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Abstract. In this study, we explored the use of statistical machine learning and long-term groundwater nitrate monitoring data to 12 

estimate vadose-zone and saturated-zone lag times in an irrigated alluvial agricultural setting. Unlike most previous statistical 13 

machine learning studies that sought to predict groundwater nitrate concentrations within aquifers, the focus of this study was to 14 

leverage available groundwater nitrate concentrations and other environmental variables to determine mean regional vertical 15 

velocities (transport rates) of water and solutes in the vadose zone and saturated zone (3.50 m/year and 3.75 m/year, respectively). 16 

The statistical machine learning results are consistent with two contrasting primary recharge processes in this Western Nebraska 17 

aquifer: (1) diffuse recharge from irrigation and precipitation across the landscape, and (2) focused recharge from leaking irrigation 18 

conveyance canals. The vadose-zone mean velocity yielded a mean recharge rate (0.46 m/year) consistent with previous estimates 19 

from groundwater age-dating in shallow wells (0.38 m/year). The saturated zone mean velocity yielded a recharge rate (1.31 20 

m/year) that was more consistent with focused recharge from leaky irrigation canals, as indicated by previous results of 21 

groundwater age-dating in intermediate-depth wells (1.22 m/year). Collectively, the statistical machine-learning model results are 22 

consistent with previous observations of relatively high-water fluxes and short transit times for water and nitrate in the primarily 23 

oxic aquifer. Partial dependence plots from the model indicate a sharp threshold where high groundwater nitrate concentrations 24 

are mostly associated with total travel times of seven years or less, possibly reflecting some combination of recent management 25 

practices and a tendency for nitrate concentrations to be higher in diffuse infiltration recharge than in canal leakage water. 26 

Limitations to the machine learning approach include potential non-uniqueness of different transport rate combinations when 27 

comparing model performance and highlight the need to corroborate statistical model results with a robust conceptual model and 28 

complementary information such as groundwater age. 29 
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1 Introduction 36 

Nitrate is a common contaminant of groundwater and surface water that can affect drinking water quality and ecosystem 37 

health. Responses of aquatic resources to changes in nitrate loading can be complicated by uncertainties related to rates and 38 

pathways of nitrate transport from sources to receptors. Lag times for movement of non-point source nitrate contamination through 39 

the subsurface are widely recognized (Böhlke, 2002; Meals et al., 2010; Puckett et al., 2011; Van Meter and Basu, 2017) but 40 

difficult to measure. Vadose (unsaturated zone) and groundwater (saturated zone) lag times are of critical importance for 41 

monitoring, regulating, and managing the transport of contaminants in groundwater. However, transport time-scales are often 42 

generalized due to coarse spatial and temporal resolution in data available for groundwater systems impacted by agricultural 43 

activities (Gilmore et al., 2016; Green et al., 2018; Puckett et al., 2011), resulting in a simplified groundwater management 44 

approach. Regulators and stakeholders in agricultural landscapes are increasingly in need of more precise and local lag time 45 

information to better evaluate and apply regulations and best management practices for the reduction of groundwater nitrate 46 

concentrations (e.g., Eberts et al., 2013).  47 

Field-based studies of lag times commonly use expensive groundwater age-dating techniques and/or vadose-zone 48 

sampling to estimate nitrate transport rates moving into and through aquifers (Böhlke et al., 2002, 2007; Böhlke and Denver, 1995; 49 

Browne and Guldan, 2005; Kennedy et al., 2009; McMahon et al., 2006; Morgenstern et al., 2015; Turkeltaub et al., 2016; Wells 50 

et al., 2018). Detailed process-based modelling studies focused on lag times require complex numerical models combined with 51 

spatially intensive and/or costly hydrogeological observations (Ilampooranan et al., 2019; Rossman et al., 2014; Russoniello et al., 52 

2016). Thus, efficient but locally-applicable modelling approaches are needed (Green et al., 2018; Liao et al., 2012; Van Meter 53 

and Basu, 2015). In this study, an alternative data-driven approach (Random Forest Regression) leverages existing long-term 54 

groundwater nitrate concentration (referred to as [NO3
-] hereafter) data and easily accessible environmental data to estimate vadose 55 

and saturated-zone vertical velocities (transport rates) for the determination of subsurface lag times. 56 

Statistical machine learning methods, including Random Forest, have been used successfully for modelling [NO3
-] 57 

distribution in aquifers (Anning et al., 2012; Juntakut et al., 2019; Knoll et al., 2020; Nolan et al., 2014; Ouedraogo et al., 2017; 58 

Rodriguez-Galiano et al., 2014; Rahmati et al., 2019; Vanclooster et al., 2020; Wheeler et al., 2015), but there has not been robust 59 

analysis of model capabilities for estimating vadose and/or saturated-zone lag times. Proxies for lag time, such as well screen 60 

depth, have been used as predictors in Random Forest models (Nolan et al., 2014; Wheeler et al., 2015). Decadal lag times have 61 

been suggested from using time-averaged nitrogen inputs as predictors (e.g., 1978-1990 inputs vs 1992-2006 inputs) and by 62 

comparing their relative importance in the model (Wheeler et al., 2015). Application of similar machine learning methods 63 

suggested groundwater age could be used as a predictor to improve model performance (Ransom et al., 2017). Hybrid models, 64 

using both mechanistic models and machine learning, have also sought to integrate vertical transport model parameters and outputs 65 

to evaluate nitrate-related predictors, including vadose-zone travel times (Nolan et al., 2018). 66 

The objective of this study is to test a data-driven approach for estimating vadose and saturated-zone transport rates and 67 

lag times for an intensively monitored alluvial aquifer in western Nebraska (Böhlke et al., 2007; Verstraeten et al., 2001a, 2001b; 68 

Wells et al., 2018). Results are compared to the hydrogeologic, mechanistic understanding from previous groundwater studies to 69 

determine strengths and weaknesses of the approach as (1) a stand-alone technique, or (2) as an exploratory analysis to guide or 70 

complement more complex physical-based models or intensive hydrogeologic field investigations. 71 
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2 Methods 72 

2.1 Site Description 73 

The Dutch Flats study area is located in the western Nebraska counties of Scotts Bluff and Sioux (Fig. 1). The North 74 

Platte River delivers large quantities of water for crop irrigation in this region and runs along the southern portion of this study 75 

area. Irrigation water is diverted from the North Platte River into three major canals (Mitchell-Gering, Tri-State, and Interstate 76 

Canals) that feed a network of minor canals. Several previous Dutch Flats area studies have investigated groundwater 77 

characteristics and provided thorough site descriptions of the semi-arid region (Babcock et al., 1951; Böhlke et al., 2007; 78 

Verstraeten et al., 2001a, 2001b; Wells et al., 2018). The Dutch Flats area overlies an alluvial aquifer characterized by 79 

unconsolidated deposits of predominantly sand and gravel, with the aquifer base largely consisting of consolidated deposits of the 80 

Brule, Chadron, or Lance Formation (Verstraeten et al., 1995) (Fig. 2). Irrigation water not derived from the North Platte River is 81 

typically pumped from the alluvial aquifer, or water-bearing units of the Brule Formation.  82 

The total area of the Dutch Flats study area is roughly 540 km2, of which approximately 290 km2 (53.5%) is agricultural 83 

land (cultivated crops and pasture). Most agricultural land is concentrated south of the Interstate Canal (Homer et al., 2015). Due 84 

to the combination of intense agriculture and low annual precipitation, producers in Dutch Flats rely on a network of irrigation 85 

canals to supply water to the region. From 1908 to 2016, mean precipitation of 390 mm was measured at the nearby Western 86 

Regional Airport in Scottsbluff, NE (NOAA, 2017).  87 

While some groundwater is withdrawn for irrigation, and some irrigated acres in the study area are classified as 88 

commingled (groundwater and surface water source), Scotts Bluff County irrigation is mostly from surface water sources. 89 

Estimates determined every five years suggest surface water provided between 76.8% to 98.6% of the total water withdrawals from 90 

1985 to 2015, or about 92% on average (Dieter et al., 2018). Canals transport water from the North Platte River to fields throughout 91 

the study area, most of which are downgradient (south) of the Interstate Canal. Mitchell-Gering, Tri-State, and Interstate Canals 92 

are the major canals in Dutch Flats, with the latter holding the largest water right of 44.5 m3/s (NEDNR, 2009). Leakage from 93 

these canals provides a source of artificial groundwater recharge. Previous studies estimate the leakage potential of canals in the 94 

region results in as much as 40% to 50% of canal water being lost during conveyance (Ball et al., 2006; Harvey and Sibray, 2001; 95 

Hobza and Andersen, 2010; Luckey and Cannia, 2006). Leakage estimates from a downstream section of the Interstate Canal 96 

(extending to the east of the study area; Hobza and Andersen (2010)) suggest fluxes ranging from 0.08 to 0.7 m day-1 through the 97 

canal bed. Assuming leakage of 0.39 m day-1 over the Interstate Canal bed area (16.8 m width x 55.5 km length) within Dutch 98 

Flats yields 4.1 x 105 m3 day-1 of leakage. Applied over an on-average 151-day operation period (USBR, 2018), leakage from 99 

Interstate Canal alone could approach 6.1 x 107 m3 annually, or about 29% of the annual volume of precipitation in the Dutch Flats 100 

area.  101 

A 1990s study investigated both spatial and temporal influences from canals in the Dutch Flats area (Verstraeten et al., 102 

2001a, 2001b), with results later synthesized by Böhlke et al. (2007). Canals were found to dilute groundwater [NO3
-] locally with 103 

low-[NO3
-] (e.g., [NO3

-] < 0.06 mg N L-1 in 1997) surface water during irrigation season. 3H/3He age-dating was used to determine 104 

apparent groundwater ages and recharge rates. It was noted that wells near canals displayed evidence of high recharge rates 105 

influenced by local canal leakage. Data from wells far from the canals indicated that shallow groundwater was more likely 106 

influenced by local irrigation practices (i.e., furrows in fields), while deeper groundwater was impacted by both localized irrigation 107 

and canal leakage (Böhlke et al., 2007). Shallow groundwater in the Dutch Flats area has hydrogen and oxygen stable isotopic 108 

compositions consistent with surface water sources (i.e., North Platte River and associated canals), indicating that most 109 

groundwater intercepted by the monitoring well network has been affected by surface-water irrigation recharge (Böhlke et al., 110 

2007; Cherry et al., 2020). 111 
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The Dutch Flats area is within the North Platte Natural Resources District (NPNRD), one of 23 groundwater management 112 

districts in Nebraska tasked with, among other functions, improving water quality and quantity. The NPNRD has a large monitoring 113 

well network consisting of 797 wells, 327 of which are nested. Nested well clusters are drilled and constructed such that screen 114 

intervals represent (1) “shallow” groundwater intersecting the water table (length of screened interval = 6.1 m), (2) “intermediate” 115 

groundwater from mid-aquifer depths (length of screened interval = 1.5 m), and deep groundwater near the base of the unconfined 116 

aquifer (length of screened interval = 1.5 m). Depending on well location within the Dutch Flats area, depths of the water table and 117 

base of aquifer are highly variable, such that shallow, intermediate, and deep wells can have overlapping ranges of depths below 118 

land surface (Fig. 2). 119 

Influenced by both regulatory and economic incentives, the Dutch Flats area has undergone a notable shift in irrigation 120 

practices in the last two decades. From 1999 to 2017, center pivot irrigated area has increased by approximately 270%, from 121 

roughly 3,830 hectares to 14,253 hectares, or from 13% to 49% of the total agricultural land area, respectively. The majority of 122 

this shift in technology has occurred on fields previously under furrow irrigation. Conventional furrow irrigation has an estimated 123 

potential application efficiency (“measure of the fraction of the total volume of water delivered to the farm or field to that which 124 

is stored in the root zone to meet the crop evapotranspiration needs,” per Irmak et al. (2011)) of 45% to 65%, compared to center 125 

pivot sprinklers at 75% to 85% (Irmak et al., 2011). Based on improved irrigation efficiency (between 10-40%), average 126 

precipitation throughout growing season (29.5 cm for 15 April to 13 October  (Yonts, 2002)), and average water requirements for 127 

corn (69.2 cm (Yonts, 2002)), converting furrow irrigated fields to center pivot over the aforementioned 14,253 hectares could 128 

represent a difference of 1 x 107 m3 to 6 x 107 m3 in water applied. Those (roughly approximated) differences in water volumes are 129 

equivalent to 6-28% of average annual precipitation applied over the Dutch Flats area, suggesting the change in irrigation practice 130 

does have potential to alter the water balance in the area. 131 

 The hypothesis of lower recharge due to changes in irrigation technology was investigated by Wells et al. (2018) by 132 

comparing samples collected in 1998 and 2016. Sample sites were selected based on a well’s proximity to fields that observed a 133 

conversion in irrigation practices (i.e., furrow irrigation to center pivot) between the two collection periods. While mean recharge 134 

rate was not significantly different, a lower recharge rate was indicated by data from 88% of the wells. Long-term Dutch Flats 135 

[NO3
-] trends were also assessed in the study, suggesting decreasing trends (though statistically insignificant) from 1998 to 2016 136 

throughout the Dutch Flats area, and nitrogen isotopes of nitrate indicated little change in biogeochemical processes. For additional 137 

background, Wells et al., (2018) provides a more in-depth analysis of recent [NO3
-] trends in this region (see also, Fig. S1A, which 138 

shows the nitrate data used in the present study).  139 

As in other agricultural areas, nitrate in Dutch Flats groundwater is dependent on nitrogen loading at the land surface, rate 140 

of leaching below crop root zones, rate of nitrate transport through the vadose and saturated zones, dilution from focused recharge 141 

in the vicinity of canals, rate of discharge from the aquifer (whether from pumping or discharge to surface water bodies), and rates 142 

of nitrate reduction (primarily denitrification) in the aquifer. Based on nitrogen and oxygen isotopes in nitrate and redox conditions 143 

observed in previous studies, denitrification likely has a relatively minor or localized influence on groundwater nitrate in the Dutch 144 

Flats area (Wells et al., 2018). Evidence of denitrification (from dissolved gases and isotopes (Böhlke et al., 2007, Wells et al. 145 

2018)) was mostly limited to some of the deepest wells near the bottom of the aquifer.  Leakage of low-nitrate water in the major 146 

canals causes nitrate dilution in the groundwater (i.e., relatively little nitrate addition, at least from the upgradient canals). 147 

Additional isotope data might be useful for documenting temporal shifts in recharge sources, or irrigation return flows to the river; 148 

however, it is difficult to know exactly the location or size of the contributing area for each well, especially the deeper ones. 149 

Other long-term changes to the landscape were evaluated by Wells et al. (2018) and included statistically significant 150 

reductions in mean fertilizer application rates (1987–1999 vs. 2000–2012) and volume of water diverted into the Interstate Canal 151 
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(1983–1999 vs. 2000–2016), while a significant increase in area of planted corn occurred (1983–1999 vs. 2000–2016). 152 

Precipitation was also evaluated, and though the mean has decreased over a similar time period, the trend was not statistically 153 

significant. 154 

2.2 Statistical Machine Learning Modelling Framework 155 

Statistical machine learning uses algorithms to assess and identify complex relationships between variables. Learned 156 

relations can be used to uncover nonlinear trends in data that might otherwise be overshadowed when using simple regression 157 

techniques (Hastie et al., 2009). In this study we used Random Forest Regression, where Random Forests are created by combining 158 

hundreds of unskilled regression trees into one model ensemble, or “forest”, which collectively produce skilled and robust 159 

predictions (Breiman, 2001). Predictors used in the model represent site-specific explanatory variables (e.g., precipitation, vadose-160 

zone thickness, depth to bottom of screen, etc.) that may impact the response variable, groundwater [NO3
-]. Additionally, as 161 

described in detail in Section 2.5, we estimated a range of total travel times (from land surface to the point of sampling) at each of 162 

the wells by varying vadose and saturated-zone transport rates. The relative importance of total travel time as a predictor variable 163 

was ultimately used to identify an optimal travel time and model. 164 

2.3 Random Forest Application 165 

Random Forest regression models of groundwater [NO3
-] were developed using five-fold cross validation (Hastie et al., 166 

2009), where four folds were used to build the model (training data), and one fold was held out (testing data). The maximum and 167 

minimum of the [NO3
-] and each predictor were determined and placed into each fold for training models to eliminate the potential 168 

for extrapolation during validation. Each fold was used as training data four times, and testing data once. This process was repeated 169 

five times to create a total of 25 models, similar to the approach used by Nelson et al. (2018). The four folds designated to build 170 

the model underwent a nested five-fold cross validation, as specified in the trainControl function within the caret (Classification 171 

and Regression Training) R package (Kuhn, 2008; R Core Team, 2017). Functions in caret were used to train the Random Forest 172 

models. 173 

To evaluate model performance, Nash-Sutcliffe Efficiency (NSE), permutation importance, and partial dependence were 174 

quantified. NSE indicates the degree to which observed and predicted values deviate from a 1:1 line, and ranges from negative 175 

infinity to 1 (Nash and Sutcliffe, 1970).  176 

𝑁𝑆𝐸 = 1 − [
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑝𝑟𝑒𝑑

)
2

𝑛
𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑚𝑒𝑎𝑛)

2𝑛
𝑖=1

],          (1) 177 

where 𝑛 is the number of observations,  𝑌𝑖
𝑜𝑏𝑠 is the ith observation of the response variable ([NO3

-]), 𝑌𝑖
𝑝𝑟𝑒𝑑

 is the ith prediction from 178 

the Random Forest model, and 𝑌𝑚𝑒𝑎𝑛  is the mean of observations 𝑖 through 𝑛. Values from negative infinity to 0 suggest the mean 179 

of the observed [NO3
-] would serve as a better predictor than the model. When NSE = 0, model predictions are as accurate as that 180 

of a model with only the mean observed [NO3
-] as a predictor. From 0, larger NSE values indicate a model’s predictive ability 181 

improves, until NSE = 1, where observations and predictions are equal. NSE was calculated for both the training and testing data.  182 

For each tree, a random bootstrapped sample (i.e., data randomly pulled from the dataset, sampled with replacement) is 183 

extracted from the dataset (Efron, 1979), as well as a random subset of predictors to consider fitting at each split. Thus, each tree 184 

is grown from a bootstrap sample and random subset of predictors, making trees random and grown independent of the others. 185 

Observations not used as bootstrap samples are termed out-of-bag (OOB) data.  186 

When building a tree, all [NO3
-] from the bootstrap sample are categorized into terminal nodes, such that each node is 187 

averaged and yields a predicted [NO3
-]. The performance and mean squared error (MSE) of a Random Forest model is evaluated 188 
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by comparing the observed [NO3
-] of the OOB data to the average predicted [NO3

-] from the forest. OOB data from the training 189 

dataset may be used to evaluate both permutation importance, referred to in the rest of this text as variable importance, and partial 190 

dependence. Variable importance uses percent increase in mean squared error (%incMSE) to describe predictive power of each 191 

predictor in the model (Jones and Linder, 2015). During this process, a single predictor is permuted, or shuffled, in the dataset. 192 

Therefore, each observed [NO3
-] has the same relationship between itself and all predictors, except one permuted variable. The 193 

%incMSE of a variable is determined by comparing the permuted OOB MSE to unpermuted OOB MSE. Important predictors will 194 

result in a large %incMSE, while a variable of minor importance does little to impact a model’s performance, as suggested by a low 195 

%incMSE value.  196 

Partial dependence curves serve as a graphical representation of the relationship between [NO3
-] and predictors in the 197 

Random Forest model ensemble (Hastie et al., 2009). Each plot considers the effects of other variables in the model, because 198 

predictions of [NO3
-] are influenced by several predictors when building each tree. In these models, the y-axis of a partial 199 

dependence plot represents the average of the OOB predicted [NO3
-] at a specific x-value of each predictor.  200 

2.4 Variables and Project Setup 201 

Data from 15 predictors were collected and analysed (Table 1). Spatial variables were manipulated using ArcGIS 10.4. 202 

The [NO3
-] dataset for the entire NPNRD had 10,676 observations from 1979 to 2014, and was downloaded from the Quality-203 

Assessed Agrichemical Contaminant Database for Nebraska Groundwater (University of Nebraska-Lincoln, 2016). Spatial 204 

locations for each well were included in the original [NO3
-] dataset and imported into GIS. Wells were clipped to the Dutch Flats 205 

model area, resulting in 2,829 [NO3
-] observations from 214 wells. In order to have an accurate vadose-zone thickness, only wells 206 

with a corresponding depth to groundwater record, of which the most recent record was used, were selected (2,651 observations 207 

from 172 wells). Over this period, several wells were sampled much more frequently than others (e.g., monthly sampling, over a 208 

short period of record), especially during a U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) study 209 

from 1995 to 1999. In order to prevent those wells from dominating the training and testing of the model, annual median [NO3
-] 210 

was calculated for each well and used in the dataset. The dataset was further manipulated such that each median [NO3
-] observation 211 

had 15 complementary predictors (Table 1). The selected predictor variables capture drivers of long-term [NO3
-] and [NO3

-] lags. 212 

After incorporating all data, including limited records of dissolved oxygen (DO), the final dataset included 1,049 [NO3
-] 213 

observations from 162 wells sampled between 1993 and 2013 (Figure S1A). Additional details of the data selection, sources, and 214 

manipulations may be found in the supplemental material.  215 

Predictors were divided into two categories: static and dynamic (Table 1). Static predictors are those that either do not 216 

change over the period of record, or annual records were limited. DO, for example, could potentially experience slight annual 217 

variations, but data were not available to assign each nitrate sample a unique DO value. Instead, observations for each well were 218 

assigned the average DO value observed from the well. This approximation was considered reasonable because nitrate isotopic 219 

composition and DO data collected in the 1990s and by Wells et al. (2018) did not indicate any major changes to biogeochemical 220 

processes over nearly two decades. Total travel time (from ground surface to the point of sampling) was strictly considered a static 221 

predictor in this study and was used to link the nitrate-sampling year to a dynamic predictor value. 222 

Dynamic predictors were defined in this study as data that changed temporally over the study period. Therefore, each 223 

annual median [NO3
-] was assigned a lagged dynamic value to represent the difference between the time of a particular surface 224 

activity (e.g., timing of a particular irrigation practice) and when groundwater sampling occurred. Dynamic predictors were 225 

available from 1946 to 2013 and included annual precipitation, Interstate Canal discharge, area under center pivot sprinklers, and 226 

area of planted corn (Fig. 3). Dynamic predictors were included to assess their ability to optimize Random Forest groundwater 227 
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modelling and determine an appropriate lag time. Lag times were based on the vertical travel distance through both the vadose and 228 

saturated zones (see Section 2.5). Area of planted corn was included as a proxy for fertilizer data, which were unavailable prior to 229 

1987. However, analysis suggests there has been a 17% reduction (comparing the means of 1987-1999 to 2000-2012) in fertilizer 230 

application rates per planted hectare, while area of planted corn has increased 16% (comparing the means of 1983-1999 to 2000-231 

2016) in recent decades (Wells et al., 2018). This trend may be attributed to improved fertilizer management by agricultural 232 

producers. There was a likely trade-off in using this proxy; we were able to extend the period of record back to 1946, allowing for 233 

analysis of a wider range of lag times in the model, but might have sacrificed some accuracy in recent decades when nitrogen 234 

management may have improved. Lastly, vadose and saturated-zone transport rates were assumed to be constant over time (Wells 235 

et al., 2018).  236 

2.5 Vadose and Saturated-zone Transport Rate Analysis 237 

Ranges of vertical velocities (transport rates) through the Dutch Flats vadose zone and saturated zone were estimated 238 

from 3H/3He age-dating derived recharge rates. The vertical velocities were determined from results published for samples collected 239 

in 1998 (Böhlke et al., 2007, Verstraeten et al., 2001a) and 2016 (Wells et al., 2018) as 240 

𝑉 =  
𝑅

𝜃
,             (2) 241 

where R is the upper and lower bound of recharge rates (m/yr), and 𝜃 is the mobile water content in the vadose zone or porosity in 242 

the saturated zone.  The 3H/3He  data were used in this study solely for constraining the range of potential transport rates to evaluate 243 

in the vadose and saturated zones, and as a base comparison to model results. The age-data, however, were not used by the model 244 

itself when seeking to identify an optimum transport rate combination. Throughout the text, unsaturated (vadose)-zone vertical 245 

transport rates will be abbreviated as Vu, while saturated-zone vertical transport rates will be Vs. In the vadose zone, 𝜃 was assigned 246 

a constant value of 0.13, which was calibrated previously using a vertical transport model for the Dutch Flats area (Liao et al., 247 

2012).  In the saturated zone, 𝜃  was assigned a constant value of 0.35, equal to the value assumed previously for recharge 248 

calculations (Böhlke et al., 2007).  Vadose and saturated-zone travel times (𝜏) then were calculated using Equation 3: 249 

𝜏 =
𝑧

𝑉
,              (3) 250 

where 𝜏 is either vadose zone (𝜏𝑢) or saturated zone (𝜏𝑠) travel time in years, and z is the vadose-zone thickness (𝑧𝑢) or distance 251 

from the water table to well mid-screen (𝑧𝑠) in meters.  252 

Though Equations 2 and 3 do not explicitly consider horizontal groundwater flow, they are believed to adequately model 253 

shallow groundwater ages, which are likely to follow approximately linear vertical age gradients near the water table. These simple 254 

equations are also suggested to sufficiently estimate groundwater age gradients in wedge-shaped aquifers (Cook and Böhlke, 2000), 255 

and Böhlke et al. (2007) found a linear model adequately fit their data in the Dutch Flats area. Discrete transport rates and travel 256 

times calculated from Equations 2 and 3 should be considered “apparent” rates and travel times, similar to apparent groundwater 257 

ages, which are based on imperfect tracers and may be affected by dispersion and mixing. Nonetheless, the saturated open intervals 258 

of the monitoring wells used for this study (< 6.1 m for shallow wells; 1.5 m for intermediate and deep wells) generally were short 259 

compared with the aquifer thickness, such that age distributions of individual samples were relatively restricted in comparison to 260 

those of the whole aquifer or wells with long screened intervals. Additionally, it is emphasized that the assumed mobile water 261 

content of 0.13 is a calibrated parameter derived previously through inverse modelling and, as suggested by Liao et al. (2012), may 262 

have large uncertainties due to the varying site-specific characteristics known to exist from one well to the next. 263 

Because of the influence of canal leakage on both intermediate and deep wells (Böhlke et al., 2007), only recharge rates 264 

from shallow wells were used to estimate initial values and permissible ranges of vadose-zone travel times. The mean (x̅ = 0.38 265 
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m/yr) and standard deviation (σ = ±0.23 m/yr) of all the 1998 (n = 7) and 2016 (n = 2) shallow recharge rates were calculated. 266 

Using x̅ ±1σ, a range of recharge rates from 0.15 to 0.61 m/yr were converted to transport rates (Vu) using Equation 2. One standard 267 

deviation was selected to constrain the range of rates evaluated, as we considered this method likely encompassed realistic mean 268 

field values. Calculated transport rates resulted in 1.15 to 4.69 m/yr as the range of vadose-zone transport rates. Expanding the 269 

upper and lower bounds, a minimum vadose-zone transport rate of 1.0 m/yr and maximum of 4.75 m/yr was applied. Vertical 270 

transport rates in the vadose zone were increased by increments of 0.25 m/yr from 1.0 to 4.75 m/yr, resulting in 16 possible vadose-271 

zone transport rates to evaluate in the Random Forest model. 272 

Mean (x̅ = 0.84 m/yr) and standard deviation (σ = ±0.73 m/yr) of all shallow, intermediate, and deep well recharge rates 273 

were included in identifying a range of saturated-zone recharge rates from 0.10 to 1.57 m/yr. A total of 35 and 8 recharge rates 274 

were used from the Böhlke et al. (2007) and Wells et al. (2018) studies, respectively. Equation 2 was used to calculate saturated-275 

zone transport rates (Vs) of 0.28 and 4.49 m/yr. Saturated-zone transport rates were increased by increments of 0.25 m/yr, from 276 

0.25 to 4.5 m/yr, resulting in 18 unique saturated-zone transport rates to evaluate in the Random Forest model. The range of 277 

transport rates suggested by groundwater age-dating was large (more than an order of magnitude) and are considered to include 278 

rates likely to be expected in a variety of field settings. Presumably, similar model constraints and results could have been obtained 279 

without the prior age data and with some relatively conservative estimates. 280 

Travel times 𝜏𝑢 and 𝜏𝑠 were calculated for each well based on 𝑧𝑢 and 𝑧𝑠, respectively. For every possible combination of 281 

vadose and saturated-zone transport rates, a unique total travel time, 𝜏𝑡, was calculated for each well based on the vadose and 282 

saturated-zone dimensions of that particular well.  283 

𝜏𝑡 =  𝜏𝑢 + 𝜏𝑠,             (4) 284 

The total travel times from Equation 4 were used to lag dynamic predictors relative to each nitrate sample date. For 285 

instance, a nitrate sample collected in 2010 at a well with a 20-year total travel time (e.g., 𝜏𝑢 = 10 yrs and 𝜏𝑠 = 10 yrs) would be 286 

assigned the 1990 values for precipitation (450 mm), Interstate Canal discharge (0.4 km3/yr), center pivot irrigated area (2484 287 

hectares), and area of planted corn (8905 hectares). 288 

A total of 288 unique transport rate combinations (corresponding to different combinations of the 16 vadose and 18 289 

saturated-zone transport rates) were joined into a single dataset totalling over 300,000 observations to determine the optimal rate 290 

resulting in the maximum testing NSE from the model. Each transport rate combination incorporated up to 1,049 groundwater 291 

[NO3
-] values. To decrease runtime, Random Forest models were parallel processed through a Holland Computing Center (HCC) 292 

cluster at the University of Nebraska-Lincoln. 293 

3 Results and Discussion 294 

This study addressed a relatively unexplored use of Random Forest, which was to identify optimal lag times based on 295 

testing a range of transport rate combinations through the vadose and saturated zones, historical [NO3
-], and the use of easily 296 

accessible environmental datasets.  297 

3.1. Relative Importance of Transport Time and Dynamic Variables  298 

In our initial modelling with dynamic predictors, we anticipated that we could use the Random Forest model with the 299 

highest NSE to identify the optimal pair of vadose and saturated-zone transport rates. However, no clear pattern emerged among 300 

the different models (Fig. 4). Given the small differences and lack of defined pattern in testing NSE values, we selected ten transport 301 

rate combinations (the five top performing models, plus four transport rate combinations of high and low transport rates, and one 302 
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intermediate transport rate combination) for further evaluation of variable importance and sensitivity to a range of transport rate 303 

combinations (Table 2). Median total travel time ranked third in variable importance, while the four dynamic variables consistently 304 

had the four lowest rankings (Fig. 5). Total travel time also had the greatest variability in importance among the fifteen variables, 305 

with a range of 18.4% between the upper and lower values, suggesting some model sensitivity to lag times. Excluding total travel 306 

time, the remaining variables had an average variable importance range of 6%. 307 

Dynamic variables had little influence on the model, despite common potential linkages to groundwater [NO3
-] (Böhlke 308 

et al., 2007; Exner et al., 2010; Spalding et al., 2001). A pattern emerged among dynamic variables where the stronger the historical 309 

trend of the predictor, the greater the importance of the predictor (Fig. 3; Fig. 5). For instance, center pivot irrigated area (highest 310 

ranking dynamic variable) had the least noise and the most pronounced trend, while annual precipitation (lowest ranking variable) 311 

was highly variable and lacked any trend over time (Fig. 3), and also may not be a substantial source of recharge (Böhlke et al., 312 

2007). Further exploration could be done to test more refined variables – for instance, annual median rainfall intensity for the 313 

growing season might have a more direct connection to nitrate leaching than total annual precipitation. However, rainfall intensity 314 

data are not readily available. Likewise, availability of a long-term, detailed fertilizer loading dataset would be advantageous in 315 

providing a more substantiated conclusion regarding the viability of applying dynamic variables to determine vadose and saturated-316 

zone lag. Dynamic variables could be of more use in other study areas that undergo relatively rapid and pronounced changes (e.g., 317 

land use). In future work, the model sensitivity to dynamic variables could be tested through formal sensitivity analysis and/or 318 

automated variable selection algorithms (Eibe et al., 2016). 319 

Ultimately, results from initial analyses suggest that (1) the dynamic data did little to improve model performance, and 320 

(2) Random Forest was not able to relate the four considered dynamic predictors to [NO3
-] in a meaningful way that could be used 321 

to estimate lag time It is likely the influence of these dynamic predictors is dampened as nitrate is transported from the surface to 322 

wells such that data-driven approaches are unable to sort through noise to identify relationships. 323 

3.2 Use of Random Forest to determine transport rates 324 

Due to their low relative importance as predictors, all four dynamic predictors were removed in the subsequent analysis. 325 

As discussed above, a notable variation in total travel time %incMSE was observed in Fig. 5, suggesting model sensitivity to this 326 

variable. Additionally, a relationship between travel time and [NO3
-] has been suggested in the Dutch Flats area through previous 327 

studies (Böhlke et al., 2007; Wells et al., 2018). Therefore, a second analysis of just the 11 static predictors was performed over 328 

the full range of vadose and saturated transport rates (i.e., 288 combinations). However, in the second analysis, model sensitivity 329 

to total travel time – evaluated with respect to the transport rate combination corresponding to the largest %incMSE of total travel 330 

time – was used to determine a distinguished transport rate combination. In other words, models were re-trained and tested for all 331 

transport rate combinations, each of which produced a unique set of values for the total travel time variable. As described in Section 332 

2.3, the %incMSE value for total travel time was then based on the error induced in the model by permuting the calculated total 333 

travel times across all the nitrate observations (i.e., randomly shuffling the total travel time variable, and thus disturbing the 334 

structure of the dataset).  335 

The Random Forest models were useful in identifying the relative magnitudes of Vu and Vs that led to high %incMSE. 336 

Based on the heat map of %incMSE, a band of transport rate combinations with consistently high %incMSE was visually apparent 337 

(Fig. 6). The upper and lower bounds of the band translate to transport rate ratios (Vs/Vu) ranging from 0.9 to 1.5, and are values 338 

that could be useful in constraining recharge and/or transport rate estimates in more complex mechanistic models, as part of a 339 

hybrid modelling approach. This is especially important because recharge is one of the most sensitive parameters in a groundwater 340 

model (Mittelstet et al., 2011), yet one with high uncertainty. Whereas a saturated-zone velocity that is greater than a vadose-zone 341 
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velocity would be unexpected in many unconsolidated surficial aquifers receiving distributed recharge, the statistical machine 342 

learning results are consistent with two contrasting primary recharge processes in the Dutch Flats area: (1) diffuse recharge from 343 

irrigation and precipitation across the landscape, and (2) focused recharge from leaking irrigation conveyance canals. 344 

 The %incMSE of total travel time in the second analysis ranged from 20.6 to 31.5%, with the largest %incMSE associated 345 

with vadose and saturated-zone transport rates of 3.50 m/yr and 3.75 m/yr, respectively (Fig. 6), and the top four predictors for this 346 

transport rate combination were total travel time, vadose-zone thickness, dissolved oxygen, and saturated thickness (Fig. 7). 347 

Converting those vadose and saturated-zone transport rates to recharge rates yielded values of 0.46 m/yr and 1.31 m/yr, 348 

respectively. Such a large difference between the two recharge values is consistent with the hydrologic conceptual model of the 349 

Dutch Flats area. In fact, both model recharge rates compare favourably with recharge rates calculated from the previous Dutch 350 

Flats studies using 3H/3He age-dating (Böhlke et al., 2007; Wells et al., 2018). For instance, the recharge rate determined from the 351 

vadose-zone transport rate in this study (0.46 m/yr) was comparable to the mean recharge rate of 0.38 m/yr (n = 9) from 352 

groundwater age-dating at shallow wells, which are most representative of diffuse recharge below crop fields that are present across 353 

most of the study area (e.g., Figure S2).  Additionally, the recharge rate (1.31 m/yr) determined from the saturated-zone transport 354 

rate was consistent with the mean recharge value derived from groundwater ages in intermediate wells (1.22 m/yr, n = 13). 355 

Intermediate wells are variably impacted by focused recharge from canals in upgradient areas. Given the similarity in diffuse 356 

recharge and focused recharge estimates from both Random Forest and groundwater age-dating, the transport rate ratios (1.2 and 357 

1.1, respectively) were consistent. That is, the Random Forest modelling framework produced transport rates consistent with the 358 

major hydrological processes in Dutch Flats both in direct (i.e., transport rate estimates) and relative (i.e., transport rate ratio) 359 

terms.  360 

Assuming the Random Forest approach has accurately captured the two major recharge processes (diffuse recharge over 361 

crop fields and focused recharge from canals), a comparison of recharge rates from all sampled groundwater wells representative 362 

of recharge to the groundwater system as a whole (0.84 m/yr, n = 43) to the recharge rates from Random Forest modelling (0.46 363 

and 1.31 m/yr) would provide an estimate of the relative importance of diffuse versus focused recharge on overall recharge in 364 

Dutch Flats. Under these assumptions, diffuse recharge would account for approximately 55%, while focused recharge would 365 

account for about 45% of total recharge in the Dutch Flats area. Similarly, Böhlke et al. (2007) concluded that these two recharge 366 

sources contributed roughly equally to the aquifer on the basis of groundwater age profiles, as well as from dissolved atmospheric 367 

gas data indicating mean recharge temperatures between those expected of diffuse infiltration and focused canal leakage.  368 

Partial dependence plots, which illustrate the impact a single predictor has on [NO3
-] in the model with respect to other 369 

predictors (Fig. 8), largely reflect the conceptual understanding of the system from previous studies including Böhlke et al. (2007) 370 

and Wells et al. (2018). Key features that strengthen confidence in the Random Forest modelling include (1) depth to bottom 371 

screen, where groundwater [NO3
-] is lower at greater depths, (2) the effects of minor and major canals, where groundwater [NO3

-] 372 

in the vicinity of canals is diluted by canal leakage, and the influence of major canals extends a longer distance when compared to 373 

that of minor canals, (3) land surface elevation, where elevations indicating proximity to major canals are associated with relatively 374 

lower groundwater [NO3
-], and (4) DO concentration, where higher DO concentration is linked to higher groundwater [NO3

-]. We 375 

note that decreasing DO and [NO3
-] with groundwater age can be explained by DO reduction and historical changes in [NO3

-] 376 

recharge, whereas groundwater chemistry and nitrate isotopic data recorded in both this study and previous Dutch Flats studies 377 

suggest denitrification was not a major factor in this alluvial aquifer. 378 

The partial dependence plot (Fig. 8) for total travel time exhibits a pronounced threshold, where [NO3
-] is markedly higher 379 

for groundwater with travel time less than seven years. It is possible this reflects long-term stratification of groundwater [NO3
-], 380 

stemming from the suggested patterns stated above as nitrate varies with aquifer depth due to the influences of diffuse and focused 381 
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recharge in the region. This seven-year threshold is slightly lower than a previous estimate of mean groundwater age in the aquifer 382 

(8.8 years; Böhlke et al., 2007; where groundwater age excludes vadose-zone travel time) and suggests that shallow groundwater 383 

can respond relatively rapidly to changes in nitrogen management in the Dutch Flats area. 384 

3.3 Opportunities and limitations of Random Forest approach in estimating lag times 385 

Overall, results suggest that  in a complex system such as Dutch Flats, Random Forest was able to identify reasonable 386 

transport rates for both the vadose and saturated zones, and with additional validation, this method may offer an inexpensive (i.e., 387 

compared to groundwater age-dating across a large monitoring well network and/or complex modelling) and reasonable technique 388 

for estimating lag time from historical monitoring data. Further, this approach allows for additional insight on groundwater 389 

dynamics to be extracted from existing monitoring data. However, this study was conducted in the context of a larger project 390 

(Wells et al., 2018) and built on prior research on groundwater flow and [NO3
-]in the study area (Böhlke et al., 2007). Therefore, 391 

it is critical in future work to incorporate site-specific knowledge, process understanding, and approaches for increasing 392 

interpretability of machine learning models (Lundberg et al., 2020, Saia et al., 2020), as highlighted in key considerations below.  393 

 394 

Some key considerations for future application of this approach include: 395 

(1) The Random Forest approach might be useful for estimating future recharge and [NO3
-] using multiple potential 396 

management scenarios, as long as considered management scenarios fall within the range of historical observations used 397 

to train the model. This information could be used to inform policy makers of the impact that current and future 398 

management decisions will have on recharge and [NO3
-]. 399 

(2) The Dutch Flats overlies a predominantly oxic aquifer, where nitrate transport is mostly conservative. In aquifers with 400 

both oxic and anoxic conditions and distinct nitrate extinction depths (Liao et al., 2012; Welch et al., 2011), this approach 401 

may be biased toward oxic portions of the aquifer where the nitrate signal is preserved. Similarly, vertical profiles of 402 

[NO3
-] and isotopic composition in the vadose zone could provide valuable data to investigate (1) the amount of nitrate 403 

stored in the vadose zone, and (2) whether nitrate undergoes any biogeochemical changes while being transported through 404 

the vadose zone to the water table. 405 

(3) While estimates of vadose and saturated-zone transport rates determined from %incMSE are consistent with previous 406 

studies, the predictive performance of the selected model (based on NSE and visual inspection of predicted versus 407 

observed nitrate plots) was not substantially different than other models tested. In other words, the “optimal model” was 408 

only weakly preferred in terms of predicting [NO3
-]. Testing the approach of using %incMSE in other vadose and saturated 409 

zones, with substantial comparison to previous transport rate estimates, is warranted. This would be especially valuable 410 

in an area with a well-defined input function for nitrate that could be compared to a reconstructed input function from the 411 

model. Further, in aquifer settings with relatively evenly distributed recharge, optimized travel times to wells could be 412 

used to estimate the infiltration date of samples, thus providing an optimized view of historical variation of [NO3
-] entering 413 

the subsurface, as illustrated in Figure S1B. In the Dutch Flats area, however, such an analysis is complicated by effects 414 

of subsurface nitrate dilution by local recharge from canal leakage. 415 

(4) Despite potential non-uniqueness in prediction metrics, the heat map of %incMSE did reveal an orderly pattern suggesting 416 

consistent transport rate ratios. For modelling efforts where recharge rates are a key calibration parameter, identification 417 

of a range of reasonable recharge rates, and/or the ratio of recharge rates from diffuse and focused recharge sources for a 418 

complex system will reduce model uncertainty and improve results. This statistical machine learning approach, which 419 

essentially leverages nitrate as a tracer (albeit with an unknown input function in this case), may provide valuable insight 420 
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to complement relatively expensive groundwater age-dating or vadose-zone monitoring data, or as a standalone approach 421 

for first-order approximations. 422 

(5) The demonstrated statistical machine learning approach is apparently well-suited for drawing out transport rate 423 

information from a site with two distinct recharge sources (diffuse versus focused recharge sources) driving the 424 

groundwater nitrate dynamics. Further testing is needed at sites where recharge and nitrate dynamics are more subtle. 425 

4 Conclusions  426 

The Dutch Flats area exhibits large variations in [NO3
-] throughout a relatively small region in western Nebraska. Long-427 

term groundwater [NO3
-] monitoring and previous groundwater age-dating studies in Dutch Flats provided an opportune setting to 428 

test a new application of statistical machine learning (Random Forest) for determining vadose and saturated-zone transport rates. 429 

Overall results suggest Random Forest has the capability to both identify reasonable transport rates (and lag time) and key variables 430 

influencing groundwater [NO3
-], albeit with potential for non-unique results. Limitations were also identified when using dynamic 431 

predictors to model groundwater [NO3
-]. Utilizing only static predictors, and Random Forest’s ability to evaluate variable 432 

importance, vadose-zone and saturated-zone transport rates were selected based on model sensitivity to changing the total travel 433 

time predictor. In other words, total travel time variable importance was evaluated for 288 different transport rate combinations, 434 

and the combination with a total travel time having the largest influence over the model’s ability to predict [NO3
-] was selected for 435 

additional examination. This analysis identified a vadose-zone and saturated-zone transport rate combination consistent with rates 436 

previously estimated from 3H/3He age-dating in Böhlke et al. (2007) and Wells et al. (2018), indicating a combination of distributed 437 

and focused sources of irrigation recharge to this aquifer 438 

Future studies should include assessments of the proper conditions for application of dynamic predictors and include 439 

comparisons of data-driven analyses with complementary datasets. Despite noted limitations, partial dependence plots and relative 440 

importance of predictors were largely consistent with previous findings and mechanistic understanding of the study area, giving 441 

greater confidence in model outputs. The influence of canal leakage on groundwater recharge rates and [NO3
-], for example, was 442 

consistent with previous Dutch Flats studies. Partial dependence plots suggest a threshold of higher [NO3
-] for groundwater with 443 

total travel time (vadose and saturated-zone travel times, combined) of less than seven years, indicating the potential for relatively 444 

rapid groundwater [NO3
-] response to widespread implementation of best management practices. Additionally, research is needed 445 

to determine the minimum number of observations needed to effectively apply the framework shown here. 446 
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 657 
Figure 1: Dutch Flats study area (A) overlain by 30 m Digital Elevation Model (USGS, 1997). The study area is located within the North 658 
Platte Natural Resources District of western Nebraska (B). Depending on data availability, multiple wells (well nest) or a single well may 659 
be found at each monitoring well location. Transect A-A’ represents the location and wells displayed in the Fig. 2 hydrogeologic cross-660 
section.  661 
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 664 

Figure 2: Cross-section along representative well transect (see Fig. 1) within the Dutch Flats area. Surface elevation data 665 

were derived from a 30-meter Digital Elevation Model  (USGS, 1997). Water surface and base of aquifer elevations were 666 

sourced from a 1998 Dutch Flats study (Böhlke et al., 2007, Verstraeten et al., 2001a, 2001b). Small black arrows beneath 667 

the surface indicate general groundwater flow direction.  668 
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 670 

 671 
Figure 3: Time series plots of all four dynamic predictors. Figures represent (a) annual precipitation, (b) Interstate canal discharge, (c) 672 
center pivot irrigated area, and (d) area of planted corn from 1946 to 2013. 673 

 674 

(a) (b) 

(c) (d) 



 

21 

 

 675 

 676 
Figure 4: Heat map of testing NSE results from 288 vadose and saturated-zone transport rate combinations. Testing NSE in this figure 677 
is the median of all 25 model outputs from each of the 288 transport rate combinations. No clear pattern of optimal vadose and saturated-678 
zone transport rate combinations was observed. 679 
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 680 
Figure 5: Boxplot of the %incMSE from the ten transport rate combinations shown in Table 2. Each boxplot has ten points for each 681 
transport rate combination, representing the median %incMSE from the 25 models (five-fold cross validation, repeated 5 times). A larger 682 
%incMSE suggests the variable had a greater influence on a model’s ability to predict [NOs

-]. **Denotes dynamic predictors. 683 
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 684 
Figure 6: Heat map of %incMSE (median from 25 models) from variable importance of total travel time for each of the 288 transport 685 
rate combinations evaluated. Red dashed lines indicate upper (Vu / Vu = 1.5, long dashes) and lower (0.9, short dashes) bounds of the 686 
band of transport rate combinations with consistently higher %incMSE. The white square highlights the single transport rate 687 
combination with the highest %incMSE. 688 
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 690 
Figure 7: Plot from secondary analysis exploring variable importance of the transport rate combination with the largest median 691 
%incMSE in total travel time (Vu = 3.5 m/yr; Vs= 3.75 m/yr). Each point is from one of 25 Random Forest models run for this evaluation. 692 
A larger %incMSE suggests the variable had a greater influence on a model’s ability to predict [NOs

-]. 693 
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 696 
Figure 8: Partial dependence plot for model evaluating transport rate combination of Vu = 3.5 m/yr and Vs= 3.75 m/yr. Tick marks on 697 
each plot represent predictor observations used to train models. 698 
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Table 1. List of the 15 predictors used for Random Forest evaluation. Average (avg.) and median (med.) values are shown. 709 

Predictor Units 
Predictor 

Type 
Source 

Center Pivot Irrigated Area (avg. = 2618; med. = 1037)a hectare Dynamic NAIP; NAPP; Landsat-1,5, 7, 8b 

Interstate Canal Discharge (avg. = 0.53; med. = 0.55)a km3 yr-1 Dynamic USBR (2018) 

Area of Planted Corn (avg. = 8065; med. = 7869)a hectare Dynamic NASS (2018) 

Precipitation (avg. = 384; med. = 377)a mm yr-1 Dynamic NOAA (2017) 

Available Water Capacity (avg. = 0.1; med. = 0.1) cm cm-1 Static NRCS (2018) 

Dissolved Oxygen (avg. = 4.6; med. = 5.4) mg L-1 Static 
C. Hudson, Personal 

Communication (2018) 

Distance from a Major Canal (avg. = 1462.2; med. = 1161.4) m Static USGS (2012)b 

Distance from a Minor Canal (avg. = 633.2; med. = 397.6) m Static USGS (2012)b 

Bottom Screen (avg. = 26.9; med. = 24.4) m Static UNL (2016)b 

Saturated Hydraulic Conductivity (avg. = 68; med. = 28) µm sec-1 Static NRCS (2018) 

Saturated Thickness (avg. = 30.2; med. = 27.6) m Static 
T. Preston, Personal 

Communication (2017)b 

Saturated-Zone Travel Distance (avg. = 13.3; med. = 7) m Static UNL (2016)b 

Surface Elevation (DEM) (avg. = 1244; med. = 1248) m Static USGS (1997) 

Total Travel Time (avg. = 6.4; med. = 5.7)c years Static UNL (2016)b 

Vadose-Zone Thickness (avg. = 9.9; med. = 7.3) m Static 

T. Preston, Personal 

Communication (2017); A. Young, 

Personal Communication (2016) 
a Average and median span from 1946 to 2013  
b Data required further analysis to yield calculated values; data sources are USDA (2017) and USGS (2017)  
cAverage and Median reflects transport rates of Vu = 3.5 m/yr and Vu = 3.75 m/yr   

 710 

Table 2. Summary of ten vadose and saturated-zone transport rate combinations selected from 288 unique potential combinations from 711 
the analysis including dynamic variables. 712 

 Vadose-zone 

Transport 

Rate (m/yr) 

Sat. Zone 

Transport 

Rate (m/yr) 

Test 

NSE 

[NO3
-] 

Observationsa 

Total Travel Time (yrs) 

 
Mean (±1σ) Median  

Five Top-

Performing 

Transport 

Rates 

4.00 0.50 0.623 878 19.9 (± 15.8) 11.3 

2.00 0.50 0.622 861 21.6 (± 15.0) 16.5 

3.75 4.00 0.617 1049 6 (± 3.7) 5.4 

4.00 3.50 0.617 1049 6.3 (±4.1) 5.7 

4.50 3.00 0.616 1049 6.7 (± 4.7) 5.7 

Extreme and 

Midrange 

Transport 

Combinations 

4.75 4.50 0.608 1049 5.1 (± 3.2) 4.6 

2.75 2.25 0.599 1049 9.6 (± 6.3) 8.5 

1.00 4.50 0.570 1049 12.6 (± 7.7) 10.8 

1.00 0.25 0.559 607 26.7 (± 13.3) 20.6 

4.75 0.25 0.548 664 21.3 (± 15.0) 14.9 
aIn cases with slow transport rates, lag times were relatively long and not all [NO3

-] data could be used in the model. For example, a slow transport rate combination 713 
resulting in a lag time with the infiltration year prior to 1946 could not be included. Thus, some models were ultimately based on <1,049 observations. 714 


