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Abstract. In this study, we explored the use of statistical machine learning and long-term groundwater nitrate monitoring data to 12 

estimate vadose-zone and saturated-zone lag times in an irrigated alluvial agricultural setting. Unlike most previous statistical 13 

machine learning studies that sought to predict groundwater nitrate concentrations within aquifers, the focus of this study was to 14 

leverage available groundwater nitrate concentrations and other environmental variable data to determine mean vertical velocities 15 

(transport rates) of water and solutes in the vadose zone and saturated zone (3.50 m/year and 3.75 m/year, respectively). Although 16 

a saturated-zone velocity that is greater than a vadose-zone velocity would be counterintuitive in most aquifer settings, the statistical 17 

machine learning results are consistent with two contrasting primary recharge processes in this aquifer: (1) diffuse recharge from 18 

irrigation and precipitation across the landscape, and (2) focused recharge from leaking irrigation conveyance canals. The vadose-19 

zone mean velocity yielded a mean recharge rate (0.46 m/year) consistent with previous estimates from groundwater age-dating in 20 

shallow wells (0.38 m/year). The saturated zone mean velocity yielded a recharge rate (1.31 m/year) that was more consistent with 21 

focused recharge from leaky irrigation canals, as indicated by previous results of groundwater age-dating in intermediate-depth 22 

wells (1.22 m/year). Collectively, the statistical machine-learning model results are consistent with previous observations of 23 

relatively high-water fluxes and short transit times for water and nitrate in the aquifer. Partial dependence plots from the model 24 

indicate a sharp threshold where high groundwater nitrate concentrations are mostly associated with total travel times of seven 25 

years or less, possibly reflecting some combination of recent management practices and a tendency for nitrate concentrations to be 26 

higher in diffuse infiltration recharge than in canal leakage water. Limitations to the machine learning approach include potential 27 

non-uniqueness when comparing model performance for different transport rate combinations and highlight the need to corroborate 28 

statistical model results with a robust conceptual model and complementary information such as groundwater age. 29 
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1 Introduction 36 

Lag times for movement of non-point source nitrate contamination through the subsurface are widely recognized (Böhlke, 37 

2002; Meals et al., 2010; Puckett et al., 2011; Van Meter and Basu, 2017) but difficult to measure. Vadose and saturated-zone lag 38 

times are of critical importance for monitoring, regulating, and managing the transport of contaminants in groundwater. However, 39 

transport time-scales are often generalized spatially and/or temporally for groundwater systems impacted by agricultural activities 40 

(Gilmore et al., 2016; Green et al., 2018; Puckett et al., 2011), resulting in a simplified groundwater management approach. 41 

Regulators and stakeholders in agricultural landscapes are increasingly in need of more precise and local lag time information to 42 

better evaluate and apply regulations and best management practices for the reduction of groundwater nitrate concentrations (e.g., 43 

Eberts et al., 2013).  44 

Field-based studies of lag times commonly use expensive groundwater age-dating techniques and/or vadose-zone 45 

sampling to estimate nitrate transport rates moving into and through aquifers (Böhlke et al., 2002, 2007; Böhlke and Denver, 1995; 46 

Browne and Guldan, 2005; Kennedy et al., 2009; McMahon et al., 2006; Morgenstern et al., 2015; Turkeltaub et al., 2016; Wells 47 

et al., 2018). Detailed process-based modelling studies focused on lag times require complex numerical models combined with 48 

spatially intensive and/or costly hydrogeological observations (Ilampooranan et al., 2019; Rossman et al., 2014; Russoniello et al., 49 

2016). Thus, efficient but locally-applicable modelling approaches are needed (Green et al., 2018; Liao et al., 2012; Van Meter 50 

and Basu, 2015). In this study, an alternative data-driven approach (Random Forest Regression) leverages existing long-term 51 

groundwater nitrate concentration (referred to as [NO3
-] hereafter) data and easily accessible environmental data to estimate vadose 52 

and saturated-zone vertical velocities (transport rates) for the determination of subsurface lag times. 53 

Statistical machine learning methods, including Random Forest, have been used successfully for modelling [NO3
-] 54 

distribution in aquifers (Anning et al., 2012; Nolan et al., 2014; Ouedraogo et al., 2017; Rodriguez-Galiano et al., 2014; Wheeler 55 

et al., 2015), but there has not been robust analysis of model capabilities for estimating vadose and/or saturated-zone lag times. 56 

Proxies for lag time, such as well screen depth, have been used as predictors in Random Forest models (Nolan et al., 2014; Wheeler 57 

et al., 2015). Decadal lag times have been suggested from using time-averaged nitrogen inputs as predictors (e.g., 1978-1990 inputs 58 

vs 1992-2006 inputs) and by comparing their relative importance in the model (Wheeler et al., 2015). Application of similar 59 

machine learning methods suggested groundwater age could be used as a predictor to improve model performance (Ransom et al., 60 

2017). Hybrid models, using both mechanistic models and machine learning, have also sought to integrate vertical transport model 61 

parameters and outputs to evaluate nitrate-related predictors, including vadose-zone travel times (Nolan et al., 2018). 62 

The objective of this study is to test a data-driven approach for estimating vadose (unsaturated zone) and groundwater 63 

(saturated zone) transport rates and lag times for an intensively monitored alluvial aquifer in western Nebraska (Böhlke et al., 64 

2007; Verstraeten et al., 2001b, 2001a; Wells et al., 2018). Results are compared to the hydrogeologic, mechanistic understanding 65 

from previous groundwater studies to determine strengths and weaknesses of the approach as (1) a stand-alone technique, or (2) as 66 

an exploratory analysis to guide or complement more complex physical-based models or intensive hydrogeologic field 67 

investigations. 68 

2 Methods 69 

2.1 Site Descriptions 70 

The Dutch Flats study area is located in the western Nebraska counties of Scotts Bluff and Sioux (Fig. 1). The North 71 

Platte River delivers large quantities of water for crop irrigation in this region and runs along the southern portion of this study 72 

area. Several previous Dutch Flats area studies have investigated groundwater characteristics and provided thorough site 73 
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descriptions of the semi-arid region (Babcock et al., 1951; Böhlke et al., 2007; Verstraeten et al., 2001a, 2001b; Wells et al., 2018). 74 

The Dutch Flats area overlies an alluvial aquifer characterized by unconsolidated deposits of predominantly sand and gravel, with 75 

the aquifer base largely consisting of consolidated deposits of the Brule Formation (Verstraeten et al., 1995). Irrigation water not 76 

derived from the North Platte River is typically pumped from the alluvial aquifer, or water-bearing units of the Brule Formation.  77 

The total area of the Dutch Flats study area is roughly 540 km2, of which approximately 290 km2 (53.5%) is agricultural 78 

land (cultivated crops and pasture). Most agricultural land is concentrated south of the Interstate Canal (Homer et al., 2015). Due 79 

to the combination of intense agriculture and low annual precipitation, producers in Dutch Flats rely on a network of irrigation 80 

canals to supply water to the region. From 1908 to 2016, mean precipitation of 390 mm was measured at the nearby Western 81 

Regional Airport in Scottsbluff, NE (NOAA, 2017).  82 

While some groundwater is withdrawn for irrigation, and some irrigated acres in the study area are classified as 83 

commingled (groundwater and surface water source), Scotts Bluff County irrigation is mostly from surface water sources. 84 

Estimates determined every five years suggest surface water provided between 76.8% to 98.6% of the total water withdrawals from 85 

1985 to 2015, or about 92% on average (Dieter et al., 2018). Canals transport water from the North Platte River to fields throughout 86 

the study area. Large canals in Dutch Flats include the Mitchell-Gering, Tri-State, and Interstate Canals, with the latter holding the 87 

largest water right of 44.5 m3/s. (NEDNR, 2009). Leakage from these canals provides a source of artificial groundwater recharge. 88 

Previous studies estimate the leakage potential of canals in the region results in as much as 40% to 50% of canal water being lost 89 

during conveyance (Ball et al., 2006; Harvey and Sibray, 2001; Hobza and Andersen, 2010; Luckey and Cannia, 2006). Leakage 90 

estimates from a downstream section of the Interstate Canal (extending to the east of the study area; Hobza and Andersen (2010)) 91 

suggest fluxes ranging from 0.08 to 0.7 m day-1 through the canal bed. Assuming leakage of 0.39 m day-1 leakage over the Interstate 92 

Canal bed area (16.8 m width x 55.5 km length) within Dutch Flats yields 4.1 x 105 m3 day-1 of leakage. Applied over an on-93 

average 151-day operation period (USBR, 2018), leakage from Interstate Canal alone could approach 6.1 x 107 m3 annually, or 94 

about 29% of the annual volume of precipitation in the Dutch Flats area.  95 

A 1990s study investigated both spatial and temporal influences from canals in the Dutch Flats area (Verstraeten et al., 96 

2001b, 2001a), with results later synthesized by Böhlke et al. (2007). Canals were found to dilute groundwater [NO3
-] near canals 97 

with low-[NO3
-] (e.g., [NO3

-] < 0.06 mg N L-1 in 1997) canal water during irrigation season. 3H/3He age-dating was used to 98 

determine apparent groundwater ages and recharge rates. It was noted that wells near canals displayed evidence of high recharge 99 

rates influenced by local canal leakage. Data from wells far from the canals indicated that shallow groundwater was more likely 100 

influenced by local irrigation practices (i.e., furrows in fields), while deeper groundwater was impacted by both localized irrigation 101 

and canal leakage (Böhlke et al., 2007). Shallow groundwater in the Dutch Flats area has stable isotope composition consistent 102 

with surface water sources (i.e., North Platte River; (Böhlke et al., 2007; Cherry et al., 2020)). 103 

The Dutch Flats area is within the North Platte Natural Resources District (NPNRD), which is 1 of 23 groundwater 104 

management districts in Nebraska tasked with, among other functions, promoting efforts to improve water quality and quantity. 105 

The NPNRD has a large monitoring well network consisting of 797 wells, 327 of which are nested. Nested well clusters are drilled 106 

and constructed such that screen intervals represent shallow groundwater intersecting the water table (screen length = 6.1 m), 107 

intermediate aquifer depths (screen length = 1.5 m), and deep groundwater near the base of the unconfined aquifer (screen length 108 

= 1.5 m).  109 

Influenced by both regulatory and economic incentives, the Dutch Flats area has undergone a notable shift in irrigation 110 

practices in the last two decades. From 1999 to 2017, center pivot irrigated area has increased by approximately 270%, from 111 

roughly 3,830 hectares to 14,253 hectares, or from 13% to 49% of the total agricultural land area, respectively. The majority of 112 

this shift in technology has occurred on fields previously irrigated by furrow irrigation. Conventional furrow irrigation has an 113 
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estimated potential application efficiency (“measure of the fraction of the total volume of water delivered to the farm or field to 114 

that which is stored in the root zone to meet the crop evapotranspiration needs,” per Irmak et al. (2011)) of 45% to 65%, compared 115 

to center pivot sprinklers at 75% to 85% (Irmak et al., 2011). Based on improved irrigation efficiency (between 10-40%), average 116 

precipitation throughout growing season (29.5 cm for 15 April to 13 October  (Yonts, 2002)), and average water requirements for 117 

corn (69.2 cm (Yonts, 2002)), converting furrow irrigated fields to center pivot over the aforementioned 14,253 hectares could 118 

represent a difference of 1 x 107 m3 to 6 x 107 m3 in water applied. Those (roughly approximated) differences in water volumes are 119 

equivalent to 6-28% of average annual precipitation applied over the Dutch Flats area, suggesting the change in irrigation practice 120 

does have potential to alter the water balance in the area. 121 

 The hypothesis of lower recharge due to changes in irrigation technology was investigated by Wells et al. (2018) by 122 

comparing samples collected in 1998 and 2016. While mean recharge rate was not significantly different, a lower recharge rate 123 

was indicated by data from 88% of the wells. Long-term Dutch Flats [NO3
-] trends were also assessed in the study, suggesting 124 

decreasing trends (though statistically insignificant) from 1998 to 2016 throughout the Dutch Flats area, and nitrogen isotopes of 125 

nitrate indicated little change in biogeochemical processes. For additional background, Wells et al., (2018) provides a more in-126 

depth analysis of recent [NO3
-] trends in this region (see also, Fig. S1, which shows only the nitrate data used in the present study). 127 

Other long-term changes to the landscape have included statistically significant reductions in mean fertilizer application 128 

rates (1987–1999 vs. 2000–2012) and volume of water diverted into the Interstate Canal (1983–1999 vs. 2000–2016), while a 129 

significant increase in area of planted corn was found (1983–1999 vs. 2000–2016). Precipitation was also evaluated, and though 130 

the mean has decreased over a similar time period, it was not statistically significant. 131 

2.2 Statistical Machine Learning Modelling Framework 132 

Statistical machine learning uses algorithms to assess and identify complex relationships between variables. Learned 133 

relations can be used to uncover nonlinear trends in data that might otherwise be overshadowed when using simple regression 134 

techniques (Hastie et al., 2009). In this study we used Random Forest Regression, where Random Forests are created by combining 135 

hundreds of unskilled regression trees into one model ensemble, or “forest”, which collectively produce skilled and robust 136 

predictions (Breiman, 2001). Predictors used in the model represent site-specific explanatory variables (e.g., precipitation, vadose-137 

zone thickness, depth to bottom of screen, etc.) that may impact the response variable, groundwater [NO3
-].  138 

2.3 Random Forest Application 139 

Random Forest regression models of groundwater [NO3
-] were developed using five-fold cross validation (Hastie et al., 140 

2009), where four folds were used to build the model (training data), and one fold was held out (testing data). The maximum and 141 

minimum of the [NO3
-] and each predictor were determined and placed into each fold for training models to eliminate the potential 142 

for extrapolation during validation. Each fold was used as training data four times, and testing data once. This process was repeated 143 

five times to create a total of 25 models, similar to the approach used by Nelson et al. (2018). The four folds designated to build 144 

the model underwent a nested five-fold cross validation, as specified in the trainControl function within the caret (Classification 145 

and Regression Training) R package (Kuhn, 2008; R Core Team, 2017). Functions in caret were used to train the Random Forest 146 

models. 147 

To evaluate model performance, Nash-Sutcliffe Efficiency (NSE), permutation importance, and partial dependence were 148 

quantified. NSE indicates the degree to which observed and predicted values deviate from a 1:1 line, and ranges from negative 149 

infinity to 1 (Nash and Sutcliffe, 1970).  150 
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𝑁𝑆𝐸 = 1 − [
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑝𝑟𝑒𝑑

)
2

𝑛
𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑚𝑒𝑎𝑛)

2𝑛
𝑖=1

],          (1) 151 

where 𝑛 is the number of observations,  𝑌𝑖
𝑜𝑏𝑠 is the ith observation of the response variable ([NO3

-]), 𝑌𝑖
𝑝𝑟𝑒𝑑

 is the ith prediction from 152 

the Random Forest model, and 𝑌𝑚𝑒𝑎𝑛  is the mean of observations 𝑖 through 𝑛. Values from negative infinity to 0 suggest the mean 153 

of the observed [NO3
-] would serve as a better predictor than the model. When NSE = 0, model predictions are as accurate as that 154 

of a model with only the mean observed [NO3
-] as a predictor. From 0, larger NSE values indicate a model’s predictive ability 155 

improves, until NSE = 1, where observations and predictions are equal. NSE was calculated for both the training and testing data.  156 

For each tree, a random bootstrapped sample is extracted from the dataset (Efron, 1979), as well as a random subset of 157 

predictors to consider fitting at each split. Thus, each tree is grown from a bootstrap sample and random subset of predictors, 158 

making trees random and grown independent of the others. Observations not used as bootstrap samples are termed out-of-bag data 159 

(OOB).  160 

When building a tree, all [NO3
-] from the bootstrap sample are categorized into terminal nodes, such that each node is 161 

averaged and yields a predicted [NO3
-]. The performance and mean squared error (MSE) of a Random Forest model is evaluated 162 

by comparing the observed [NO3
-] of the OOB data to the average predicted [NO3

-] from the forest. OOB data from the training 163 

dataset may be used to evaluate both permutation importance, referred to in the rest of this text as variable importance, and partial 164 

dependence. Variable importance uses percent increase in mean squared error (%incMSE) to describe predictive power of each 165 

predictor in the model (Jones and Linder, 2015). During this process, a single predictor is permuted, or shuffled, in the dataset. 166 

Therefore, each observed [NO3
-] has the same relationship between itself and all predictors, except one permuted variable. The 167 

%incMSE of a variable is determined by comparing the permuted OOB MSE to unpermuted OOB MSE. Important predictors will 168 

result in a large %incMSE, while a variable of minor importance does little to impact a model’s performance, as suggested by a low 169 

%incMSE value.  170 

Partial dependence curves serve as a graphical representation of the relationship between [NO3
-] and predictors in the 171 

Random Forest model ensemble (Hastie et al., 2009). Each plot considers the effects of other variables in the model, since 172 

predictions of [NO3
-] are influenced by several predictors when building each tree. In these models, the y-axis of a partial 173 

dependence plot represents the average of the OOB predicted [NO3
-] at a specific x-value of each predictor.  174 

2.4 Variables and Project Setup 175 

Data from 15 predictors were collected and analysed (Table 1). Spatial variables were manipulated using ArcGIS 10.4. 176 

The [NO3
-] dataset for the entire NPNRD had 10,676 observations from 1979 to 2014, and was downloaded from the Quality-177 

Assessed Agrichemical Contaminant Database for Nebraska Groundwater (University of Nebraska-Lincoln, 2016). Spatial 178 

locations for each well were included in the original [NO3
-] dataset and imported into GIS. Wells were clipped to the Dutch Flats 179 

model area, resulting in 2,829 [NO3
-] observations from 214 wells. In order to have an accurate vadose-zone thickness, only wells 180 

with a corresponding depth to groundwater record, of which the most recent record was used, were selected (2,651 observations 181 

from 172 wells). Over this period, several wells were sampled much more frequently than others (e.g., monthly sampling, over a 182 

short period of record), especially during a USGS National Water-Quality Assessment (NAWQA) study from 1995 to 1999. In 183 

order to prevent those wells from dominating the training and testing of the model, annual median [NO3
-] was calculated for each 184 

well and used in the dataset. The dataset was further manipulated such that each median [NO3
-] observation had 15 complementary 185 

predictors (Table 1). The selected predictor variables capture drivers of long-term [NO3
-] and [NO3

-] lags. After incorporating all 186 

data, including limited records of dissolved oxygen (DO), the final dataset included 1,049 [NO3
-] observations from 162 wells 187 
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sampled between 1993 and 2013. Additional details of the data selection, sources, and manipulations may be found in the 188 

supplemental material.  189 

Predictors were divided into two categories; static and dynamic (Table 1). Static predictors are those that either do not 190 

change over the period of record, or annual records were limited. DO, for example, could potentially experience slight annual 191 

variations, but data were not available to assign each nitrate sample a unique DO value. Instead, observations for each well were 192 

assigned the average DO value observed from the well. This approximation was considered reasonable because nitrate isotopic 193 

composition and DO data collected in the 1990s and by Wells et al. (2018) did not indicate any major changes to biogeochemical 194 

processes over nearly two decades. Total travel time was strictly considered a static predictor in this study and was used to link the 195 

nitrate-sampling year to a dynamic predictor value. 196 

Dynamic predictors were defined in this study as data that changed temporally over the study period. Therefore, each 197 

annual median [NO3
-] was assigned a lagged dynamic value to represent the difference between the time of a particular surface 198 

activity (e.g., timing of a particular irrigation practice) and when groundwater sampling occurred. Dynamic predictors were 199 

available from 1946 to 2013 and included annual precipitation, Interstate Canal discharge, area under center pivot sprinklers, and 200 

area of planted corn (Fig. 2). Dynamic predictors were included to assess their ability to optimize Random Forest groundwater 201 

modelling and determine an appropriate lag time. Lag times were based on the vertical travel distance through both the vadose and 202 

saturated zones. Area of planted corn was included as a proxy for fertilizer data, which were unavailable prior to 1987. However, 203 

analysis suggests there has been a reduction in fertilizer application rates per planted hectare, while area of planted corn has 204 

increased in recent decades (Wells et al., 2018). There was a likely trade-off in using this proxy; we were able to extend the period 205 

of record back to 1946, allowing for analysis of a wider range of lag times in the model, but might have sacrificed some accuracy 206 

in recent decades when nitrogen management may have improved. Lastly, vadose and saturated-zone transport rates were assumed 207 

to be constant over time (Wells et al., 2018).  208 

2.5 Vadose and Saturated-zone Transport Rate Analysis 209 

Ranges of vertical velocities (transport rates) through the vadose zone and saturated zone were estimated from 3H/3He 210 

age-dating in the Dutch Flats area in both 1998 (Verstraeten et al., 2001b) and 2016 (Wells et al., 2018) using Equation 2:  211 

𝑉 =  
𝑅

𝜃
,             (2) 212 

where R is the upper and lower bound of recharge rates (m/yr) indicated by groundwater ages, and 𝜃 is mobile water content and 213 

porosity in the vadose and saturated zone, respectively.  The use of 3H/3He data was used in this study solely for constraining the 214 

range of transport rates to evaluate in the vadose and saturated zones, and as a base comparison to model results. The age-data, 215 

however, were not used by the model itself when seeking to identify an optimum transport rate combination. Throughout the text, 216 

unsaturated (vadose)-zone vertical transport rates will be abbreviated as Vu, while saturated-zone vertical transport rates will be Vs. 217 

In the vadose zone, 𝜃 was assigned a constant value of 0.13, which was calibrated previously using a vertical transport model for 218 

the Dutch Flats area (Liao et al., 2012).  In the saturated zone, 𝜃 was assigned a constant value of 0.35, equal to the value assumed 219 

previously for recharge calculations (Böhlke et al., 2007).  Vadose and saturated-zone travel times (𝜏) then were calculated using 220 

Equation 3: 221 

𝜏 =
𝑧

𝑉
,              (3) 222 

where 𝜏 is either vadose zone (𝜏𝑢) or saturated zone (𝜏𝑠) travel time in years, and z is the vadose-zone thickness (𝑧𝑢) or distance 223 

from the water table to well mid-screen (𝑧𝑠) in meters.  224 

https://doi.org/10.5194/hess-2020-169
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.



 

7 

 

Though Equations 2 and 3 do not explicitly consider horizontal groundwater flow, they are believed to adequately model 225 

shallow groundwater ages, which are likely to follow approximately linear vertical age gradients near the water table. These simple 226 

equations are also suggested to sufficiently estimate groundwater age gradients in wedge-shaped aquifers (Cook and Böhlke, 2000), 227 

and Böhlke et al. (2007) found a linear model adequately fit their data in the Dutch Flats area. Nonetheless, saturated-zone transport 228 

rates and travel times calculated from Equations 2 and 3 should be considered “apparent” rates and travel times (i.e., similar to 229 

apparent groundwater ages, which are based on imperfect tracers). Additionally, it is emphasized that the assumed mobile water 230 

content of 0.13 is a calibrated parameter derived previously through inverse modelling and, as suggested by Liao et al. (2012), may 231 

have large uncertainties due to the varying site-specific characteristics known to exist from one well to the next. 232 

Because of the influence of canal leakage on both intermediate and deep wells (Böhlke et al., 2007), only recharge rates 233 

from shallow wells were used to estimate vadose-zone travel times. The mean (x̅ = 0.38 m/yr) and standard deviation (σ = ±0.23 234 

m/yr) of all the 1998 (n=7) and 2016 (n=2) shallow recharge rates were calculated. Using x̅ ±1σ, a range of recharge rates from 235 

0.15 to 0.61 m/yr were converted to transport rates (Vu) using Equation 2. This calculation resulted in 1.15 to 4.69 m/yr as the 236 

range of vadose-zone transport rates. Expanding the upper and lower bounds, a minimum vadose-zone transport rate of 1.0 m/yr 237 

and maximum of 4.75 m/yr was applied. Vertical transport rates in the vadose zone were increased by increments of 0.25 m/yr 238 

from 1.0 to 4.75 m/yr, resulting in 16 possible vadose-zone transport rates to evaluate in the Random Forest model. 239 

Mean (x̅ = 0.84 m/yr) and standard deviation (σ = ±0.73 m/yr) of all shallow, intermediate, and deep well recharge rates 240 

were included in identifying a range of saturated-zone recharge rates from 0.10 to 1.57 m/yr. A total of 35 and 8 recharge rates 241 

were used from the 1990s and Wells et al. (2018) studies, respectively. Equation 2 was used to calculate saturated-zone transport 242 

rates (Vs) of 0.28 and 4.49 m/yr. Saturated zone transport rates were increased by increments of 0.25 m/yr, from 0.25 to 4.5 m/yr, 243 

resulting in 18 unique saturated-zone transport rates to evaluate in the Random Forest model. The range of transport rates suggested 244 

by groundwater age-dating was large (more than an order of magnitude) and would be considered to include rates likely to be 245 

expected in a variety of field settings. Presumably, the same model constraints and results could have been obtained without the 246 

prior age data and with some relatively conservative estimates. 247 

Travel times 𝜏𝑢 and 𝜏𝑠 were calculated for each well based on 𝑧𝑢 and 𝑧𝑠, respectively. For every possible combination of 248 

vadose and saturated-zone transport rates, a unique total travel time, 𝜏𝑡, was calculated for each well based on the vadose and 249 

saturated-zone dimensions of that particular well.  250 

𝜏𝑡 =  𝜏𝑢 + 𝜏𝑠,             (4) 251 

The total travel times from Equation 4 were used to lag dynamic predictors relative to each nitrate sample date. For 252 

instance, a nitrate sample collected in 2010 at a well with a 20-year total travel time (e.g., 𝜏𝑢 = 10 yrs and 𝜏𝑠 = 10 yrs) would be 253 

assigned the 1990 values for precipitation (450 mm), Interstate Canal discharge (0.4 km3/yr), center pivot irrigated area (2484 254 

hectares), and area of planted corn (8905 hectares). 255 

A total of 288 unique transport rate combinations (corresponding to different combinations of the 16 vadose and 18 256 

saturated-zone transport rates) were joined into a single dataset totalling over 300,000 observations to determine the optimal rate 257 

resulting in the maximum testing NSE from the model. Each transport rate combination incorporated up to 1,049 groundwater 258 

[NO3
-] values. To decrease runtime, Random Forest models were parallel processed through a Holland Computing Center (HCC) 259 

cluster at the University of Nebraska-Lincoln. 260 
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3 Results and Discussion 261 

This study addressed a relatively unexplored use of Random Forest, which was to identify optimal lag times based on 262 

testing a range of transport rate combinations through the vadose and saturated zones, historical nitrate concentrations, and the use 263 

of easily accessible environmental datasets.  264 

3.1. Relative Importance of Transport Time and Dynamic Variables  265 

In our initial modelling with dynamic predictors, we anticipated that we could use the Random Forest model with the 266 

highest NSE to identify the optimal pair of vadose and saturated-zone transport rates. However, no clear pattern emerged among 267 

the different models (Fig. 3). Given the small differences and lack of defined pattern in testing NSE values, we selected ten transport 268 

rate combinations (the five top performing models, plus four transport rate combinations of high and low transport rates, and one 269 

intermediate transport rate combination) for further evaluation of variable importance and sensitivity to a range of transport rate 270 

combinations (Table 2). Median total travel time ranked third in variable importance, while the four dynamic variables consistently 271 

had the four lowest rankings (Fig. 4). Total travel time also had the greatest variability in importance among the fifteen variables, 272 

with a range of 18.4% between the upper and lower values, suggesting some model sensitivity to lag times. Excluding total travel 273 

time, the remaining variables had an average variable importance range of 6%. 274 

Dynamic variables had little influence on the model, despite common potential linkages to groundwater [NO3
-] (Böhlke 275 

et al., 2007; Exner et al., 2010; Spalding et al., 2001). A pattern emerged among dynamic variables where the stronger the historical 276 

trend of the predictor, the greater the importance of the predictor (Fig. 2; Fig.4). For instance, center pivot irrigated area (highest 277 

ranking dynamic variable) had the least noise and the most pronounced trend, while annual precipitation (lowest ranking variable) 278 

was highly variable and lacked any trend over time (Fig. 2), and also may not be a substantial source of recharge (Böhlke et al., 279 

2007). Further exploration could be done to test more refined variables – for instance, annual median rainfall intensity for the 280 

growing season might have a more direct connection to nitrate leaching than total annual precipitation. However, rainfall intensity 281 

data are not readily available. Dynamic variables could be of more use in other study areas that undergo relatively rapid and 282 

pronounced changes (e.g., land use). In future work, the model sensitivity to dynamic variables could be tested through formal 283 

sensitivity analysis and/or automated variable selection algorithms (Eibe et al., 2016). 284 

Ultimately, results from initial analyses suggest that (1) the dynamic data did little to improve model performance, and 285 

(2) Random Forest was not able to relate the four considered dynamic predictors to [NO3
-] in a meaningful way that could be used 286 

to estimate lag time. It has also been suggested by Katz et al. (2001) that a monotonic trend in an independent variable is not 287 

necessarily linearly related to the dependent variable. It is likely the influence of these dynamic predictors are dampened as nitrate 288 

is transported from the surface to wells such that data-driven approaches are unable to sort through noise to identify relationships.  289 

3.2 Use of Random Forest to determine transport rates 290 

Due to their low relative importance as predictors, all four dynamic predictors were removed in the subsequent analysis. As 291 

discussed above, a notable variation in total travel time %incMSE was observed in Fig. 4, suggesting model sensitivity to this 292 

variable. Additionally, a relationship between travel time and [NO3
-] has been suggested in the Dutch Flats area through previous 293 

studies (Böhlke et al., 2007; Wells et al., 2018). Therefore, a second analysis of just the 11 static predictors was performed over 294 

the full range of vadose and saturated transport rates (i.e., 288 combinations). However, in the second analysis, model sensitivity 295 

to total travel time – evaluated with respect to the transport rate combination corresponding to the largest %incMSE of total travel 296 

time – was used to determine a distinguished transport rate combination.  297 
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The Random Forest models were useful in identifying the relative magnitudes of Vu and Vs that led to high %incMSE. 298 

Based on the heat map of %incMSE, a band of transport rate combinations with consistently high %incMSE was visually apparent 299 

(Fig. 5). The upper and lower bounds of the band translate to transport rate ratios (Vs/Vu) ranging from 0.9 to 1.5, and are values 300 

that could be useful in constraining recharge and/or transport rate estimates in more complex mechanistic models, as part of a 301 

hybrid modelling approach. This is especially important since recharge is one of the most sensitive parameters in a groundwater 302 

model (Mittelstet et al., 2011), yet one with high uncertainty. 303 

 The %incMSE of total travel time in the second analysis ranged from 20.6 to 31.5%, with the largest %incMSE associated 304 

with vadose and saturated-zone transport rates of 3.50 m/yr and 3.75 m/yr, respectively (Fig. 5), and the top four predictors for this 305 

transport rate combination were total travel time, vadose-zone thickness, dissolved oxygen, and saturated thickness (Fig. 6). 306 

Converting those vadose and saturated-zone transport rates to recharge rates yielded values of 0.46 m/yr and 1.31 m/yr, 307 

respectively. Such a large difference between the two recharge values would be unexpected in most unconsolidated surficial (water-308 

table) aquifers receiving diffuse recharge, but it is consistent with the hydrologic conceptual model of the Dutch Flats area. In fact, 309 

both model recharge rates compare favourably with recharge rates calculated from the previous Dutch Flats studies using 3H/3He 310 

age-dating (Böhlke et al., 2007; Wells et al., 2018). For instance, the recharge rate determined from the vadose-zone transport rate 311 

in this study (0.46 m/yr) was comparable to the mean recharge rate of 0.38 m/yr (n = 9) from groundwater age-dating at shallow 312 

wells, which are most representative of diffuse recharge below crop fields.  Additionally, the recharge rate (1.31 m/yr) determined 313 

from the saturated-zone transport rate was consistent with the mean recharge value derived from groundwater ages in intermediate 314 

wells (1.22 m/yr, n = 13). Intermediate wells are variably impacted by focused recharge from canals in upgradient areas. Given the 315 

similarity in diffuse recharge and focused recharge estimates from both Random Forest and groundwater age-dating, the transport 316 

rate ratios (1.2 and 1.1, respectively) were consistent. That is, the Random Forest modelling framework produced transport rates 317 

consistent with the major hydrological processes in Dutch Flats both in direct (i.e., transport rate estimates) and relative (i.e., 318 

transport rate ratio) terms. 319 

Assuming the Random Forest approach has accurately captured the two major recharge processes (diffuse recharge over 320 

crop fields and focused recharge from canals), a comparison of recharge rates from all sampled groundwater wells representative 321 

of recharge to the groundwater system as a whole (0.84 m/yr, n = 43) to the recharge rates from Random Forest modelling (0.46 322 

and 1.31 m/yr) would provide an estimate of the relative importance of diffuse versus focused recharge on overall recharge in 323 

Dutch Flats. Under these assumptions, diffuse recharge would account for approximately 55%, while focused recharge would 324 

account for about 45% of total recharge in the Dutch Flats area. Similarly, Böhlke et al. (2007) concluded that these two recharge 325 

sources contributed roughly equally to the aquifer on the basis of groundwater age profiles, as well as from dissolved atmospheric 326 

gas data indicating mean recharge temperatures between those expected of diffuse infiltration and focused canal leakage.  327 

Partial dependence plots, which illustrate the impact a single predictor has on [NO3
-] in the model with respect to other 328 

predictors (Fig. 7), largely reflect the conceptual understanding of the system from previous studies including Böhlke et al. (2007) 329 

and Wells et al. (2018). Key features that strengthen confidence in the Random Forest modelling include (1) depth to bottom 330 

screen, where groundwater [NO3
-] is lower at greater depths, (2) the effects of minor and major canals, where groundwater [NO3

-] 331 

in the vicinity of canals is diluted by canal leakage, and the influence of major canals extends further from the canal, (3) land 332 

surface elevation, where elevations indicating proximity to major canals are associated with relatively lower groundwater [NO3
-], 333 

and (4) DO concentration, where higher DO concentration is linked to higher groundwater [NO3
-]. We note that decreasing DO 334 

and [NO3
-] with groundwater age can be explained by DO reduction and historical changes in [NO3

-] recharge, whereas  335 

groundwater chemistry and nitrate isotopic data recorded in both this study and previous Dutch Flats studies suggest nitrate 336 

reduction was not a major factor in this alluvial aquifer. 337 
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The partial dependence plot for total travel time exhibits a pronounced threshold, where [NO3
-] is markedly higher for 338 

groundwater with travel time less than seven years. It is possible this reflects long-term stratification of distinct groundwater [NO3
-339 

], stemming from the suggested patterns stated above as it relates to aquifer depth and the influences of diffuse and focused recharge 340 

in the region. This seven-year threshold is lower than a previous estimate of mean groundwater age alone (8.8 years; where 341 

groundwater age neglects vadose-zone travel time) and suggests that rapid aquifer response to changes in nitrogen management in 342 

Dutch Flats is possible. 343 

3.3 Opportunities and limitations of Random Forest approach in estimating lag times 344 

Overall, results suggest that  in a complex system such as Dutch Flats, Random Forest was able to identify reasonable 345 

transport rates for both the vadose and saturated zones, and with additional validation, this method may offer an inexpensive (i.e., 346 

compared to groundwater age-dating across a large monitoring well network and/or complex modelling) and reasonable technique 347 

for estimating lag time from historical monitoring data. Further, this approach allows for additional insight on groundwater 348 

dynamics to be extracted from existing monitoring data. However, this study was conducted in the context of a larger project 349 

(Wells et al., 2018) and built on prior research on groundwater flow and nitrate concentrations in the study area (Böhlke et al., 350 

2007). Therefore, it is critical in future work to consider the “black box” nature of statistical machine learning approach, as 351 

highlighted in key considerations below.  352 

 353 

Some key considerations for future application of this approach include: 354 

(1) The Random Forest approach might be useful for estimating future recharge and [NO3
-] using multiple potential 355 

management scenarios, as long as considered management scenarios fall within the range of historical observations used 356 

to train the model. This information could be used to inform policy makers of the impact that current and future 357 

management decisions will have on recharge and [NO3
-]. 358 

(2) The Dutch Flats overlies a predominantly oxic aquifer, where nitrate transport is mostly conservative. In aquifers with 359 

both oxic and anoxic conditions and distinct nitrate extinction depths (Liao et al., 2012; Welch et al., 2011), this approach 360 

may be biased toward oxic portions of the aquifer where the nitrate signal is preserved. 361 

(3) While estimates of vadose and saturated-zone transport rates determined from %incMSE are consistent with previous 362 

studies, the predictive performance of the selected model (based on NSE and visual inspection of predicted versus 363 

observed nitrate plots) was not substantially different than other models tested. In other words, the “optimal model” was 364 

non-unique in terms of predicting [NO3
-]. Testing the approach of using %incMSE in other vadose and saturated zones, 365 

with substantial comparison to previous transport rate estimates, is warranted. 366 

(4) Despite potential non-uniqueness in prediction metrics, the heat map of %incMSE did reveal an orderly pattern suggesting 367 

consistent transport rate ratios. For modelling efforts where recharge rates are a key calibration parameter, identification 368 

of a range of reasonable recharge rates, and/or the ratio of recharge rates from diffuse and focused recharge sources for a 369 

complex system will reduce model uncertainty and improve results. This statistical machine learning approach, which 370 

essentially leverages nitrate as a tracer, may provide valuable insight to complement relatively expensive groundwater 371 

age-dating or vadose-zone monitoring data, or as a standalone approach for first-order approximations. 372 

(5) The demonstrated statistical machine learning approach is apparently well-suited for drawing out transport rate 373 

information from a site with two distinct recharge sources (diffuse versus focused recharge sources) driving the 374 

groundwater nitrate dynamics. Further testing is needed at sites where recharge and nitrate dynamics are more subtle. 375 
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4 Conclusions  376 

The Dutch Flats area consists of large variations in [NO3
-] throughout a relatively small region in western Nebraska. Long-377 

term groundwater [NO3
-] and previous groundwater age-dating studies in Dutch Flats provided an opportune setting to test a new 378 

application of statistical machine learning (Random Forest) for determining vadose and saturated-zone transport rates. Overall 379 

results suggest Random Forest has the capability to both identify reasonable transport rates (and lag time) and key variables 380 

influencing groundwater [NO3
-], albeit with potential for non-unique results. Limitations were also identified when using dynamic 381 

predictors to model groundwater [NO3
-]. Utilizing only static predictors, and Random Forest’s ability to evaluate variable 382 

importance, a vadose and saturated-zone transport rate was selected based on model sensitivity to changing the total travel time 383 

predictor. In other words, total travel time variable importance was evaluated for 288 different transport rate combinations, and the 384 

combination with a total travel time having the largest influence over the model’s ability to predict [NO3
-] was selected for 385 

additional examination. This analysis identified a vadose and saturated-zone transport rate combination consistent with rates 386 

previously estimated from 3H/3He age-dating in Böhlke et al. (2007) and Wells et al. (2018), in both direct and relative terms.  387 

Future studies should include assessments of the proper conditions for application of dynamic predictors and include 388 

comparisons of data-driven analyses with complementary datasets. Despite noted limitations, partial dependence plots and relative 389 

importance of predictors were largely consistent with previous findings and mechanistic understanding of the study area, giving 390 

greater confidence in model outputs. The influence of canal leakage on groundwater recharge rates and [NO3
-], for example, was 391 

consistent with previous Dutch Flats studies. Partial dependence plots suggest a threshold of higher [NO3
-] for groundwater with 392 

total travel time (vadose and saturated-zone travel times, combined) of less than seven years, indicating the potential for relatively 393 

rapid groundwater [NO3
-] response to widespread implementation of best management practices.  394 
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 579 
Figure 1: Dutch Flats study area overlain by 30 m Digital Elevation Model (NeDNR 1997). Depending on data availability, multiple wells 580 
(well nest) or a single well may be found at each monitoring well location. 581 
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 582 

 583 
Figure 2: Time series plots of all four dynamic predictors. Starting in the upper left and moving clockwise, figures represent annual 584 
precipitation, canal discharge, center pivot irrigation and area of plant corn from 1946 to 2013. 585 

 586 
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 587 

 588 
Figure 3: Heat map of testing NSE results from 288 vadose and saturated-zone transport rate combinations. Testing NSE in this figure 589 
is the median of all 25 model outputs from each of the 288 transport rate combinations. No clear pattern of optimal vadose and saturated-590 
zone transport rate combinations was observed. 591 
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 592 
Figure 4: Boxplot of the %IncMSE from the ten transport rate combinations shown in Table 2. Each boxplot has ten points for each 593 
transport rate combination, representing the median %IncMSE from the 25 models (five-fold cross validation, repeated 5 times). A larger 594 
%IncMSE suggests the variable had a greater influence on a model’s ability to predict [NOs

-]. **Denotes dynamic predictors. 595 
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 596 
Figure 5: Heat map of %incMSE (median from 25 models) from variable importance of total travel time for each of the 288 transport 597 
rate combinations evaluated. Red dashed lines indicate upper (Vu / Vu = 1.5, long dashes) and lower (0.9, short dashes) bounds of the 598 
band of transport rate combinations with consistently higher %incMSE. The white square highlights the single transport rate 599 
combination with the highest %incMSE. 600 
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 602 
Figure 6: Plot from secondary analysis exploring variable importance of the transport rate combination with the largest median 603 
%incMSE in total travel time (Vu = 3.5 m/yr; Vs= 3.75 m/yr). Each point is from one of 25 Random Forest models run for this evaluation. 604 
A larger %IncMSE suggests the variable had a greater influence on a model’s ability to predict [NOs

-]. 605 

 606 
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 608 
Figure 7: Partial dependence plot for model evaluating transport rate combination of Vu = 3.5 m/yr and Vs= 3.75 m/yr. Tick marks on 609 
each plot represent predictor observations used to train models. 610 
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Table 1. List of the 15 predictors used for Random Forest evaluation. Average (avg.) and median (med.) values are shown.      Per 621 
Supplemental inf 622 

Predictor Units 
Predictor 

Type 
Source 

Center Pivot Irrigated Area (avg. = 2618; med. = 1037)a hectare Dynamic NAIP; NAPP; Landsat-1,5, 7, 8b 

Interstate Canal Discharge (avg. = 0.53; med. = 0.55) a km3 yr-1 Dynamic USBR (2018) 

Area of Planted Corn (avg. = 8065; med. = 7869) a hectare Dynamic NASS (2018) 

Precipitation (avg. = 384; med. = 377) a mm yr-1 Dynamic NOAA (2017) 

Available Water Capacity (avg. = 0.1; med. = 0.1) cm cm-1 Static NRCS (2018) 

Dissolved Oxygen (avg. = 4.6; med. = 5.4) mg L-1 Static 
C. Hudson, Personal 

Communication (2018) 

Distance from a Major Canal (avg. = 1462.2; med. = 1161.4) m Static USGS (2012)b 

Distance from a Minor Canal (avg. = 633.2; med. = 397.6) m Static USGS (2012)b 

Bottom Screen (avg. = 26.9; med. = 24.4) m Static NEDNR (2016) b 

Saturated Hydraulic Conductivity (avg. = 68; med. = 28) µm sec-1 Static NRCS (2018) 

Saturated Thickness (avg. = 30.2; med. = 27.6) m Static 
T. Preston, Personal 

Communication (2017)b 

Saturated-Zone Travel Distance (avg. = 13.3; med. = 7) m Static NEDNR (2016)b 

Surface Elevation (DEM) (avg. = 1244; med. = 1248) m Static NEDNR (1997) 

Total Travel Time (avg. = 6.4; med. = 5.7)c years Static NEDNR (2016)b 

Vadose-Zone Thickness (avg. = 9.9; med. = 7.3) m Static 

T. Preston, Personal 

Communication (2017); A. Young, 

Personal Communication (2016) 
a Average and median span from 1946 to 2013  
bData required further analysis to yield calculated values; data sources are USDA (2017) and USGS (2017)  
cAverage and Median reflects transport rates of Vu = 3.5 m/yr and Vu = 3.75 m/yr   

 623 

Table 2. Summary of ten vadose and saturated-zone transport rate combinations selected from 288 unique potential combinations. 624 

 Vadose-zone 

Transport 

Rate (m/yr) 

Sat. Zone 

Transport 

Rate (m/yr) 

Test 

NSE 

[NO3
-] 

Observationsa 

Total Travel Time (yrs) 

 
Mean (±1σ) Median  

Five Top-

Performing 

Transport 

Rates 

4.00 0.50 0.623 878 19.9 (± 15.8) 11.3 

2.00 0.50 0.622 861 21.6 (± 15.0) 16.5 

3.75 4.00 0.617 1049 6 (± 3.7) 5.4 

4.00 3.50 0.617 1049 6.3 (±4.1) 5.7 

4.50 3.00 0.616 1049 6.7 (± 4.7) 5.7 

Extreme and 

Midrange 

Transport 

Combinations 

4.75 4.50 0.608 1049 5.1 (± 3.2) 4.6 

2.75 2.25 0.599 1049 9.6 (± 6.3) 8.5 

1.00 4.50 0.570 1049 12.6 (± 7.7) 10.8 

1.00 0.25 0.559 607 26.7 (± 13.3) 20.6 

4.75 0.25 0.548 664 21.3 (± 15.0) 14.9 
aIn cases with low transport rates, lag times were relatively long and not all historical data could be used in the model. Thus, some models were ultimately based 625 
on <1,049 observations. 626 
 627 
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