
Dear Nadav Peleg,

Thank you for your positive assessment of our manuscript. We have incorporated the
comments and suggestions of the reviewers in this revised version. An additional section to
describe the uncertainty in the evaluation data has been added in the Data section. We also
evaluated the plausibility of modeled process representation by defining a set of criteria to
evaluate and rank the models using observed streamflow, remote sensing data and expert
knowledge. The results are described in Section 5.4 Plausibility of process representation
and summarized in an adapted Figure 9. The abstract, introduction, discussion and conclu-
sion have been revised to more clearly state the aim and main findings of the study. Specific
points have been clarified in response to the interactive discussion with the reviewers.

This document contains the replies to the comments made by the reviewers and a track-
changed version of the revised manuscript.

On behalf of the authors,

Kind regards,

Laurène Bouaziz



Referee # 1 (Keith Beven)

We thank Prof. Keith Beven for his detailed and constructive review. In the following,
we express our view on the raised points, and illustrate our plan on how to improve the
paper.

Comment:

This paper takes a diverse collection of hydrological models, previously calibrated to
the Oerthe basin, and subjects them to comparison with estimates of evapotranspiration,
soil moisture, snow cover and GRACE total estimates. The models all produce “reason-
able” streamflow calibrations (I assume, since it seems that none of them have been re-
jected in the first calibration part of the study). The conclusion is that they do so in differ-
ent ways, and still none of them are rejected. Now I understand why it is diplomatic when
working within an international project to be kind to all the groups who are participating,
but doing so does not produce an outcome that is in any way useful. The models are just
shown to be different. Why are these models not being tested as hypotheses about how the
catchment system is working? Indeed, we could rather say on the basis of the evidence
presented that none of them are really fit for purpose when the additional variables are
taken into account.

Reply:

Indeed, in the current version of the manuscript, our primary objective is to quantify the
internal differences between the set of models with similar streamflow output and only a
secondary objective is to benchmark the internal state and flux variables against remotely-
sensed estimates. However, we agree that deriving qualitative or quantitative measures to
evaluate, rank and potentially reject models using the remotely-sensed data in combination
with expert knowledge could add value to the study. In response to this criticism, we will
introduce quantitative measures to rank and evaluate the models in terms of how plausible
it is to consider them behavioral, both in view of the independent remotely-sensed data,
and based on expert judgment (e.g. whether model storages are always filling or running
empty).

Besides data uncertainty (see comment and reply below), the main reasons we are re-
luctant to formally and explicitly reject models are the following:

All interpretations and conclusions here (and in any modelling study, really) are also
conditional on the individual parameter selection strategies chosen by the individual con-
tributing institutions. The use of different and/or more calibration objectives and/or criteria



may have resulted in considerably different model results and associated conclusions. The
same is true for the use of different search strategies of the parameter space. In addition,
and quite obviously, a rejection of a model (i.e. the combination of model structure, numer-
ical implementation, parameter selection strategy, etc.) would only be valid for the study
catchment.

In our opinion, an explicit rejection of one or more models may give the *impression
of their general unsuitability*.

Thus, a rejection is therefore not (only) a diplomatic question but, when perceived as
*general*, may be unjustified, as these rejected models may be the most suitable models
elsewhere.

We admit that this is of course a communication issue. But in the moment a model
is formally and explicitly rejected in a paper, it will be perceived as generally useless by
many even if it is emphasized that a rejection can essentially always only be conditional on
the above points (and many others, such as, needless to say, data uncertainty).

In other words, the label “rejected” will stick, and not the reasons and circumstances.
We would really like to avoid that because we think it is neither fair nor justified.

Comment:

Except that it is not quite that simple, because ALL of the additional variables used in
this comparison are subject to significant uncertainty and commensurability issues. And
without taking some account of those uncertainties no real testing is possible (it is also
worth noting that no account is taken of uncertainty in the original calibration exercise
either – why not in 2020? It has been recognized as an issue in model calibration for more
than 30 years!).

Reply:

We agree that assessing the uncertainty of such remote sensing products is important,
but not easy. In principle, uncertainty estimates should be provided by the remote sensing
models, of which we are final users, but these estimates are usually not available. Even if
they were, using them in a meaningful way would uncover many questions, which would
go beyond the scope of this work. For this reason, we are highly reluctant to use these data
to determine hard rejection thresholds. Rather, we will use them to provide a “soft” assess-
ment of the relative merits of the various models in form of an overall ranking guided by



criteria formulated based on “soft”, “expert judgement” of trustworthiness of the individual
types of remotely-sensed data.

Comment:

The section on knowledge gaps at the end should be moved to before the model com-
parison is presented, and should explicitly consider the uncertainty and commensurability
issues. Nowhere is there any mention of the uncertainties arising in verification studies of
these additional variables, but that is surely significant.

Reply:

In the next version of the manuscript, we will make the uncertainties and commensura-
bility issues of the evaluation variables clear before using them to evaluate the models.

Comment:

To give a particular example: models with and without interception storage. This is
an example of why more thought is required about what is actually being compared here.
One of the reasons why models choose NOT to have an interception store is to reduce the
number of parameters required to be calibrated or estimated a priori. But how this works
will also depend on how potential evapotranspiration is estimated. Does it include the ef-
fects of a wet canopy – especially over rough canopies. This can be really important (and
subject to significant uncertainties in effective roughness and humidity deficits because of
sensitivities under such conditions). Here the Hargreaves PE formula does not explicitly
consider wet canopy conditions, but GLEAMS, with which model outputs are being com-
pared, does). So in what sense (or degree of uncertainty) are these comparable?

Reply:

This is a very interesting point. We believe that it should not matter too much how
potential evaporation is estimated, as this goes as input to hydrological models, and we are
comparing the resulting total actual evaporation (EA) between models and testing if EA is
consistent with EA of GLEAM. In our models, EP is used as forcing and models will either
calculate EA by explicitly accounting for interception or not. Hence, the EA from the hy-
drological models combines, implicitly or explicitly (e.g. when an interception reservoir is
included), all forms of evaporation. In this sense, we believe it is comparable with EA from
GLEAM. In the revised version, we will clarify that we do not consider EA GLEAM to



be representative of the truth. However, we believe that the comparison is still valuable to
detect outliers, which can be either one/several of the models or the remote-sensing product
itself and understand their behavior. GLEAM interception is calculated using precipitation
and vegetation characteristics (Miralles et al. 2010). For models with a separate intercep-
tion module, we also test the consistency of modeled interception EI with GLEAM EI. In
the next version of the manuscript, we will use validation studies of GLEAM (Miralles et
al. 2011, Miralles et al. 2016) to describe the uncertainties associated with GLEAM esti-
mates.

Comment:

Similarly for the soil moisture comparison. The satellite derived estimates really only
deal with near-surface moisture (with a depth that varies with wetness) and that in itself
is associated with uncertainty, especially near saturation. There is some discussion here
about the issue of comparing relative moisture content in the root zone when the different
models parameterize that in different ways and a rather odd correlation analysis with the
T parameter – can you not think about how (and if) that data can be used as a hypothesis
test. There are clearly similar issues with GRACE and snow cover data (e.g. is fact that
some models do not predict snow storage on a day important if snow covers are small)

Reply:

We agree that remotely-sensed soil moisture products provide estimates of near-surface
soil moisture, while the represented variable in our models is root-zone soil moisture. The
Soil Water Index provides estimates of root-zone soil moisture but requires an estimate of
the characteristic time length T . In our study, we show that the models have a different
representation of root-zone soil moisture dynamics as shown by the variability in optimal
T -values. As also mentioned in the manuscript, the absolute ranges of remotely-sensed
estimates of root-zone soil moisture are hardly comparable with relative soil moisture sim-
ulated by our models and many studies apply data matching techniques to rescale the prod-
uct range towards the model. This implies that only the similarity in dynamic patterns can
be used to evaluate the models. One specific aspect of interest for hypothesis testing in
this study, is to use the remotely-sensed Soil Water Index to identify periods of drying out,
where root-zone soil moisture remains constant at its lowest values. In the next version of
the manuscript, we will also define a criterion based on GRACE estimates of total storage
anomalies to test the behavior of models in terms of drying out of the catchment.

Even if mean annual snow storage is relatively small, snow can be important for spe-
cific events. A highly relevant example in the study region in the 2011 rain- on-snow event



that caused widespread flooding in the Ardennes. Using criteria for the recall and precision
(Figure 5d,e), we will identify behavioral models to derive plausible snow characteristics
of the catchment, which can be confronted with expert knowledge. We will account for
the fact that a frequent error of the MODIS product is the snow/cloud discrimination (Hall
Riggs 2007), which could lead to an overestimation of MODIS snow days and therefore a
relatively high ratio of miss over actual positives (1-recall).

Comment:

So rather than have a “so what?” outcome to this paper, I would suggest instead that
it should be reformulated into a hypothesis testing framework (EAWAG might be able to
make suggestions about how this should be done). This is a real opportunity to frame the
issue in this way. Not that because of the uncertainties and commensurability issues that
does not imply that any or all of the models will be rejected. That will partly depend on
what assumptions and expert knowledge are made in the analysis (– see L450, except that
no expert knowledge has really been used in the study as presented). Effectively what you
have here are some indices of dynamic behavior with which to evaluate the models – the
expert knowledge needs to come in as to how (or IF) those indices (with all the issues with
them) can be used to test the models in any way rigorously. This would require very major
revisions to the analysis but would make the whole project so much more worthwhile in
advancing the modelling process.

Reply:

Yes, we gladly take up this advice and we agree that the study can benefit from your
suggestions to go one step further to answer the “so what?” question. In the revised ver-
sion, we will define a set of (soft) criteria, in the spirit of behavioral modeling, to evaluate
not only how consistent the model-internal dynamics are amongst each other but also if
the models provide a consistent behavior with what we expect from expert knowledge in
combination with remotely-sensed data. For each retained parameter set, we will evalu-
ate if models can be considered behavioral. This will provide us with an indication of the
plausibility of each model to describe several retained aspects of catchment functioning.
These results will be presented in a way to allow us to identify potential trade-offs in model
capabilities and understand if certain aspects of the parametrization cause a specific model
behavior.



Comment:

L35 There are other variables that have been used (and much earlier than the studies
cited) – eg. saturated contributing areas (Beven and Kirkby, HSB 1979; Güntner et al., HP
1999; Blazkova et al., HP 2002) and patterns of water tables in many piezometers (Seibert
et al., HP 1997; Lamb et al. AWR 1998; Blazkova et al. WRR 2002).

Reply:

Yes agreed, we will add these early studies.

Comment:

L228 drop infinitely – this is misleading. Theoretically yes, but it is directly related to
baseflow outflow by water balance and you do not expect baseflow to go to zero in droughts
for these catchments. It can also have the advantage of reducing number of parameters
required.

Reply:

Yes, it was indeed a theoretical ‘infinitely’. We will drop it to avoid confusion.

Comment:

L288 How can GLEAM potential ET be less than the annual estimate cited in L271
(and how undertain are those estimates)

Reply:

The reason why GLEAM potential evaporation (EP) is less than the annual actual evap-
oration estimate is because GLEAM total actual evaporation (EA,GLEAM) is calculated as
EA,GLEAM = EI + S ∗ EP, with EI is interception and S is a stress factor depending on
the root-zone available water and dynamic vegetation information (Miralles et al. 2011).
GLEAM interception is calculated separately and only depends on precipitation and vege-
tation characteristics. We will clarify this point in the revised version of the paper.

GLEAM does not provide uncertainty ranges, but there are studies that compare GLEAM
evaporation estimates with other evaporation products and FLUXNET stations (Miralles et



al. 2011, Miralles et al. 2016). These studies will be used to describe the uncertainty of the
remotely-sensed evaporation estimates.

Comment:

L397 ecosystems have adapted – but these ecosystems have not surely. In this area they
have been affected by forestry and agricultural practices for thousands of years.

Reply:

Yes, the area is affected by commercial forestry and agricultural practices since many
years. However, approximately half of the catchment is covered by forests and it seems
very unlikely that transpiration is reduced to almost zero for several days in a row each
year over the entire catchment. This is also not supported by the satellite-based evapo-
ration and soil moisture products. The MODIS Normalized Difference Vegetation Index
(NDVI) data may provide some additional useful information. We will reformulate this
point in the next version.



References

Hall, D. K., Riggs, G. A. (2007). Accuracy assessment of the MODIS snow products.
Hydrological Processes, 21(12), 1534–1547. https://doi.org/10.1002/hyp.6715

Miralles, D. G., Gash, J. H., Holmes, T. R. H., De Jeu, R. A. M., Dolman, A. J. (2010).
Global canopy interception from satellite observations. Journal of Geophysical Research
Atmospheres, 115(16), 1–8. https://doi.org/10.1029/2009JD013530

Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A.,
Dolman, A. J. (2011). Global land-surface evaporation estimated from satellite-based ob-
servations. Hydrology and Earth System Sciences, 15(2), 453–469. https://doi.org/10.5194/hess-
15-453-2011

Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., Mccabe, M. F., et al.
(2016). The WACMOS-ET project - Part 2: Evaluation of global terrestrial evaporation data
sets. Hydrology and Earth System Sciences, 20(2), 823–842. https://doi.org/10.5194/hess-
20-823-2016



Referee #2

We thank the anonymous referee #2 for carefully reading our manuscript and providing
interesting suggestions. We provide an answer to each comment below.

Comment:

Bouaziz et al. (2020) evaluate 12 hydrologic models for three medium-sized Belgian
catchments, all established and calibrated by eight research groups. Although the spatially
aggregated streamflow performance differences among models are negligible, the internal
model states and processes (can) differ significantly. This paper is an interesting diagnostic
study, with nice figures. I have some minor comments which the authors should consider to
address.

First of all, it is nice to see the huge collaborative efforts across many institutes behind
this model inter-comparison study. This study with many details shows large differences
among 12 hydrologic models and even larger differences against different remotely sensed
products. Something what a reader would expect. I encourage the authors to stress more
clearly, what is the main “take-home” message of the main paper.

Reply:

Thank you, this is a good suggestion. In the revised version, we will more clearly
stress the main take-home message, which is to underline and demonstrate that models
that are calibrated to streamflow can generate similar high-performance levels in repro-
ducing streamflow, but that they use different "pathways" to do so, i.e. all representing
the system in a different way. In the next version, we will also emphasize on the use of
remotely-sensed products in combination with expert knowledge to evaluate if models can
be considered behavioral.

Comment:

Because the authors did not use an ensemble of model structures from a modular frame-
work (e.g., FLEX, FUSE), which could properly address those differences or individual
model deficiencies step by step (by identifying individual hypothesis), in their study they
cannot clearly separate and identify, which hidden hydrological processes can help im-
prove model functioning against those reanalysis products. Could you please comment on
this?



Reply:

We agree that the set of models does not easily allow for a step-by-step identification
of differences in individual hypothesis, as they are mostly full-grown models. Perhaps
only the subset of FLEX models M2 to M5 allows us to identify stepwise differences in
internal model representations. However, we grouped models with similar parametriza-
tions in Tables 2 and 3 and focused our analyses on model components that were present
in most models (evaporation, snow, root-zone soil moisture, total storage). One important
systematic difference that we found amongst the models is the significant drying-out each
summer for some models. In the next version of the manuscript, we will hypothesize on
the model parametrization that leads to this behavior. We believe that these specific find-
ings can help to identify some model functioning aspects that can be improved by adapting
model parametrization. In the revised version, we will also include more detailed findings
on the plausibility of model behavior for a selection of criteria related to the remote sensing
data and expert knowledge (as suggested by referee Prof. Keith Beven).

Comment:

Line 80,140+: evaporation => “evapotranspiration”? Please don’t forget about the
plants! Hargreaves-Samani formula is for evapotranspiration, not for evaporation only.

Reply:

We will clarify that we have used the term “evaporation” to describe the sum of all
evaporation components (including transpiration, soil evaporation, interception, sublima-
tion and open water evaporation when applicable). It is perhaps a matter of taste, but
following Savenije (2004) and Miralles et al. (2020), we are using the term evaporation
instead of evapotranspiration for all evaporative fluxes. We will make sure to clearly state
this in in the text and in Table 1 to avoid confusion.



Comment:

Line 85: streamflow => “runoff”, because of the unit

Reply:

We strongly prefer using “streamflow” to describe the flow of water in the river and
have consistently applied this terminology throughout the manuscript, irrespectively of the
unit. In our view, runoff is more generic and can refer to (sub)surface flow, which is not yet
in the river.

Comment:

Line 86: You should start this sentence that this is a headwater basin of ID1

Reply:

Agree, we will add this in the revised version.

Comment:

Line 101: I guess the authors could have used a bit more advanced method for interpo-
lation rain gauge observation instead of the Thiessen polygons, to better account for input
error uncertainty, e.g. kriging or its variants. The uncertainty in the meteorological inputs
is not mentioned in the manuscript.

Reply:

We agree that there is always uncertainty in meteorological input data and will men-
tion this in the revised version. Another method to interpolate precipitation could also
have been feasible. However, the number of available precipitation stations would likely
not be enough to perform a meaningful Kriging interpolation. The advantage of Thiessen
polygons is that extremes are not averaged out, which would occur in any other type of
interpolation. Many threshold processes are controlled by these extremes. Besides, our
primary aim was to make sure that the same forcing data was used by all research groups.



Comment:

Line 114: PET method is based on Priestley Taylor, which is different from section 3.1.
How is it compatible with section 3.1 and overall results?

Reply:

We believe that the different methods to estimate potential evaporation should not im-
pede us from testing the consistency between the resulting total modeled actual evapora-
tion EA and estimated EA from GLEAM. This is also supported by the findings of Oudin
et al. (2004), who reported similar model performance irrespective of the method applied
to estimate potential evaporation. Additionally, we do not consider EA from GLEAM to
be representative of the truth, but the comparison can enable us to detect outliers (either
one/several models or the remote sensing data).

Comment:

Line 143: how did you spatially average soil moisture?

Reply:

We calculated the mean soil moisture over all SCATSAR-SWI1km pixels within the
Ourthe catchment. We will clarify this in the revised version.

Comment:

Line 153: I guess, your entire study domain is just a single GRACE pixel. I am quite
skeptical for using it at all, as it’s beyond the limits of its usability. The original raw
GRACE signal is based on a much larger region (3degrees). You may better wait for the
GRACE-FO, which has much finer native resolution...

Reply:

Yes, the catchments indeed fit in single GRACE pixels. At this small scale, we agree
that we must be careful with possible ‘signal leakage’ from surrounding areas, which in-
crease the uncertainty. We believe that the GRACE signal is still informative and the best
currently available, despite the larger errors and uncertainties at this small scale compared
to large scale spatial averages. It should also be noted that we are not using GRACE for



model calibration. Instead we are testing if the modeled regional seasonal water storage
anomalies are consistent with GRACE estimates. Additionally, GRACE signals in small
scale catchments were shown to provide valuable information for hydrological modeling
(Rakovec et al. 2016, Nijzink et al., 2018). In the next version of the manuscript, we will
use total storage anomalies provided by the three processing centers instead of taking the
mean of the three to better account for the uncertainty. In the future, it would surely be
interesting to work with GRACE-FO, but this is unfortunately not available for our study
period.

Comment:

Section 4.1 I guess all models were applied in spatially lumped manner, i.e. no spatially
distributed mode, isn’t it? Please write down explicitly in this section.

Reply:

We will clarify if models are lumped or (semi-)distributed in Table 2. The wflow-hbv
model is the only fully distributed model, but parameter values are mostly uniform over
the catchment area. The FLEX-Topo model is a semi-distributed based on hydrological
response unit within each Thiessen polygon. All other models are lumped.

Comment:

Line: 179-181 This analysis was done here, or in previous study? Not clear, please
specify, and provide link to the transferability results. Curious to see them.

Reply:

We will clarify this part in the next version of the manuscript. The analysis was done
in the previous study (de Boer-Euser et al. 2017), in which the models were calibrated for
the Ourthe at Tabreux and parameter values were transferred to two neighboring and two
nested catchments (including the Semois at Membre-Pont and Ourthe Orientale at Mabom-
pré). The previous study covered the study period 2001-2010. In the current study, we use
the previous calibration of the Ourthe at Tabreux for the three catchments and ran the set
of models for an additional period from 2011 to 2017.



Comment:

How many behavioral parameter sets per model were used? Is the number same per
hydrological model? Here referring to error bars in Fig. 3, Fig. 4 and elsewhere.

Reply:

For each model, we retained 20 feasible parameter sets. However, the width of the error
bands varies due to the different calibration strategies applied by the modelers.

Comment:

Figure 9: Is it possible to rank the models according to their performance? Which
one seems to be most relevant and how it compares to e.g. an operational model, if that’s
available? Please think about putting some implications to the paper.

Reply:

Thank you for this interesting suggestion. In Figure 9, the models are currently ranked
from the highest to the lowest performance according to the Euclidean distance of Nash-
Sutcliffe efficiencies of the streamflow and the logarithm of the streamflow (see Figure 3
and Table 2). In the next version of the manuscript, we will adapt Figure 9 to rank the
models for each criterion.

In the revised version, we will mention that GR types of models (as GR4H) are used for
operational purposes in France and that a lumped version of the HBV model is currently
used by the Dutch operational system. In fact, each of these models could potentially be
used operationally.

In the next version of the manuscript, we will introduce some soft criteria to rank and
evaluate models in terms of how plausible it is to consider them behavioral based on the
remotely-sensed data and expert knowledge (following the suggestions of referee Prof.
Keith Beven).
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Referee #3

We thank the anonymous referee #3 for his/her comments and provide an answer to
each point below. However, we are surprised and puzzled by the review as we think that
most of the points raised by the referee are covered in the manuscript. The overall as-
sessment and relatively minor comments do not seem to correspond with the associated
evaluation report of the referee.

Comment 1:

This manuscript proposes a multi-objective model evaluation to compare a number of
different hydrological catchment models. While this is certainly a valuable task, I honestly
have very split feelings about this study. The general idea of multi-objective testing is not
new, but very important, and the comparison of several models is an interesting novel as-
pect. However, I have a number of fundamental concerns, which would require new data
and computations to be addressed.

The study is based on only three catchments. Several studies have shown how variable
results between catchments can be, and these days with more and more data sets being
available, the use of just three catchments seems a bit surprising for this type of study.

Reply 1:

The overall objective and novel aspect of this study is to analyze and quantify the dif-
ferences in the magnitudes and dynamics of multiple internal state and flux variables of
multiple models that provide similar performance characteristics when exclusively evaluat-
ing them against observed streamflow. We will further emphasize this in the introduction.
More specifically, in addition to streamflow, we quantify the differences of five model in-
ternal state and flux variables for twelve models in three catchments. The primary aim of
our study is to demonstrate and underline that models that are calibrated to streamflow can
generate similar, high performance levels in reproducing streamflow, but that they use dif-
ferent "pathways" to do so, i.e. all representing the system in a different way. A secondary
objective is to benchmark the internal state and flux variables against remote sensing data.
We will clarify this in the introduction of the revised manuscript.

As in previous comparison studies, there needs to be a trade-off in what can be done
in one single experiment. This is not only a question of computational capacity and time
restrictions but also a matter of how results can be analyzed and communicated in a feasi-
ble and meaningful way. Already now, with five internal variables from twelve models and
three catchments, the sheer amount of results produced makes it difficult to identify and



communicate the most relevant points. Extending such a study to say 10 or 50 catchments
will add an additional layer of results, which needs to be interpreted and discussed in ad-
dition. This will lead to a very unfocussed paper, in which the reader will struggle to find
in-depth results. Such trade-offs in the analyzed factors are common in comparison studies
and we are in fact not aware of any study that combines an analysis of many models with
many variables and many catchments. For example, in their comparison study, Holländer
et al. (2009) used ten models in one artificial catchment and assessed evaporation and dis-
charge. The distributed model intercomparison project (DMIP; Smith et al. 2012) worked
with 16 models, 17 catchments but mainly assessed streamflow and soil moisture. Noh et
al. (2015) and Koch et al. (2016) compared three models with respect to seasonal vari-
ability of soil moisture. Orth et al. (2015) used three models to assess streamflow and soil
moisture in eight catchments. Le Moine et al. (2007) used two models in 1040 catchments
to focus on intercatchment groundwater flows. Rakovec et al. (2016) studied three internal
state and flux variables in 400 catchments using a single model. Very recently, Knoben et
al. (2020) investigated differences in performance of 36 models in 559 catchments with
respect to streamflow as single variable. Their analyses are based on general performance
metrics of daily streamflow. The conclusions remain general due to the considerable vol-
ume of data produced, allowing for less detail on process-relevant insights. Each of these
studies has a specific focus and this is similar for our study. To our knowledge, a study
with strong focus on internal model dynamics for multiple models in more than one catch-
ment has not been done in this way before. We deliberately chose to balance depth with
breadth and perform a thorough analysis of the set of twelve models and five variables in
the three catchments in this study. We will stress this motivation in the revised version of
the manuscript.



Comment 2:

The study addresses different storages, including snow storage. However, the impor-
tance of snow in the test catchments is minor. I could not find any information on the
relative importance of snow (the info of about one month of snow cover is incomplete as
this does not say anything about the amount of water stored as snow). Still, my general
understanding is that snow does not play any major role in these catchments. This is prob-
ably also the reason why the authors can get away with not using any elevation zones for
modelling snow processes.

Reply 2:

We agree that snow is not a major component of the streamflow regime within these
catchments (as briefly mentioned in Section 2). Most of the precipitation falls as rain and
the models have high streamflow model performance even without including a snow mod-
ule. The amount of water stored as snow is shown in Figure 5b and 5c of the manuscript
with maximum annual amounts of less than 20 mm. Despite these relatively small amounts,
snow can be very important for specific events. In 2011, rain on snow caused widespread
flooding in these catchments. The elevation range of the Ourthe Orientale upstream of
Mabompré, where we are evaluating snow processes, is approximately 370 m (from 294 m
to 662 m). We believe this can be treated as a single elevation zone, in particular as 65%
of the catchment falls into a narrow 100 m elevation band (see Figure 1). In any case,
given the absence of detailed observed temperature lapse rates, the assumption of a stable
environmental lapse rate of e.g. 0.6 degree C/100m, required for an elevation stratification
remains very speculative and thus not really warranted by the available data. We will clar-
ify this in the revised version of the manuscript.



Figure 1: Elevation contour lines of the Ourthe Orientale upstream of Mabompré



Comment 3:

Each of the storage estimation used for model testing is associated with significant
observation uncertainties. There is also a scale-mismatch which results in additional un-
certainties. These issues have to be considered!

Reply 3:

We completely agree that there is considerable and effectively mostly unknown uncer-
tainty in the used remote sensing data. This was the underlying reason why we did not use
the remote sensing products for model calibration nor for any type of quantitative model
evaluation. We rather only treated these data as additional information against which to
indicatively compare the modeled internal state and flux variables. We cannot and do not
consider the remote sensing data to be a reliable representation of real-world quantities.
However, they are useful to detect potential outliers. The uncertainty associated to remote
sensing data should not restrain us from using them at all. However, we will clarify the
uncertainties associated to the use of each remote sensing product in the revised version of
the manuscript. In the next version of the manuscript, we will define a set of soft criteria to
evaluate not only how consistent the model internal dynamics are amongst each other, but
also if they provide a consistent behavior with what we expect from expert knowledge and
remote sensing data.



Comment 4:

Another point that seems to be missing is that each of the models of course also is af-
fected by parameter uncertainties (which will influence the simulated storages). Perhaps I
am missing something, but as I understand, single parameter sets are used for each model.
This is not sufficient; we know that the same model can result in very different internal
simulations because of parameter uncertainty. This leaves me wondering how much of the
differences presented here are due to parameter uncertainty rather than due to model dif-
ferences.

Reply 4:

We absolutely agree that parameter uncertainty can cause differences in model internal
behaviour. Therefore, we of course use an ensemble of feasible parameter sets to account
for parameter uncertainty. This is briefly mentioned in Section 4.1 and we will clarify this
further in the revised version of the manuscript. The error bars and/or boxplots and/or en-
semble of lines in Figure 3, 4, 5, 6, 7, 8 and 9 represent the ensemble of feasible parameter
sets, as also mentioned in each caption. The narrower uncertainty ranges of some models
are related to the use of different search strategies of the parameter space (see caption of
Figure 8).
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Short comment (Shervan Gharari)

We thank Shervan Gharari for the interesting discussion on our manuscript and we re-
flect on each comment below.

Comment 1:

Following the comments by Prof. Beven, I would like to ask the authors a more direct
question: “is there any practical use in exploiting the remote sense data in constraining
the hydrological models at the scale of interest?” In some applications, bucket-style models
are constrained based on evaporation products. I understand that the evaporation prod-
ucts can be used for practical purposes and possibly as a preliminary benchmark, however,
my concerns are: (1) the reduced uncertainty coming from confronting the model with an-
other set of products might result in an “illusion of certainty” in simulation and patterns.
As an example, refer to Wang et al., 2015a to see the possible uncertainty in the transpi-
ration/evaporation products from a model. (2) the whole modeling purpose is to predict
unknown and come up with the temporal and spatial prediction of some states and fluxes.
We then set up a model, say it does or doesn’t get the spatial pattern, train it with the result
of another model, and then it gets the spatial pattern probably right. What is the end goal
of this practice? We can probably join efforts with the developers of the already existing
products to improve their products rather than just being a user. Or use a machine-learning
algorithm to capture what the patterns in the products are. My question in short; do we
learn? Or do we produce a similar product (hopefully a better one)?

Reply 1:

Thank you for raising this interesting discussion. However, it should be clear that we
are not using the remote sensing data to calibrate the models. The primary aim of our study
is to quantify the differences in internal process representation for a set of models with
similar streamflow performance. A secondary objective is to benchmark the internal state
and flux variables against remote sensing data. We do not consider the remote sensing data
to be representative of the truth, but we use the data to detect potential outliers (being the
data itself or one/several models).

It should also not be forgotten that streamflow data also relies on a model with asso-
ciated uncertainty, namely the rating curve. Of course, there is also (and probably more)
uncertainty in evaporation data based on remote sensing, but these products are often also
validated against in-situ FLUXNET stations. The use of remote sensing data is valuable as
additional independent source of information. Therefore, hydrological applications could
benefit from the use of remote sensing data for calibration, depending on the purpose of the



application (e.g. flow predictions in a poorly-gauged catchment).

Comment 2:

GRACE is rather coarse for the basins of interest. It is suggested that the GRACE data
should be used for catchment above 150,000 square kilometers (Rodell et al., 2011). This
might be counterintuitive; visualization of GRACE over a large area will show that the data
is more diffused that its actual resolution. Also, GRACE is very uncertain in itself, using
a mean value of its three or more variations may result in deliberate killing of uncertainty
(Scanlon et al., 2018).

Reply 2:

We agree that we should be careful with using the GRACE signal over a single pixel,
as possible signal leakage from surrounding areas can increase the uncertainty. Even if the
catchment area fits within one GRACE pixel, we hypothesize that the signal is of interest as
benchmark against which to evaluate the modeled regional seasonal water storage anoma-
lies. In the next version of the manuscript, we will mention these issues in the Data section
instead of the Discussion. We will also show the uncertainty of total storage anomalies
provided by the three processing centers.

Comment 3:

Checking the consistency of input data is essential before starting the modeling phase.
The knowledge gap Section, in my point of view, can be moved earlier in the manuscript and
can be populated by quantified evaluation of the available data sets for forcing/calibrating
the models. Basically, from the data sets, you have all the components that you need to
close the water balance.

e = sum(P−E−Q)4 t−4S

Can you get e close to zero over a month or a year? (similar experiment to Wang et al.,
2015b) Do you have a sense of uncertainty or disagreement between the precipitation and
rain gauges?

As low-hanging fruit, it is possible to have an understanding of approximate intercep-
tion/transpiration for this region. Any flux towers? Study sites from Luxembourg might be
helpful? It seems the product you used in this study for evaporation underestimates inter-



ception significantly. From their website it seems interception is set to 10% globally (if I
interpreted it correctly). Do you perhaps know this ratio for the region of study from this
data (model outcome)? This seems to contradict some earlier paper by co-authors on the
global uncertainty of the interception/transpiration. Soil evaporation from the used product
may include many assumption or simplification similar to land models (Bohn and Vivoni,
2016). Another low-hanging fruit! Can we perhaps estimate the recession coefficient from
the hydrograph and compare it with calibrated values in the models to see actually which
model structure allows for a more accurate estimation of recession coefficient when cali-
brated and why [as doctor-father always says]. For example, land models are not suited
for this recession inference (Gharari et al., 2019).

Reply 3:

We agree that checking the consistency of the input data is essential and a standard pro-
cedure in any modeling practice. We will mention the uncertainty in the evaluation vari-
ables in the Data section rather than in the Discussion. We limited the scope of our study
to the evaluation of internal variables against remote sensing data. Comparing catchment
scale averages with point measurements of evaporation also faces substantial commensu-
rability issues. However, it is good to know that GLEAM evaporation was evaluated using
FLUXNET data (including the station of Lonzee which is close to the study area). For
this station, a correlation coefficient between GLEAM and FLUXNET of 0.91 for the daily
time step and similar annual rates are reported in Miralles et al. (2011). In Miralles et al.
(2016), the likely underestimation of interception evaporation and the likely overestimation
of total actual evaporation compared to other products is discussed. We will make use of
these evaluation studies to describe the uncertainty of the evaluation variables and derive
soft criteria to evaluate the plausibility of the set of models.

Comment 4:

The area is mostly agriculture, is there any regulation on the stream than may affect
your inference. Referring to section 5.3, the area is mostly agriculture, to my understand-
ing, the Sumax/root zone storage co-evolution is hypothesized for forests (that has a life of
more than a year). Agricultural lands do not follow any of that logic, it does what farmers
do (there might be some correlation). Maybe you can argue around the rain-fed nature of
agriculture in this region but still, crops have a lifespan of a season. Land models can see
the variation of leaf area index (LAI) and with some modification even variation of root
zones over period of time. That can be a better testbed for exploring root zoon hypothesis
than bucket-style models.



Reply 4:

We agree with your suggestion of looking at vegetation indices for additional informa-
tion on this matter. Given that almost half of the catchment of the Ourthe at Tabreux is
covered by forests (46%), we do not expect transpiration rates to drop to approximately
zero for several days in a row each year over the entire catchment.

Comment 5:

“The T -value has previously been positively correlated with root-zone storage capac-
ity, assuming a high temporal variability of root-zone soil moisture and therefore a low
T -value for small root-zone storage capacities SR,max (Bouaziz et al., 2020)”. Possible that
I totally get it wrong, but if I understand correctly, Bouaziz et al., 2020 used a hydrological
model in combination with satellite observation. Is this a model result that is used for inter-
comparing rather than the satellite observation itself? Maybe separate the data (products)
into groups of “directly observed” and “inferred based on a model”.

Reply 5:

The modeled root-zone soil moisture of each model is evaluated against satellite obser-
vations of the Soil Water Index. The Soil Water Index is provided by the Copernicus Global
Land Service for several T -values. The Soil Water Index is derived from near-surface soil
moisture to represent root-zone soil moisture but requires an estimate of the T -value. In
Bouaziz et al. (2020), we found a link between the optimal T -value and the root-zone stor-
age capacity. So, to answer the question, yes, we are using the by Copernicus provided
satellite data for the comparison, and yes the data is inferred based on an algorithm. How-
ever, all the evaluation variables we are using are relying on algorithms, even streamflow is
not directly measured.



Comment 6:

Upscaling of snow cover to basin level is a tricky business. Snow storage, snowpack
extent may not be uniform over an area (Cherkauer et al., 2003). Also, the snowpack can
persist with temperature much higher than the phase-change temperature identified in the
model. Snowpack may also stays longer under canopy. The phase-change temperature can
have a range, for example, for the VIC model this is a transitional span of temperature
(for example from -2C to 2C) that can be tuned for the same reason (snow precipitation). I
would suggest checking the snow extent versus the temperature first. This might give insight
into whether or not any model can simulate the observed snow extent given the tempera-
ture. Also, snow under canopy may stay longer, does the product you use capture that?

Reply 6:

Thank you, it is indeed a good suggestion to compare snow extent and temperature.
As the snow cover relies on MODIS imagery, it is unlikely that snow under the canopy is
captured by the product.

Comment 7:

As a modeler that might be interested to model the basins of interest, what is the take-
home message for me. I assume one of the aims of an inter-comparison project is the
knowledge mobilization of already known facts about basin(s) to the wider community.
This can be done better in this manuscript I would say. Perhaps, identifying the target
audience. Is the manuscript targeted for catchment hydrology? Or Large-scale hydrology?
The current manuscript does not server any.

I would say, as coordination of the large team takes a lot of efforts and work, maybe
give a new dimension to your paper by elaborating the organizational efforts put into this
study (why did you initiate this inter-comparison, why the current list of models and au-
thors, what made you to choose them? what effect it might have on real-world application,
etc).

Reply 7:

We will clarify that the take-home message of the manuscript is to underline and
demonstrate that models that are calibrated to streamflow can generate similar high-performance
levels in reproducing streamflow, but that they use different "pathways" to do so, i.e. all
representing the system in a different way. In our opinion, this is relevant for catchment



hydrology and large-scale hydrology as both rely on model selection. In this context, the
selection of the Ourthe catchment is more a case study to demonstrate the different internal
process representation.

In the next version of the manuscript, we will also use expert knowledge in combination
with the remote sensing data to evaluate the plausibility of model behavior for a selection
of criteria.

The study is a joint research effort of institutes and universities gathering each year at
Liège Université for the symposium on hydrological modelling of the Meuse basin to ex-
change knowledge and work together on the Meuse basin, as also mentioned in the discus-
sion. In the revised version, we will discuss the challenges inherent to such a comparison
study.

Comment 8:

I would suggest the authors clarify their research equations in the beginning and come
back to the research questions in the conclusions. In the current version, there are no
tangible research questions. For example, “Haddeland et al. (2011) and Schewe et al.
(2014) compared global hydrological models and found that differences between models
are a major source of uncertainty.” I think this is what you can reflect/elaborate on in your
conclusions (hopefully quantitively)?

One collusion from this study can be for example, “a two-bucket model with snow com-
ponent is sufficient enough to get the dynamic of the data we selected”. Can this be one of
your conclusions?

Some studies from the land modeling community can be helpful in this regard. For
example, Bets et al., 2015 provided a structure for the comparison (including evaluation,
comparison, benchmarking, fit for purpose, utilizing the available data, etc). Following this
structure or similar structures can hopefully clarify the manuscript more. One benchmark-
ing strategy could be ensemble simulation of all models within their prespecified parameter
ranges. This can be the basis for comparison when the model is calibrated on the stream-
flow and subsequently on other data sets such as evaporation in a stepwise fashion. This
seems to be not a lot of work as the models are already set up.

Moreover, the land model studies can provide more insight into large scale modeling
and their related issues. For example, Crow et al. (2003) is a classic example. In my point
of view far ahead of its time and not very well received [the same work nowadays would



probably have 20 authors with the same citation level in a single year and will be mag-
ically highlighted!]. Another great example to show uncertainty in large scale models in
reproducing mean and variability (Koster, R.D. and P. Mahanama 2012) with a very simple
model. Another example is Hurkmans et al. 2008. These studies and similar works may
provide a better understanding of the exploitation of additional data in large scale model-
ing and associated uncertainties.

Reply 8:

We will sharpen the research question and conclusion. In this study, we test the hy-
pothesis that models with similar streamflow performance have similar internal process
representation, as stated in the last paragraph of the introduction. We conclude by saying
that models have different internal representations of water storage and release. This sug-
gests that all models can’t simultaneously be different and close to reality.

In the next version of the manuscript, we will go one step further by evaluating the
plausibility of the models and identify behavioral models in view of the remote sensing
data and expert knowledge.

Although an interesting suggestion for follow-up studies to constrain the models using
the remote sensing data, this is outside the scope of the current study.

Comment 9:

Concerning FLEX-Topo. It seems to be the only semi-distributed model among all the
other models. Have you properly constrained the component of this model (or do you
have enough expert knowledge to do so)? It would be good to highlight the advantage
of the semi- distributed model here if any. The control over the different components of
FLEX-Topo becomes increasingly hard if the code is written separately for each landscape
(different structures). I tried to have a similar code for each landscape and recreate the
desired structure just by adjusting the parameters. That provides better control over the
performance of each landscape. For example, did you check the transpiration of each
landscape? Sometimes it is the case that soil moisture from one landscape is empty and the
other landscapes are evaporating at the maximum rate.

Reply 9:

The calibration of the models was done in the previous study (de Boer-Euser et al.,
2017), in which we found that models had similar streamflow performances based on com-



monly used metrics. Here, we are consistently using the previous calibration to assess
internal model representation. Of course, model deficiencies appearing in this study are
helpful to improve the parametrization of the model but going into such details for each
model is outside the scope of the current study.

Comment 10:

I didn’t know that FLEX-Topo got a sublimation component. How that is implemented?
Is sublimation a major process in the region of study? I would not say so. Sublimation is
also a tricky process; a magical one! it can account for uncertainty in snowpack similar
to the transpiration for soil moisture. There is also a refreezing formulation for one of the
models. Interested to know how that happens in a model that may not close the energy
balance. It would be good to include all the model formulation in the Appendix if not too
much work.

Reply 10:

The raised discussion is interesting. The sublimation component implemented in the
FLEX-Topo model is described in de Boer-Euser (2017). It is a simple representation that
allows evaporation from the snowpack at potential rate, provided there is enough snow stor-
age. As precipitation mostly falls as rain and not as snow, we agree that it is not a major
process for the study region. Additionally, the magnitude of sublimation is likely to be
rather low due to the limited direct radiation in winter in Belgium. We are providing the
most relevant equations for our study in Table 2 and 3 and we refer to the references on the
model descriptions for more details.

Comment 11:

The figures presenting the results are very hard to follow. I am not sure if I understand
most of them. I would suggest simplifying them.

Reply 11:

Unfortunately, given the general character of this comment, it is unclear which aspects
of the figures are very hard to follow. Following the comments of the referees, we intend
to adapt Figure 9 in the next version.



Comment 12:

A question from Prof. Beven and maybe the authors; is that possible to even reject a
model in large scale modeling? From my experience and due to the issue of scale (and
observation at that scale), most of the models can be accepted. For example, in a re-
cent modeling effort that we have done (Gharari et al., 2020), the VIC model with the
only micropore and with only macropore water movement yields the same result when cal-
ibrated (exploring the inclusion of macropore water movement in land models; aligned
with Beven and Germann 1982, to Beven 2018). How should I justify macropore versus
micropore at that scale for a colleague whose entire career is focused on how to prop-
erly/mathematically represent micropore water movement? What is the path forward? I
appreciate your thoughts on that.

Reply 12:

Thank you for raising this interesting comment. In our study, we are reluctant to reject
models because any rejection is conditional on many factors, including the individual pa-
rameter selection strategies chosen by the individual contributing institutions. And model
rejection would only be valid for the study catchment. And these specific circumstances
could be forgotten if taken out of context and the label “rejected” would remain, even if
this is not justified. Additionally, there is a large uncertainty in the used evaluation vari-
ables. The uncertainty estimates of remote sensing data are usually not available and using
them in a meaningful way would uncover many questions, which is outside the scope of
the current study.

Instead, we propose to evaluate and rank the models and define soft criteria to test the
plausibility of model behavior in terms of the remote sensing data and expert knowledge.
We will include this in the next version of the manuscript.

Regarding the specific case you are mentioning on macropore versus micropore flow,
some answers might be provided in Zehe et al. (2014). We believe this also depends on the
study area and on the availability of evaluation variables and their uncertainty estimates.
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Abstract. Streamflow is often the only variable used to constrain
:::::::
evaluate hydrological models. In a previous international

comparison study, eight research groups followed an identical protocol to calibrate a total of twelve hydrological models using

observed streamflow of catchments within the Meuse basin. In the current study, we hypothesize that these twelve process-

based models with similar streamflow performance have similar representations of internal states and fluxes. We test our

hypothesis by comparing internal states and fluxes between models and we assess their plausibility using remotely-sensed5

::::
Next,

:::
we

::::::
assess

::::::
model

::::::::
behavior

:::::::::
plausibility

:::
by

:::::::
ranking

:::
the

:::::::
models

:::
for

::
a

:::
set

::
of

::::::
criteria

::::::
using

::::::
remote

:::::::
sensing products of

evaporation, snow cover, soil moisture and total storage anomalies. Our results indicate that models with similar streamflow

performance represent internal states and fluxes differently. Substantial
:::
We

:::::
found

:::::::::
substantial

:
dissimilarities between models

are found for annual
:::
for

:::::
annual

::::::::::
interception

:
and seasonal evaporation and interception rates, the

:::::
annual

:
number of days per year

with water stored as snow, the mean annual maximum snow storage and the size of the root-zone storage capacity. Relatively10

small root-zone storage capacities for several models lead to drying-out of the root-zone storage and significant reduction

of evaporative fluxes each summer, which is not suggested by remotely-sensed estimates of evaporation and root-zone soil

moisture. These differences in internal process representation imply that these models cannot all simultaneously be close

to reality. Using remotely-sensed products, we could evaluate the plausibility of model representations only to some extent,

as many of these internal variables remain unknown, highlighting the need for experimental research. We also encourage15

modelers to rely on multi-model and multi-parameter studies to reveal to decision-makers the uncertainties inherent to the
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heterogeneity of catchments and the lack of evaluation data .
:::::::
Modeled

::::::
annual

::::::::::
evaporation

::::
rates

:::
are

:::::::::
consistent

::::
with

::::::::
GLEAM

::::::::
estimates.

::::::::
However,

:::::
there

:
is
::
a

::::
large

::::::::::
uncertainty

::
in

:::::::
modeled

:::
and

::::::
remote

:::::::
sensing

::::::
annual

::::::::::
interception.

::::::::::
Substantial

:::::::::
differences

:::
are

:::
also

:::::
found

::::::::
between

:::::::
MODIS

:::
and

::::::::
modeled

::::::
number

:::
of

::::
days

::::
with

:::::
snow

::::::
storage.

:::::::
Models

::::
with

::::::::
relatively

:::::
small

::::::::
root-zone

:::::::
storage

::::::::
capacities

:::
and

:::::::
without

::::
root

:::::
water

::::::
uptake

::::::::
reduction

:::::
under

:::
dry

:::::::::
conditions

::::
tend

:::
to

::::
have

::
an

::::::
empty

::::::::
root-zone

:::::::
storage

:::
for

::::::
several20

::::
days

::::
each

:::::::
summer,

:::::
while

:::
this

::
is
:::
not

:::::::::
suggested

::
by

::::::
remote

:::::::
sensing

::::
data

::
of

::::::::::
evaporation,

:::
soil

::::::::
moisture

:::
and

:::::::::
vegetation

:::::::
indices.

:::
On

::
the

:::::
other

:::::
hand,

::::::
models

::::
with

::::::::
relatively

:::::
large

::::::::
root-zone

::::::
storage

:::::::::
capacities

::::
tend

::
to

::::::::::
overestimate

:::::
very

:::
dry

::::
total

::::::
storage

:::::::::
anomalies

::
of

:::::::
GRACE.

:::::
None

::
of

:::
the

:::::::
models

:
is
::::::::::::
systematically

:::::::::
consistent

::::
with

:::
the

::::::::::
information

::::::::
available

::::
from

::
all

::::::::
different

:::::::
(remote

:::::::
sensing)

:::
data

:::::::
sources.

::::
Yet,

:::
we

:::
did

:::
not

:::::
reject

:::::::
models

:::::
given

:::
the

:::::::::::
uncertainties

::
in

::::
these

::::
data

:::::::
sources

:::
and

:::::
their

::::::::
changing

::::::::
relevance

:::
for

:::
the

::::::
system

:::::
under

:::::::::::
investigation.25

1 Introduction

Hydrological models are valuable tools for short-term forecasting of river flows, long-term predictions for strategic water

management planning but also to develop a better understanding of the complex interactions of water storage and release

processes at the catchment-scale. In spite of the wide variety of existing hydrological models, they mostly include similar

functionalities of storage, transmission and release of water to represent the dominant hydrological processes of a particular30

river basin (Fenicia et al., 2011), differing mostly only in the detail of their parametrizations (Gupta et al., 2012; Gupta and

Nearing, 2014; Hrachowitz and Clark, 2017).

In all of these models, each individual model component constitutes a separate hypothesis of how water moves through

that specific part of the system. Frequently, the individual hypotheses remain untested. Instead only the model output, i.e.

the aggregated response of these multiple hypotheses, is confronted with data of the aggregated response of a catchment to35

atmospheric forcing. Countless applications of different hydrological models in many different regions across the world over

the last decades have shown that these models often provide relatively robust estimates of streamflow dynamics, for both

calibration and evaluation periods. However, various combinations of different untested individual hypotheses, can and do lead

to similar aggregated outputs, i.e. model equifinality (Beven, 2006; Clark et al., 2016).

To be useful for any of the above applications, it is thus of critical importance that not only the aggregated but also the40

individual behaviors of the respective hypotheses are consistent with their real-world equivalents. Given the complexity and

heterogeneity of natural systems together with the general lack of suitable observations, this remains a major challenge in

hydrology (e.g., Jakeman and Hornberger, 1993; Beven, 2000; Gupta et al., 2008; Andréassian et al., 2012).

Studies have addressed the issue by constraining the parameters of specific models through the use of additional data sources

besides streamflow. These
:::::::::::::::::::::::::::::::::::::::
Beven and Kirkby (1979); Güntner et al. (1999)

:::
and

::::::::::::::::::
Blazkova et al. (2002)

:::::::
mapped

:::::::
saturated

::::::::::
contributing45

::::
areas

::::::
during

::::
field

::::::
surveys

::
to

::::::::
constrain

:::::
model

::::::::::
parameters,

:::::
while

::::::
patterns

::
of

:::::
water

:::::
tables

::
in

::::::::::
piezometers

::::
were

::::
used

:::
by

:::::::::::::::::::::::::::::::::
Seibert et al. (1997); Lamb et al. (1998)

:::
and

::::::::::::::::::
Blazkova et al. (2002)

:
.
:::::
Other sources include satellite-based total water storage anomalies (Winsemius et al., 2006; Werth

and Güntner, 2010; Yassin et al., 2017), evaporation (Livneh and Lettenmaier, 2012; Rakovec et al., 2016a; Bouaziz et al., 2018;

Demirel et al., 2018; Hulsman et al., 2019), near-surface soil moisture (Brocca et al., 2010; Sutanudjaja et al., 2014; Adnan et al., 2016; Kunnath-Poovakka et al., 2016; López López et al., 2017; Bouaziz et al., 2020)
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::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Franks et al., 1998; Brocca et al., 2010; Sutanudjaja et al., 2014; Adnan et al., 2016; Kunnath-Poovakka et al., 2016; López López et al., 2017; Bouaziz et al., 2020)50

, snow cover information (Gao et al., 2017; Bennett et al., 2019; Riboust et al., 2019), or a combination of these variables (Ni-

jzink et al., 2018; Dembélé et al., 2020). Reflecting the results of many studies, Rakovec et al. (2016b) showed that streamflow

alone is necessary but not sufficient to constrain model components to warrant partitioning of incoming precipitation to storage,

evaporation and drainage.

Hydrological simulations are, however, not only affected by model parameter uncertainty, but also by the selection of a55

model structure and its parameterization (i.e. the choice of equations). Modeling efforts over the last four decades have led

to a wide variety of hydrological models providing flexibility to test competing modeling philosophies, from spatially lumped

model representations of the system to high-resolution small-scale processes numerically integrated to the catchment scale

(Hrachowitz and Clark, 2017). Haddeland et al. (2011) and Schewe et al. (2014) compared global hydrological models and

found that differences between models are a major source of uncertainty. Nonetheless, model selection is often driven by60

personal preference and experience of individual modelers rather than detailed model test procedures (Holländer et al., 2009;

Clark et al., 2015; Addor and Melsen, 2019).

A suite of comparison experiments tested and explored differences between alternative modeling structures and parameteri-

zations (Perrin et al., 2001; Reed et al., 2004; Duan et al., 2006; Holländer et al., 2009)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Perrin et al., 2001; Reed et al., 2004; Duan et al., 2006; Holländer et al., 2009; Knoben et al., 2020)

. However, these studies mostly restricted themselves to analyses of the models’ skills to reproduce streamflow ("aggregated65

hypothesis"), with little consideration for the model internal processes ("individual hypotheses"). The Framework for Under-

standing Structural Errors (FUSE) was one of the first initiatives towards a more comprehensive assessment of model structural

errors, with special consideration given to individual hypotheses (Clark et al., 2008).

Subsequent efforts towards more rigorous testing of competing model hypotheses, partially based on internal processes

include Smith et al. (2012a, b) who tested multiple models for their ability to reproduce in-situ soil moisture observations as70

part of the Distributed Model Intercomparison Project 2 (DMIP2). They found that only two out of sixteen models provided

reasonable estimates of soil moisture. In a similar effort, Koch et al. (2016) and Orth et al. (2015) also compared modeled

soil moisture to in-situ observations of soil moisture for a range of hydrological models in different environments. In contrast,

Fenicia et al. (2008) and Hrachowitz et al. (2014) used groundwater observations to test individual components of their models.

Here, in this model comparison study, we instead use globally available remotely-sensed products to evaluate four
::::::
remote75

::::::
sensing

::::
data

::
to
::::::::

evaluate
:::
five

:
different model state and flux variables of twelve process-based models with similar overall

streamflow performance, which are calibrated by several research groups following an identical protocol. The calibration on

streamflow was conducted in our previous study (de Boer-Euser et al., 2017), in which eight research groups working on the

Meuse basin applied their rainfall-runoff model(s) according to a defined protocol using the same forcing data to reduce the

degrees of freedom and enable a fair comparison (Ceola et al., 2015). All models had a high overall streamflow performance80

based on commonly used metrics. We were able to attribute differences in performance to model structure components by

focusing on specific hydrological events (de Boer-Euser et al., 2017). Our analyses were then limited to comparisons with

hourly streamflow observations and the modeled response of internal processes remained unused.
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In a direct follow-up of the above study, we here hypothesize that process-based models with similar overall streamflow

performance rely on similar representations of their internal states and fluxes. We test our hypothesis by quantifying the85

differences in internal states and fluxes that occur between modelsand assess their plausibility using remotely-sensed estimates

of
:::
the

:::::::::
magnitudes

::::
and

::::::::
dynamics

::
of

:::
five

:::::::
internal

::::
state

::::
and

:::
flux

::::::::
variables

::
of

::::::
twelve

:::::::
models.

:::
Our

:::::::
primary

::::
aim

:
is
::
to
::::
test

:
if
:::::::
models

::::::::
calibrated

::
to

:::::::::
streamflow

::::
with

::::::
similar

:::::::::::::::
high-performance

:::::
levels

::
in

::::::::::
reproducing

::::::::::
streamflow,

::::::
follow

::::::
similar

::::::::
pathways

::
to

::
do

:::
so,

:::
i.e.

:::::::
represent

:::
the

:::::::
system

::
in

:
a
::::::
similar

:::::
way.

::
A

::::::::
secondary

::::::::
objective

::
is

::
to

:::::::
evaluate

:::
the

::::::::::
plausibility

::
of

::::::
model

:::::::
behavior

:::
by

::::::::::
introducing

:
a
:::
set

::
of

:::::
"soft"

::::::::
measures

:::::
based

:::
on

:::::
expert

:::::::::
knowledge

:::
in

::::::::::
combination

::::
with

::::::
remote

:::::::
sensing

::::
data

::
of evaporation, snow cover, soil90

moisture and total water storage anomalies.

2 Study area

We test our hypothesis using data from three catchments in the Belgian Ardennes; all of them are part of the Meuse River

basin in North-West Europe: the Ourthe upstream of Tabreux (ID1), the nested Ourthe Orientale upstream of Mabompré (ID2)

and the Semois upstream of Membre-Pont (ID3), as shown in Figure 1a,b. The Ardennes Massif and Plateau are underlain95

by relatively impermeable metamorphic Cambrian rock and Early Devonian sandstone. The pronounced streamflow season-

ality of these catchments is driven by high summer and low winter evaporation ,
:::::::
(defined

::::
here

::
as

:::
the

::::
sum

::
of

:::
all

::::::::::
evaporation

::::::::::
components

::::::::
including

:::::::::::
transpiration,

:::
soil

:::::::::::
evaporation,

::::::::::
interception,

::::::::::
sublimation

::::
and

::::
open

:::::
water

::::::::::
evaporation

:::::
when

::::::::::
applicable),

as precipitation is relatively constant throughout the year.
::::
Snow

::
is
:::
not

::
a
:::::
major

::::::::::
component

::
of

:::
the

:::::
water

::::::::
balance,

:::
but

::::::
occurs

:::::
almost

:::::
every

:::::
year

::::
with

:::::
mean

::::::
annual

:::::::
number

:::
of

::::
days

::::
with

:::::::::::
precipitation

:::
as

:::::
snow

::::::::
estimated

:::::::
between

:::
35

::::
and

:::
40

::::
days

:::::
yr−1100

::::::::::::::::::::::::::::::::::::::
(Royal Meteorological Institute Belgium, 2015)

:
.
::::
Even

::
if
:::::
mean

::::::
annual

:::::
snow

::::::
storage

::
is

::::::::
relatively

:::::
small,

:::::
snow

:::
can

::
be

:::::::::
important

::
for

:::::::
specific

::::::
events.

:::
For

:::::::
example

:::
in

:::::
2011,

::::
when

::::
rain

::
on

:::::
snow

::::::
caused

::::::::::
widespread

:::::::
flooding

::
in

:::::
these

::::::::::
catchments.

The rain-fed Ourthe River at Tabreux (ID1) is fast-responding due to shallow soils and steep slopes in the catchment.

Agriculture is the main land cover (27 % crops and 21 % pasture), followed by 46 % forestry and 6 % urban cover in an area of

1607 km2 and an elevation ranging between 107 m and 663 m (de Boer-Euser et al., 2017). Mean annual precipitation, potential105

evaporation and streamflow are 979 mm yr−1, 730 mm yr−1 and 433 mm yr−1 respectively for the period 2001–2017.

The nested Ourthe
:::::
Nested

::::::
within

:::
the

::::::
Ourthe

:::::::::
catchment

:::::
(ID1),

:::
the

:::::::
Ourthe Orientale upstream of Mabompré (ID2) is char-

acterized by a narrow elevation range from 294 m to 662m,
::
m,

::::
with

:::
65

::
%

:::
of

:::
the

::::::::
catchment

::::::
falling

::::::
within

:
a
::::
100

::
m

::::::::
elevation

::::
band,

:
making this catchment suitable to analyze snow processes modeled by lumped models. The Ourthe Orientale up-

stream of Mabompré has an area of 317 km2 which corresponds to 20 % of the Ourthe area upstream of Tabreux and has110

similar land cover fractions. Mean annual precipitation, potential evaporation and streamflow for the period 2001–2017 are

also relatively similar with 1052 mm yr−1, 720 mm yr−1 and 462 mm yr−1, respectively. Snow is not a major component

of the water balance, but occurs almost every year with mean annual snow days estimated between 35 and 40 days yr−1

(Royal Meteorological Institute Belgium, 2015).

Forest is the main land cover in the Semois upstream of Membre-Pont (ID3) with 56 %, followed by agriculture (18 %115

pasture and 21 % crop) and 5 % urban cover. The Semois upstream of Membre-Pont is 24 % smaller than the Ourthe upstream
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of Tabreux with 1226 km2 and elevation ranges between 176 m and 569 m. Mean annual precipitation, potential evaporation

and streamflow are respectively 38 %, 4 % and 46 % higher in the Semois at Membre-Pont with 1352 mm yr−1, 759 mm yr−1

and 634 mm yr−1.

3 Data120

3.1 Hydrological and meteorological data

Hourly precipitation gauge data are provided by the Service Public de Wallonie (Service Public de Wallonie, 2018) and are

spatially interpolated using Thiessen polygons for the period 2000-2017. Daily minimum and maximum temperatures are re-

trieved from the 0.25◦ resolution gridded E-OBS dataset (Haylock et al., 2008) and disaggregated to hourly values by linear

interpolation using the timing of daily minimum and maximum radiation at Maastricht (Royal Netherlands Meteorological125

Institute, 2018). Daily potential evaporation is calculated from daily minimum and maximum temperatures using the Harg-

reaves formula (Hargreaves and Samani, 1985) and is disaggregated to hourly values using a sine function during the day and

no evaporation at night. We use the same forcing for 2000–2010 as in the previous comparison study (de Boer-Euser et al.,

2017) and follow the same approach to extend the dataset for the period 2011–2017.
:::::::::
Uncertainty

::
in
:::::::::::::
meteorological

::::
data

::
is

:::
not

::::::::
explicitly

:::::::::
considered,

:::
but

::::
our

:::::::
primary

:::
aim

::
is
::
to
::::::::

compare
:::
the

::::::
models

::::::
forced

::::
with

::::::::
identical

::::
data.

:
Observed hourly streamflow130

data for the Ourthe at Tabreux, Ourthe Orientale at Mabompré and Semois at Membre-Pont are provided by the Service Public

de Wallonie for the period 2000–2017.

3.2 Remotely-sensed
:::::::
Remote

:::::::
sensing data

3.2.1 GLEAM evaporation

The Global Land Evaporation Amsterdam Model (GLEAM, Miralles et al., 2011; Martens et al., 2017) provides daily estimates135

of land evaporation by maximizing the information recovery on evaporation contained in climate and environmental satellite

observations. The Priestley and Taylor (1972) equation is used to calculate potential evaporation for bare soil, short canopy and

tall canopy land fractions. Actual evaporation is the sum of interception and potential evaporation reduced by a stress factor.

This evaporative stress factor is based on microwave observations of vegetation optical depth and estimates of root-zone soil

moisture in a multi-layer water-balance model. Interception evaporation is estimated separately using a Gash analytical model140

driven by observed rainfall
:::
and

::::
only

:::::::
depends

:::
on

::::::::::
precipitation

::::
and

::::::::
vegetation

::::::::::::
characteristics. GLEAM v3.3a relies on reanalysis

net radiation and air temperature from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 data,

satellite and gauge-based precipitation, satellite-based vegetation optical depth, soil moisture and snow water equivalent. The

data are available at 0.25◦ resolution (Figure 1b) and account for subgrid heterogeneity by considering three land cover types.

We spatially average the data
:::::::
GLEAM

::::::::::
interception

:::
and

::::
total

::::::
actual

:::::::::
evaporation

::::::::
estimates

:
over the Ourthe catchment upstream145

of Tabreux for the period 2001–2017.
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3.2.2 MODIS Snow Cover

The Moderate Resolution Imaging Spectroradiometer (MODIS) AQUA (MYD10A1, version 6) and TERRA (MOD10A1,

version 6) satellites provide daily maps of the areal fraction of snow cover per 500 m × 500 m cell (Figure 1b) based on the

Normalized Difference Snow Index (Hall and Riggs, 2016a, b). For each day, AQUA and TERRA observations are merged into150

a single observation by taking the mean fraction of snow cover per day. The percentage of cells with a fractional snow cover

larger than zero and fraction of cells without missing data (i.e. due to cloud cover) for the catchment of the Ourthe Orientale

upstream of Mabompré is calculated for each day. For this study, we disregard observations during the summer months (JJA,

when temperatures did not drop below 4◦C) and only use daily observations in which at least 40 % of the catchment area has

snow cover retrievals not affected by clouds, implying that we have 1463
::::
valid daily observations of mean fractional snow155

coverover
:
.
::::
This

::::::::::
corresponds

:::
to

::::
32 %

::
of

:::
all

:::::::::::
observations

::
of the Ourthe Orientale catchment upstream of Mabompré between

2001 and 2017.

3.2.3 SCATSAR-SWI1km Soil Water Index

SCATSAR-SWI1km is a daily product of soil water content relative to saturation at a 1 km × 1 km resolution (Figure 1b) ob-

tained by fusing spatio-temporally complementary radar sensors (Bauer-Marschallinger et al., 2018). Estimates of the moisture160

content relative to saturation at various depths in the soil, referred to as Soil Water Index
:::::
(SWI), are obtained through temporal

filtering of the 25 km METOP ASCAT near-surface soil moisture (Wagner et al., 2013) and 1 km Sentinel-1 near-surface soil

moisture (Bauer-Marschallinger et al., 2018). The Soil Water Index features as single parameter the characteristic time length

T (Wagner et al., 1999; Albergel et al., 2008). The T -value is required to convert near-surface soil moisture observations to

estimates of root-zone soil moisture. The T -value increases with increasing root-zone storage capacities (Bouaziz et al., 2020),165

resulting in more smoothing and delaying of the near-surface soil moisture signal. The Copernicus Global Land Service (2019)

provides the Soil Water Index for T -values of 2, 5, 10, 15, 20, 40, 60 and 100 days. Since Sentinel-1 was launched in 2014, the

Soil Water Index is available for the period 2015–2017and is spatially averaged over the catchment of the
:
.
:::
We

::::::::
calculate

:::
the

::::
mean

::::
soil

:::::::
moisture

::::
over

:::
all

:::::::::::::::::
SCATSAR-SWI1km

:::::
pixels

::::::
within

:::
the Ourthe upstream of Tabreux

:::
for

:::
the

:::::::
available

::::::
period.

3.2.4 GRACE Total Water Storage anomalies170

The Gravity Recovery and Climate Experiment (GRACE, Swenson and Wahr, 2006; Swenson, 2012) twin satellites,
:
launched

in March 2002,
:
measure the Earth’s gravity field changes by calculating the changes in the distance between the two satellites

as they move one behind the other in the same orbital plane. Monthly total water storage anomalies (in cm
::::
mm) relative to the

2004–2009 time-mean baseline are provided at a spatial sampling of 1◦ (approximately 78 km x 110 km at the latitude of the

study region, Figure 1b) by three centers: U. Texas / Center for Space Research (CSR), GeoForschungsZentrum Potsdam (GFZ)175

and Jet Propulsion Laboratory (JPL). These centers apply different processing strategies and tuning parameters which lead to

variations in the gravity fields. We calculate the arithmetic mean of the three estimates to reduce noise in the gravity fields,

as suggested by Sakumura et al. (2014). Next, we
:::::
These

::::::
gravity

:::::
fields

::::::
require

:::::::::
smoothing

::
of

:::
the

:::::
noise

:::::::
induced

:::
by

:::::::::
attenuated
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::::
short

::::::::::
wavelength.

::::
The

:::::
spatial

:::::::::
smoothing

::::::::
decreases

:::
the

::::::
already

::::::
coarse

:::::::
GRACE

:::::::::
resolution

::::
even

::::::
further

::::::
through

::::::
signal

::::::::
"leakage"

::
of

:::
one

:::::::
location

::
to

::::::::::
surrounding

:::::
areas

::::::::::::::::::::::::
(Bonin and Chambers, 2013),

::::::
which

::::::::
increases

:::
the

:::::::::
uncertainty

:::::::::
especially

::
at

:::
the

::::::::
relatively180

::::
small

:::::
scale

::
of

:::
our

:::::
study

:::::::::::
catchments.

:::
We apply the scaling coefficients provided by NASA to restore some of the signal loss

due to processing of GRACE observations (Landerer and Swenson, 2012). The data are then
::
of

:::
the

::::
three

:::::::::
processing

:::::::
centers

::
are

:::::
each spatially averaged over the catchments of the Ourthe upstream of Tabreux and the Semois upstream of Membre-Pont

for the period April 2002 to February 2017.

3.3
::::

Data
::::::::::
uncertainty185

:::
The

:::::::::::
hydrological

::::::::
evaluation

::::
data

:::
are

::
all

::::::
subject

::
to

:::::::::::
uncertainties

::::::::::::
(Beven, 2019).

::::::::::
Streamflow

:
is
:::
not

::::::::
measured

:::::::
directly

:::
but

:::::::
depends

::
on

:::::
water

::::
level

::::::::::::
measurements

::::
and

:
a
:::::
rating

::::::
curve.

::::::::::::::::::::
Westerberg et al. (2016)

::::::
quantify

::
a
::::::
median

::::::::::
streamflow

:::::::::
uncertainty

::
of

:::::::
±12 %,

::::::
±24 %

:::
and

::::::
±34 %

:::
for

:::::::
average,

::::
high

::::
and

:::
low

::::::::::
streamflow

:::::::::
conditions,

:::::::::::
respectively,

::::
using

::
a
::::::
Monte

:::::
Carlo

::::::::
sampling

:::::::
approach

:::
of

:::::::
multiple

:::::::
feasible

:::::
rating

:::::
curve

:::
for

:::
43

:::
UK

::::::::::
catchments.

:::
We

:::::::
sample

::::
from

:::::
these

::::::::::
uncertainty

::::::
ranges

::
to

::::::::
transform

:::
the

::::::::::
streamflow

::::::::::
observations

::::
(100

:::::::::::
realizations).

:::
We

::::
then

:::::::
quantify

::::::::
signature

::::::::::
uncertainty

:::::::::
originating

::::
from

::::::::::
streamflow

:::
data

::::::::::
uncertainty

:::::
using

:::
the190

:::
100

:::::::
sampled

::::
time

:::::
series

:::
for

:
a
::::::::
selection

::
of

:::::::::
streamflow

:::::::::
signatures

:::::::
(Section

::::
4.2).

:::
The

::::::
5-95th

:::::::::
uncertainty

:::::::
bounds

::
of

::::::
median

::::::
annual

:::::::::
streamflow,

::::::::
baseflow

:::
and

:::::::::
flashiness

::::::
indices

:::::
result

::
in

:::::::
±11 %,

:::::
±9 %

:::
and

:::::::
±12 %,

::::::::::
respectively.

::::::
These

:::::::::
magnitudes

:::
are

:::::::
similar

::
to

::::
those

:::::::
reported

:::
by

::::::::::::::::::::
Westerberg et al. (2016).

:

:::::::
GLEAM

::::::::::
evaporation

::::::::
estimates

::
are

:::::::
inferred

::::
from

:::::::
models

:::
and

::::::
forcing

::::
data

:::::
which

:::
are

::
all

:::::::
affected

::
by

::::::::::
uncertainty.

::::
Yet,

:::::::::
uncertainty

:::::::
estimates

:::
of

::::::::
GLEAM

::::::::::
evaporation

:::
are

:::
not

::::::::
available.

:::::::::
However,

:::::::
GLEAM

:::::::::::
evaporation

:::
was

:::::::::
evaluated

::::::
against

::::::::::
FLUXNET

::::
data195

::
by

:::::::::::::::::
Miralles et al. (2011)

:
.
:::
For

:::
the

::::::
nearby

::::::
station

::
of

:::::::
Lonzee

::
in

::::::::
Belgium,

::::
they

:::::
report

::::::
similar

::::::
annual

:::::
rates

:::
and

:
a
:::::
high

:::::::::
correlation

::::::::
coefficient

::
of
::::
0.91

:::::::
between

:::
the

:::::
daily

::::
time

:::::
series.

::::::::
GLEAM

::::
mean

::::::
annual

::::::::::
evaporation

:::
was

:::::::::
compared

::
to

:::
the

::::::::
ensemble

::::
mean

::
of

::::
five

:::::::::
evaporation

:::::::
datasets

::
in

::::::::::::::::::
Miralles et al. (2016)

:::
and

::::::
shows

:::::
higher

::::
than

:::::::
average

::::::
values

::
in

::::::
Europe

:::
(of

::::::::::::
approximately

:::
60

:::
mm

:::::
yr−1

::
or

::::
10 %

:::
of

:::::
mean

::::::
annual

:::::
rates

:::
for

:::
our

:::::
study

::::::
area).

::::
The

::::::::::
partitioning

::
of

::::::::::
evaporation

:::
in

:::::::
different

:::::::::::
components

::::::::::::
(transpiration,

::::::::::
interception

:::
and

:::
soil

::::::::::
evaporation)

::::::
differs

:::::::::::
substantially

:::::::
between

:::::::
different

::::::::::
evaporation

:::::::
datasets,

::
as

:::::
shown

:::
by

:::::::::::::::::
Miralles et al. (2016)200

:
.
:::::::
GLEAM

:::::::::::
interception

::::::::
currently

::::
only

::::::::
considers

::::
tall

:::::::::
vegetation

::::
and

::::::::::::
underestimates

::::::
in-situ

::::
data

::::::::::::::::::
(Zhong et al., 2020)

:::
and

::
is

::::::
∼50 %

:::::
lower

::::
than

:::::::
estimates

:::::
from

:::::
other

::::::
datasets

::::::::::::::::::
(Miralles et al., 2016)

:
.
:::::
These

:::::::::::
uncertainties

::::::::
underline

:::
that

::::::::
GLEAM

::::
(and

:::::
other

::::::
remote

::::::
sensing

:::::
data)

::::::
cannot

::
be

::::::::::
considered

::
as

:
a
:::::::

reliable
::::::::::::
representation

::
of

:::::::::
real-world

:::::::::
quantities.

::::::::
However,

:::
the

::::::::::
comparison

:::
of

::::
daily

::::::::
dynamics

::::
and

:::::::
absolute

::::::
values

::
of

::::
this

::::::::::
independent

::::
data

::::::
source

::::
with

::::::::
modeled

:::::
results

::
is
::::

still
:::::::
valuable

:::
to

:::::
detect

::::::::
potential

::::::
outliers

:::
and

:::::::::
understand

:::::
their

:::::::
behavior.

:::::::
Besides,

:::
the

:::::::
different

::::::::
methods

::::
used

::
to

:::::::
estimate

:::::::
potential

::::::::::
evaporation

::
of

:::::::
GLEAM

::::
and

:::
our205

:::::
model

::::::
forcing

::::::
should

:::
not

:::::::
impede

::
us

::::
from

::::::
testing

:::
the

::::::::::
consistency

:::::::
between

:::
the

:::::::
resulting

::::::
actual

::::::::::
evaporation

::::::::::::::::
(Oudin et al., 2005)

:
.

::::
Most

:::::::
frequent

:::::
errors

::::::
within

:::
the

:::::::
MODIS

::::
snow

:::::
cover

::::::::
products

::
are

::::
due

::
to

:::::::::
cloud/snow

:::::::::::::
discrimination

::::::::
problems.

:::::
Daily

:::::::
MODIS

::::
snow

:::::
maps

::::
have

:::
an

:::::::
accuracy

::
of

:::::::::::::
approximately

::::
93 %

::
at

:::
the

::::
pixel

:::::
scale

:
,
::::
with

:::::
lower

:::::::
accuracy

::
in
:::::::
forested

::::::
areas,

:::::::
complex

::::::
terrain

:::
and

:::::
when

::::
snow

::
is

::::
thin

:::
and

:::::::::
ephemeral

:::
and

:::::
higher

::::::::
accuracy

::
in

::::::::::
agricultural

::::
areas

:::::::::::::::::::
(Hall and Riggs, 2007).

::::::::
However,

:::::
here,

:::::::
MODIS210

:::
data

::
is
:::::

used
::
to

:::::::
estimate

:::
the

:::::::
number

:::
of

::::
days

::::
with

:::::
snow

::
at

:::
the

:::::::::
catchment

:::::
scale

:
.
:::
We

::::::
expect

:::::
lower

:::::::::::
classification

:::::
errors

:::
at

:::
the

::::::::
catchment

:::::
scale

::
as

::
it
::::::
would

::::::
require

:::::
many

:::::
pixels

:::
to

::
be

:::::::::::
misclassified

::
at
:::

the
:::::

same
:::::
time.

:::
For

:::::
each

:::
day

::::
and

::::
each

:::::
pixel

::
of

:::::
valid
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::::::
MODIS

:::::::::::
observations,

:::
we

::::::
sample

:::::
from

:
a
::::::::
binomial

:::::::::
distribution

::::
with

::
a

:::::::::
probability

::
of

::::
93 %

::::
that

:::::::
MODIS

::
is

::::::
correct

::::
when

:::
the

:::::
pixel

:
is
::::::::
classified

::
as

:::::
snow

:::
and

:::::::
assume

:
a
::::::
higher

:::::::::
probability

::
of

:::::
99 %

:::
that

:::::::
MODIS

::
is

::::::
correct

:::::
when

:::
the

::::
pixel

::
is
::::::::
classified

::
as

::::::::
no-snow

::
to

::::::
prevent

::::::::::::
overestimating

:::::
snow

:::
for

::::
days

:::::::
without

:::::
snow

:::::::::::::::::::::::::::::::::::::
(Ault et al., 2006; Parajka and Blöschl, 2006).

::::
We

:::::
repeat

:::
the

::::::::::
experiment215

::
for

:::::
1000

:::::
times

::
in

::
a

:::::
Monte

:::::
Carlo

::::::::::
procedure.

::::
This

::::::
results

::
in

:::
less

::::
than

::::::
±2 %

:::::::::
uncertainty

::
in
:::
the

:::::::
number

::
of

:::::
days

:::::
when

:::::::
MODIS

:::::::
observes

:::::
snow

::
at

:::
the

::::::::
catchment

:::::
scale.

:

:::
The

::::
soil

::::
water

:::::::
content

::::::
relative

::
to
:::::::::
saturation

::
of

:::::::::::::::::
SCATSAR-SWI1km

::
is

::::::::
estimated

:::::
from

:::::::
observed

:::::
radar

::::::::::
backscatter

::::::
through

::
a

::::::
change

::::::::
detection

::::::::
approach,

:::::
which

::::::::
interprets

:::::::
changes

::
in

::::::::::
backscatter

::
as

:::::::
changes

::
in

:::
soil

::::::::
moisture,

:::::
while

:::::
other

::::::
surface

:::::::::
properties

::
are

::::::::
assumed

:::::
static

::::::::::::::::::
(Wagner et al., 1999).

::::
The

::::::
degree

:::
of

:::::::::
saturation

::
of

:::
the

:::::::::::
near-surface

::
is
:::::

given
:::

in
::::::
relative

:::::
units

:::::
from

::::
0 %220

:::
(dry

:::::::::
reference)

:::
to

::::::
100 %

::::
(wet

:::::::::
reference)

::::
and

::
is

:::::::::
converted

::
to

::::::
deeper

::::::
layers

:::::::
through

:::
an

::::::::::
exponential

:::::
filter

:::::
called

::::
the

::::
Soil

:::::
Water

::::::
Index.

:::
The

::::::::::
smoothing

:::
and

::::::::
delaying

:::::
effect

:::
of

:::
the

::::
Soil

:::::
Water

:::::
Index

::::::::
narrows

:::
the

:::::
range

::
of

::::
the

::::::::::
near-surface

::::::
degree

:::
of

::::::::
saturation.

:::::::::
Therefore,

::::
data

::::::::
matching

:::::::::
techniques

:::
are

:::::
often

::::
used

:::
to

::::::
rescale

::::::
satellite

::::
data

:::
to

:::::
match

:::
the

:::::::::
variability

::
of

:::::::
modeled

:::
or

:::::::
observed

::::
data

:::::::::::::::::
(Brocca et al., 2010)

:
,
:::::
which

:::::::
suggests

:::
the

::::::::
difficulty

::
to
::::::::::::

meaningfully
:::::::
compare

:::
the

:::::
range

::
of

:::::::
modeled

::::
and

::::::
remote

::::::
sensing

::::::::
estimates

::
of

::::::::
root-zone

::::
soil

:::::::
moisture

::::::
content

:::::::
relative

::
to

:::::::::
saturation.

::::::::
However,

:::
the

::::::::
dynamics

::
of

:::::::::::::::::
SCATSAR-SWI1km

::::
data225

::::
have

::::
been

::::::::
evaluated

:::::::
against

:::::
in-situ

:::::::
stations

:::
of

:::
the

:::::::::::
International

:::
Soil

::::::::
Moisture

:::::::::
Network,

::::::
despite

:::::::::::::::
commensurability

:::::
issues

:::
of

:::::::::
comparing

:::::
in-situ

:::::
point

::::::::::::
measurements

:::
and

:::::
areal

::::::
satellite

:::::
data.

::::::::
Spearman

::::
rank

::::::::::
correlation

:::::::::
coefficients

:::
of

::::
0.56

:::
are

:::::::
reported

:::
for

:::::::
T -values

:::
up

::
to

::
15

::::
days

::::
and

::::
0.43

:::
for

:::::::
T -value

::
of

:::
100

::::
days

:::::::::::::::::::::::::
(Bauer-Marschallinger, 2020).

:

:::::::
GRACE

::::::::
estimates

::
of

::::
total

::::::
water

::::::
storage

:::::::::
anomalies

:::::
suffer

:::::
from

:::::
signal

::::::::::
degradation

::::
due

::
to

:::::::::::
measurement

::::::
errors

:::
and

::::::
noise.

:::::::
Filtering

:::::::::
approaches

:::
are

:::::::
applied

::
to

::::::
reduce

:::::
these

:::::
errors,

:::
but

::::::
induce

:::::::
leakage

::
of

::::::
signal

::::
from

::::::::::
surrounding

:::::
areas.

::::
The

::::::::::
uncertainty230

::::::::
decreases

::
as

:::
the

::::
size

::
of

:::
the

::::::
region

:::::
under

:::::::::::
consideration

:::::::::
increases.

::::::::
However,

::::
time

:::::
series

:::
of

:
a
::::::
single

::::
pixel

::::
may

::::
still

::
be

:::::
used

::
to

:::::::
compare

::::::::
dynamics

:::
and

:::::::::
amplitudes

::
of

::::
total

:::::
water

::::::
storage

:::::::::
anomalies

::::::
despite

:::::::
possible

::::
large

:::::::::
uncertainty

::::::::::::::::::::::::::
(Landerer and Swenson, 2012)

:
.
:::
We

:::::::
estimate

:::
an

::::::::::
uncertainty

::
in

::::
total

::::::
water

::::::
storage

:::::::::
anomalies

:::
of

::::
∼18

::::
mm

::
in

:::
the

::::::
pixels

::
of

::::
our

::::::::::
catchments

::
by

::::::::::
combining

:::::::::::
measurement

:::
and

:::::::
leakage

:::::
errors

::
in

:::::::::
quadrature,

::::::
which

:::
are

::::
both

:::::::
provided

:::
for

::::
each

::::
grid

:::::::
location

:::::::::::::::::::::::::
(Landerer and Swenson, 2012).

:

4 Methods235

4.1 Models and Protocol

Eight research groups (Wageningen University, Université de Lorraine, Leuven University, Delft University of Technology,

Deltares, Irstea (now INRAE), Eawag and Flanders Hydraulics Research) participated in the comparison experiment and ap-

plied one or several hydrological models (Figure 2). The models include WALRUS (Wageningen Lowland Runoff Simulator,

Brauer et al., 2014a, b), PRESAGES (PREvision et Simulation pour l’Annonce et la Gestion des Etiages Sévères, Lang et al.,240

2006), VHM (Veralgemeend conceptueel Hydrologisch Model, Willems, 2014), FLEX-Topo (Savenije, 2010; Gao et al., 2014; Gharari et al., 2014; Euser et al., 2015)

:::::
which

:::
was

::::
still

:::::
under

::::::::::
development

:::::
when

::
it

:::
was

::::::::
calibrated

:::
for

:::
our

:::::::
previous

:::::
study

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Savenije, 2010; de Boer-Euser et al., 2017; de Boer-Euser, 2017)

, a distributed version of the HBV model (Hydrologiska Byråns Vattenbalansavdelning, Lindström et al., 1997), SUPERFLEX

M2 to M5 models (Fenicia et al., 2011, 2014), dS2 (distributed simple dynamical systems, Buitink et al., 2019), GR4H (Génie

Rural à 4 paramètres Horaire, Mathevet, 2005; Coron et al., 2017, 2019) combined with the CemaNeige snow module (Valéry245
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et al., 2014) and NAM (NedborAfstrommings Model, Nielsen and Hansen, 1973). Main differences and similarities between

models in terms of snow processes, root-zone storage, total storage and evaporation processes are summarized in Tables 1-3.

In our previous study (de Boer-Euser et al., 2017), we defined a modeling protocol to limit the degrees of freedom in the

modeling decisions of the individual participants (Ceola et al., 2015), allowing us to meaningfully compare the model results.

The protocol involved to force
::::::
forcing the models with the same input data and to calibrate

:::::::::
calibrating

:
them for the same250

time period, using the same objective functions. However, participants were free to choose a parameter search method, as we

considered it to be part of the modelers experience with the model, even if this would make comparison less straightforward.

The models were previously calibrated using streamflow of the Ourthe at Tabreux for the period 2004 to 2007, using 2003 as

spin-up a
::::::::

warm-up
::::
year

:
(de Boer-Euser et al., 2017). The Nash-Sutcliffe efficiencies of the streamflow and the logarithms of

the streamflow were simultaneously used as objective functions to select an ensemble of feasible parameter sets
:
to

:::::::
account

:::
for255

::::::::
parameter

:::::::::
uncertainty

:
and ensure a balance between the models’ ability to reproduce both high and low flows. The models were

subsequently tested and evaluated for the periods 2001 to 2003 and 2008 to 2010. In addition, by carrying out a proxy-basin

differential split-sample test (Klemeš, 1986), not only the models’ temporal but also their spatial transferability was tested by

applying the calibrated model parameter sets to nested and neighboring catchments for the period 2001 to 2017, using 2000 as

spin-up.
:
a
::::::::
warm-up

::::
year.

::::::
Results

::::::
thereof

:::
are

:::::::::
presented

::
in

::::::::::::::::::::::
de Boer-Euser et al. (2017)260

In the current study, we run the calibrated models for an additional period from 2011 to 2017 for the Ourthe at Tabreux

(ID1), the Ourthe Orientale at Mabompré (ID2) and the Semois at Membre-Pont (ID3). The modeling groups have provided

simulation results for each catchment in terms of streamflow, groundwater losses/gains, interception evaporation, root-zone

transpiration
:::::::::
evaporation

::::::::::::
(transpiration

::::
and

:::
soil

:::::::::::
evaporation), total actual evaporation, snow storage, root-zone storage and

total storage as a sum of all model storage volumes (Table 2) at an hourly time step for the total period 2001–2017. We265

compare these modeled states and fluxes and evaluate them against their remotely-sensed
::::::
remote

::::::
sensing

:
equivalents as further

explained in Sections 4.2 and 4.3.

4.2 Model evaluation: water balance

All models are evaluated in terms of the long-term water balance, which indicates the partitioning between drainage and

evaporative fluxes and allows us to assess long-term conservation of water and energy. We compare mean annual streamflow270

with observations and mean annual actual evaporation and interception evaporation with GLEAM estimates for the Ourthe at

Tabreux during the evaluation period 2008–2017. A detailed description of streamflow performance for specific events (low

and high flows, snowmelt event, transition from dry to wet period) has been detailed in the previous paper (de Boer-Euser et al.,

2017). In the current study, differences in streamflow dynamics are briefly summarized by assessing observed and modeled

baseflow indices (Ibaseflow, van Dijk, 2010) and flashiness indices (Iflashiness, Fenicia et al., 2016), as these are representative275

of the partitioning of drainage into fast and slow responses. Seasonal dynamics of actual evaporation over potential evaporation

and runoff coefficients during winter (Oct-Mar) and summer (Apr-Sep) are compared between models.
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4.3 Model evaluation: internal states

We compare modeled snow storage, root-zone soil moisture and total storage between models and with remotely-sensed
::::::
remote

::::::
sensing

:
estimates of MODIS snow cover, SCATSAR-SWI1km Soil Water Index and GRACE total storage anomalies, respec-280

tively, as shown in Tables 2-3 and Figure 1c.

4.3.1 Snow days

As most models used in this study are lumped, it is not possible to spatially evaluate modeled snow cover versus MODIS snow

cover. However, we can classify each day in a binary way according to the occurrence of snow, based on a threshold for the

percentage of cells in the catchment where snow cover is detected. MODIS snow cover observations are classified as days285

with and without snow using thresholds of both 5 and 10
:::
and

:::
15 % of snow-covered cells in the catchment to be counted as a

day with snow, in a sensitivity analysis. For each model, snow days are distinguished from non-snow days whenever the water

stored as snow is above 0.05 mm to account for numerical rounding. For each model (and each retained parameter set), we then

compare if modeled snow coincides with ’truly’ observed snow by MODIS, for each day with a
::::
valid

:
MODIS observation.

We create a confusion matrix with counts of true positives when observations and model results agree on the presence of snow290

(hits), false positives when the model indicates the presence of snow but this is not observed by MODIS (false alarms), false

negatives when the model misses the presence of snow observed by MODIS (miss) and true negatives when observations and

model results agree on the absence of snow (correct rejections). From this matrix, we calculate the recall as the ratio of hits

over actual positives (number of days when snow is observed by MODIS) and the precision as the ratio of hits over predicted

positives (number of days when snow is modeled). This allows us to identify, on the one hand, the ratio of days when snow295

observed by MODIS is correctly identified by the model and, on the other hand, the ratio of days when snow is modeled

that are
:
is
:
actually observed by MODIS. We therefore not only account for hits, but also for false alarms between model

and remotely-sensed
::::::
remote

::::::
sensing

:
observations. We also compare annual maximum snow storage and number of days with

snow between the seven models with a snow module (GR4H, M5, NAM, wflow_hbv, M4, FLEX-Topo, WALRUS). The snow

analysis is performed in the catchment of the Ourthe Orientale upstream of Mabompré as it features the narrowest elevation300

range among the study catchments (i.e. 294-662 m a.s.l. versus 108-662 m for the Ourthe upstream of Tabreux) and thus

plausibly permits a lumped representation of the snow component.

4.3.2 Root-zone soil moisture

We compare the range of relative root-zone soil moisture (SR = SR/SR,max) between models for the period in which SCATSAR-

SWI1km is available (2015–2017). Time series of catchment-scale root-zone soil moisture are available for all models except305

WALRUS and dS2 as these models have a combined soil reservoir (Figure 2). The dS2 model only relies on the sensitivity of

streamflow to changes in total storage. In WALRUS, the state of the soil reservoir (which includes the root zone) is expressed

as a storage deficit and is therefore not bound by an upper limit , allowing groundwater levels to drop infinitely (Table 2).

Root-zone storage capacities (SR,max, mm) are available as calibration parameter for all other models. We relate the range

10



in relative root-zone soil moisture to the maximum root-zone storage capacity SR,max, because we expect models with small310

root-zone storage capacities SR,max to entirely utilize the available storage, through complete drying and saturation.

We then compare the similarity of the dynamics of modeled time series of the relative root-zone soil moisture with remotely

sensed SCATSAR-SWI1km Soil Water Index for several values of the characteristic time length parameter (T in days). The

T -value has previously been positively correlated with root-zone storage capacity, assuming a high temporal variability of root-

zone soil moisture and therefore a low T -value for small root-zone storage capacities SR,max (Bouaziz et al., 2020). For each315

model and feasible realization, we identify the T -value that yields the highest Spearman rank correlation between modeled

root-zone soil moisture and Soil Water Index. We then relate the optimal T -value to the root-zone storage capacity SR,max.

This analysis enables us to identify potential differences in the representation and the dynamics of root-zone storage between

models.

4.3.3 Total storage anomalies320

For each model, we calculate time series of total storage (Table 2) and mean monthly total storage anomalies relative to the

2004-2009 time-mean baseline for comparison with GRACE estimates for the Ourthe upstream of Tabreux (ID1) and the

Semois upstream of Membre-Pont (ID3). Both catchments coincide with two neighboring GRACE cells, allowing us to test

how well the models reproduce the observed spatial variability. We further relate the modeled range of active
:::
total

:
storage

(maximum minus minimum total storage over the time series) to Spearman rank correlation coefficients between modeled and325

GRACE estimates of total storage anomalies.

4.4 Interactions between storage and fluxes during dry periods

The impact of a relatively large (> 200 mm) versus relatively small (< 150 mm) root-zone storage capacity on actual evapo-

ration, streamflow and total storage is assessed during a dry period in September 2016 by selecting two representative models

with high streamflow model performance (GR4H and M5). The plausibility of the hydrological response of these two model330

representations is evaluated against remotely-sensed
:::::
remote

:::::::
sensing estimates of root-zone soil moisture and actual evapora-

tion.

4.5
:::::::::

Plausibility
::
of

:::::::
process

::::::::::::::
representations

:::
The

:::::::
models

:::
are

:::::::::::
subsequently

::::::
ranked

::::
and

::::::::
evaluated

::
in

:::::
terms

::
of

:::::
their

::::::::::
consistency

::::
with

::::::::
observed

::::::::::
streamflow,

::::::
remote

:::::::
sensing

:::
data

::::
and

::::::
expert

:::::::::
knowledge

::::
with

::::
due

:::::::::::
consideration

:::
of

:::
the

::::::::::
uncertainty

::
in

:::
the

:::::::::
evaluation

::::
data,

:::
as

:::::::
detailed

::
in

:::::::
Section

:::
3.3.

::::
We335

:::::::
evaluate

:::
the

::::::
models

::
in

:::::
terms

:::
of

::::
their

:::::::::
deviations

::::::
around

:::::::
median

::::::
annual

::::::::::
streamflow,

::::::::
flashiness

::::
and

:::::::
baseflow

:::::::
indices,

:::::::
median

:::::
annual

::::::
actual

:::::::::
evaporation

::::
and

::::::::::
interception

::::::::
compared

::
to
::::::::
GLEAM

:::::::::
estimates,

:::
the

::::::
number

::
of

:::::
days

::::
with

::::
snow

::::
over

:::::
valid

:::::::
MODIS

:::::::::::
observations,

:::
the

::::::
number

::
of

:::::
days

:::
per

::::
year

::::
with

:::::
empty

::::::::
root-zone

:::::::
storage

:::
and

:::
the

::::
very

:::
dry

::::
total

:::::::
storage

::::::::
anomalies

:::::::::
compared

::
to

:::::::
GRACE

::::::::
estimates.

:
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5 Results340

5.1 Water balance

5.1.1 Streamflow

All models show high Nash-Sutcliffe Efficiencies of the streamflow and the logarithm of the streamflow (ENS,Q and ENS,logQ)

with median values of above 0.7 for the post-calibration evaluation period 2008–2017 (Figure 3a and Table 2 for the calculation

of the Euclidean distances). The interannual variability of streamflow agrees strongly with observations for each model in the345

period 2008–2017 (Figure 3b). The difference between modeled and observed median streamflow varies between -5.6 % and

5.6 % and the difference in total range varies between -9.6 % and 20 %. This is in line with our results in the previous paper, in

which we also showed that all models perform well in terms of commonly used metrics (de Boer-Euser et al., 2017). However,

there are differences in the partitioning of fast and slow runoff, as shown by the flashiness and baseflow indices (Iflashiness and

Ibaseflow) in Figure 3c. Largest underestimation of the flashiness index occurs for M2 and dS2 (∼20 %), while FLEX-Topo350

shows the highest overestimation (26 %). FLEX-Topo and WALRUS underestimate the baseflow index most (41 % and 70 %

respectively), while GR4H and M5 show the highest overestimation (15 % and 21 % respectively). There is a strong similarity

between modeled and observed hydrographs for one of the best performing models M5, as quantified by its low Euclidean

distance (Figure 3d and Table 2). The GR4H model is the only model which includes deep groundwater losses, but they are

very limited and represent only 1.6 % of total modeled streamflow
::
of

:::
the

::::::
Ourthe

::
at
::::::::
Tabreux,

:
or approximately 7 mm yr−1in355

the Ourthe at Tabreux.

5.1.2 Actual evaporation

Modeled median annual actual evaporation EA (computed as the sum of transpiration
:::
soil

::::::::::
evaporation,

:::::::::::
transpiration,

:::::::::
(separate)

::::::::::
interception

::::::::::
evaporation

:
and, if applicable, interception evaporation and sublimation, Table 3) for hydrological years be-

tween 2008–2017
:::::::
October

::::
2008

::::
and

:::::::::
September

:::::
2017 varies between 507 and 707 mm yr−1 across models, with a median360

of 522 mm yr−1, which is approximately 10 % lower than the GLEAM estimate of 578 mm yr−1, as shown in Figure 4a.

Annual actual evaporation of the VHM model is very high compared to the other models, with a median of 707 mm yr−1 and

approximates potential evaporation (median of 732 mm yr−1). Calibration of the VHM model is meant to follow a manual

stepwise procedure including the closure of the water balance during the identification of soil moisture processes (Willems,

2014). However, in the automatic calibration prescribed by the current protocol, this step was not performed, which explains365

the unusual high actual evaporation in spite of relatively similar annual streamflow compared to the other models, as there is

no closure of the water balance (Figure 3a).

Interception evaporation is included in four models, with GR4H showing the lowest annual interception evaporation of

100 mm yr−1 (19 % of EA or 10 % of P ), FLEX-Topo and wflow_hbv have relatively similar amounts of approximatively

250 mm yr−1 (∼45 % of EA or 26 % of P ) and NAM has the highest annual interception evaporation of 340 mm yr−1 (65 %370

of EA or 36 % of P ), as shown in Figure 4a. Differences are related to the presence and maximum size of the interception
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storage (Imax), as shown in Table 3. GLEAM interception estimates of 189 mm yr−1 are almost twice as high as GR4H

estimates, 25 % lower than FLEX-Topo and wflow_hbv, and 44 % lower than NAM values, suggesting a large uncertainty

in the contribution of interception and transpiration to actual evaporation.
::
For

:::::::::::
comparison,

::::::::::::
measurements

::
of

::::
the

::::::
fraction

:::
of

::::::::::
interception

:::::::::
evaporation

::::
over

:::::::::::
precipitation

::
in

:::::::
forested

::::
areas

::::
vary

:::::::::::
significantly

:::::::::
depending

::
on

:::
the

:::
site

::::::::
location,

::::
with

::::::::
estimates

::
of375

::::
37 %

:::
for

:
a
:::::::
Douglas

::
fir

:::::
stand

::
in

:::
the

::::::::::
Netherlands

::::::::::::::::::::::
(Cisneros Vaca et al., 2018)

:
,
:::::
27 %,

::::
32 %

:::
and

:::::
42 %

:::
for

::::
three

:::::::::
coniferous

::::::
forests

::
of

::::
Great

:::::::
Britain

:::::::::::::::
(Gash et al., 1980)

:::
and

:::::
50 %

:::
for

:
a
:::::
forest

::
in

::::::
Puerto

::::
Rico

::::::::::::::::::::::
(Schellekens et al., 1999)

::
and

:::
are

:::::::
difficult

::
to

::::::::::
extrapolate

::
to

::::
other

::::::::::
catchments

:::
due

::
to

:::
the

:::::::::::
heterogeneity

::::
and

:::::::::
complexity

::
of

:::::::
natural

:::::::
systems.

GLEAM estimates of actual evaporation show relatively high evaporation rates in winter and are never reduced to zero

in summer, as opposed to modeled M5 estimates, as shown in Figure 4b. Deviations between GLEAM and modeled actual380

evaporation estimates are related to the different assumptions on which they rely. Potential evaporation used as input for our

models has a median of 732 mm yr−1, while GLEAM potential evaporation is only 416 mm yr−1. GLEAM interception

evaporation is not bounded by potential evaporation as opposed to our models in which EA ≤ EP. GLEAM actual evaporation

minus interception is 390 mm yr−1 or
:::::::
GLEAM

::::::
actual

::::::::::
evaporation

::::::
minus

:::
the

:::::::::
separately

::::::::
calculated

:::::::::::
interception

::
is 94 % of

potential evaporation, implying almost no water limited conditions, as opposed to our models in which actual evaporation in385

summer (Apr–Sep) is, due to water stress, reduced to approximatively 73 % of potential evaporation on average for all models

except VHM (Figure 4c). Larger differences between models occur in the ratio EA/EP during winter (Oct–Mar), when FLEX-

Topo, wflow_hbv and VHM show EA/EP ratios close to unity, and dS2 the lowest values of EA/EP ∼ 0.75 as shown in Figure

4c. The dS2 model differs from all other models as it relies on a year-round constant water stress coefficient (Ccst), independent

of water supply, while the stress coefficient depends on root-zone soil moisture content in all other models (Table 3).390

Most models slightly overestimate summer runoff coefficients with values between 0.22 and 0.26 which are very close to the

observed value of 0.22, as shown in Figure 4d. During winter, runoff coefficients vary between 0.55 and 0.71, which is close

to the observed value of 0.66. This implies a relatively high level of agreement between models in reproducing the medium- to

long-term partitioning of precipitation into evaporation and drainage and thus in approximating at least long-term conservation

of energy (Hrachowitz and Clark, 2017).395

5.2 Internal model states

5.2.1 Snow days

MODIS snow cover is detected over most of the catchment area for some time each year between November 2001 and Novem-

ber 2017, except for the periods of November 2006 to March 2007 and November 2007 to March 2008, when snow is detected

in less than half of the catchment cells, as shown in Figure 5a. The number and magnitude of modeled snow storage events400

varies between models (Figure 5b). The modeled number of snow days per hydrological year varies from ∼28 days for FLEX-

Topo, WALRUS and wflow_hbv to ∼62 days for GR4H and ∼90 days for NAM, M4 and M5, as shown in Figure 5c. The

variability in median annual maximum snow storage varies from 3 mm for wflow_hbv and ∼5-6 mm for FLEX-Topo and
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WALRUS to ∼10 mm for GR4H, M4, M5 and 15 mm for NAM. We further evaluate the plausibility of these modeled snow

processes by comparing modeled and observed snow cover, for days when a
::::
valid

:
MODIS observation is available.405

The presence of snow modeled by FLEX-Topo, wflow_hbv and WALRUS coincides for 94
::
92 % with the presence of snow

observed by MODIS. However, these models fail to model snow for ∼69
::
62 % of days when MODIS reports the presence of

snow, implying that these models miss many observed snow days, but when they predict snow, it was also observed (Figure

5d).

NAM, M4 and M5, on the other side, predict the presence of snow which coincides with observed snow by MODIS in410

∼76
::
68 % of the positive predictions, implying a relatively high probability of false alarm snow prediction of ∼24

::
32 %. How-

ever, they miss only ∼38
::
29 % of actual positive snow days observed by MODIS (Figure 5d). This suggests that these models

miss fewer observed snow days, but they also overpredict snow days numbers, which could be related to the use of a single

temperature threshold to distinguish between snow and rain, as opposed to a temperature interval in the other models (Table

2).415

GR4H is in between the two previously mentioned model categories, with a snow prediction which coincides with observed

snow by MODIS in 83
::
79 % of the positive predictions and therefore only 17

::
21 % of false alarms. The model misses 51

::
42 % of

actual positive snow days observed by MODIS. GR4H therefore shows a more balanced trade-off between the number of false

alarms and the amount of observed snow events missed. This is illustrated in Figure 5d.

With an increased threshold to distinguish snow days in MODIS, from 0.05 to 0.10 as fraction
::::
10 %

::
to

::::
15 %

:
of cells in the420

catchment with a detected snow cover (Figure 5d and Figure 5e respectively), we decrease the number of observed snow days.

For all models, this leads to an increase in the ratio of false alarms over predicted snow days but also a decrease of the ratio

of missed events over actual observed snow days by MODIS. However, as all models are similarly affected by the change in

threshold, our findings on the differences in performance between models show little sensitivity to this threshold.

Despite the large variability in snow response between models, snow processes are represented by a degree-hour method in425

all models, suggesting a high sensitivity of the snow response to the snow process parametrization (Table 2).

5.2.2 Root-zone soil moisture

Vegetation accessible water volumes that can be stored in the root zone largely control the long-term partitioning of precip-

itation into evaporation and drainage. Most hydrological models include a representation of this root-zone storage capacity

SR,max, which is estimated through calibration (Table 2). The calibrated root-zone storage capacities vary between 74 mm430

and 277 mm across studied models. The root-zone soil moisture content relative to saturation of models with relatively large

root-zone storage capacities (here defined as SR,max > 200 mm) tends to never fully dry out (>0.20) and saturate (<0.94) as

opposed to models with lower root-zone storage capacities (SR,max <150 mm), in which the storage tends to either dry out

completely and/or fully saturate (Figure 6a). If the vegetation accessible water storage dries out, this will lead to water stress

and reduced transpiration. On the other hand, if the root-zone storage is saturated, no more water can be stored, resulting in435

fast drainage. The size of the root-zone storage capacity is therefore a key control of the hydrological response, allowing us to

explain some of the observed variability between models.
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We first compare the ranges of modeled and remotely-sensed estimates of relative root-zone soil moisture. The range of

SCATSAR-SWI1km Soil Water Index (SWI) varies between 0.29 and 0.82 for a value of the characteristic time length (T -

value) of 15 days and the range reduces as the T -value increases (Figure 6b). High T -values represent a low variability of440

soil moisture from one timestep to another and are associated with large root-zone storage capacities (Bouaziz et al., 2020).

The range of relative root-zone soil moisture content of the SCATSAR-SWI1km data is smaller than obtained by the models.

However, data matching techniques are often used to rescale satellite data to match the variability of modeled or observed data

(Brocca et al., 2010). The need for this rescaling suggests the difficulty to meaningfully compare the range of modeled and

remotely-sensed estimates of root-zone soil moisture content relative to saturation.445

We then compare the dynamics
:::::::
compare

:::
the

::::::::
dynamics

:
of modeled and remotely-sensed

:::::
remote

:::::::
sensing

:
estimates of root-

zone soil moisture by calculating Spearman rank correlations between modeled root-zone soil moisture and remotely-sensed

::::::
remote

::::::
sensing estimates of the Soil Water Index for the available T -values of 2, 5, 15, 20, 40, 60 and 100 days. As the T -value

increases, the Soil Water Index is more smoothed and delayed. For each model realization, we identify the T -value which yields

the highest Spearman rank correlation between Soil Water Index and modeled root-zone soil moisture (Figure 6c). The optimal450

T -value increases with the size of the calibrated root-zone storage capacity and varies between 15 and 60 days. A small root-

zone storage capacity is indeed likely to fill through precipitation and empty through evaporation and drainage more rapidly

than a large water storage capacity, leading to a higher temporal relative soil moisture variability. The mismatch between the

relatively high root-zone storage capacities of VHM (SR,max ∼ 200 mm) in relation to the relatively low optimal T -values of

20 days is likely related to the unclosed water balance (Section 5.1.2). The similarity between modeled root-zone soil moisture455

and Soil Water Index with optimal T -values is high, as implied by Spearman rank correlations varying between 0.88 and 0.90

across models. However, the disparity in optimal T -values between models underlines the different temporal representations

of root-zone soil moisture content across models, implying that all these models cannot simultaneously provide a plausible

representation of the catchment-scale vegetation accessible water content.

5.2.3 Total storage anomalies460

Total water storage anomalies obtained from GRACE are compared to the storage as simulated by the models, showing rel-

atively similar seasonal patterns, as illustrated in Figure 7a for model M5. GRACE total storage anomalies of the Semois

upstream of Membre-Pont and the Ourthe upstream of Tabreux are mainly represented by two neighboring cells (Figure 7b),

allowing us to test how models represent the observed spatial variability. The range of anomalies in the Semois upstream of

Membre-Pont (-90–117 mm) is larger than in the Ourthe upstream of Tabreux(-78–97 mm), implying 13,
::::::::
implying

:::
18 %,

::::
3 %465

:::
and

:::
7 %

:
less summer and 21

::
19 %,

:::::
19 %

:::
and

::::
10 %

:
more winter storage in the Semois upstream of Membre-Pont

:::
for

::::
each

::
of

:::
the

::::
three

:::::::
GRACE

::::::::::
processing

::::::
centers (Figure 7c). Median precipitation is also 37 % higher in the Semois upstream of Membre-

Pont than in the Ourthe upstream of Tabreux during winter months (Oct-Mar), but relatively similar during summer months

(Apr-Sep), as shown in Figure 7d. This difference in precipitation potentially leads to a wider range of modeled anomalies

in the Semois upstream of Membre-Pont than in the Ourthe upstream of Tabreux for all models, as shown in Figure 7e. This470

implies that all models reproduce the spatial variability between both catchments observed by GRACE. As the models were
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calibrated for the Ourthe at Tabreux and parameter sets were transferred to the Semois upstream of Membre-Pont, the forcing

data is the main difference to explain the modeled spatial variability.

The models are also able to represent the observed temporal dynamics of total storage anomalies, as suggested by Spearman

rank correlation coefficients ranging between 0.62 and 0.80 for the Ourthe upstream of Tabreux (Figure 7f). There is, however,475

no relation between the Spearman rank correlations of the anomalies and the total modeled storage range (difference between

maximum and minimum values), as shown in Figure 7f. PRESAGES, WALRUS, VHM and dS2 have the largest ranges of total

modeled storage, varying between 260 and 280 mm and are also characterized by a relatively large root-zone storage capacities

(PRESAGES ,
:::
and

:
VHM) or no separate root zone (WALRUS

:::
and

:
dS2), while the total storage range of all other models is

between 200 and 220 mm. The similarity in total storage range between most models is likely related to the identical forcing480

data and the similarity in the long-term partitioning of precipitation into drainage and evaporation (Section 5.1.2). However,

the absolute values of total storage during a specific event or the partitioning in internal storage components may vary between

models (Section 5.3).

5.3 Interactions between storage and fluxes during dry periods

As previously seen in Figure 6a, the relative root-zone soil moisture content of the GR4H model is always above 0.2 for the485

three years for which SCATSAR-SWI1km data are available, as opposed to M5 which fully dries out for some time during the

summers of 2015–2017.
::::
The

::::::::::
Normalized

:::::::::
Difference

:::::::::
Vegetation

:::::
Index

::
of

:::::::
MODIS

:::::::::::::::::::::
(NDVI, Didan, 2015a, b)

:::
also

::::
does

:::
not

:::::
show

:
a
:::::
sharp

:::::::
decrease

::::::
during

:::::
these

::::::
periods

:
(Figure 8a,b). Actual evaporation in M5 is also strongly reduced during these dry soil

moisture periods unlike GR4H, as shown in Figure 8c,d. When zooming into the dry period around September 2016, Figure 8e,f

shows median relative root-zone soil moisture in GR4H of ∼0.24 versus ∼0.01 for M5, while SCATSAR-SWI1km has a higher490

median value of ∼0.55 (for both optimal T -values of 20 and 40 days). The dryness of root-zone soil moisture in M5 leads to

median daily evaporation of 0.8 mm d−1 against 1.3 mm d−1 for GR4H and prolonged periods of almost zero evaporation in

M5 (e.g. 31/08–03/09, 09/09–15/09 and 22/09–30/09), while this neither occurs in GR4H nor in GLEAM actual evaporation,

as shown in Figure 8g,h. The model
::::::
Despite

:::
the

::::
high

::::::::::
streamflow

::::::::::
performance

:::
of

:::::
model

:
M5 has one of the highest streamflow

performance (Figure 3, Table 2), however, this yearly vegetation water stress is unlikely as ecosystems have adapted to495

overcome dry periods with a certain return period (Milly, 1994; Gentine et al., 2012; Gao et al., 2014; Wang-Erlandsson et al., 2016; de Boer-Euser et al., 2016; Nijzink et al., 2016)

.
:
it
:::

is
:::::::
unlikely

::::
that

:::::::::::
transpiration

::
is

:::::::
reduced

::
to

::::::
almost

::::
zero

::::
for

::::::
several

::::
days

:::
in

:
a
::::

row
:::::

each
:::::::
summer

::
in
::

a
:::::::::
catchment

::::::
where

::::::::::::
approximately

:::
half

:::
of

:::
the

::::
area

::
is

::::::
covered

:::
by

:::::::
forests.

::::
This

::
is

::::
also

:::
not

::::::::
supported

:::
by

:::
the

:::::::::::::
remote-sensing

::::
data

::
of

::::
soil

::::::::
moisture,

:::::
NDVI

:::
and

:::::::::::
evaporation. High streamflow performances, therefore, do not warrant the plausibility of internal process represen-

tation. Despite the dried-out root-zone storage in M5, there is still water available in the slow storage to sustain a baseflow500

close to observed values, as shown in Figure 8j,l. The streamflow responses of GR4H and M5 are both close to observations

(Figure 8i,j) in spite of differences in storage and evaporation, suggesting different internal process representations for a similar

aggregated streamflow response during a low flow period.
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5.4 Summary
::::::::::
Plausibility

:
of internal process representations

We summarize the differences between models in terms of their fluxes and states in Figure 9. Mean annual streamflow shows505

the highest degree of similarity between models, as this variable was used for calibration of the models. However, even if mean

annual volumes are similar between models, the dynamics in terms of the partitioning into fast and slow runoff, as characterized

by the
:::
The

:::::::
models

::
are

::::::
ranked

:::
and

::::::::
evaluated

:::
for

:
a
::::::::
selection

::
of

::::::
criteria

:::::
using

:::::::
observed

::::::::::
streamflow,

::::::
remote

::::::
sensing

::::
data

:::
and

::::::
expert

:::::::::
knowledge

::::::
(Figure

:::
9).

:::
All

::::::
models

:::::::
deviate

:::
less

::::
than

:::::
±6 %

:::::
from

:::::::
observed

:::::::
median

::::::
annual

:::::::::
streamflow

::::::
(Figure

::::
9a),

:::::
which

::
is
::::
less

:::
than

:::
the

:::::::::
estimated

:::::::::
uncertainty

:::
of

::::
11 %

:::::::
(Section

:::::
3.3).

::
In

:::::::
contrast,

:::
the

::::::::
modeled flashiness and baseflow indices , already show510

a large variability. These differences suggest that calibration using Nash-Sutcliffe efficiencies of the streamflow and logarithm

of the streamflow ensures a correct representation of the overall behavior but does not adequately constrain the partitioning

between fast and slow runoff.
:
of

:::::
most

::::::
models

:::::::
deviate

::::
more

:::::
than

:::
the

::::::::
estimated

::::::::::
uncertainty

::::::
(Figure

:::::
9b,c).

:::::::::::
FLEX-Topo

::
is

:::
the

::::
only

:::::
model

::::
with

:
a
:::::
clear

::::::::::::
overestimation

::
of

:::
the

:::::::::
flashiness

:::::
index,

:::::
which

::::::
relates

::
to

:::
the

:::::::::
calibration

::::
aim

::
of

::::::
having

:
a
:::::
flashy

::::::
model

::
to

::::::::
reproduce

:::::
small

:::::::
summer

:::::
peaks

:::::::::::::::::::::::
(de Boer-Euser et al., 2017).

:
515

Mean annual actual evaporation is relatively similar for all models except VHM
:::::::
Modeled

::::::
median

:::::::
annual

::::
total

::::::
actual

:::::::::
evaporation

:::::::
deviates

:::
by

::::::::::::
approximately

:::::
-10 %

::::
from

::::::::
GLEAM

::::::::
estimates,

::::::
except

::
for

:::
the

::::::
+22 %

::::::::::::
overestimation

::
of

:::
the

:::::
VHM

::::::
model

due to the issue of the unclosed water balance. Only one third of the models accounts for a separate interception moduleand

mean ,
::
as

::::::
shown

::
in

::::::
Figure

:::
9d.

:::::
These

::::::
results

::
are

:::::::::
consistent

::::
with

:::
the

:::::::::
evaluation

::::
study

::
of

::::::::
GLEAM

::::::::
compared

::
to
:::::
other

::::::::::
evaporation

:::::::
products

::::::::::::::::::
(Miralles et al., 2016)

:::::
which

::::::
reports

::::::
higher

::::
than

::::::
average

::::::
values

:::
for

:::::::
GLEAM

::
in
:::::::
Europe

::::::::
(∼+10 %

::
at

:::
our

:::::::
latitude).

:
520

::::
Four

::::::
models

:::::::::
explicitly

:::::::
account

:::
for

::::::::::
interception

::::
with

::
a
:::::::
separate

:::::::
module.

:::::::
Median

:
annual interception rates largely differ

between them, implying that root-zone transpiration compensates for over- or underestimation of interception to end up with

a similar actual evaporation . Differences in transpiration rates are, therefore, partly explained by the presence or absence

of an interception module
::::::
deviate

:::::::::::
substantially

:::::
from

:::::::
GLEAM

:::::::::
estimates

::::::
(-47 %

::
to

:::::::
+80 %)

::
as

::::::
shown

::
in

::::::
Figure

:::
9e.

::::::
There

::
is

:
a
::::
high

::::::::::
uncertainty

::
in

:::
the

::::::::::
partitioning

:::
of

::::::::::
evaporation

:::
into

::::::::
different

::::::::::
components

:::
in

::::::::::
evaporation

:::::::
products

::::
and

:::::::
GLEAM

::::::
likely525

::::::::::::
underestimates

::::::::::
interception

::::
rates

::::::::::::::::::::::::::::::::::
(Miralles et al., 2016; Zhong et al., 2020).

:::::::::
Therefore,

::
we

::::::::
consider

:
a
::::
large

::::::::::
uncertainty

::
of

:::::
+50 %

::
to

:::::::
evaluate

:::
and

::::
rank

:::
the

::::::
models.

::::
The

:::::
GR4H

::::::::::
interception

::
is
:::::
lower

::::
than

:::::::
GLEAM

:::::::::
estimates.

::::::::
However,

::
an

::::::::::
interception

::::::
storage

::::
was

::::::
recently

::::::::
included

::
in

::
an

::::::
hourly

:::
GR

:::::
model

:::::::
(GR5H),

::
to
:::::
better

::::::::
represent

:::
the

::::::::::
interception

::::::::
processes

:::::::::::::::::::::::::::::::
(Ficchì et al., 2019; Thirel et al., 2020)

.

A large variability also exists in modeled snow processes, which are represented in 60
::
All

:::::::
models

::::::::::
substantially

::::::::::::
underestimate530

::
the

:::::::
number

::
of

:::::
days

::::
when

:::::
snow

::
is

::::::::
observed

::
by

:::::::
MODIS

::
at
:::
the

:::::::::
catchment

:::::
scale

::
for

:::
all

:::::
valid

:::::::
MODIS

::::::::::
observations

::::::
(cloud

:::::
cover

:
<
:::
40

::
%

:::
and

:::::::::
excluding

:::::::
summer

::::::::
months),

::
as

::::::
shown

::
in

::::::
Figure

:::
9f.

::::
Yet,

:::
we

:::::::
estimate

::
a
::::
low

:::::::::
uncertainty

:::
of

:::
less

:::::
than

::
2 % of the

studied models. Maximum annual snow storage is likely underestimated by some models and overestimated by others, which

underlines the high sensitivity of snow processes parametrization for snow accumulation and melt, despite similar forcing and

degree-hour method (Table 2).535

Models with relatively large ranges of simulated root-zone soil moisture content also show large ranges of total storage ,

which is related to
::::::
around

:::
this

:::::::
number

:::::::
(Section

::::
3.3).

::::
The

:::::
NAM,

::::
M4

:::
and

:::
M5

::::::
models

:::
are

::::::
closest

::
to
:::::::
MODIS

:::::::::
estimates,

:::
but

::::
they
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::
are

::::::::::::
characterized

::
by

::::
high

::::
false

:::::
alarm

::::
rates

:::::::
(Figure

:::
5d),

::::::
which

::::::
implies

:
a
:::::::::
mismatch

::
in

:::
the

:::::::
modeled

:::
and

::::::::
observed

::::
days

::::
with

:::::
snow

::
for

:::::
valid

:::::::
MODIS

:::::::::::
observations.

:::::
Based

::
on

::::::
expert

:::::::::
knowledge

:::::::::::::::::::::::::::::::::::::::
(Royal Meteorological Institute Belgium, 2015)

:::
and

:
the size of the

:::::::
trade-off

:::::::
between

:::::
recall

:::
and

::::::::
precision

:::::::
(Figure

:::::
5d,e),

::
we

::::::
expect

:::
the

::::::
annual

::::::
number

:::
of

::::
days

::::
with

::::
snow

:::::::
storage

::
to

::
be

:::::::
between

:::
28540

:::
and

::
62

::::
days

:::::
yr−1

::
as

:::::::
modeled

:::
by

:::::::::
wflow_hbv,

:::::::::
WALRUS,

:::::::::::
FLEX-Topo

:::
and

::::::
GR4H,

:::::::
whereas

:::
the

::::
∼90

::::
days

::::
yr−1

:::
of

:::::
NAM,

:::
M4

::::
and

:::
M5

:::::
seems

:::
too

:::::
high.

:::
The

::::::::::
FLEX-Topo

::::
and

:::
M2

:::
to

:::
M5

::::::
models

::::
are

:::::::::::
characterized

:::
by

::
an

::::::
empty root-zone storage capacity. The smaller root-zone

storage capacity of model M5 compared to models M2-M4 leads to a smaller range of relative
:::
for

::::::::::::
approximately

::
10

::::
days

:::::
yr−1

:::
(SR::

<
::::
1 %)

:::
as

:::::
shown

:::
in

:::::
Figure

::::
9g.

:::::
These

::::::
models

:::::
have

::
in

::::::::
common

:::
that

::::::::::
evaporation

:::::
from

:::
the root-zone soil moisture, while545

the range of total storage is similar
:::::
occurs

::
at

::::::::
potential

:::
rate

::::
and

::
is

:::
not

:::
(or

::::::
hardly)

:::::::
reduced

:::::
when

:::::
soils

:::
are

::::::::
becoming

:::
dry

:::::
until

::
the

:::::
point

:::::
where

:::
the

:::::::
storage

::
is

:::::
empty. This is likely due to the

::
the

::::
case

:::
for

::::::
models

::::
with

::::
very

::::
low

::
or

:::::::
absence

::
of

:::
the

::::::::::
evaporation

::::::::
reduction

::::::::
parameter

::::
LP.

::::
This

::::::::
behavior

::
is

:::
not

::::::::
supported

:::
by

:::
the

::::::
remote

:::::::
sensing

::::
data

::
of

:::::::::::
evaporation,

:::
soil

::::::::
moisture

:::
and

::::::
NDVI

:::::::
(Section

::::
5.3),

:::
nor

:::
by

::::::
theory

::
on

::::
root

:::::
water

::::::
uptake

:::::::::
reduction

:::::
under

:::
dry

:::::::::
conditions

:::::::::::::::::
(Feddes et al., 1978)

:
.
::::
The additional slow

groundwater reservoir added in model M5 compared to M2-M4 , which splits
::::
leads

:::
to

:
a
:::::::
smaller

::::::::
root-zone

::::::
storage

::::::::
capacity550

::
as the available storage between

:
is
::::::::::
partitioned

:::
into

:
the root-zone storage and the additional groundwater store. The smaller

root-zone storage capacity further affects evaporation dynamics in summer and increases the baseflow index of
::
of

:::::
model

:
M5

compared to M2-M4
:::::::::
exacerbates

:::
the

:::::::
number

::
of

::::::
annual

:::::
days

::::
with

:::::
empty

:::::::
storage. This highlights the complex interactions in

internal dynamics even in parsimonious lumped models with similar mean annual streamflow performance.

:::::::::
Catchments

::::
with

::::::::
relatively

:::::
large

::::::::
root-zone

::::::
storage

::::::::
capacities

::::::::::::
underestimate

:::::::
GRACE

::::::::
estimates

::
of

::::
very

:::
dry

::::::
storage

:::::::::
anomalies555

::::
most

:::::::
(Figures

::
6
:::
and

::::
9h).

::::
The

:::::::::
uncertainty

:::
of

:::::::
GRACE

::
is

::::::::::
represented

:::
by

:::
the

::::::::
estimates

::
of

:::
the

:::::
three

:::::::::
processing

::::::
centers

::::
and

:::
the

::::
∼18

:::
mm

:::::::::
uncertainty

::::::::
estimate

::::::::
mentioned

::
in
:::::::
Section

:::
3.3.

::::::::::
FLEX-Topo

:::
has

::
a
:::
low

::::::::
root-zone

::::::
storage

:::::::
capacity

::::
and

:
is
:::
the

::::
only

::::::
model

:::::
which

:::::::::::
overestimates

:::
the

::::
very

::::
dry

::::::
storage

:::::::::
anomalies.

:::::::
Models

::::
with

::::::::
root-zone

::::::
storage

:::::::::
capacities

::
of

::::::
around

::::
110

:::
mm

:::
to

:::
150

::::
mm

::::
show

:::
the

:::::
most

::::::::
consistent

:::::::
behavior

:::::
with

:::::::
GRACE

::::::::
estimates

::
of

::::
very

:::
dry

::::::
storage

:::::::::
anomalies.

:

6 Discussion560

6.1 Implications

While streamflow alone may be used to evaluate hydrological models, we subsequently use these models to understand internal

states and fluxes in current and future conditions (Alcamo et al., 2003; Hagemann et al., 2013; Beck et al., 2017) .
::
or

::
to

:::::
make

:::::::::
operational

:::::::::
streamflow

::::::::::
predictions

::::
(e.g.

::::
HBV

::::
and

:::
GR

:::::
types

::
of

::::::
models

:::
are

::::
used

:::
by

:::
the

:::::
Dutch

:::
and

::::::
French

::::::::::
forecasting

::::::::
services).

Our findings show that similar streamflow responses obtained by models calibrated according to an identical protocol rely on565

different internal process representations. In other words, we might get the right answers but for the wrong reasons (Kirchner,

2006), as these models cannot at the same time all be right and different from each other (Beven, 2006).

Almost all models show a similar long-term partitioning of precipitation into drainage and evaporation, as they are forced

and constrained by the same data, also leading to relatively similar volumes of total storage. However, the partitioning of total
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storage in several internal storage components differs between models, resulting in distinct runoff responses as expressed by570

the baseflow and flashiness indices.

Largest differences between models occur for snow processes, interception evaporation, reduction of winter evaporation

and root-zone soil moisture
:::::
None

::
of

:::
the

:::::::
models

::
is

::::::::::::
systematically

::::::::
consistent

:::::
with

:::
the

::::::::::
information

::::::::
available

::::
from

::::::::::
streamflow

:::::::::::
observations,

::::::
remote

:::::::
sensing

::::
data

:::
and

::::::
expert

:::::::::
knowledge. However, these

::::
some

:
processes either play a limited role on the

overall water balance or can be compensated by other processes. Snow occurs every year but is not a major component of the575

streamflow regime (de Wit et al., 2007), interception evaporation can be compensated by root-zone evaporation, and very dry

periods only occur for several weeks per year when streamflow is already very low.
:::::
There

::
is

::::
also

:
a
:::::
large

:::::::::
uncertainty

::
in
:::::

each

::
of

:::
the

::::
data

:::::::
sources,

:::::
which

::::::
makes

::
us

::::::::
reluctant

::
to

:::
use

:::::
them

::
to

:::::::::
determine

::::
hard

:::::::::
thresholds

::
to

:::::
reject

:::::::
models.

:::::::
Instead,

:::
we

::::::
ranked

::
the

:::::::
models

:::
for

:
a
::::::::
selection

::
of

:::::
"soft"

::::::
criteria

:::
and

::::::
found

:::
that

::::::
NAM,

:::::::::
wflow_hbv

:::
and

:::::::::::
PRESAGES

:::
are

::::::
overall

::::
most

:::::::::
consistent

::::
with

::
the

:::::::::
evaluation

::::
data,

:::::
with

::::::
median

:::::
ranks

::
of

::::
2-3.

:::::
While

::
an

::::::
overall

:::::::
ranking

::::
may

::
be

::::::
useful

::
for

:::::::::::
practitioners,

::::::::
modelers

::::::
benefit

:::::
more580

::::
from

:::
the

:::::::
specific

::::::
ranking

:::
for

::::
each

::::::
criteria

:::
to

:::::
detect

::::::
specific

::::::
model

::::::::::
deficiencies

::::
that

:::::
could

::
be

::::::::
improved

::
in

:::
the

::::::
model

::::::::
structure.

::
An

:::::::
overall

::::::
ranking

::
is
::::
only

::
a
::::
mere

::::::::::
indication,

:::::
which

::::::
should

::
be

::::::::::
interpreted

:::::::
carefully

::::
due

::
to

::::::::::
uncertainty

::
in

:::
the

:::::::::
evaluation

::::
data

:::
and

:::
the

::::::
applied

:::::::::
calibration

::::::::
strategy.

::::::
Higher

:::::
model

:::::::::::
performance

::::
does

:::
not

:::::
seem

::
to

::
be

::::::
related

::
to

::::::
model

:::::::::
complexity,

:::
but

::::::
rather

::
to

::
the

::::::::
presence

::
of

:::::::
specific

::::::::::
components

:::
and

::
to

:::
the

:::::::::
calibration

:::::::
strategy

::::::
chosen

:::
by

::::
each

::::::::::
contributing

:::::::::
institution.

:

The presence of interception or a slow storage (absent in M2-M4 but added in M5) affects the representation of other internal585

processes, including transpiration and/or root-zone soil moisture, implying that individual internal model components are

altered by the presence/absence of other potentially compensating processes. Adding an additional internal model component

changes the internal representation of water storage and fluxes through the system, which should be kept in mind if model

parameters were to be fixed in alternative model structures. Furthermore, model improvements through additional process

components and/or adapted parametrization should not only be evaluated in terms of the aggregated response, but also in590

the partitioning of fluxes and storages through the system (e.g. does the groundwater component improve the baseflow index

at the expense of the availability of root-zone soil moisture during dry periods?). Models should be confronted with expert

knowledge, e.g. on the occurrence of days with water stress or snow storage, to assess the realism
:::::::::
plausibility

:
of internal states

and fluxes (Gharari et al., 2014; Hrachowitz et al., 2014; van Emmerik et al., 2015).

Applying these models to a future, more extreme climate in the same region might lead to contrasting insights regarding595

impacts of climate change, as also shown by studies of Hagemann et al. (2013), Melsen et al. (2018) and de Niel et al.

(2019) in which model structures may lead to different signs of change of mean streamflow. Using one model or the other to

assess the effect of rising temperatures on snow could lead to very different time scales of snow storage decline. Vegetation

already experiences more intense water stress in some models compared to others and this would be exacerbated in more

extreme drought scenarios (Melsen and Guse, 2019). More intense precipitation events could affect interception evaporation600

and therefore water availability in the root-zone differently from one model to another. Beyond model structure, the experience

each modeler has with its model and associated calibration procedure to constrain model parameters may also impact the

simulation results (Melsen et al., 2019).
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Our findings should, therefore, encourage modelers to use multiple data sources for model calibration and evaluation, as

already suggested by many other studies (Samaniego et al., 2010; Rakovec et al., 2016a; Koch et al., 2018; Stisen et al.,605

2018; Nijzink et al., 2018; Veldkamp et al., 2018; Dembélé et al., 2020). Remotely-sensed
::::::
Remote

:::::::
sensing

:
estimates of soil

moisture, evaporation and total storage anomalies are available at the global scale and in spite of potential biases with models,

the temporal dynamics are useful to constrain our models (McCabe et al., 2017; Sheffield et al., 2018). Additionally, it seems

essential to support decision-makers by studies relying on multi-model and multi-parameter systems, as also suggested by

Haddeland et al. (2011) and Schewe et al. (2014), to reveal uncertainties inherent to the heterogeneous hydrological world610

(Beven, 2006; Savenije, 2010; Samaniego et al., 2010; Hrachowitz and Clark, 2017).

This study is the result of a joint research effort of institutes and universities
::::::::
scientists

:::
and

:::::::::::
practitioners gathering each year

in Liège to exchange knowledge and work together on
::
at

:::
the

::::::::::
International

::::::
Meuse

::::::::::
Symposium

::
to

::::::::
exchange

:::::::::::::
interdisciplinary

::::
and

::::::::::
intersectoral

:::::::::
knowledge

::::::
related

::
to the Meuse basin. These international

:::::::
Although

:::::::::::
coordination

::
of

::::
large

:::::::::::
international

:::::
teams

::::
may

::
be

::::::::::
challenging,

:::::::::::
international

:
studies favor a close collaboration between scientists

:::
and

::::::::::
practitioners

:
that can learn from each615

other to accelerate modeling advances (Archfield et al., 2015). Another advantage of comparing modeling results of several

research groups is to quickly detect small mistakes in the modeling process, including shifts in the time series or using forcing

data of one catchment to model another catchment.
:::::
While

:::::::::
hydrograph

::::::::::::
characteristics

:::::
were

::
the

:::::
main

:::::
focus

::
of

:::
the

:::::::
previous

:::::
study

::::::::::::::::::::::
(de Boer-Euser et al., 2017)

:
,
:::
we

::::
gain

::::::
distinct

:::::::
insights

::
on

:::
the

::::::::::
plausibility

::
of

::::::
model

:::::::
behavior

:::
by

:::::::::
evaluating

::::::::
additional

:::::
facets

:::
of

::::::
internal

:::::::
process

:::::::::::
representation

:::::
using

::::::
remote

:::::::
sensing

::::
data.

:
620

6.2 Knowledge gaps
:::
and

::::::::::
limitations

Many aspects of the hydrological response remain unknown and can hardly be evaluated against observations. While in-situ

observations of snow, evaporation or soil moisture are rarely available at sufficient spatio-temporal scale, remotely-sensed

::::::
remote

::::::
sensing

:
estimates have the advantage of high spatial resolution, though they often rely on models themselves . The

evaporation components estimated by GLEAM rely on different forcing data than used by our models , a different equation is625

used to calculate potential evaporation and interception is calculated separately using the Gash analytical model (Gash, 1979)

. Despite relatively similar mean annual actual evaporation between GLEAM and our models, the processes behind them rely

on different internal representations
:::
and

:::
are

:::::::
affected

:::
by

::::
high

::::
and

::::
often

:::::::::
unknown

::::::::::
uncertainty.

:::::::::
Comparing

:::::::
models

::::
with

:::::
these

::::::::::
independent

::::::::::
observations

::
is
::::::::
valuable

::
to

:::::::
evaluate

::::
their

::::::::::
consistency

:::
and

::::::
detect

:::::::
outliers.

::::::::
However,

:::::
these

::::::::::
observations

::::::
cannot

:::
be

:::::::::
considered

::
as

:::::::::::
representative

::
of

:::
the

:::::
truth

::
as

:::
they

::::
rely

::
on

:::::
many

:::::::::::
assumptions

:::::::::
themselves,

:::::::::
hindering

:::::
"real"

:::::::::
hypotheses

::::::
testing. The630

ratio of actual over potential evaporation as a result of water stress at the catchment-scale, therefore, remains highly uncertain

(Coenders-Gerrits et al., 2014; Mianabadi et al., 2019).

Measurements of the fraction of interception evaporation over precipitation depend on the site location with estimates of

37 % for a Douglas fir stand in the Netherlands (Cisneros Vaca et al., 2018), 27 %, 32 % and 42 % for three coniferous forests

of Great Britain (Gash et al., 1980) and 50 % for a forest in Puerto Rico (Schellekens et al., 1999) and are difficult to extrapolate635

to other catchments due to the heterogeneity and complexity of natural systems.
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The gravity fields seen by GRACE require smoothing of the noise induced by attenuated short wavelength. This spatial

smoothing decreases the already coarse GRACE resolution even further and, therefore, signals in one location spread out into

nearby regions (Bonin and Chambers, 2013). This leakage of signal from one region to the other implies that at least some of

the observed differences between the Semois and Ourthe signals may originate from outside the two cells.640

While areal fractions of snow cover can be estimated by MODIS,
::
the

::::::::
presence

::
of

::::::
clouds

:::::
limits

:::
the

:::::::
usability

:::
of

::
the

::::
data

::::
and

knowledge of catchment-scale snow water equivalent is lacking. If remotely-sensed
::::::
remote

::::::
sensing

:
estimates of near-surface

soil moisture saturation
::::::
relative

::::
soil

:::::::
moisture

:
are available, root-zone water content remains uncertain and while GRACE

provides estimates of total storage anomalies, we lack knowledge on absolute total water storage. The spatial variability and

the temporal dynamics of these remotely-sensed
::::::
remote

::::::
sensing

:
products provide useful, additional, independent information to645

understand the hydrological puzzle, but certainly not all the answers to evaluate the states typically included in process-based

models. Measurements are, therefore, of crucial importance to increase our understanding of hydrological processes at the

catchment-scale, which in turn will improve the quality of remotely-sensed
::::::
remote

::::::
sensing

:
products and model development

(Vidon, 2015; Burt, T. P., McDonnell, 2015; van Emmerik et al., 2018).

:::
The

:::::::::
evaluation

::
of

::::::
model

::::::::
behavior

::
is

:::::::::
conditional

:::
on

:::
the

:::::::::
calibration

:::::::::
procedure,

::::::
which

::::
was

:::::
freely

::::::
chosen

:::
by

:::
the

:::::::::
individual650

::::::::::
contributing

::::::::
institutes.

:::
The

:::
use

::
of

::::::::
different

::
or

::::
more

:::::::::
calibration

:::::::::
objectives

:::
and

:::::::
in-depth

:::::::::
uncertainty

:::::::::
estimation

:::::::::::::::::::::
(Beven and Binley, 1992)

:::
may

:::::
have

::::::
resulted

:::
in

:::::::
different

::::::::::
conclusions

::
in

:::::
terms

::
of

:::
the

:::::::::
plausibility

:::
of

:::
the

:::::::
behavior

::
of

::::
each

::::::
model.

:

:::
We

::::::::
performed

::
a
::::::::
thorough

:::::::
analysis

::
of

::::::
twelve

::::::
models,

::::
five

:::::::
variables

::::
and

::::
three

::::::::::
catchments.

:::
We

::::::::::
deliberately

:::::
chose

::
to
:::::
limit

:::
the

::::::
number

::
of

:::::
study

::::::::::
catchments

::
to

::::::
balance

:::::
depth

::::
with

:::::::
breadth,

::::::::
allowing

::
us

::
to

::::
dive

::::
into

:::::::::::::
process-relevant

:::::::
insights.

:

7 Conclusions655

Similar streamflow performance of process-based models, calibrated following an identical protocol, relies on different internal

process representations. Most models are relatively similar in terms of the long-term partitioning of precipitation into drainage

and evaporation. However, the partitioning between transpiration and interception, snow processes and the representation of

root-zone soil moisture varies significantly between models, suggesting variability of water storage and release through the

catchment. The comparison of modeled states and fluxes with remotely-sensed
::::::
remote

::::::
sensing

:
estimates of evaporationand660

:
, root-zone soil moisture

:::
and

:::::::::
vegetation

::::::
indices

:
suggests that models with relatively small root-zone storage capacities

:::
and

::::::
without

::::::::
reduction

::
in

::::
root

:::::
water

::::::
uptake

:::::
during

::::
dry

::::::::
conditions

:
lead to unrealistic drying-out of the root-zone storage and signif-

icant reduction of evaporative fluxes each summer.
::::::
Expert

:::::::::
knowledge

::
in

::::::::::
combination

:::::
with

::::::
remote

::::::
sensing

::::
data

::::::
further

::::::
allows

::
us

::
to

:::::::
"softly"

:::::::
evaluate

:::
the

::::::::::
plausibility

::
of

::::::
model

::::::::
behavior

::
by

:::::::
ranking

:::::
them

:::
for

:
a
:::

set
:::

of
:::::::
criteria.

::::
Even

::
if
:::::
none

::
of

:::
the

:::::::
models

:
is
::::::::::::
systematically

:::::::::
consistent

::::
with

:::
the

::::::::
available

:::::
data,

:::
we

:::
did

:::
not

::::::::
formally

:::::
reject

::::::
specific

:::::::
models

:::
due

:::
to

:::
the

:::::::::
uncertainty

:::
in

:::
the665

::::::::
evaluation

::::
data

::::
and

::::
their

::::::::
changing

::::::::
relevance

:::
for

:::
the

::::::
studied

::::::::::
catchments.

:
The dissimilarity in internal process representations

between models implies that they are not necessarily providing the right answers for the right reasons, as they cannot simultane-

ously be close to reality and different from each other. While the consequences for streamflow may be limited for the historical

data, the differences may exacerbate for more extreme conditions or climate change scenarios. Considering the uncertainty
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of process representation behind the scenes of streamflow performance and our lack of knowledge and observations on these670

internal processes, we invite modelers to evaluate their models using multiple variables, we encourage more experimental

research, and highlight the value of multi-model multi-parameter studies to support decision making.
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Figure 1. (a) Location of the study catchments in Belgium, North-West Europe. (b) Digital elevation model and catchments of the Ourthe

upstream of Tabreux (ID1), Ourthe Orientale upstream of Mabompré (ID2) and Semois upstream of Membre-Pont (ID3). Pixel size of

GRACE, GLEAM, MODIS and SCATSAR-SWI1km. Colored dots are the streamflow gauging locations and black dots are the precipitation

stations. (c) Perceptual overview of the link between studied fluxes and states and remotely-sensed
:::::
remote

::::::
sensing

:
products.
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Figure 2. Simplified schematic overview of 12 model structures (adapted from de Boer-Euser et al., 2017) with the aim to highlight similar-

ities and differences between the models. Solid arrows indicate fluxes between stores, while dashed arrows indicate the influence of a state

to a flux. Colored arrows indicate incoming or outgoing fluxes, whereas black arrows indicate internal fluxes. The narrow blue rectangle

in GR4H indicates the presence of an interception module without interception storage capacity (Table 3). Storages with a color gradient

indicate the combination of several components in one reservoir.
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(a) (b)

(d)(c)

Figure 3. Evaluation of modeled streamflow performance for the Ourthe at Tabreux for the period 2008–2017. (a) Nash-Sutcliffe Efficiencies

of the streamflow ENS,Q and the logarithm of the streamflow ENS,logQ (median, 25/75th percentiles across parameter sets). (b) Modeled

mean annual streamflow for hydrological years between 2008–2017 across feasible parameter sets. The models are ranked from the highest

to the lowest performance according to the Euclidean distance of streamflow performance (see Table 2). The dashed line and grey shaded

areas show median, 25/75th and minimum-maximum range of observed mean annual streamflow. (c) Baseflow index Ibaseflow as a function

of the flashiness index Iflashiness (median, 25/75th percentiles across parameter sets). Observed values are shown by the grey dashed lines.

(d) Observed and modeled hydrographs of model M5 with high streamflow model performance (low Euclidean distance).
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(a) (c)

(d)(b)

Figure 4. Evaluation of modeled evaporation for the Ourthe upstream of Tabreux for the period 2008–2017. (a) Modeled mean annual actual

evaporation EA and interception evaporation EI for hydrological years between 2008–2017 across feasible parameter sets. The dark grey

shaded area shows the range of potential evaporation EP used as input for the models. The light grey shaded area shows GLEAM actual

and interception evaporation. (b) Daily actual evaporation from GLEAM and modeled by the M5 model. (c) Summer against winter EA/EP

ratios for each model (median and 25/75th percentiles across parameter sets). (d) Summer against winter runoff coefficient Q/P for each

model (median and 25/75th percentiles across parameter sets), plotted on the same scale. The dashed grey lines indicate the observed median

runoff coefficients in summer and winter.
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(a)

(b)

(c) (d) (e)

Figure 5. (a) Fraction of cells with a MODIS areal fraction snow cover greater than zero in the Ourthe Orientale upstream of Mabompré

for the period 2001–2017. MODIS data are available once every three days on average. The dashed lines show the two thresholds of 0.05

::::
10 % and 0.10

:::
15 %

:
selected to distinguish snow days. (b) Modeled snow storage for two contrasting models M5 and WALRUS for the light

orange shaded period. (c) Median annual maximum snow storage as a function of number of days per year with snow. Light (yellowish)

colors indicate models with higher performance (lower Euclidean distances). The vertical and horizontal error bars indicate the 25/75th

percentiles of
::::
over

:::
time

:::
and

:
feasible parameter sets (d,e) Two-dimensional representation of the false alarm over predicted positives ratio

(1-precision) as a function of miss over actual positives ratio (1-recall) when applying a threshold of (d) 0.05
:::
10 %

:
and (e) 0.10 as fraction

::::
15 % of cells

::::
within

:::
the

::::::::
catchment with snow cover greater than zero. In this representation, the perfect model would be at the origin (100 %

hits and 0 % false alarms).The
:::::
dotted

::::
lines

::::
show

:::
the

::::::
distance

::::
from

:::
the

:::::
origin.

:::
The

:
vertical and horizontal error bars indicate the uncertainty

within feasible parameter sets.
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(a) (b) (c)

Figure 6. (a) Range of relative root-zone soil moisture SR in the Ourthe upstream of Tabreux for the period 2015–2017 as a function of the

median root-zone storage capacity (SR,max) across parameter sets. The feasible parameters for NAM are split in two groups due to the large

variability of SR,max (subsets with SR,max of ∼130 mm and ∼240 mm). (b) Range of the SCATSAR-SWI1km Soil Water Index for several

values of the characteristic time length T (days) for the period when SCATSAR-SWI1km is available (2015–2017). (c) Root-zone storage

capacity SR,max as a function of the optimal T -value for each model realization. Optimal T -values are derived at the highest Spearman rank

correlation between Soil Water Index and modeled root-zone soil moisture.
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(a)

(b)

(d) (f )

(c) (e)

Figure 7. (a) Total storage anomalies modeled by M5 and compared to GRACE for the Ourthe upstream of Tabreux.
:::
The

::::
grey

::::
band

:::::
shows

::
the

::::::::
variability

::
in

::::
total

:::::
storage

::::::::
anomalies

::
of

:::
the

::::
three

::::::::
processing

::::::
centers. (b) Catchments of the Ourthe upstream of Tabreux (light grey) and

Semois upstream of Membre-Pont (dark grey) located in two neighboring GRACE cells. (c) Range of GRACE total storage anomalies for the

::::
three

::::::::
processing

:::::
centers

:::
for

:::
the Semois upstream of Membre-Pont compared to the Ourthe upstream of Tabreux for the period 2001–2017.

(d) Mean monthly precipitation during winter and summer months in the Semois upstream of Membre-Pont compared to the Ourthe upstream

of Tabreux. (e) Modeled total storage anomalies for both catchments. (f) Spearman rank correlations between GRACE and modeled total

storage anomalies as a function of the range of modeled total storage for the Ourthe upstream of Tabreux.
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(a)

(c)

(e)

(g)

(i)

(k) (l)

(j)

(h)

(f )

(b)

(d)

Figure 8. (a,b) Modeled relative root-zone soil moisture SRand
:
, SCATSAR-SWI1km Soil Water Index with optimal T -value

::
and

:::::
NDVI

:
for

the period 2015–2017 for GR4H (yellow) and M5 (orange) respectively.
:::
The

::::
error

::::
bars

:::
and

::::
bands

::::
show

:::
the

:::::::
standard

:::::::
deviation

::
of

::
the

::::::
remote

:::::
sensing

::::
data

:::::
within

:::
the

:::::::
catchment

::::
area (c,d) Actual evaporation EA by GR4H and M5 for the period 2015–2017, showing a large reduction

of evaporation during summer for M5 unlike GR4H and GLEAM actual evaporation (e,f) Zoomed-in modeled SR and SCATSAR-SWI1km

root-zone soil moisture for the grey shaded period of September 2016 in (a,b,c,d). (g,h) Potential, modeled and GLEAM actual evaporation,

(i,j) Modeled and observed streamflow Q, (k,l) Total storage ST for the September 2016 dry period. The narrow uncertainty band of the

GR4H model is related to its converging parameter search method.
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(a) (e)

(b) (f )

(c) (g)

(d) (h)

Figure 9. Summary of over-
::::::
Ranking

:
and underestimations

:::::::
evaluation

:
of states and fluxes compared to a reference

::::
model

:::::::
behavior

:
for

the Ourthe upstream a
::::::::

selection of Tabreux (grey squares). Mean annual modeled
:::::
criteria

:::::
based

::
on

::::::::
observed streamflow(denoted as Q),

flashiness
:::::

remote
:::::
sensing

::::
data and baseflow indices (Iflashiness and Ibaseflow)

::::
expert

:::::::::
knowledge.

:::
The

::::
grey

:::::
shaded

:::::
areas are compared with

observed streamflow
::
soft

:::::::::
indications

::
of

:::::
more

:::::::
plausible

:::::::
behavior

:::::
based

::
on

:::::::::
uncertainty

:::::::
estimates

:::
and

::::::
expert

:::::::::
knowledge.

:::::
Model

:::::
ranks as

a reference
::::::
function

::
of

::::
the:

::
(a)

:::::::
deviation

:::::
from

:::::::
observed

::::::
median

:::::
annual

:::::::::
streamflow. Actual and interception evaporation (EA and EI) are

compared with
:::
(b)

:::::::
deviation

::::
from

:::
the

:::::::
flashiness

:::::
index.

:::
(c)

:::::::
deviation

::::
from

:::
the

:::::::
baseflow

:::::
index.

::
(d)

::::::::
deviation

::::
from

:::::
median

::::::
annual GLEAM

estimates
::::
actual

:::::::::
evaporation. Maximum

::
(e)

:::::::
deviation

::::
from

::::::
median

:
annual snow water storage (SW) is compared

::::::
GLEAM

:::::::::
interception

:::
for

:::::
models

:
with the median

:::::
explicit

::::::
separate

::::::::::
interception

::::::
module.

:::
(f)

::::::
number of all models

:::
days

::::
with

:::::
snow

::::
cover

:
for the Ourthe Orientale

upstream of Mabompré
::::
valid

::::::
MODIS

::::::::::
observations

::::::
between

:::::::::
2001-2017,

:::
for

:::::
models

::::
with

:
a
:::::

snow
::::::
module. The ranges

::
(g)

::::::
annual

::::::
number of

maximum and minimum
:::
days

:::::
when

::
the

:
root-zone soil moisture (SR) and total storage

:
is

:::
dry (ST) are compared

::::
filled with the median ranges

:::
less

:::
than

::::
1 % of all models

:
its

:::::::
capacity). The difference between maximum and minimum modeled

::
(h)

::::::::
deviation

::::
from

::
the

:::
1st

::::::::
percentile

::
of

::::::
GRACE

:
total storage anomalies (ST,anomaly) is compared with GRACE estimates

::
for

:::
the

::::
three

::::::
centers. The thickness of colored lines

represents
:::
error

::::
bars

::::
show the

::::::
25-75th

::::
range

:::::
across

:::
the realizations from the ensemble of parameter sets retained as feasible.
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Table 1. Description of symbols used for fluxes, storages and parameters in Tables 2 and 3

Symbol unit Description

Fluxes

EP mm h−1 Potential evaporation

EI mm h−1 Interception evaporation

ER mm h−1 Transpiration (and soil evaporation )

EW mm h−1 Sublimation

EA mm h−1 Total actual evaporation (sum of transpiration and if applicable interception and/or
:::
soil

:::::::::
evaporation,

::::::::::
transpiration,

:::::::
(separate)

::::::::::
interception

:::
and,

::
if

::::::::
applicable, sublimation)

P mm h−1 Precipitation

PR mm h−1 Precipitation entering the root-zone storage (after snow and/or interception if present or fraction/total precipitation)

Q mm h−1 Streamflow

QR mm h−1 Flux from root-zone to fast and/or slow runoff storage

QP mm h−1 Percolation flux from root-zone storage to slow runoff storage

QC mm h−1 Capillary flux from slow runoff storage to root-zone storage

QG mm h−1 Seepage (up/down) / extraction

Storages

ST mm Total storage

SW mm Snow storage

SI mm Interception storage

SR mm Root-zone storage

SR - Relative root-zone storage (SR/SR,max)

SD mm Storage deficit

SVQ mm Very quick runoff storage

SF mm Fast runoff storage

SS mm Slow runoff storage

SSW mm Surface water storage

Parameters

CE - Correction factor for EP

Imax mm Maximum interception capacity

SR,max mm Maximum root-zone storage capacity

Sthresh mm Threshold of root-zone storage above which ER = EP

LP - Threshold of relative root-zone storage above which ER = EP

Ccst - Constant water stress coefficient to estimate ER

a, b, S0 - Parameters describing the shape of the streamflow sensitivity

aS - Fraction of land surface covered by surface water

aG - Fraction of land surface not covered by surface water

32



Table 2. Number of calibrated model parameters,
:::::
spatial

:::::::::
distribution,

:::
and

:
model performance calculated for the period 2008–2017 with the

Euclidean distance where a value of 0 would indicate a perfect model. Main characteristics describing snow storage, root-zone storage and

total storage per model. Notations are defined in Table 1.

G
R

4H

M
5

N
A

M

w
flo

w
_h

bv
dS

2

M
4

M
3

M
2

PR
ES

A
G

ES
FL

EX
-T

op
o

V
H

M

W
A

LR
U

S

Number of calibrated parameters 4 9 12 9 4 7 6 5 6 20 12 3

::::::
Lumped

:::
(L)

:
/
::::::::::::
Semi-distributed

:::
(S)

:
/
::::::::
Distributed

:::
(D)

: :
L
: :

L
: :

L
: :

D
: :

L
: :

L
: :

L
: :

L
: :

L
: :

S
: :

L
: :

L

Euclidean distance
√

(1−ENS,Q)2 +(1−ENS,logQ)2 0.17 0.18 0.18 0.20 0.21 0.23 0.23 0.24 0.24 0.26 0.26 0.34

Snow storage SW (compared to MODIS snow cover)

Snow module X X X X - X - - - X - X

Degree-hour method X X X X - X - - - X - X

Elevation zones X - - X - - - - - X - -

Temperature interval for rainfall and snow X - - X - - - - - X - X

Melt factor constant in time - X - X - X - - - X - X

Melt factor ∼ snow storage X - X - - - - - - - - -

Refreezing of liquid water - - X X - - - - - - - -

Sublimation - - - - - - - - - X - -

Calibration snow parameters - X X - - X - - - X - -

Root-zone storage SR (compared to SCATSAR-SWI1km Soil Water Index)

Separate root-zone module with capacity SR,max X X X X - X X X X X X -
dSR
dt

= PR −ER - - - - - - - - - - X -
dSR
dt

= PR −ER +QC - - X - - - - - - - - -
dSR
dt

= PR −ER −QR X X - X - X X X X - - -
dSR
dt

= PR −ER −QR −QP +QC - - - - - - - - - X - -

Total storage ST (anomalies are compared to GRACE total storage anomalies)

ST =−SD · aG +SF · aG +SSW · aS - - - - - - - - - - - X

ST(Q) = 1
a

1
1−b

·Q1−b +S0 - - - - X - - - - - - -

ST = SR +SF - - - - - - X X - - - -

ST = SW +SR +SF - - - - - X - - - - - -

ST = SW +SR +SF +SS - X - - - - - - - - - -

ST = SR +SVQ +SF +SS - - - - - - - - X - X -

ST = SW +SR +SVQ +SF +SS X - - - - - - - - - - -

ST = SI +SW +SR +SF +SS - - - X - - - - - - - -

ST = SI +SW +SR +SVQ +SF +SS - - X - - - - - - X - -
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Table 3. Main characteristics describing evaporation processes per model , which are compared to GLEAM remotely-sensed-based

evaporation (with X1 indicates LP = 1 and X2 indicates EI = 0). Notations are defined in Table 1.

G
R

4H

M
5

N
A

M

w
flo

w
_h

bv
dS

2

M
4

M
3

M
2

PR
ES

A
G

ES
FL

EX
-T

op
o

V
H

M

W
A

LR
U

S

Correction factor for potential evaporation - X - - - X X X - - - -

Interception evaporation EI X - X X - - - - - X - -

Maximum interception storage Imax - - X X - - - - - X - -

Imax ∼ 1.1− 3.4 mm - - - - - - - - - X - -

Imax ∼ 1.4− 2.9 mm - - - X - - - - - - - -

Imax ∼ 5.3− 6.9 mm - - X - - - - - - - - -

EI =

EP, if SI > 0.

0, otherwise.
- - X X - - - - - X - -

EI =

EP, if P > EP.

P, otherwise.
X - - - - - - - - - - -

Transpiration
:::
and

:::
soil

:::::::::
evaporation ER X X X X X X X X X X X X

ER = EP ·Ccst - - - - X - - - - - - -

ER = EP · SR·(2−SR)

1+EP/SR,max·(2−SR)
X - - - - - - - X - - -

ER = EP ·CE · SR·(1+m1)

SR+m1
, with m1 = 10−2 - X - - - X X X - - - -

ER =

(EP −EI) · SR
LP

, if SR < LP .

EP −EI, otherwise.
- - X1 X - - - - - X X2 -

ER = EP · f(Sd) - - - - - - - - - - - X

Actual
::::
Total

:::::
actual evaporation EA X X X X X X X X X X X X

EA = ER - X - - X X X X X - X X

EA = ER +EI X - X X - - - - - - - -

EA = ER +EI +EW - - - - - - - - - X - -
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Data availability. Streamflow and precipitation data were provided by the Service Public de Wallonie in Belgium (Direction générale opéra-

tionnelle de la Mobilité et des Voies hydrauliques, Département des Etudes et de l’Appui à la Gestion, Direction de la Gestion hydrologique

intégrée (Bld du Nord 8-5000 Namur, Belgium)). Hourly radiation data were retrieved from the portal of the Royal Netherlands Meteoro-675

logical Institute (2018; http://www.knmi.nl/nederland-nu/klimatologie/uurgegevens). Daily temperature data were retrieved from the E-OBS

OPeNDAP server http://opendap.knmi.nl/knmi/thredds/dodsC/e-obs_0.25regular/tg_0.25deg_reg_v17.0.nc (Haylock et al., 2008). Actual

evaporation estimates from the Global Land Evaporation Amsterdam Model (GLEAM) are available through the SFTP server of GLEAM,

(https://www.gleam.eu/, Miralles et al., 2011; Martens et al., 2017). MODIS Snow cover fractions (Hall and Riggs, 2016a, b) are available for

download from the Earthdata portal https://earthdata.nasa.gov/. The Soil Water Index SCATSAR-SWI1km are available from the Copernicus680

Global Land Service at https://land.copernicus.eu/global/products/swi (Bauer-Marschallinger et al., 2018). GRACE land data (Swenson and

Wahr, 2006; Swenson, 2012) are available at http://grace.jpl.nasa.gov, supported by the NASA MEaSUREs Program. The modeled states

and fluxes of each model will be made available online in the 4TU data repository.
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