Hydrol. Earth Syst. Sci. Discuss., Hydrology and
https://doi.org/10.5194/hess-2020-176-AC4, 2020 Earth System
© Author(s) 2020. This work is distributed under .
the Creative Commons Attribution 4.0 License. Sciences

Discussions

Interactive comment on “Behind the scenes of
streamflow model performance” by Laurene J. E.
Bouaziz et al.

Lauréne J. E. Bouaziz et al.
laurene.bouaziz@deltares.nl

Received and published: 17 July 2020

We thank the anonymous referee 3 for his/her comments and provide an answer to
each point below. However, we are surprised and puzzled by the review as we think
that most of the points raised by the referee are covered in the manuscript. The
overall assessment and relatively minor comments do not seem to correspond with
the associated evaluation report of the referee.

Comment 1:
This manuscript proposes a multi-objective model evaluation to compare a number
of different hydrological catchment models. While this is certainly a valuable task, |
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honestly have very split feelings about this study. The general idea of multi-objective
testing is not new, but very important, and the comparison of several models is an
interesting novel aspect. However, | have a number of fundamental concerns, which
would require new data and computations to be addressed.

The study is based on only three catchments. Several studies have shown how
variable results between catchments can be, and these days with more and more data
sets being available, the use of just three catchments seems a bit surprising for this
type of study.

Reply 1:

The overall objective and novel aspect of this study is to analyze and quantify the
differences in the magnitudes and dynamics of multiple internal state and flux variables
of multiple models that provide similar performance characteristics when exclusively
evaluating them against observed streamflow. We will further emphasize this in the
introduction. More specifically, in addition to streamflow, we quantify the differences
of five model internal state and flux variables for twelve models in three catchments.
The primary aim of our study is to demonstrate and underline that models that are
calibrated to streamflow can generate similar, high performance levels in reproducing
streamflow, but that they use different "pathways" to do so, i.e. all representing the
system in a different way. A secondary objective is to benchmark the internal state
and flux variables against remote sensing data. We will clarify this in the introduction
of the revised manuscript.

As in previous comparison studies, there needs to be a trade-off in what can be done
in one single experiment. This is not only a question of computational capacity and
time restrictions but also a matter of how results can be analyzed and communicated
in a feasible and meaningful way. Already now, with five internal variables from twelve
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models and three catchments, the sheer amount of results produced makes it difficult
to identify and communicate the most relevant points. Extending such a study to
say 10 or 50 catchments will add an additional layer of results, which needs to be
interpreted and discussed in addition. This will lead to a very unfocussed paper, in
which the reader will struggle to find in-depth results. Such trade-offs in the analyzed
factors are common in comparison studies and we are in fact not aware of any study
that combines an analysis of many models with many variables and many catchments.
For example, in their comparison study, Hollander et al. (2009) used ten models in
one artificial catchment and assessed evaporation and discharge. The distributed
model intercomparison project (DMIP; Smith et al. 2012) worked with 16 models, 17
catchments but mainly assessed streamflow and soil moisture. Noh et al. (2015) and
Koch et al. (2016) compared three models with respect to seasonal variability of soil
moisture. Orth et al. (2015) used three models to assess streamflow and soil moisture
in eight catchments. Le Moine et al. (2007) used two models in 1040 catchments
to focus on intercatchment groundwater flows. Rakovec et al. (2016) studied three
internal state and flux variables in 400 catchments using a single model. Very
recently, Knoben et al. (2020) investigated differences in performance of 36 models
in 559 catchments with respect to streamflow as single variable. Their analyses are
based on general performance metrics of daily streamflow. The conclusions remain
general due to the considerable volume of data produced, allowing for less detail on
process-relevant insights. Each of these studies has a specific focus and this is similar
for our study. To our knowledge, a study with strong focus on internal model dynamics
for multiple models in more than one catchment has not been done in this way before.
We deliberately chose to balance depth with breadth and perform a thorough analysis
of the set of twelve models and five variables in the three catchments in this study.
We will stress this motivation in the revised version of the manuscript.

Comment 2:
The study addresses different storages, including snow storage. However, the impor-
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tance of snow in the test catchments is minor. | could not find any information on the
relative importance of snow (the info of about one month of snow cover is incomplete
as this does not say anything about the amount of water stored as snow). Still, my
general understanding is that snow does not play any major role in these catchments.
This is probably also the reason why the authors can get away with not using any
elevation zones for modelling snow processes.

Reply 2:

We agree that snow is not a major component of the streamflow regime within these
catchments (as briefly mentioned in Section 2). Most of the precipitation falls as rain
and the models have high streamflow model performance even without including a
snow module. The amount of water stored as snow is shown in Figure 5b and 5c of
the manuscript with maximum annual amounts of less than 20 mm. Despite these
relatively small amounts, snow can be very important for specific events. In 2011, rain
on snow caused widespread flooding in these catchments. The elevation range of the
Ourthe Orientale upstream of Mabompré, where we are evaluating snow processes,
is approximately 370 m (from 294 m to 662 m). We believe this can be treated as a
single elevation zone, in particular as 65% of the catchment falls into a narrow 100 m
elevation band (see Fig. 1 of this reply). In any case, given the absence of detailed
observed temperature lapse rates, the assumption of a stable environmental lapse
rate of e.g. 0.6 degree C/100m, required for an elevation stratification remains very
speculative and thus not really warranted by the available data. We will clarify this in
the revised version of the manuscript.

Comment 3:

Each of the storage estimation used for model testing is associated with significant
observation uncertainties. There is also a scale-mismatch which results in additional
uncertainties. These issues have to be considered!
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Reply 3:

We completely agree that there is considerable and effectively mostly unknown
uncertainty in the used remote sensing data. This was the underlying reason why
we did not use the remote sensing products for model calibration nor for any type
of quantitative model evaluation. We rather only treated these data as additional
information against which to indicatively compare the modeled internal state and flux
variables. We cannot and do not consider the remote sensing data to be a reliable
representation of real-world quantities. However, they are useful to detect potential
outliers. The uncertainty associated to remote sensing data should not restrain us
from using them at all. However, we will clarify the uncertainties associated to the
use of each remote sensing product in the revised version of the manuscript. In the
next version of the manuscript, we will define a set of soft criteria to evaluate not only
how consistent the model internal dynamics are amongst each other, but also if they
provide a consistent behavior with what we expect from expert knowledge and remote
sensing data.

Comment 4:

Another point that seems to be missing is that each of the models of course also
is affected by parameter uncertainties (which will influence the simulated storages).
Perhaps | am missing something, but as | understand, single parameter sets are
used for each model. This is not sufficient; we know that the same model can result
in very different internal simulations because of parameter uncertainty. This leaves
me wondering how much of the differences presented here are due to parameter
uncertainty rather than due to model differences.

Reply 4:
We absolutely agree that parameter uncertainty can cause differences in model
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internal behaviour. Therefore, we of course use an ensemble of feasible parameter
sets to account for parameter uncertainty. This is briefly mentioned in Section 4.1
and we will clarify this further in the revised version of the manuscript. The error bars
and/or boxplots and/or ensemble of lines in Figure 3, 4, 5, 6, 7, 8 and 9 represent the
ensemble of feasible parameter sets, as also mentioned in each caption. The narrower
uncertainty ranges of some models are related to the use of different search strategies
of the parameter space (see caption of Figure 8).
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Fig. 1. Elevation contour lines of the Ourthe Orientale upstream of Mabompré
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