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Abstract. The topographic heterogeneity of the rivers has great effects on the river flood routing. The 

discrete generalized Nash model (DGNM), developed on the basis of the Nash’s instantaneous unit 

hydrograph (IUH), is a lumped model that can’t reflect the spatial heterogeneity of the river topography. 

The heterogeneous DGNM (HDGNM) with a consideration of such heterogeneity has been developed 10 

by the conceptual interpretation of the DGNM. Two compositions of the downstream outflow 

generated by the recession of the old water stored in the river channel and the discharge of the new 

water from upstream inflow were deduced respectively with the help of the heterogeneous IUH and 

the corresponding heterogeneous S curve. The HDGNM is finally expressed as a linear combination 

of the inflows and outflows, whose weight coefficients are calculated by the heterogeneous S curve. 15 

The HDGNM expands the application scope, and becomes more applicable, especially in river reaches 

where the river slopes and cross-sections change greatly. The middle Hanjiang River was selected as 

a case study to test the model performance. It is suggested that the HDGNM performs better than the 

DGNM, with higher model efficiency and smaller relative error in the simulated flood hydrographs.  
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1 Introduction 

In rainfall-runoff modelling, the instantaneous unit hydrograph (IUH) proposed by Nash (Nash, 

1957) is one of the most widely used methods for overland flow routing. Under the assumption that 

watershed was represented as a cascade of equal linear reservoirs, IUH was obtained in a form of 25 

gamma distribution with two parameters - n, the number of linear reservoirs, and K, reservoir storage 

coefficient. The linear cascade concept has greatly promoted the development of the flow routing 

theory. Many linear cascade – based models have been developed since then. However, as a lumped 

model, IUH cannot reflect the spatial heterogeneity of rainfall and landforms. Great efforts have been 

made to make IUH be semi-distributed or distributed mainly by two approaches. The first approach 30 

has been mostly performed by replacing the equal reservoirs in the IUH with unequal ones. Dooge 

(1959) conceptualized the watershed as a combination of unequal linear reservoirs and linear channels, 

and developed a general theory for unit hydrograph. Singh (1964) derived the IUH using a nonlinear 

model considering the overland and channel flow components separately, in which two unequal linear 

reservoirs with different storage coefficients were used. To solve the flow routing in urban areas, 35 

Diskin et al. (1978) proposed an urban parallel cascade IUH model by representing the basin system 

as the combination of two parallel branches having a series of equal linear reservoirs. Bhunya et al. 

(2005) developed a hybrid model by splitting the single linear reservoir into two serially connected 

reservoirs of unequal storage coefficients (one hybrid unit), and obtained the analytical expression of 

the model for two hybrid units in series. Later, to consider the translation time, Singh et al. (2007) 40 

extended this hybrid model by inserting a linear channel between each hybrid unit. Bhunya et al. (2008) 

formulated a rainfall–runoff model incorporating a variable storage coefficient instead in the two-
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reservoir Nash cascade model. Li et al. (2008) derived the IUH with different K values for each 

reservoir using the Laplace transform and developed a general rule for the equation of the IUH of any 

order. The other approach is to divide the watershed into a number of subwatersheds to consider the 45 

nonuniformly distributed rainfall. For example, based on the structure of a stream network, Wang and 

Chen (1996) divided the watershed into a number of subwatersheds and obtained the outflow 

hydrograph of each subwatershed based on the concept of linear cascade reservoirs. This linear, 

spatially distributed model can be capable of predicting runoff from non-uniformly distributed rainfall 

and geographical conditions over an entire watershed. Similarly, Wan et al. (2016) divided the 50 

watershed into subareas by isochrones, and established an independent linear reservoir-channel 

cascade model in each subarea. Finally, the generalized concentration curve that can be applied to large 

heterogeneous watersheds was derived. All of these modifications of IUH have made a certain 

improvement in the rainfall-runoff modeling. 

As a general method of flow routing, Nash’s IUH is also applicable to river flow routing, which 55 

has been done independently by Kalinin and Milyukov (1958), also known as Characteristic Reach 

method. Nash’s IUH can also be obtained by solving the nth order differential equation of a linear 

system with the zero initial conditions (Chow, 1988). Zero initial conditions represent that the linear 

reservoirs in the Nash cascade model are empty at initial time, or equivalently the initial river storages 

are empty when IUH is applied in river flow routing, which does not match the fact. To consider the 60 

influence of the initial state, Szollosi-Nagy (1982) formulated a state-space description of the Nash 

cascade model in a matrix form, whereby the initial storage of the river system should be estimated 

separately via observability analysis (Szollosi-Nagy, 1987). Szilagyi (2003) then extended this model 
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to a sample-data system framework and made some modifications to make it more applicable (Szilagyi, 

2006; Szilagyi and Laurinyecz, 2014). Recently, Yan et al. (2015) exactly solved the nth order 65 

differential equation of the Nash cascade model with the same non-zero initial condition, and obtained 

the generalized Nash model (GNM) with a simpler expression, in which the initial state was directly 

included and should not be estimated separately anymore. To make the GNM be applied easily to the 

sample-data system, Yan et al. (2019) further discretized its analytical expression by introducing a 

variable Sn-curve, and obtained the discrete generalized Nash model (DGNM). The DGNM expresses 70 

the outflow as a linear combination of the old water stored in the river reach and new water from the 

upstream inflow. The DGNM is based on the lumped IUH that it cannot reflect the spatial 

heterogeneity of the river topography too. So the DGNM is less applicable for those the topography 

changes large along the river. In this case, the unequal reservoir concept should be used instead. 

However, under the non-zero initial conditions, the solving of high order differential equation of the 75 

Nash cascade model with unequal storage parameters will become very difficult, which makes the 

generalization of the Nash model impossible by directly solving the differential equation. A new way 

is proposed in this paper to obtain the heterogeneous DGNM (HDGNM) through the conceptual 

interpretation and mathematical derivation of the DGNM.  

2 Conceptual interpretation of the DGNM 80 

According to Yan et al. (2019), the calculation formula of the DGNM is 
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Where 𝐶𝐶𝑗𝑗𝑖𝑖 is the combination formula; 𝑂𝑂𝑡𝑡±𝑖𝑖 represents the downstream outflow at time t ± i∆t; ∆t 

is the time interval; 𝐼𝐼𝑡𝑡 represents the upstream inflow at time t; ∆𝐼𝐼𝑡𝑡+1 represents the inflow increment 

during the time interval [𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡]; n and K are model parameters; 𝑆𝑆𝑖𝑖 can be computed by 85 
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According to the definition of the S curve, S𝑖𝑖  represents the outflow generated by the unit 

continuous inflow after the routing of a series of i reservoirs at the end of the time. The calculation 

formula of the DGNM shows that the downstream outflow is composed of three items. The first item 

is the recession flow of the current water storage capacity in the channel, which is the superposition of 90 

the flow generated by the current storage of each reservoir routed by the subsequent reservoirs. The 

second term is the recession flow generated by the current inflow It  routed by river channel, or 

equivalently by a series of n cascade linear reservoirs. According to the definition of S𝑖𝑖 as well as the 

storage-discharge relation of the linear reservoir, KSi represents the water stored in each reservoir for 

a unit continuous inflow, and ∑ 𝐾𝐾 𝑆𝑆𝑖𝑖 ∆𝑡𝑡⁄𝑛𝑛
𝑖𝑖=1  represents the ratio of water stored in the channel during 95 

the period ∆t. Then, 1 − ∑ 𝐾𝐾 𝑆𝑆𝑖𝑖 ∆𝑡𝑡⁄𝑛𝑛
𝑖𝑖=1  represents the ratio of water discharges from the channel. So 

the third term is the outflow generated by the inflow increment during the time interval [𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡] 

after the channel routing. In summary, the downstream outflow is generated by the old water stored in 

the river channel and the new water from upstream inflow. Part of the new water flows out of the 

downstream section and becomes one part of the outflow, the other part remains in the river channel 100 

to supplement the old water. The old water recedes and becomes the other component of the outflow. 

In such circulation, the outflow process of the downstream section is formed. Through the conceptual 

interpretation of the DGNM, the downstream outflow is physically generated by the old water stored 
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in the river reach and new water from the upstream inflow, and formally expressed as a linear 

combination of the inflows and outflows, whose weight coefficients are calculated by the S curve that 105 

gives another way to deduce the HDGNM by introducing the heterogeneous S curve. 

3 Heterogeneous S curve 

The routing storage capacity of the basin is affected by geographical features and has spatial 

heterogeneity. The storage routing effect of the basin is equated to a cascade reservoir routing in Nash’s 

IUH, and each reservoir has the same storage coefficient. This generalization has certain rationality 110 

for basins with homogeneous topography variation. But for the basins with large topographic changes, 

the spatial difference in storage routing effect will be more significantly affected by topography and 

geomorphology. To consider such spatial heterogeneity in storage routing effect, Dooge (1959) 

conceptualized the watershed as a combination of unequal linear reservoirs and linear channels, and 

developed a general theory for unit hydrograph. Li et al. (2008) further deduced the IUH with different 115 

storage parameters, here we call it heterogeneous IUH (HIUH) to distinguish with Nash’ IUH: 
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where K𝑖𝑖(𝑖𝑖 = 1,⋯ ,𝑛𝑛) is the storage parameter of the i-th reservoir (the numbers here are sorted in 

the forward direction, that is, the most upstream reservoir is the number 1, and the most downstream 

reservoir is the number n). Correspondingly, the heterogeneous S curve formed by HIUH is (Li et al., 120 

2008) 
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where 𝑆𝑆𝑛𝑛(𝑡𝑡) represents the outflow of the nth reservoir yielded by a continuous unit upstream inflow. 

If further define the storage curve, we obtain 
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where 𝑅𝑅𝑛𝑛 = 1 − 𝑆𝑆𝑛𝑛(𝑡𝑡), represents the detention storage of the nth reservoir yielded by a continuous 

unit upstream inflow.  

The HIUH is a more accurate generalization of the watershed storage routing, and is a theoretical 

expansion of the Nash’s IUH. With consideration of the spatial heterogeneity in the storage routing, 

HIUH is especially applicable to the basin with large topographic changes. The DGNM is developed 130 

on the basis of the Nash’s IUH, which leads to its theoretical limitations when applied to the river reach 

with large changes of cross-sections and slopes. The introduction of HIUH can reflect the difference 

of flood routing in each sub-river, thus can improve the flood simulation precision in the whole river 

reach theoretically.  

4 Derivation of the heterogeneous DGNM  135 

The conceptual interpretation of the DGNM shows that the downstream outflow is generated by 

the old water stored in the channel and the new water from upstream inflow, denoted by Oold and 

Onew respectively, we have 

( ) ( )
1

1
0 0

1
1

!

ijn
old i
t j n j t i

j i
O C S O

j

−

+ − −
= =

−
= −∑∑       (6) 

1 1
1

1
n

new
t n t i t

i

KO S I S I
t+ +

=

 = + − ∆ ∆ 
∑        (7) 140 

https://doi.org/10.5194/hess-2020-17
Preprint. Discussion started: 18 February 2020
c© Author(s) 2020. CC BY 4.0 License.



 

8 
 

For the linear reservoir system with unequal storage parameters, 𝑆𝑆𝑖𝑖 represents the outflow of the 

ith reservoir yielded by a continuous unit upstream inflow, then 𝐾𝐾𝑖𝑖𝑆𝑆𝑖𝑖 represents the water stored in 

each reservoir for a unit continuous inflow, and ∑ 𝐾𝐾𝑖𝑖 𝑆𝑆𝑖𝑖 ∆𝑡𝑡⁄𝑛𝑛
𝑖𝑖=1  represents the ratio of water stored in 

the channel during the period ∆t, based on the former conceptual interpretation of the Onew. Hence, 

for the linear reservoir system with unequal storage parameters, the outflow generated by "new water" 145 

can be obtained by replacing the storage parameter K and S curve in Eq. (7) with variable Ki and 

heterogeneous S curve, respectively, i. e. 
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Therefore, on the basis of the conceptual interpretation of the DGNM, the outflow Onew formed 

by the new water can be deduced directly. But it seems impossible to obtain the outflow Oold by 150 

directly using the heterogeneous S curve instead of in Eq. (7) due to the coefficient of 𝑆𝑆𝑛𝑛−𝑗𝑗 is also 

varying with it. For the sake of simplicity, we assume that the most downstream reservoir is numbered 

1, and the most upstream reservoir is numbered n, that is to say, the n reservoirs are reversely numbered. 

Then the storage routing equation of the j-th reservoir can be obtained from the water balance equation: 
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It can be known from Eq.(9) that the outflow of each reservoir at the current time is as follows: 
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Based on the physical interpretation of the GNM (Yan et al., 2015), the recession flow of the 

current water storage in river channel is the superposition of the recession flow generated by the current 

water storage in each reservoir. According to the conception of linear reservoir, the current water 

storage of the j-th reservoir is K𝑗𝑗𝑂𝑂𝑗𝑗(𝑡𝑡), which can be treated as an instantaneous inflow into each 165 

reservoir, then the outflow at the end of the period generated by that is K𝑗𝑗𝑂𝑂𝑗𝑗(𝑡𝑡)𝑢𝑢𝑗𝑗(∆𝑡𝑡). Based on the 

principle of superposition, the outflow at the end of the period formed by the current water storage of 

all reservoirs is 
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The formula shows that the recession process can finally be expressed as a linear combination of 

0~(n-1) derivatives of the current time O(𝑡𝑡), which is 
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where 𝐴𝐴𝑝𝑝(𝑝𝑝 = 0,⋯ ,𝑛𝑛 − 1)  is the coefficient of p-th order derivative of O(𝑡𝑡) , then we have  

(detailed derivation is provided in Appendix) 175 
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𝐴𝐴𝑝𝑝 is derived in the case of reverse numbering, and its calculation formula shows that 𝐾𝐾𝑖𝑖 has 

symmetry. Therefore, in the case of forward numbering, or equivalently, let 1, , nK K  replace 
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1, ,nK K  respectively, the formula for calculating 𝐴𝐴𝑝𝑝 is still the same as Eq.(15), thus ensuring that 

Oold and Onew are calculated under the same numbering system. To further discretize the term Oold 180 

in Eq. (12), the derivatives of O(𝑡𝑡) are approximated by the following backward finite difference 

method. 

( ) ( )
0

1 1
p

ip i
t p t ip

i
O C O

t −
=

= −
∆ ∑        (14) 

Substituting equation (13) and (14) into equation (12), we obtain 
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According to the conceptual interpretation of the DGNM, the downstream outflow is jointly 

produced by the old water stored in the river channel and the new water from upstream inflow, then 

we have 
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Eq. (16) is the calculation formula of HDGNM, and is also the discrete solution of linear cascade 190 

model with unequal reservoirs under non-zero initial conditions. Like the HIUH, with a consideration 

of the spatial heterogeneity in the storage routing, HDGNM should be more applicable to the river 

reach with large changes of cross-sections and slopes. 

5 Case study  

To test the applicability of the HDGNM, the river reach between gauging stations Huangjiagang 195 

and Xiangyang in the Hanjiang River of China is selected as a case study. Hanjiang River is one of the 

most important tributaries of the Yangtze River of China. The Danjiangkou reservoir, located on the 
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upper Hanjiang River, is the water source of the middle route of China's south-to-north water transfer 

project. Since the opening of the first phase of the middle route on Dec. 12, 2014, the Danjiangkou 

reservoir has supplied a total of 25.5 billion cubic meters of water to drier north areas in China, thereby 200 

benefiting 58 million people in Beijing, Tianjin, Hebei province, and Henan province. The studied 

river reach with a length of 105 kms is located in the middle Hanjiang River, where the Huangjiagang 

hydrological station is located at 6 kms downstream of the Danjiangkou dam site and serves as the 

outflow control station of the Danjiangkou reservoir. The interval basin area between Huangjiagang 

and Xiangyang is 8044 km2. The sketch map of the middle Hanjiang River and the studied river reach 205 

are shown in Fig. 1. The studied river reach is located in the hilly and plain areas, where hills, terraces, 

artificial narrows and wide valleys distribute alternatively, and showing obvious lotus root node shape 

on the plane. The main channels in wide sections have large swings and many beaches, but become 

single in narrow sections, which makes a large change of the shape in the sections along the river reach, 

as shown in Fig.1. The mean slopes of sub-reaches Huangjiagang - Guanghua, Guanghua - Taipingdian, 210 

Taipingdian - Niushou and Niushou - Xiangyang are 0.000176, 0.000276, 0.000221 and 0.000214 

(Gong, 1982), respectively. It is indicated that the channel slope of the studied river reach changes 

largely, especially from sub-reach 1 to sub-reach 2. In short, the topography of the studied river reach 

varies greatly. For such significant spatial heterogeneity, the proposed HDGNM should be more 

applicable as interpreted above. 215 
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Fig.1 The sketch map of the middle Hanjiang River and the studied river reach 

According to the flood data of the Huangjiagang and Xiangyang hydrological stations from the 

year 1974 to 2011, 10 floods with a low proportion of the lateral inflows (time interval ∆t = 3h) were 

selected, of which 8 floods were used for model calibration, and the other 2 floods were used for 220 

validation. In order to demonstrate the simulation effect and test the forecast capability of the HDGNM, 

the DGNM was selected for comparison. For application, the model parameters in these two models 

should be calibrated by using the observed flood data. The SCE-UA algorithm, with the advantages of 

robust and reliable performance, global search capability, has become a commonly used optimization 

method for hydrological model parameters (Duan et al., 1994), and hence was used to obtain the 225 

optimized parameters of these two models. Take the root mean square error of the observed 8 floods 

from the year 1974 to 2005 as the objective function, and run the SCE-UA algorithm to mimimize this 

objection function, we obtain the optimized parameters of n = 3, K = 3.51h for the DGNM and 

https://doi.org/10.5194/hess-2020-17
Preprint. Discussion started: 18 February 2020
c© Author(s) 2020. CC BY 4.0 License.



 

13 
 

n = 3 ,  K1 = 1.58h ,  K2 = 8.80h ,  K3 = 1.59h  for the HDGNM. The parameter K reflects the 

difference in the storage capacity of linear reservoirs. The three linear reservoirs of the DGNM are 230 

equivalent, in essence, it is a homogenization of the topographical differences of the sub-reaches. 

While two of the three linear reservoirs of the HDGNM are approximately the same, and the other is 

quite different from the two. Therefore, it can more objectively reflect the influence of topographical 

differences on the storage routing of the river channel. Theoretically, it can improve the accuracy of 

the flood routing in river channel. The performances of these two models were assessed by the 235 

following two commonly used statistics (Wu et al. 2012):  

(1) Relative error (RE) of peak discharge  

, .

.
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in which Op,est and Op,obs are the estimated and observed peak discharge, respectively. 

(2) Nash–Sutcliffe efficiency coefficient (ENS).  240 
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in which Ot,est and Ot,obs are estimated and observed discharge at time t, respectively. tO  represents 

the mean of observed discharge.  

Table 1 The accuracy evaluation results of DGNM and HDGNM 

Period Data 
DGNM HDGNM 

RE(%) ENS RE(%) ENS 

Calibration 

October 1974 0.91 0.9930 4.27 0.9861 
September 1975 3.69 0.9918 2.87 0.9950 
July 1980 1.62 0.9043 1.08 0.9284 
August 1981 5.26 0.9699 3.47 0.9747 
September 1981 7.82 0.9655 4.45 0.9806 
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September 1984 0.99 0.9774 1.78 0.9860 
September 2003 2.54 0.9655 0.77 0.9715 
October 2005 8.72 0.9845 0.63 0.9963 
Average 3.94 0.9690 2.42 0.9773 

Validation 
July 2007 0.62 0.9707 0.66 0.9775 
September 2011 2.48 0.9889 0.32 0.9928 
Average 1.55 0.9798 0.49 0.9852 

To further test the validity of the parameter estimations from calibration, the verification 245 

experiment was also conducted. The other 2 observed floods in the year 2007 and 2011 were adopted 

to verify the calibration results. The accuracy evaluation results of these two models in calibration and 

validation periods were both shown in Table 1. In calibration period, the average values of RE and ENS 

were 3.94% and 0.9690 for DGNM, respectively. Compared with the DGNM, the HDGNM has made 

some improvements in the simulation. The average value of RE has reduced to 2.42% and that of ENS 250 

has increased to 0.9773. The similar improvements can be found in the validation period with values 

from 1.55% to 0.49% for RE , and from 0.9798 to 0.9852 for ENS, respectively. Comparison of the 

observed and simulated hydrographs for the selected 10 floods was shown in Fig. 2. The HDGNM 

with a consideration of the topographical heterogeneity of the river reach, makes the simulated 

hydrographs much closer to the measured flood hydrographs, especially near the flood peaks. Except 255 

for the October 1974 flood event, the simulations of other floods have different improvements. The 

simulation results show that, compared with the DGNM, the spatial difference of the storage parameter 

is considered, thus the HDGNM is more applicable, especially in the river reaches where the river 

slopes and cross - sections change greatly. 
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Fig. 2 Comparison of the observed and simulated hydrographs for the selected 10 floods 265 
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6 Conclusions 

The heterogeneous DGNM for flood routing was deduced indirectly by conceptual interpretation 

of the DGNM. It is suggested that the downstream outflow is generated by the recession of the old 

water stored in river channel and the discharge of the new water from upstream inflow, and can 

formally expressed as a linear combination of the inflows and outflows, whose weight coefficients are 270 

calculated by the S curve. When such old water and new water are routed by a series of unequal 

reservoirs, the DGNM becomes to HDGNM. Hence, these two compositions of the outflow were 

deduced respectively. The discharging part produced by the new water can be easily deduced with the 

help of the heterogeneous S curve. The recession part produced by the old water is obtained by the 

superposition of the recession process for each linear reservoir, which can be calculated by the impulse 275 

response of the current stored water with the help of HIUH. At last, the HDGNM is expressed as a 

linear combination of the inflows and outflows, whose weight coefficients are calculated by the 

heterogeneous S curve.   

The proposed HDGNM was applied to a reach of the middle Hanjiang River with large changes 

of river slopes and cross-sections. A different linear reservoir with a much larger storage coefficient 280 

was detected from the conceptualized reservoirs in the studied river reach. Considered of the 

topographical heterogeneity of the river reach, the HDGNM performs better than the DGNM, with 

higher model efficiency and smaller relative error in the simulated flood hydrographs. The HDGNM 

enriches the existing generalized Nash flow routing theory and becomes more applicable, especially 

in river reaches where the river slopes and cross-sections change greatly. The river storage is 285 

conceptually as a series of unequal linear reservoirs, thus the HDGNM may have the potential for 
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semi-distributed modelling, e.g. river flow routing with multiple tributaries inflows, which will be 

further studied in the future.  
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Appendix: Derivation of the Coefficient Ap  

   In the derivation of the coefficient Ap, the following identity holds for any integer (1, ]m n∈  and 

any time t 305 

1( ) ( ) ( )m m m mK u t R t R t−= −                             (A.1) 

The proof is as follows 
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( )m mK u t=                                                         (A.2) 

According to Eq. (11) and Eq. (A1), the coefficient of O(t) can be calculated as follows 

( )0 1 1 2 1 1
=1

n

j j n n n
j

A K u t K u R R R R R−= ∆ = + − + + − =∑                  (A.3) 315 

where ju  and jR  denote ( )ju t∆  and ( )jR t∆ , respectively. Then the coefficient of first order 

derivative of O(t) can be derived as 
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1
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j j r
j r
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and the coefficient of second order derivative of O(t) can be derived as 
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Similarly, we can obtain: 325 

( )( )1
1

1

1
p p

p

n

p r r n r
r r

A K K R R
−

> > =

= −∑


                        (A.6) 

Further, if the relation between Sm and Rm, i.e., Sm + Rm = 1 is used, the coefficient Ap can be calculated 

by Eq. (13). 
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