we consider a large uncertainty of +50 % to evaluate and rank the models. The
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GR4H interception is lower than GLEAM estimates. However, an interception storage was recently included in an hourly GR495

model (GR5H), to better represent the interception processes (Ficchì et al., 2019; Thirel et al., 2020).

All models substantially underestimate the number of days when snow is observed by MODIS at the catchment scale for all

valid MODIS observations (cloud cover < 40 % and excluding summer months), as shown in Figure 9f. Yet, we estimate a low

uncertainty of less than 2 % around this number (Section 3.3). The NAM, M4 and M5 models are closest to MODIS estimates,

but they are characterized by high false alarm rates (Figure 5d), which implies a mismatch in the modeled and observed days500

with snow for valid MODIS observations. Based on expert knowledge (Royal Meteorological Institute Belgium, 2015) and the

trade-off between recall and precision
::::
miss

:::
rate

::::
and

::::
false

:::::::::
discovery

:::
rate

:
(Figure 5d,e), we expect the annual number of days

with snow storage to be between 28 and 62 days yr−1 as modeled by wflow_hbv, WALRUS, FLEX-Topo and GR4H, whereas

the ∼90 days yr−1 of NAM, M4 and M5 seems too high.

The FLEX-Topo and M2 to M5 models are characterized by an empty root-zone storage for approximately 10 days yr−1505

(SR < 1 %) as shown in Figure 9g. These models have in common that evaporation from the root-zone occurs at potential rate

and is not (or hardly) reduced when soils are becoming dry until the point where the storage is empty. This is the case for

models with very low or absence of the evaporation reduction parameter LP. This behavior is not supported by the remote

sensing data of evaporation, soil moisture and NDVI (Section 5.3), nor by theory on root water uptake reduction under dry

conditions (Feddes et al., 1978). The additional slow groundwater reservoir added in model M5 compared to M2-M4 leads510

to a smaller root-zone storage capacity as the available storage is partitioned into the root-zone storage and the additional

groundwater store. The smaller root-zone storage capacity of model M5 exacerbates the number of annual days with empty

storage. This highlights the complex interactions in internal dynamics even in parsimonious lumped models with similar mean

annual streamflow performance.

Catchments with relatively large root-zone storage capacities underestimate GRACE estimates of very dry storage anomalies515

most (Figures 6 and 9h). The uncertainty of GRACE is represented by the estimates of the three processing centers and the

∼18 mm uncertainty estimate mentioned in Section 3.3. FLEX-Topo has a low root-zone storage capacity and is the only model

which overestimates the very dry storage anomalies. Models with root-zone storage capacities of around 110 mm to 150 mm

show the most consistent behavior with GRACE estimates of very dry storage anomalies.

6 Discussion
:::::::::::
Implications520

6.1 Implications

While streamflow alone may be used to evaluate hydrological models, we subsequently use these models to understand internal

states and fluxes in current and future conditions (Alcamo et al., 2003; Hagemann et al., 2013; Beck et al., 2017) or to make

operational streamflow predictions (e.g. HBV and GR types of models are used by the Dutch and French forecasting services).

Our findings show that similar streamflow responses obtained by models calibrated according to an identical protocol rely on525

different internal process representations. In other words,
:::::
While

:::
not

::::::::::
unexpected,

::
it

::::::
implies

::::
that we might get the right answers
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but for the wrong reasons (Kirchner, 2006), as these models cannot at the same time all be right and different from each other

(Beven, 2006).

Almost all models show a similar long-term partitioning of precipitation into drainage and evaporation, as they are forced

and constrained by the same data, also leading to relatively similar volumes of total storage. However, the partitioning of total530

storage in several internal storage components differs between models, resulting in distinct runoff responses as expressed by

the baseflow and flashiness indices.

None of the models is systematically consistent with the information available from streamflow observations, remote sens-

ing data and expert knowledge. However, some processes either play a limited role on the overall water balance or can be

compensated by other processes. Snow occurs every year but is not a major component of the streamflow regime (de Wit et al.,535

2007), interception evaporation can be compensated by root-zone evaporation, and very dry periods only occur for several

weeks per year when streamflow is already very low. There is also a large uncertainty in each of the data sources, which makes

us reluctant to use them to determine hard thresholds to reject models. Instead, we ranked the models for a selection of "soft"

criteria and found that NAM, wflow_hbv and PRESAGES are overall most consistent with the evaluation data, with median

ranks of 2-3
::::::
(Figure

:::
S1

::
in

:::
the

:::::::::::
Supplement). While an overall ranking may be useful for practitioners, modelers benefit more540

from the specific ranking for each criteria to detect specific model deficiencies that could be improved in the model structure.

An overall ranking is only a mere indication, which should be interpreted carefully due to uncertainty in the evaluation data

and the applied calibration strategy. Higher model performance does not seem to be related to model complexity, but rather to

the presence of specific components and to the calibration strategy chosen by each contributing institution.

The presence of interception or a slow storage (absent in M2-M4 but added in M5) affects the representation of other internal545

processes, including transpiration and/or root-zone soil moisture, implying that individual internal model components are

altered by the presence/absence of other potentially compensating processes. Adding an additional internal model component

changes the internal representation of water storage and fluxes through the system, which should be kept in mind if model

parameters were to be fixed in alternative model structures. Furthermore, model improvements through additional process

components and/or adapted parametrization should not only be evaluated in terms of the aggregated response, but also in550

the partitioning of fluxes and storages through the system (e.g. does the groundwater component improve the baseflow index

at the expense of the availability of root-zone soil moisture during dry periods?). Models should be confronted with expert

knowledge, e.g. on the occurrence of days with water stress or snow storage, to assess the plausibility of internal states and

fluxes (Gharari et al., 2014; Hrachowitz et al., 2014; van Emmerik et al., 2015).

Applying these models to a future, more extreme climate in the same region might lead to contrasting insights regarding555

impacts of climate change, as also shown by studies of Hagemann et al. (2013), Melsen et al. (2018) and de Niel et al.

(2019) in which model structures may lead to different signs of change of mean streamflow. Using one model or the other to

assess the effect of rising temperatures on snow could lead to very different time scales of snow storage decline. Vegetation

already experiences more intense water stress in some models compared to others and this would be exacerbated in more

extreme drought scenarios (Melsen and Guse, 2019). More intense precipitation events could affect interception evaporation560

and therefore water availability in the root-zone differently from one model to another. Beyond model structure, the experience
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each modeler has with its model and associated calibration procedure to constrain model parameters may also impact the

simulation results (Melsen et al., 2019).

Our findings should, therefore, encourage modelers to use multiple data sources for model calibration and evaluation, as

already suggested by many other studies (Samaniego et al., 2010; Rakovec et al., 2016a; Koch et al., 2018; Stisen et al., 2018;565

Nijzink et al., 2018; Veldkamp et al., 2018; Dembélé et al., 2020). Remote sensing estimates of soil moisture, evaporation and

total storage anomalies are available at the global scale and in spite of potential biases with models, the temporal dynamics

are useful to constrain our models (McCabe et al., 2017; Sheffield et al., 2018). Additionally, it seems essential to support

decision-makers by studies relying on multi-model and multi-parameter systems, as also suggested by Haddeland et al. (2011)

and Schewe et al. (2014), to reveal uncertainties inherent to the heterogeneous hydrological world (Beven, 2006; Savenije,570

2010; Samaniego et al., 2010; Hrachowitz and Clark, 2017).

This study is the result of a joint research effort of scientists and practitioners gathering each year in Liège at the International

Meuse Symposium to exchange interdisciplinary and intersectoral knowledge related to the Meuse basin. Although coordina-

tion of large international teams may be challenging, international studies favor a close collaboration between scientists and

practitioners that can learn from each other to accelerate modeling advances (Archfield et al., 2015). Another advantage of575

comparing modeling results of several research groups is to quickly detect small mistakes in the modeling process, including

shifts in the time series or using forcing data of one catchment to model another catchment. While hydrograph characteristics

were the main focus of the previous study (de Boer-Euser et al., 2017), we gain distinct insights on the plausibility of model

behavior by evaluating additional facets of internal process representation using remote sensing data.

6.1 Knowledge gaps and limitations580

7
::::::::::
Knowledge

::::
gaps

::::
and

:::::::::
limitations

Many aspects of the hydrological response remain unknown and can hardly be evaluated against observations. While in-situ

observations of snow, evaporation or soil moisture are rarely available at sufficient spatio-temporal scale, remote sensing

estimates have the advantage of high spatial resolution
:::
and

:::::::::
worldwide

::::::
spatial

::::::::
coverage, though they often rely on models

themselves and are affected by high and often unknown uncertainty. Comparing models with these independent observations is585

valuable to evaluate their consistency and detect outliers. However, these observations cannot be considered as representative

of the truth as they rely on many assumptions themselves, hindering "real" hypotheses testing. The ratio of actual over potential

evaporation as a result of water stress at the catchment-scale, therefore, remains highly uncertain (Coenders-Gerrits et al., 2014;

Mianabadi et al., 2019). While areal fractions of snow cover can be estimated by MODIS, the presence of clouds limits the

usability of the data and knowledge of catchment-scale snow water equivalent is lacking. If remote sensing estimates of near-590

surface relative soil moisture are available, root-zone water content remains uncertain and while GRACE provides estimates of

total storage anomalies, we lack knowledge on absolute total water storage. The spatial variability and the temporal dynamics

of these remote sensing products provide useful, additional, independent information to understand the hydrological puzzle, but

certainly not all the answers to evaluate the states typically included in process-based models. Measurements are, therefore, of
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crucial importance to increase our understanding of hydrological processes at the catchment-scale, which in turn will improve595

the quality of remote sensing products and model development (Vidon, 2015; Burt, T. P., McDonnell, 2015; van Emmerik et al.,

2018).

The evaluation of model behavior is conditional on the calibration procedure, which was freely chosen by the individual

contributing institutes. The use of different or more calibration objectives and in-depth uncertainty estimation (Beven and

Binley, 1992) may have resulted in different conclusions in terms of the plausibility of the behavior of each model.600

We performed a thorough analysis of twelve models, five variables and three catchments. We deliberately chose to limit the

number of study catchments to balance depth with breadth, allowing us to dive into process-relevant insights.

8 Conclusions

Similar streamflow performance of process-based models, calibrated following an identical protocol, relies on different internal

process representations. Most models are relatively similar in terms of the long-term partitioning of precipitation into drainage605

and evaporation. However, the partitioning between transpiration and interception, snow processes and the representation

of root-zone soil moisture varies significantly between models, suggesting variability of water storage and release through

the catchment. The comparison of modeled states and fluxes with remote sensing estimates of evaporation, root-zone soil

moisture and vegetation indices suggests that models with relatively small root-zone storage capacities and without reduction

in root water uptake during dry conditions lead to unrealistic drying-out of the root-zone storage and significant reduction610

of evaporative fluxes each summer. Expert knowledge in combination with remote sensing data further allows us to "softly"

evaluate the plausibility of model behavior by ranking them for a set of criteria. Even if none of the models is systematically

consistent with the available data, we did not formally reject specific models due to the uncertainty in the evaluation data

and their changing relevance for the studied catchments. The dissimilarity in internal process representations between models

implies that they are not necessarily providing the right answers for the right reasons, as they cannot simultaneously be close615

to reality and different from each other. While the consequences for streamflow may be limited for the historical data, the

differences may exacerbate for more extreme conditions or climate change scenarios. Considering the uncertainty of process

representation behind the scenes of streamflow performance and our lack of knowledge and observations on these internal

processes, we invite modelers to evaluate their models using multiple variables, we encourage more experimental research, and

highlight the value of multi-model multi-parameter studies to support decision making.620
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Figure 1. (a) Location of the study catchments in Belgium, North-West Europe. (b) Digital elevation model and catchments of the Ourthe

upstream of Tabreux (ID1), Ourthe Orientale upstream of Mabompré (ID2) and Semois upstream of Membre-Pont (ID3). Pixel size of

GRACE, GLEAM, MODIS and SCATSAR-SWI1km. Colored dots are the streamflow gauging locations and black dots are the precipitation

stations.(c) Perceptual overview of the link between studied fluxes and states and remote sensing products.
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root-zone storage very quick storage fast storage
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surface water

Figure 2. Simplified schematic overview of 12 model structures (adapted from de Boer-Euser et al., 2017) with the aim to highlight similari-

ties and differences between the models. Solid arrows indicate fluxes between stores, while dashed arrows indicate the influence of a state to a

flux. Colored arrows indicate incoming or outgoing fluxes, whereas black arrows indicate internal fluxes. The narrow blue rectangle in GR4H

indicates the presence of an interception module without interception storage capacity (Table 3). Storages with a color gradient indicate the

combination of several components in one reservoir.
::::::::
FLEX-Topo

:::::::
consists

::
of

::::
three

:::::::::
hydrological

:::::::
response

::::
units

::::::::
connected

::::::
through

:
a
::::::

shared

:::
slow

:::::::
reservoir

:::
and

:::::::::
wflow_hbv

:
is
::
a

::::::::
distributed

:::::
model.
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(a) (b)

(d)(c)

Figure 3. Evaluation of modeled streamflow performance for the Ourthe at Tabreux for the period 2008–2017. (a) Nash-Sutcliffe Efficiencies

of the streamflow ENS,Q and the logarithm of the streamflow ENS,logQ (median, 25/75th percentiles across parameter sets). (b) Modeled

mean annual streamflow for hydrological years between 2008–2017 across feasible parameter sets. The models are ranked from the highest

to the lowest performance according to the Euclidean distance of streamflow performance (see Table 2). The dashed line and grey shaded

areas show median, 25/75th and minimum-maximum range of observed mean annual streamflow. (c) Baseflow index Ibaseflow as a function

of the flashiness index Iflashiness (median, 25/75th percentiles across parameter sets). Observed values are shown by the grey dashed lines.

(d) Observed and modeled hydrographs of model M5 with high streamflow model performance (low Euclidean distance).
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(a) (c)

(d)(b)

Figure 4. Evaluation of modeled evaporation for the Ourthe upstream of Tabreux for the period 2008–2017. (a) Modeled mean annual actual

evaporation EA and
::::::::::::::

minimum-maximum
:::::

range
::
of

:::::
mean

:::::
annual

:
interception evaporation EI for hydrological years between 2008–2017

across feasible parameter sets. The dark grey shaded area shows the range of potential evaporation EP used as input for the models. The light

grey shaded area shows GLEAM actual and interception evaporation. (b) Daily actual evaporation from GLEAM and modeled by the M5

model. (c) Summer against winter EA/EP ratios for each model (median and 25/75th percentiles across parameter sets). (d) Summer against

winter runoff coefficient Q/P for each model (median and 25/75th percentiles across parameter sets), plotted on the same scale. The dashed

grey lines indicate the observed median runoff coefficients in summer and winter.
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(a)

(b)

(c) (d) (e)

Figure 5. (a) Fraction of cells with a MODIS areal fraction snow cover greater than zero in the Ourthe Orientale upstream of Mabompré for

the period 2001–2017. MODIS data are available once every three days on average. The dashed lines show the two thresholds of 10 % and

15 % selected to distinguish snow days. (b) Modeled snow storage for two contrasting models M5 and WALRUS for the light orange shaded

period. (c) Median annual maximum snow storage as a function of number of days per year with snow. Light (yellowish) colors indicate

models with higher performance (lower Euclidean distances). The vertical and horizontal error bars indicate the 25/75th percentiles over time

and feasible parameter sets (d,e) Two-dimensional representation of the false alarm over predicted positives ratio (1-precision)
:::::::
discovery

:::
rate

as a function of
::
the

:
miss over actual positives ratio (1-recall)

:::
rate,

:
when applying a threshold of (d) 10 % and (e) 15 % of cells within the

catchment with snow cover greater than zero. In this representation, the perfect model would be at the origin (100
:
0 % hits

::::
misses

:
and 0 %

false alarms).The dotted lines show the distance from the origin. The vertical and horizontal error bars indicate the uncertainty within feasible

parameter sets.
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(a) (b)

Figure 6. (a) Range of relative root-zone soil moisture SR in the Ourthe upstream of Tabreux for the period 2015–2017 as a function of the

median root-zone storage capacity (SR,max) across parameter sets. The feasible parameters for NAM are split in two groups due to the large

variability of SR,max (subsets with SR,max of ∼130 mm and ∼240 mm). (b) Range of the SCATSAR-SWI1km Soil Water Index for several

values of the characteristic time length T (days) for the period when SCATSAR-SWI1km is available (2015–2017). (c) Root-zone storage

capacity SR,max as a function of the optimal T -value for each model realization. Optimal T -values are derived at the highest Spearman rank

correlation between Soil Water Index and modeled root-zone soil moisture.
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(a)

(b) (c) (d)

Figure 7. (a) Total storage anomalies modeled by M5 and compared to GRACE for the Ourthe upstream of Tabreux. The grey band shows

the variability in total storage anomalies of the three processing centers. (b) Catchments of the Ourthe upstream of Tabreux (light grey) and

Semois upstream of Membre-Pont (dark grey) located in two neighboring GRACE cells. (c) Range of GRACE total storage anomalies for the

three processing centers for the Semois upstream of Membre-Pont compared to the Ourthe upstream of Tabreux for the period 2001–2017.

(d)
::
(c) Mean monthly precipitation during winter and summer months in the Semois upstream of Membre-Pont compared to the Ourthe

upstream of Tabreux. (e) Modeled total storage anomalies for both catchments. (f)
::
(d) Spearman rank correlations between GRACE and

modeled total storage anomalies as a function of the range of modeled total storage for the Ourthe upstream of Tabreux.
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(a)

(c)

(e)

(g)

(i)

(k) (l)

(j)

(h)

(f )

(b)

(d)

Figure 8. (a,b) Modeled relative root-zone soil moisture SR, SCATSAR-SWI1km Soil Water Index with optimal T -value and NDVI for the

period 2015–2017 for GR4H (yellow) and M5 (orange) respectively. The error bars and bands show the standard deviation of the remote

sensing data within the catchment area (c,d) Actual evaporation EA by GR4H and M5 for the period 2015–2017, showing a large reduction

of evaporation during summer for M5 unlike GR4H and GLEAM actual evaporation (e,f) Zoomed-in modeled SR and SCATSAR-SWI1km

root-zone soil moisture for the grey shaded period of September 2016 in (a,b,c,d). (g,h) Potential, modeled and GLEAM actual evaporation,

(i,j) Modeled and observed streamflow Q, (k,l) Total storage ST for the September 2016 dry period. The narrow uncertainty band of the

GR4H model is related to its converging parameter search method.
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(a) (e)

(b) (f )

(c) (g)

(d) (h)

Figure 9. Ranking and evaluation of model behavior for a selection of criteria based on observed streamflow, remote sensing data and expert

knowledge. The grey shaded areas are soft indications of more plausible behavior based on uncertainty estimates and expert knowledge.

Model ranks as a function of the: (a) deviation from observed median annual streamflow. (b) deviation from the flashiness index. (c) devi-

ation from the baseflow index. (d) deviation from median annual GLEAM actual evaporation. (e) deviation from median annual GLEAM

interception for models with explicit a
:

separate interception module. (f) number of days with snow cover for valid MODIS observations

between 2001-2017, for models with a snow module. (g) annual number of days when the root-zone storage is dry (filled with less than 1 %

of its capacity). (h) deviation from the 1st percentile of GRACE total storage anomalies for the three centers. The error bars show the 25-75th

range across the realizations from the ensemble of
::::::
feasible parameter setsretained as feasible.

::::::
Results

::
are

:::
for

::
the

::::::
Ourthe

::::::::
catchment

:::::::
upstream

:
of
:::::::

Tabreux,
:::::
except

:::
for

:::
the

::::
snow

::::::
analysis.
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Table 1. Description of symbols used for fluxes, storages and parameters in Tables 2 and 3

Symbol unit Description

Fluxes

EP mm h−1 Potential evaporation

EI mm h−1 Interception evaporation

ER mm h−1 Transpiration and soil evaporation

EW mm h−1 Sublimation

EA mm h−1 Total actual evaporation (sum of soil evaporation, transpiration, (separate) interception and, if applicable, sublimation)

P mm h−1 Precipitation

PR mm h−1 Precipitation entering the root-zone storage (after snow and/or interception if present or fraction/total precipitation)

Q mm h−1 Streamflow

QR mm h−1 Flux from root-zone to fast and/or slow runoff storage

QP mm h−1 Percolation flux from root-zone storage to slow runoff storage

QC mm h−1 Capillary flux from slow runoff storage to root-zone storage

QG mm h−1 Seepage (up/down) / extraction

Storages

ST mm Total storage

SW mm Snow storage

SI mm Interception storage

SR mm Root-zone storage

SR - Relative root-zone storage (SR/SR,max)

SD mm Storage deficit

SVQ mm Very quick runoff storage

SF mm Fast runoff storage

SS mm Slow runoff storage

SSW mm Surface water storage

Parameters

CE - Correction factor for EP

Imax mm Maximum interception capacity

SR,max mm Maximum root-zone storage capacity

Sthresh mm Threshold of root-zone storage above which ER = EP

LP - Threshold of relative root-zone storage above which ER = EP

Ccst - Constant water stress coefficient to estimate ER

a, b, S0 - Parameters describing the shape of the streamflow sensitivity

aS - Fraction of land surface covered by surface water

aG - Fraction of land surface not covered by surface water
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Table 2. Number of calibrated model parameters, spatial distribution, and model performance calculated for the period 2008–2017 with the

Euclidean distance where a value of 0 would indicate a perfect model. Main characteristics describing snow storage, root-zone storage and

total storage per model. Notations are defined in Table 1.

G
R

4H

M
5

N
A

M

w
flo

w
_h

bv
dS

2

M
4

M
3

M
2

PR
ES

A
G

ES
FL

EX
-T

op
o

V
H

M

W
A

LR
U

S

Number of calibrated parameters 4 9 12 9 4 7 6 5 6 20 12 3

Lumped (L) / Semi-distributed (S) / Distributed (D) L L L D L L L L L S L L

Euclidean distance
√

(1−ENS,Q)2 +(1−ENS,logQ)2 0.17 0.18 0.18 0.20 0.21 0.23 0.23 0.24 0.24 0.26 0.26 0.34

Snow storage SW (compared to MODIS snow cover)

Snow module X X X X - X - - - X - X

Degree-hour method X X X X - X - - - X - X

Elevation zones X - - X - - - - - X - -

Temperature interval for rainfall and snow X - - X - - - - - X - X

Melt factor constant in time - X - X - X - - - X - X

Melt factor ∼ snow storage X - X - - - - - - - - -

Refreezing of liquid water - - X X - - - - - - - -

Sublimation - - - - - - - - - X - -

Calibration snow parameters - X X - - X - - - X - -

Root-zone storage SR (compared to SCATSAR-SWI1km Soil Water Index)

Separate root-zone module with capacity SR,max X X X X - X X X X X X -
dSR
dt

= PR −ER - - - - - - - - - - X -
dSR
dt

= PR −ER +QC - - X - - - - - - - - -
dSR
dt

= PR −ER −QR X X - X - X X X X - - -
dSR
dt

= PR −ER −QR −QP +QC - - - - - - - - - X - -

Total storage ST (anomalies are compared to GRACE total storage anomalies)

ST =−SD · aG +SF · aG +SSW · aS - - - - - - - - - - - X

ST(Q) = 1
a

1
1−b

·Q1−b +S0 - - - - X - - - - - - -

ST = SR +SF - - - - - - X X - - - -

ST = SW +SR +SF - - - - - X - - - - - -

ST = SW +SR +SF +SS - X - - - - - - - - - -

ST = SR +SVQ +SF +SS - - - - - - - - X - X -

ST = SW +SR +SVQ +SF +SS X - - - - - - - - - - -

ST = SI +SW +SR +SF +SS - - - X - - - - - - - -

ST = SI +SW +SR +SVQ +SF +SS - - X - - - - - - X - -
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Table 3. Main characteristics describing evaporation processes per model (with X1 indicates LP = 1 and X2 indicates EI = 0). Notations

are defined in Table 1.
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FL
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-T
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o

V
H

M

W
A

LR
U

S

Correction factor for potential evaporation - X - - - X X X - - - -

Interception evaporation EI X - X X - - - - - X - -

Maximum interception storage Imax - - X X - - - - - X - -

Imax ∼ 1.1− 3.4 mm - - - - - - - - - X - -

Imax ∼ 1.4− 2.9 mm - - - X - - - - - - - -

Imax ∼ 5.3− 6.9 mm - - X - - - - - - - - -

EI =

EP, if SI > 0.

0, otherwise.
- - X X - - - - - X - -

EI =

EP, if P > EP.

P, otherwise.
X - - - - - - - - - - -

Transpiration and soil evaporation ER X X X X X X X X X X X X

ER = EP ·Ccst - - - - X - - - - - - -

ER = EP · SR·(2−SR)

1+EP/SR,max·(2−SR)
X - - - - - - - X - - -

ER = EP ·CE · SR·(1+m1)

SR+m1
, with m1 = 10−2 - X - - - X X X - - - -

ER =

(EP −EI) · SR
LP

, if SR < LP .

EP −EI, otherwise.
- - X1 X - - - - - X X2 -

ER = EP · f(Sd) - - - - - - - - - - - X

Total actual evaporation EA X X X X X X X X X X X X

EA = ER - X - - X X X X X - X X

EA = ER +EI X - X X - - - - - - - -

EA = ER +EI +EW - - - - - - - - - X - -
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Data availability. Streamflow and precipitation data were provided by the Service Public de Wallonie in Belgium (Direction générale opéra-

tionnelle de la Mobilité et des Voies hydrauliques, Département des Etudes et de l’Appui à la Gestion, Direction de la Gestion hydrologique

intégrée (Bld du Nord 8-5000 Namur, Belgium)). Hourly radiation data were retrieved from the portal of the Royal Netherlands Meteoro-

logical Institute (2018; http://www.knmi.nl/nederland-nu/klimatologie/uurgegevens). Daily temperature data were retrieved from the E-OBS

OPeNDAP server http://opendap.knmi.nl/knmi/thredds/dodsC/e-obs_0.25regular/tg_0.25deg_reg_v17.0.nc (Haylock et al., 2008). Actual625

evaporation estimates from the Global Land Evaporation Amsterdam Model (GLEAM) are available through the SFTP server of GLEAM,

(https://www.gleam.eu/, Miralles et al., 2011; Martens et al., 2017). MODIS Snow cover fractions (Hall and Riggs, 2016a, b) are available for

download from the Earthdata portal https://earthdata.nasa.gov/. The Soil Water Index SCATSAR-SWI1km are available from the Copernicus

Global Land Service at https://land.copernicus.eu/global/products/swi (Bauer-Marschallinger et al., 2018). GRACE land data (Swenson and

Wahr, 2006; Swenson, 2012) are available at http://grace.jpl.nasa.gov, supported by the NASA MEaSUREs Program. The modeled states630

and fluxes of each model will be made available online in the 4TU data repository.
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