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Abstract 

 

Several methods have been proposed to analyze the frequency of non-stationary anomalies. The 

applicability of the non-stationary frequency analysis has been mainly evaluated based on the agreement 

between the time series data and the applied probability distribution. However, since the uncertainty in 

the parameter estimate of the probability distribution is the main source of uncertainty in frequency 

analysis, the uncertainty in the correspondence between samples and probability distribution is 

inevitably large. In this study, an extreme rainfall frequency analysis is performed that fits the Peak-

over-threshold series to the covariate-based non-stationary Generalized Pareto distribution. By 

quantitatively evaluating the uncertainty of daily rainfall quantile estimates at 13 sites of the Korea 

Meteorological Administration using the Bayesian approach, we tried to evaluate the applicability of 

the non-stationary frequency analysis with a focus on uncertainty. The results indicated that the 

inclusion of dew-point temperature (DPT) or surface air temperature (SAT) generally improved the 

goodness of fit of the model for the observed samples. The uncertainty of the estimated rainfall quantiles 

was evaluated by the confidence interval of the ensemble generated by the Markov chain Monte Carlo. 

The results showed that the width of the confidence interval of quantiles could be greatly amplified due 

to extreme values of the covariate. In order to compensate for the weakness of the non-stationary model 

exposed by uncertainty, a method of specifying a reference value of a covariate corresponding to a non-

exceedance probability has been proposed. The results of the study revealed that the reference co-variate 

plays an important role in the reliability of the non-stationary model. In addition, when the reference 

co-variate was given, it was confirmed that the uncertainty reduction of quantile estimates for the 

increase in the sample size was more pronounced in the non-stationary model. Finally, it was discussed 

how information on global temperature rise could be integrated with DPT or SAT-based non-stationary 

frequency analysis. It has been formulated how to quantify the uncertainty of the rate of change in future 

quantile due to global warming using rainfall quantile ensembles obtained in the uncertainty analysis 

process. 

Keywords: Co-variate, Generalized Pareto distribution, Non-stationary frequency analysis, 

Peak-over-threshold time series, Uncertainty 
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1. Introduction 

Human activity in the last century has caused global surface air temperature to rise (Karl et 

al., 2009; Min et al., 2011). When the temperature rises by 1 ℃, the moisture retention capacity 

in the atmosphere increases by about 7 %, which directly affects precipitation (Trenberth, 2011; 

Sim et al., 2019). The higher the water vapor in the atmosphere, the more likely it is to increase 

precipitation (Berg et al., 2013), and increasing surface air temperature and increasing 

atmospheric moisture content can increase probable maximum precipitations or rainfall 

extremes (Kunkel et al., 2013; Lee and Kim, 2018). As a result, global warming damages the 

performance of drainage system infrastructure such as embankments, sewers and dams (Das et 

al., 2011; Jongman et al., 2014), increasing the risk of climate extremes (Emori and Brown, 

2005; Hao et al., 2013). In fact, looking at ground observations around the world shows that 

rainfall extremes have increased significantly over the past century (Karl and Knight, 1998; 

DeGaetano, 2009). Global studies have shown that precipitation has increased in northern 

Australia, Central Africa, Central America, and Southwest Asia (Groisman et al., 2012). 

The current infrastructure design concept for dealing with rainfall extremes is based on the 

estimation of design rainfall depth using frequency analysis of annual maximum series for 

various durations in a region (Madsen et al., 2002; Madsen et al., 2009; Hosking and Wallis, 

2005; Sugahara et al., 2009; Haddad et al., 2011; Willems, 2013; Kim et al., 2020). Current 

design rainfall depth is based on the concept of stationarity in time, which assumes that the 

probability of occurrence of extreme rainfall events is not expected to change significantly over 

time. However, natural environmental changes, such as global warming, have a serious impact 

on the assumptions of the stationarity of the observations. Non-stationarity is an important 

issue that can never be ignored in areas related to drainage system design, as it can alter the 

design flood volume obtained using the stationary frequency analysis of observed rainfall 

extremes. The probability of occurrence of extreme rainfall events is expected to change due 

to global warming (Lee et al., 2016), and this change is called non-stationarity by many authors 

(Alexander et al., 2006; Gregersen et al., 2013). 

Several methods have been proposed to address non-stationarities in the time series (Cunha 

et al., 2011; Yilmaz et al., 2013; Jang et al., 2015, Moon et al., 2016), and many studies have 

been conducted to examine changes in design rainfall depth or return levels under non-
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stationary conditions (Salvadori and DeMichele, 2010; Graler et al., 2013; Hassanzadeh et al., 

2013; Salas and Obeysekera, 2013; Shin et al., 2014; Choi et al., 2019). Looking at the 

probability distributions and parameters applied to the above studies, most of the non-stationary 

frequency analysis is performed by expressing specific parameters of the Gumbel or 

Generalized Extreme Value (GEV) distribution as a function of covariate including time (Kim 

et al., 2017). In extreme rainfall series, non-stationarity may be explicitly expressed as a 

function of time, but may also be related to climate variables in the same or preceding time 

periods where rainfall extremes occurred (Zhang et al., 2010). Several studies have reported 

that it was reasonable to use climate variables rather than time for covariates to represent non-

stationarities in the non-stationary frequency analysis (Agilan and Umamahesh, 2016; Sen et 

al., 2020). Recently, studies have been performed that analyze the non-stationary frequency 

using climate variables for annual maximum rainfall series (Villarini et al., 2012; Agilan and 

Umamahesh, 2017; Lee et al., 2018; Ouarda et al., 2019). In addition, studies have been 

conducted to analyze the non-stationary frequency using Peak-over-threshold (POT) series for 

the purpose of reducing the uncertainty occurring in the sample size (Tramblay et al., 2013; 

Jung et al., 2018; Lee et al., 2020). 

In this research trend, what is of interest in this study is how to examine the relative 

superiority of the stationary and non-stationary models. Most studies use Akaike Information 

Criterion (AIC) and similar indicators, which evaluates how well the time series and probability 

distribution match, to select the optimal model from various candidate non-stationary model, 

including the stationary model (Akaike, 1974; Ganguli and Coulibaly, 2017; Iliopoulou et al., 

2018; Lee et al., 2020). However, the results of selecting the optimal model by these methods 

are highly likely to vary depending on the sample size. Efforts to develop and apply a non-

stationary model for frequency analysis to reflect changing environmental conditions can be 

frustrated by the additional uncertainty associated with the model's complexity, working with 

sampling uncertainty. In other words, the reliability of rainfall quantiles estimated by a complex 

non-stationary model may not be substantially improved, or when various environmental 

conditions are reflected, insufficient model reliability can easily lead to physically inconsistent 

results (Serinaldi and Kilsby, 2015). From this point of view, investigating which model has 

less uncertainty in rainfall quantile as a result of frequency analysis can be an important 

determinant in selecting an optimal model. This is because a model with a relatively smaller 
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uncertainty in the estimated rainfall quantile can be regarded as a more reliable model. 

Whether or not the non-stationary model provides more reliable rainfall quantile estimates 

than the stationary model raises a lot of controversy. Serinaldi and Kilsby (2015) warned that 

uncertainty in non-stationary models might be greater since non-stationary models were more 

complex than stationary models. Agilan and Umamahesh (2018) investigated the effect of 

covariate selection on uncertainty in the covariate-based non-stationary analysis using annual 

maximum series. Ouarda et al. (2020) indicated that uncertainty was likely to work as a major 

weakness in the applicability of the non-stationary model through the analysis of UAE annual 

maximum rainfall series. 

In this study, a non-stationary frequency analysis using dew point temperature (DPT) or 

surface air temperature (SAT) as a covariate is performed. As can be seen from Leopore et al. 

(2014), there is a strong scaling relationship between rainfall extreme and DPT or rainfall 

extreme and SAT. In addition, changes in DPT and SAT can directly affect the atmospheric 

moisture retention governed by the Clausius-Clapeyron equation, and in warmer climates, the 

moisture content of the atmosphere increases and the intensity of precipitation increases at a 

similar rate (Trenberth et. al., 2003; Giorgi et al., 2019). That is, according to the Clausius-

Clapeyron relationship, the amount of moisture in the atmosphere increases exponentially as 

the temperature increases, and the amount of moisture in the atmosphere represents an increase 

rate of 6 - 7 %/K when other atmospheric conditions are kept constant. To obtain a necessary 

understanding of the relationship between daily rainfall and DPT and daily rainfall and SAT in 

Korea, two prior studies have been conducted (Sim et al., 2019; Lee et al., 2020). Sim et al. 

(2019) analyzed the effects of DPT and SAT on daily rainfall extremes. Their results indicated 

that even if there was some cooling effect in the event of summer rainfall (Ali and Mishra, 

2017), daily rainfall extremes in Korea were very sensitive to DPT and SAT. Lee et al. (2020) 

presented a procedure for performing non-stationary frequency analysis using DPT or SAT as 

a covariate. They revealed that non-stationary frequency analysis using future DPT or SAT 

could yield more reasonable and persuasive projections of future rainfall extremes. The purpose 

of this study is to focus on the uncertainty of covariate-based non-stationary frequency analysis 

using DPT or SAT. The uncertainty in analyzing the non-stationary frequency of rainfall 

extremes using the annual maximum series inevitably includes the uncertainty due to the 

limitation of the sample size. In this study, the POT series is extracted from daily rainfall data 
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with the aim of reducing the uncertainty that comes from sample size as much as 

possible. Using the Bayesian approach, the parameters of the stationary and non-stationary 

Generalized Pareto (GP) distributions for the POT excesses are sampled from the posterior 

distribution. Using this, the performance of the stationary and non-stationary frequency 

analysis is investigated in terms of uncertainty. We will also examine how uncertainty in the 

non-stationary frequency analysis can be reduced by determining the appropriate covariate 

value (i.e., DPT or SAT value) corresponding to the rainfall quantile. Finally, the rate of change 

in rainfall quantile estimates for various DPT or SAT rise scenarios considering global warming 

will be analyzed based on uncertainty analysis. 

 

2. Methods 

2.1 Peak-over-threshold series and Generalized Pareto distribution 

In this study, daily precipitation, daily DPT, and daily SAT data were used from 1961 to 

2017 at 13 sites, including Busan and Seoul sites of the Korea Meteorological Administration 

(see Figure S1 of Supplementary Material). Figure 1 shows the results of quantile regression 

using daily precipitation data and DPT data on the day of precipitation observed at Busan and 

Seoul sites. Since the Korea Meteorological Administration only recognizes precipitation 

recorded at 0.1 mm or more per day as official precipitation, daily rainfall depth of 0.1 mm or 

more was applied to the analysis in this study. An example of this wet threshold can also be 

found in Chan et al. (2016) and Roderick et al. (2020). In fact, the application of a wet threshold 

does not significantly affect the results of quantile regression. A regression slope of 95 % 

extreme daily rainfall depth corresponding to DPT was estimated. For reference, the quantile 

regression equation for the quantile 𝜏𝜏  (0.95 in Figure 1) given in the quantile regression 

analysis is as follows: 

 𝑙𝑙𝑙𝑙 𝑅𝑅𝜏𝜏 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏,        (1) 

where 𝑅𝑅𝜏𝜏  is the daily rainfall depth, and 𝑏𝑏  is the DPT of the day when the daily rainfall 

occurred. The following Eq. (2) was constructed using Eq. (1) to see how much the daily 

rainfall increases or decreases when DPT increases by 1 ℃: 

 d𝑅𝑅𝜏𝜏/K =  100(𝑒𝑒𝑏𝑏 − 1).      (2) 
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From Figure 1, it can be found that when DPT increases by 1 ℃, daily rainfall increases by 7 

to 8 %. 

 

[Figure 1. Sensitivity of 95 % daily rainfall depth to dew-point temperature at (a) Busan and 

(b) Seoul sites.] 

 

In general, rainfall frequency analysis is performed using the annual maximum series or 

POT series. In the annual maximum series approach, the annual maximum rainfall series is 

generally assumed to follow the GEV distribution, and various studies have been conducted 

(Cheng et al., 2014). However, as the annual maximum series approach only considers one 

sample per year, the information contained in other data is completely ignored, so the POT 

approach to select the maximum number of samples for frequency analysis is being studied as 

an alternative (Hosseinzadehtalaei et al., 2017). In other words, since the POT approach uses 

more samples to enable accurate parameter estimation of the distribution, several studies 

recommend using the POT series instead of the annual maximum series (Yilmaz et al., 

2014). The POT series is generally assumed to follow the GP distribution (Coles et al., 2001). 

The cumulative probability distribution function of the stationary GP distribution for the 

POT series is as follows (Hosking and Wallis, 1987): 

 𝐹𝐹(𝑥𝑥) = 1 −  �1 − 𝑘𝑘 𝑥𝑥−𝑥𝑥𝑜𝑜
𝛼𝛼
�
1/𝑘𝑘

,      (3) 

where the range of 𝑥𝑥 is 𝑥𝑥𝑜𝑜 < 𝑥𝑥 < ∞, α is the scale parameter, and 𝑘𝑘 is the shape parameter 

(𝑘𝑘 < 0). The threshold 𝑥𝑥𝑜𝑜 should be determined in advance. The random variable 𝑥𝑥 has a 

value greater than 𝑥𝑥𝑜𝑜 , and it is assumed that the occurrence of 𝑥𝑥  follows the Poisson 

distribution described by the annual incidence 𝜆𝜆. The annual incidence 𝜆𝜆 can be defined as 

the number of selected POT excesses divided by the observation year. 

To ensure the independence of POT excesses, data larger than 𝑥𝑥𝑜𝑜 should be set so that 

they are not continuously selected. To ensure this, many studies have performed various 

clustering processes based on the time interval between extreme events (Gregersen et al., 

2017). In this study, individual rainfall events were first separated from the daily rainfall 
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series. The applied Inter-Event Time Definition (IETD) is 1-day (Kim and Han, 2010). Then, 

in a rainfall event, it was set to select only one value at most as a POT series. For reference, in 

this study, the threshold 𝑥𝑥𝑜𝑜 for extracting POT excesses was assumed to be constant. 

In non-stationary frequency analysis, temporally changing parameters are applied to the 

probability distribution function (PDF). Various types of functions are applied to the parameters 

that change over time. In general, the shape parameter is often set to constant (Lopez and 

Frances, 2013), but location or scale parameters are often considered functions of time or 

covariate. Ali and Mishra (2017) applied covariate to the location parameter of GEV, and 

Agilan and Umamahesh (2017) applied covariate to location and scale parameters of GEV. 

Non-stationary features in GP distribution are generally implemented by the scale parameter 

(Coles, 2001; Khaliq et al., 2006). Although non-stationarity can be expressed using the shape 

parameter, it is not a common practice since it is difficult to estimate the shape parameter, 

especially when considering covariates (Renard et al., 2006; Pujol et al., 2007). Although 

studies considering the non-stationarity of the threshold of the POT series have been conducted 

(Tramblay et al., 2012), in this study, the non-stationarity was given only to the scale parameter 

of the GP distribution as follows (Um et al., 2017): 

 𝛼𝛼𝑖𝑖 =  𝑒𝑒𝛼𝛼1+𝛼𝛼2𝑍𝑍𝑖𝑖,        (4) 

where 𝑖𝑖 is the order of occurrence of POT excesses (1 to 𝑙𝑙), and covariate 𝑍𝑍𝑖𝑖 is the climate 

variable corresponding to POT excesses (DPT or SAT on the day of POT excesses in this 

study). Eq. (4) tells how the covariate DPT or SAT is included in the model. The daily averaged 

DPT or SAT observed on the day of occurrence of each POT excess is included in the scale 

parameter of the GP distribution as shown in Eq. (4) to construct the non-stationary GP 

distribution. That is, when 𝛼𝛼2 > 0, the larger the DPT or SAT, the larger the scale parameter. 

Therefore, the parameters of the stationary GP distribution to be estimated are α and 𝑘𝑘, and 

the parameters of the non-stationary GP distribution are 𝛼𝛼1, 𝛼𝛼2, and 𝑘𝑘. 

The formula for rainfall quantile 𝑋𝑋𝑇𝑇 corresponding to the return level of T-year in the 

non-stationary GP distribution using covariate is as follows: 

 𝑋𝑋𝑇𝑇 =  𝑥𝑥𝑜𝑜 +  1
𝑘𝑘
𝑒𝑒𝛼𝛼1+𝛼𝛼2𝑍𝑍 �1 − � 1

𝜆𝜆𝑇𝑇
�
𝑘𝑘
�.     (5) 
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From Eq. (5), rainfall quantile 𝑋𝑋𝑇𝑇 appears as a function of covariate 𝑍𝑍. That is, Eq. (5) shows 

that various rainfall quantiles are calculated depending on the value of the covariate even at the 

same return level. Therefore, one of the problems to be solved in the non-stationary frequency 

analysis using a covariate is how to set the value of the covariate corresponding to a specific 

quantile. Since it is often required to have a single design rainfall depth in practice, it is very 

cumbersome to give a result of calculating rainfall quantiles of various values depending on a 

change in a covariate.  

 

2.2 Metropolis-Hastings algorithm 

The parameters of the GP distribution were estimated using the Metropolis-Hastings (MH) 

algorithm to account for uncertainty. This algorithm is one of the algorithms for the Markov 

Chain Monte Carlo (MCMC) sampling, which takes a sample from the posterior distribution 

of the parameter θ  given the observation data Y . The MH algorithm starts with the initial 

parameter value 𝜃𝜃𝑜𝑜 . Then, 𝑁𝑁 + 𝑀𝑀  sequences of the parameter 𝜃𝜃𝑖𝑖  (𝑖𝑖 = 1,⋯ ,𝑁𝑁 + 𝑀𝑀 ) are 

generated through the following procedure: 

1) The candidate parameter 𝜃𝜃∗ is generated from the proposal distribution 𝑞𝑞(𝜃𝜃∗|𝜃𝜃𝑖𝑖−1). 

At this time, the proposal distribution was applied to the truncated normal distribution 

with mean 𝜃𝜃𝑖𝑖−1  and variance Σ  in this study. The upper and lower limits of the 

truncated normal distirubtion corresponding to the upper and lower limits of the 

parameters were determined in advance. 

2) Calculation of the reference value 𝑏𝑏 for adoption as follows: 

𝑏𝑏 =  𝜋𝜋(𝑌𝑌|𝜃𝜃∗)𝑞𝑞(𝜃𝜃𝑖𝑖−1|𝜃𝜃∗)
𝜋𝜋(𝑌𝑌|𝜃𝜃𝑖𝑖−1)𝑞𝑞(𝜃𝜃∗|𝜃𝜃𝑖𝑖−1),       (6) 

where 𝜋𝜋(𝑌𝑌|𝜃𝜃∗) and 𝜋𝜋(𝑌𝑌|𝜃𝜃𝑖𝑖−1) are the likelihood values in the parameters 𝜃𝜃∗ and 

𝜃𝜃𝑖𝑖−1, respectively, and are defined as follows: 

𝜋𝜋(𝑌𝑌|𝜃𝜃) ~ ∏ 𝑓𝑓(𝑦𝑦𝑖𝑖)𝑛𝑛
𝑖𝑖=1 ,      (7) 

where 𝑓𝑓() is the probability density function of the GP distribution. 

3) If min(1,𝑏𝑏) > 𝑢𝑢 is satisfied for a uniform random number 𝑢𝑢 between 0 and 1, 𝜃𝜃𝑖𝑖 =
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 𝜃𝜃∗, otherwise 𝜃𝜃𝑖𝑖 =  𝜃𝜃𝑖𝑖−1. 

The Markov chain, constructed through the initial 𝑁𝑁  iterations, converges to a chain that 

randomly samples parameters from the posterior distribution of parameters. At this time, the 

parameter sampled before the initial 𝑁𝑁 iterations should be discarded. 

Before using the MH algorithm, it is necessary to determine the initial parameter 𝜃𝜃𝑜𝑜, the 

proposal distribution 𝑞𝑞(𝜃𝜃∗|𝜃𝜃𝑖𝑖−1) , the initial iterative sampling number 𝑁𝑁 , and the total 

iterative sampling number 𝑁𝑁 + 𝑀𝑀. The choice of the initial parameter value 𝜃𝜃𝑜𝑜 is generally 

not sensitive to the results, while the choice of the proposal distribution 𝑞𝑞(𝜃𝜃∗|𝜃𝜃𝑖𝑖−1)  is 

important. The general method is to use a normal distribution with mean 𝜃𝜃𝑖𝑖−1 and a constant 

covariance matrix Σ. It is recommended to select Σ so that the adoption rate of min(1,𝑏𝑏) >

𝑢𝑢 is 20 to 70 %. The number of iterations to be discarded, 𝑁𝑁, is known to be sufficient if more 

than 10 % of 𝑀𝑀 is applied, and the number of samples, 𝑀𝑀, should be secured enough to track 

the progress of the chain and converge the average values of the parameter posterior 

distribution. 

The characteristics of the posterior distribution of parameters from the generated samples 

can be quantified. In general, the final estimated parameter �̅�𝜃 is calculated as follows: 

 �̅�𝜃 =  1
𝑀𝑀
∑ 𝜃𝜃𝑖𝑖𝑁𝑁+𝑀𝑀
𝑖𝑖=𝑁𝑁+1 .       (8) 

In addition, the variance of the estimated parameters can be calculated from the generated 

samples. 

 

3. Results 

3.1 Selection of POT threshold 

Since frequency analysis using POT excesses requires independent rainfall data greater 

than the threshold 𝑥𝑥𝑜𝑜, it is necessary to set 𝑥𝑥𝑜𝑜. One of the most commonly used methods of 

setting the appropriate 𝑥𝑥𝑜𝑜  is the mean residual life plot (Coles, 2001), and the results of 

applying it to the daily precipitation data at Busan and Seoul sites are shown in Figure 2. In 

general, a nonlinear curve appears in a section where a small 𝑥𝑥𝑜𝑜  is selected, and an 
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approximate straight line appears as 𝑥𝑥𝑜𝑜 increases. It is recommended to set 𝑥𝑥𝑜𝑜 in this straight 

section. From Figure 2, it can be found that the appropriate range of 𝑥𝑥𝑜𝑜 is in the range of 30 

to 150 mm/day for both Busan and Seoul sites. In this study, 𝑥𝑥𝑜𝑜 = 50 mm / day was set as a 

threshold for the POT series in both Busan and Seoul sites. Mean residual life plots for all 

applied sites are shown in Figure S2 of Supplementary Material. In general, it can be 

recognized that it is feasible to set 𝑥𝑥𝑜𝑜 = 50 mm/day as the threshold for the POT time series 

at all sites. 

 

[Figure 2. Mean residual life plot at (a) Busan and (b) Seoul sites. The solid line is the mean of 

the excesses of the threshold, and the dotted line is approximated 95 % confidence intervals.] 

 

3.2 Stationary frequency analysis 

The parameters of the GP distribution were estimated using the method of probability 

weighted moments (PWM) and MH algorithm, respectively. Although maximum likelihood 

estimation is an efficient method, it does not clearly show efficiency even in samples larger 

than 500 (Smith, 1985). The method of moments is generally known to be reliable except when 

the shape parameter is less than -0.2. When the likelihood that the shape parameter is less than 

0 is high, PWM estimation is recommended (Hosking and Wallis, 1987). Figure 3 shows the 

result of PWM parameter estimation and the posterior distribution of parameters by the MH 

algorithm at Busan and Seoul sites. Since the MH algorithm does not return a single-valued 

parameter, but estimates the posterior distribution of the parameter, information about the 

uncertainty of the estimated parameter can be obtained. It can be recognized that the posterior 

distribution of the scale parameter converged to an appropriate range even though a relatively 

wide range of uniform distribution was assumed as the prior-distribution (the whole section of 

the horizontal axis in Figure 3). However, in the case of the shape parameter, it can be found 

that the uncertainty is formed relatively higher. That is, it can be seen that the uncertainty 

included when fitting the POT series of Busan and Seoul sites to the GP distribution is mainly 

due to the estimation of the shape parameter. 
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[Figure 3. Posterior distribution of parameters of stationary and non-stationary GP distribution. 

(a) Scale and (b) shape parameters at Busan site, and (c) scale and (d) shape parameters at Seoul 

site. The black vertical lines are a parameter calculated by PWM, which is expressed as a single 

value. The posterior distribution of parameters for the stationary GP distribution sampled using 

the MH algorithm is indicated by red lines. The posterior distribution of parameters for the 

non-stationary GP distribution is indicated by blue lines. The scale parameter of the non-

stationary GP distribution using covariate is defined as a function of DPT. Therefore, the 

posterior distribution of the scale parameters were derived on the assumption that DPT was 

given at 20.2567 ℃ (Busan site) and 21.4958 ℃ (Seoul site), respectively.] 

 

Table 1 shows the final estimated parameters at Busan and Seoul sites. The parameter 

estimation value of the MH algorithm was defined as the ensemble average of samples 

extracted by MCMC from the posterior distribution as mentioned in Eq. (8). The parentheses 

of the parameter estimation values by the MH algorithm in Table 1 are the coefficient of 

variation of the parameter. It can be found that the PWM and MH algorithms give similar 

parameter values for both scale and shape parameters. The negative logarithm likelihood (nllh) 

was also calculated similarly. From the above results, it can be recognized that estimating 

parameters by MH algorithm is applicable when attempting to fit the POT time series to the 

GP distribution, and information about the uncertainty of the estimated parameters is also 

obtainable. It can also be found that the coefficient of variation of the ensemble of scale 

parameters sampled by MCMC is less than 10 %, while the coefficient of variation of the 

ensemble of shape parameters is around 40 %. This means that the uncertainty of the shape 

parameters is relatively higher. Results for other sites tend to be similar to those obtained at 

Busan and Seoul sites. Results for other sites are shown in Table S1 of Supplemental Material. 

 

[Table 1. Parameter estimation of stationary GP distribution at Busan and Seoul sites] 

 

3.3 Non-stationary frequency analysis 

For analyzing the non-stationary frequency of POT excesses, the non-stationary GP 
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distribution, in which the scale parameter was defined as a function of DPT or SAT on the day 

when the POT excesses occurred, was set as in Eq. (4). The parameters of the non-stationary 

GP distribution were estimated using the MH algorithm, and Figure 3 shows the posterior 

distribution of the parameters by the MH algorithm. Similar to the stationary GP distribution, 

the posterior distribution of the scale parameter converged to an appropriate range, although a 

relatively wide range of prior-distributions was assumed. However, it can be recognized that 

the uncertainty is still high in the case of the shape parameter. 

The scale parameter finally estimated at Busan site using Eq. (8) is 𝛼𝛼 = 𝑒𝑒𝑥𝑥𝑒𝑒[2.2149 +

0.071078 ∙ 𝑍𝑍] (where 𝑍𝑍 is DPT), and the shape parameter is 𝑘𝑘 = -0.1123. The coefficient of 

variation of the scale parameter was 7.66 % when the DPT was given at 20.2567 ℃, and the 

coefficient of variation of the shape parameter was 44.02 %. Therefore, when compared with 

the coefficient of variation of the parameters of the stationary GP distribution in Table 1, it can 

be recognized that the uncertainty in both the scale parameter and the shape parameter slightly 

decreased in the non-stationary GP distribution. However, in the scale parameter, these 

coefficients of variation were obtained under the assumption of a specific DPT, so if the range 

of the observed DPT was reflected, the coefficient of variation of the scale parameter of the 

non-stationary GP distribution would have a larger value. The AIC of the stationary model was 

AIC = 3264.84, and the AIC of the non-stationary model was calculated as AIC = 

3247.61. From the viewpoint that the AIC of the non-stationary model is slightly smaller, it can 

be said that the non-stationary model has better performance in expressing the frequency of the 

POT excesses than the stationary model. The parameter estimation results of other sites also 

showed a similar trend to those of Busan site. In other words, under certain DPT or SAT 

conditions, the uncertainty of the scale and shape parameters of the non-stationary model was 

slightly reduced than that of the stationary model, and the AIC of the non-stationary model was 

calculated to be smaller than the AIC of the stationary model. 

 

3.4 Uncertainty analysis 

The final goal of frequency analysis is the estimation of rainfall quantiles, but the 

parameters of probability distribution required for estimation of quantiles as well as quantiles 

are inevitably uncertain since they are estimated from limited samples. Therefore, looking at 
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the uncertainty of the parameters of the probability distribution applied and the uncertainty of 

the quantile derived as a result of frequency analysis give important information to determine 

whether the model is applicable. In this study, the following dimensionless quantitation factors 

were defined to quantify the uncertainty between the stationary and non-stationary models: 

 𝑚𝑚 − 𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  𝑊𝑊𝑖𝑖𝑊𝑊𝑊𝑊ℎ 𝑜𝑜𝑜𝑜 95 𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜𝑓𝑓 𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑊𝑊𝑝𝑝𝑓𝑓
𝑝𝑝𝑒𝑒𝑊𝑊𝑖𝑖𝑝𝑝𝑝𝑝𝑊𝑊𝑝𝑝𝑊𝑊 𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑊𝑊𝑝𝑝𝑓𝑓 𝑣𝑣𝑝𝑝𝑣𝑣𝑣𝑣𝑝𝑝

, and   (9) 

 ℎ − 𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  𝑊𝑊𝑖𝑖𝑊𝑊𝑊𝑊ℎ 𝑜𝑜𝑜𝑜 95 𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜𝑓𝑓 𝑓𝑓𝑖𝑖𝑝𝑝𝑛𝑛𝑜𝑜𝑝𝑝𝑣𝑣𝑣𝑣 𝑞𝑞𝑣𝑣𝑝𝑝𝑛𝑛𝑊𝑊𝑖𝑖𝑣𝑣𝑝𝑝 𝑝𝑝𝑛𝑛𝑒𝑒𝑝𝑝𝑝𝑝𝑏𝑏𝑣𝑣𝑝𝑝
𝑓𝑓𝑝𝑝𝑖𝑖𝑛𝑛𝑜𝑜𝑝𝑝𝑣𝑣𝑣𝑣 𝑞𝑞𝑣𝑣𝑝𝑝𝑛𝑛𝑊𝑊𝑖𝑖𝑣𝑣𝑝𝑝 𝑝𝑝𝑒𝑒𝑊𝑊𝑖𝑖𝑝𝑝𝑝𝑝𝑊𝑊𝑝𝑝

,  (10) 

where 95 PPU means 95 % predicted uncertainty of the corresponding variable (Abbaspour et 

al., 2007). In fact, m-factor and h-factor can be seen as quantification of confidence intervals 

of ensembles simulated by MCMC. That is, the m-factor and h-factor of the estimated value 

indicate how accurate the estimate is or how much uncertainty is (Ouarda et al., 2020). The 

greater the uncertainty of the parameter or rainfall quantile, the greater the value of 95 PPU. 

That is, the quantitation factors of uncertainty expressed by m-factor and h-factor reflect the 

diffusion or lack of precision of the ensemble sampled from the posterior distribution (Motavita 

et al., 2019). 

A total of 6,000 parameter values were sampled from the posterior distribution of 

parameters for each of the stationary and non-stationary models, and 6,000 rainfall quantile 

ensemble corresponding to a return level of 100-year were generated. Eqs. (9) and (10) were 

used to quantify the uncertainty for parameters and the uncertainty for rainfall quantile. Table 

2 shows the results at Busan and Seoul sites. For reference, the results of applying DPT or SAT 

as a covariate at other sites are shown in Table S2 of Supplementary Material. The parameters 

of the stationary GP distribution are α and 𝑘𝑘, whereas the parameters of the non-stationary 

GP distribution are 𝛼𝛼1, 𝛼𝛼2, and 𝑘𝑘, so for direct comparison, m-factor derived by converting 

𝛼𝛼1 and 𝛼𝛼2 of the non-stationary GP distribution to 𝛼𝛼 = 𝑒𝑒𝑥𝑥𝑒𝑒[𝛼𝛼1 + 𝛼𝛼2𝐷𝐷𝐷𝐷𝑏𝑏𝑓𝑓] were expressed 

together. Here, 𝐷𝐷𝐷𝐷𝑏𝑏𝑓𝑓 is a reference DPT, and 20.2567 ℃ for Busan site and 21.4958 ℃ for 

Seoul site, respectively. The reference DPT will be discussed in detail in the discussion section. 

 

[Table 2. Uncertainty of stationary and non-stationary frequency analysis at Busan and Seoul 

sites] 
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The uncertainty of the parameters was first investigated for the m-factor of Eq. (9). It can 

be found that the uncertainty of the scale parameter of the non-stationary model is less than the 

uncertainty of the scale parameter of the stationary model under the condition given the 

reference DPT (10.9 % at Busan site, and 1.7 % at Seoul site). In the case of the shape parameter, 

Busan and Seoul sites showed different results. The uncertainty of the non-stationary model 

decreased at Busan site (10.2%), but increased at Seoul site (9.9%). This suggests that even if 

a non-stationary model is introduced, it is difficult to expect that the uncertainty resulting from 

parameter estimation of the GP distribution would be reduced. The fact that the uncertainty in 

the scale parameter has been shown to be reduced is the result from the condition under which 

a specific DPT is given, so it would be also difficult to argue that the uncertainty in the scale 

parameter has been reduced if changes in DPT are reflected. 

The h-factor of rainfall quantile corresponding to the return level of 100-year was 

calculated in two ways. First, under the condition that the reference DPT is given (i.e., when 

the reference value of DPT is applied), the h-factor of the non-stationary model is reduced by 

37 % (at Busan site) and 28 % (at Seoul site) than that of the stationary model. However, under 

the condition that all observed DPTs corresponding to POT excesses are applied, the 

uncertainty from parameter estimation and the effects from extreme values of the covariate are 

combined, and the h-factor of the non-stationary model exceeds the h-factor of the stationary 

model. That is, if samples of the scale parameter (i.e., α) is made by combining all samples of 

the coefficients of the scale parameter (i.e., 𝛼𝛼1 and 𝛼𝛼2) and samples of all observed DPTs 

corresponding to each POT excess, the uncertainty of rainfall quantiles in the non-stationary 

model is greater than the uncertainty of rainfall quantiles in the stationary model. The 

amplification of the uncertainty in the non-stationary model is because, as can be seen from Eq. 

(4), samples of some extreme DPTs greatly scatter samples of the scale parameter of the non-

stationary GP distribution. This can also be confirmed through the lower right figure of Figure 

4(a) and (b). The width of the 95 PPU of the scale parameter of the non-stationary model 

corresponding to the value of the individual DPT is not significantly different from the width 

of the scale parameter of the stationary model. However, when all observed DPTs 

corresponding to the POT excesses are involved in sampling of the scale parameter, it can be 

recognized that the range of the 995 PPU of the scale parameter of the non-stationary model is 
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very wide. 

 

[Figure 4. Changes in uncertainty for co-variate at (a) Busan and (b) Seoul sites. The upper left 

figures in Figure 4(a) and (b) show the POT series (blank line), and the ensemble average of 

stationary (blue line) and non-stationary (red line) rainfall quantile corresponding to the return 

level of 100-year. In the upper right figures, the ensemble average (blue line for stationary 

model, and red line for non-stationary model), and 95PPU of the stationary (blue dotted line) 

and non-stationary (red dotted line) rainfall quantile for the return level of 100-year are shown. 

The lower left figures show the h-factor of the stationary (blue line) and non-stationary (black 

line) rainfall quantile corresponding to the return level of 100-year. Red lines mean the average 

of black line. The lower right figures show the ensemble average (blue line for stationary model, 

and red line for non-stationary model), and 95 PPU of the stationary (blue dotted line) and non-

stationary (red dotted line) scale parameter.] 

 

The above results indicate that although the non-stationary model is better in fitting 

performance for the observed samples, it is difficult to admit that the non-stationary model is 

more reliable than the stationary model due to the influence of extreme values of the covariate 

when estimating rainfall quantile. Ouarda et al (2020) also produced similar results using the 

annual maximum rainfall series and the non-stationary GEV distribution. 

We want to note here the condition in which the value of the covariate is given. In the upper 

left figure of Figure 4(a) and (b), the stationary quantile has a single value, while the ensemble 

average of the non-stationary quantile shows various values depending on the value of DPT. In 

addition, the 95 PPU of the stationary quantile has a constant range regardless of the value of 

the covariate, whereas the 95 PPU of the non-stationary quantile has a relatively wider range 

depending on the value of the covariate (see upper right figure in Figure 4(a) and (b)). This is 

due to the covariate dependence inherent in the scale parameter of the non-stationary GP 

distribution, as mentioned before. That is, since the range of the ensemble of the non-stationary 

rainfall quantile is a result of additionally reflecting the extreme values of the covariate in 

addition to the parameter uncertainty, it is more likely to be formed relatively wider than the 

range of the ensemble of the stationary rainfall quantile. It should be noted, however, that the 
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width of the non-stationary 95 PPU for a particular covariate value is less than the width of the 

stationary 95 PPU. 

In fact, since the covariate corresponding to each POT excess is a known value, the h-factor 

of the rainfall quantile corresponding to each POT excess can be obtained (see lower left figure 

in Figure 4(a) and (b)). Given the value of covariate, it can be recognized that the non-stationary 

h-factor is smaller than the stationary h-factor. That is, if the value of the covariate of the non-

stationary model can be determined, there is a room to say that the non-stationary frequency 

analysis is better in terms of reliability than the stationary frequency analysis. 

Figure 5 shows the empirical distribution of rainfall quantile corresponding to the return 

level of 100-year using DPT observed at Busan and Seoul sites. Note that the non-stationary 

GP distribution using the covariate returns rainfall quantile of various values depending on the 

DPT corresponding to the POT excess. As can be seen in Figure 5, the non-stationary frequency 

analysis can provide an empirical distribution of rainfall quantile in the present condition of 

DPT and in the future condition of elevated DPT due to global warming. Therefore, the change 

in rainfall quantile considering global warming can be expressed explicitly. While rainfall 

extremes derived from climate models have significant bias and uncertainty, relatively reliable 

climate model outputs can be obtained for DPT (O'Gorman, 2012; Lenderink and Attema, 2015; 

Farnham et al., 2018). Therefore, it can be said that the non-stationary frequency analysis using 

DPT or SAT has an advantageous structure for examining the effect of global warming on 

rainfall quantile (Wasko and Sharma, 2017; Lee et al., 2020). 

 

[Figure 5. Rainfall quantile estimates at (a) Busan and (b) Seoul sites for return level of 100-

year using observed dew-point temperature and global warming scenarios. The stationary 

rainfall quantile is indicated as a blue vertical line since it is a single value. The non-stationary 

rainfall quantiles were calculated using the average of the parameter ensemble sampled by 

MCMC and the DPT observed on the day of POT excesses (red dotted line). In this figures, 

‘NS (3 ℃ up)’ is an empirical distribution of rainfall quantile derived using DPTs that add 3 ℃ 

to DPTs observed on the day of POT excesses. Likewise, 'NS (5 ℃ up)' is an empirical 

distribution of rainfall quantile under the scenario condition where DPT has risen 5 ℃ due to 

global warming.] 
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4. Discussion 

4.1 Reference covariate 

As described above, when performing the uncertainty analysis of the non-stationary 

frequency analysis, an undesired disturbance in which the ensemble of rainfall quantile is 

excessively dispersed due to some extreme covariate values appears. Since the value of the 

covariate is the data observed on the day that the POT excess occurred (i.e., a deterministic 

variable), analyzing the uncertainty in rainfall quantile by randomly sampling the value of DPT 

or SAT from a predefined probability distribution of covariate is likely to result in 

overestimating uncertainty. We thought that the uncertainty analysis of randomly sampling the 

values of covariate from a predefined distribution of covariate was not feasible. The method of 

randomly sampling the value of the covariate in this study was implemented under the 

condition that all observed covariate samples corresponding to POT excesses were applied. 

Therefore, this study investigated the relationship between the value of covariate and rainfall 

quantile. 

From Eq. (5), the DPT value (i.e., reference DPT) of the non-stationary GP distribution that 

returns the rainfall quantile equal to the stationary GP distribution can be calculated (reference 

SAT can be calculated in the same way). Figure 6 shows an example of determining a reference 

DPT. The results of calculating the reference DPT at Busan and Seoul sites indicate that the 

reference DPT increases as the return level increases. The right figure in Figure 6(a) and (b) 

shows the histogram of DPT corresponding to POT excesses. The distribution of DPT is 

slightly distorted to the left. It can be found that the reference DPT corresponding to various 

return levels at Busan and Seoul sites is similar to the location of the mode of the DPT 

distribution. This fact reveals that covariate values that deviate significantly from the reference 

covariate (i.e., some extreme values of the covariate) amplify the uncertainty of rainfall 

quantile from the non-stationary frequency analysis. From the results of regression analysis of 

rainfall quantile for various return levels and the corresponding reference DPT, the relationship 

of DPT = 18.8589RL^0.01555 (where RL is the return level in year and the unit of DPT is °C) 

was obtained at Busan site. At Seoul site, a relationship of DPT = 19.8540RL^0.01728 was 

obtained. The coefficient of determination of the regression analysis was 0.99 or higher at 
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Busan and Seoul sites. From these results, the reference DPT corresponding to the return level 

of 100-year at Busan site could be applied to 20.2567 °C and Seoul site to 21.4958 °C. As 

shown in Figure 6 and Figures S3 and S4 of Supplementary Material, the value of the reference 

covariate is almost completely dependent on the return level. It should be noted that the return 

level and the reference covariate are proportional to each other at some sites, and are inversely 

proportional to other sites. This means that it is not easy to identify a single covariate value 

corresponding to a rainfall quantile. In this study, we tried to overcome the problem of random 

sampling of covariates by introducing the concept of reference covariate when estimating 

rainfall quantile and analyzing its uncertainty from non-stationary frequency analysis based on 

covariate. From a practical point of view, how to set the value of the reference covariate may 

be an important research topic in the covariate-based non-stationary frequency analysis. 

 

[Figure 6. Selection of reference dew-point temperature for estimating rainfall quantiles at (a) 

Busan and (b) Seoul sites. In this figure, 'RF' refers to the empirical relative frequency of DPT 

on the day of POT excess.] 

 

Figure 7(a) shows the values of the negative log likelihood function of the stationary model 

and the non-stationary models at 13 sites. The stationary model, the SAT-based non-stationary 

model, and the DAT-based non-stationary model were found to have no significant difference 

in the fit performance with the observed POT excesses. Figure 7(b) shows the h-factor of 

rainfall quantile corresponding to the return level of 100-year. When all the values of covariate 

observed on the day of POT excesses are considered ("DPT" and "SAT" in Figure 7(b)), at all 

sites except Mokpo site, the non-stationary h-factor is greater than the stationary h-factor. 

However, when the reference covariate is applied, the non-stationary h-factor is smaller than 

the stationary h-factor. Results from 13 sites and most of the non-stationary models using SAT 

or DPT as a covariate indicate that how to determine the appropriate value of the covariate 

corresponding to the rainfall quantile plays an important role in securing the reliability of the 

non-stationary frequency analysis. 
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[Figure 7. Performance of stationary and non-stationary frequency analysis models. At Site ID, 

1: Ghangreung, 2: Seoul, 3: Incheon, 4: Chupungryeong, 5: Pohang, 6: Daegu, 7: Jeonju, 8: 

Ulsan, 9: Ghwangju, 10: Busan, 11: Mokpo, 12: Yeosu and 13: Jeju site.] 

 

The uncertainty of the non-stationary frequency analysis for various sample size changes 

was analyzed using a reference DPT corresponding to the return level of 100-year. In the first 

case, POT and covariate series of the last 10 years from 2008 to 2017 were applied, and 

frequency analysis was performed by extending the data period in the past direction for 5 

years. Figure 8 shows the uncertainty of rainfall quantile under the condition that the reference 

DPT is given. Generally, the h-factor of the non-stationary frequency analysis is smaller than 

the stationary frequency analysis. It can be found that for the h-factor to be less than 0.5, the 

non-stationary frequency analysis requires a data period of about 40 years (at Busan site) and 

75 years (at Seoul site), while the stationary frequency analysis requires more than 100 years. 

The data period required to achieve a certain level of h-factor can play an important role in 

optimal model selection. As in other regions, the observed data period in Korea varies widely 

from site to site. If the data period is short and there is no significant difference in performance 

(both in terms of goodness of fit and uncertainty) between the stationary model and the non-

stationary model, it can be said that it is better to apply a stationary model with a relatively 

well-established methodology. However, in terms of uncertainty, if the value of the reference 

covariate can be well defined, the results in Figure 8 show that the non-stationary model can 

estimate rainfall quantile with the same level of uncertainty even with relatively shorter data 

periods. That is, when frequency analysis is performed using samples of the same data period 

at a site, if the appropriate covariate is applied and the reference value of the covariate is 

appropriately determined, it can be said that the rainfall quantile estimated from the non-

stationary model is more reliable than the rainfall quantile estimated from the stationary model. 

 

[Figure 8. Effect of the number of samples on the uncertainty of rainfall quantile using 

reference dew-point temperature.] 
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4.2 Uncertainty of rate of change 

Through Figure 5, we have seen that the non-stationary frequency analysis using DPT has 

an advantageous structure for examining the effect of global warming on rainfall quantile. In 

this section, we extend the concept of Figure 5 a little further to investigate the uncertainty 

about the rate of change in rainfall quantile for global warming. Here, the rate of change is 

defined as [future rainfall quantile - present rainfall quantile] / [present rainfall quantile]. That 

is, a rate of change of 0.2 means that the future rainfall quantile will increase by 20 % from the 

present rainfall quantile. In most global warming scenarios, the state of DPT increases, so the 

case where the change rate is less than 0 is not considered in this study. In fact, it is not difficult 

to consider. 

Let us assume that rainfall quantile for the return level of T-year in the present DPT state 

is 𝑋𝑋𝑝𝑝𝑇𝑇 , and rainfall quantile in the future DPT state is 𝑋𝑋𝑜𝑜𝑇𝑇 . At this time, 𝑋𝑋𝑝𝑝𝑇𝑇  and 𝑋𝑋𝑜𝑜𝑇𝑇  are 

composed of ensemble sampled by MCMC under the conditions given the present and future 

reference DPT, respectively. The probability that the rainfall quantile 𝑋𝑋𝑜𝑜𝑇𝑇 in the future DPT 

state increases more than 𝛼𝛼 ×100 (%) than the rainfall quantile 𝑋𝑋𝑝𝑝𝑇𝑇  in the present DPT 

condition, that is, the probability 𝐷𝐷𝛼𝛼𝑇𝑇 that the rate of change becomes more than α can be 

defined as follows: 

 𝐷𝐷𝛼𝛼𝑇𝑇 = 𝐷𝐷�𝑋𝑋𝑜𝑜𝑇𝑇 ≥ (1 + 𝛼𝛼)𝑋𝑋𝑝𝑝𝑇𝑇� = 1 −  ∫ 𝐹𝐹𝑜𝑜𝑇𝑇�(1 + 𝛼𝛼)𝑋𝑋𝑝𝑝𝑇𝑇� ∙ 𝑓𝑓𝑝𝑝𝑇𝑇�𝑋𝑋𝑝𝑝𝑇𝑇�
∞
0 𝑑𝑑𝑋𝑋𝑝𝑝𝑇𝑇, (11) 

where 𝐹𝐹𝑜𝑜𝑇𝑇[] is the cumulative probability distribution function of 𝑋𝑋𝑜𝑜𝑇𝑇 in the future DPT state, 

and will behave depending on the DPT rise in the future global warming scenario. The 

probability distribution of 𝑋𝑋𝑝𝑝𝑇𝑇 in the present DPT state was expressed as 𝑓𝑓𝑝𝑝𝑇𝑇[]. From Eq. (11), 

it can be recognized that 𝐷𝐷𝛼𝛼𝑇𝑇 increases as the future DPT increase increases, and decreases as 

the rate of change increases. 

When frequency analysis using the Bayesian approach is performed, a large number of 

samples for 𝑋𝑋𝑝𝑝𝑇𝑇 and 𝑋𝑋𝑜𝑜𝑇𝑇 can be obtained through MCMC simulation, so instead of calculating 

𝐷𝐷𝛼𝛼𝑇𝑇  using Eq. (11), it is possible to numerically calculate 𝐷𝐷𝛼𝛼𝑇𝑇  from the generated 

samples. Figure 9 shows the probability that the rainfall quantile for the return level of 100-

year will exceed a certain rate of change under various conditions (∆DPT) in a global warming 

scenario expressed as a rise in DPT. That is, the probability that the rainfall quantile for the 
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return level of 100-year increases by 20 % or more in a scenario condition in which the state 

of DPT increases by 6 ℃ at Busan site is about 80 %. 

 

[Figure 9. Likelihood of increase over change rate of rainfall quantile for return level of 100-

year.] 

 

When Figure 9 is substituted for a specific DPT rise scenario, the reliability of the rate of 

change in rainfall quantile can be obtained as explained below. Figure 10 describes the 

procedure for analyzing the rate of change in rainfall quantile for the return level of 100-year 

under the DPT 4 ℃ rise scenario. The upper left figures in Figure 10(a) and (b) show the 

probability distribution of rainfall quantile ensemble at Busan and Seoul sites, 

respectively. One can see that the probability distribution of 𝑋𝑋𝑜𝑜𝑇𝑇 is shifted to the right. Using 

the information on these probability distributions and the concept of Eq. (11), the likelihood of 

increase over change rate (LoI), 𝐷𝐷𝛼𝛼𝑇𝑇, can be drawn (see the upper right subplot). Since LoI is 

the probability that the rate of change of rainfall quantile for a specific return level is greater 

than or equal to α in a specific DPT rising condition, the probability that the rate of change is 

less than or equal to α is 1 − 𝐷𝐷𝛼𝛼𝑇𝑇. That is, the cumulative probability distribution of rate of 

change becomes 1 − 𝐷𝐷𝛼𝛼𝑇𝑇, which is shown in the lower right. The probability distribution of 

rate of change can be obtained numerically from the cumulative probability distribution of rate 

of change, and it is shown in the lower left. The ensemble average of the rate of change of 

rainfall quantile for the return level of 100-year at Busan site was 0.3138 (0.3742 at Seoul site) 

and the standard deviation of the ensemble was 0.2734 (0.3298 at Seoul site). 

 

[Figure 10. Procedure for analyzing uncertainty in rate of change. In upper left figures, the blue 

line is the probability distribution of 𝑋𝑋𝑝𝑝𝑇𝑇  in the present condition, and the red line is the 

probability distribution of 𝑋𝑋𝑜𝑜𝑇𝑇 in the DPT 4 ℃ rising condition. In the lower left figures, the 

section of the standard deviation was colored in pink.] 
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The uncertainty of the parameters estimated in the frequency analysis will influence the 

estimation of the rate of change in future climate change scenarios. An ensemble of rainfall 

quantile can be obtained from various parameter combinations sampled by MCMC, and an 

ensemble of future rainfall quantile can also be obtained by applying climate change scenarios 

to covariates. A simple comparison of the ensemble average of rainfall quantile derived from 

present and future DPT states using a reference DPT makes it possible to obtain an average 

rate of change, but it is impossible to determine how reliable the rate of change is. Through the 

procedure presented in Figure 10, one can recognize that it is possible to quantify the 

uncertainty inherent in the rate of change. It should be noted, however, that this uncertainty 

analysis of rate of change only considered the uncertainty that comes from parameter 

estimation. When analyzing the uncertainty of the rate of change, the uncertainty arising from 

the selection of probability distributions for frequency analysis and the uncertainty resulting 

from the choice of covariates should also be addressed. In addition, the uncertainty arising from 

various climate change scenarios should be treated as important. 

 

5. Conclusion 

In this study, stationary and non-stationary frequency analysis was performed using daily 

precipitation data from 13 major sites in Korea. Daily precipitation data for frequency analysis 

was extracted based on the POT approach. As a threshold for extracting the POT series, it was 

confirmed that a value between 30 and 150 mm/day was appropriate from the results of plotting 

the Mean residual life plot. Both Busan and Seoul site have finally set 50 mm/day as the 

threshold of the POT excesses. The POT series was adapted to the GP distribution, and as a 

result of estimating the parameters using the PWM and MH algorithms, it was confirmed that 

the parameter estimation of the GP distribution by the MH algorithm is 

applicable. Confirmation of applicability to the MH algorithm means that information on the 

empirical probability distribution of the estimated GP distribution parameters can be obtained. 

The non-stationarity of the POT series was implemented by expressing the scale parameter 

of the GP distribution as a function of the DPT or SAT observed on the day of the POT excess. 

The AIC of the non-stationary GP distribution using the covariate was calculated to be slightly 

smaller than the AIC of the stationary GP distribution. However, since the difference was 
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thought to be likely to change in any way during the parameter estimation process, it was 

recognized that the performance in terms of data fitness of the stationary and non-stationary 

GP distributions was almost similar. On the other hand, since the non-stationary frequency 

analysis using covariate can separately provide the empirical distribution of rainfall quantile at 

the current covariate level and the empirical distribution of rainfall quantile at the covariate 

level changed due to global warming, changes in rainfall quantile considering climate change 

can be expressed explicitly. 

In this study, rainfall quantile for various parameter combinations was simulated using 

MCMC sampling from the posterior distribution of parameters derived by the MH 

algorithm. Under the condition considering all observed ranges of covariate, it was found that 

the uncertainty of the non-stationary model was calculated to be greater than the uncertainty of 

the stationary model since the effects of extreme values of covariate were added to the 

uncertainty resulting from parameter estimation. In other words, although the performance in 

terms of goodness of fit was better for the non-stationary model, it was difficult to say that the 

results of the non-stationary model were more reliable than the results of the stationary model 

because of the non-stationarity from the variation of the covariate when estimating rainfall 

quantile. However, in this study, the concept of reference covariate was introduced to prevent 

excessive dispersion of rainfall quantile ensemble due to extreme values of covariate. That is, 

it was suggested that the reliability of the non-stationary frequency analysis could be superior 

to the reliability of the stationary frequency analysis under the condition that an appropriate 

reference covariate is given. For reference, it was found that it was necessary to change the 

reference covariate in response to the return level of the rainfall quantile. 

The focus of this study was on how to examine the relative superiority of the stationary and 

non-stationary models when performing frequency analysis. When considering the uncertainty 

of the parameter of probability distribution, which is mainly caused by the limited sample size, 

it was thought be insufficient to evaluate the relative goodness of the stationary and non-

stationary models only by evaluating the fitness of the sample using the estimated 

parameter. This study was promoted from the viewpoint that a model with smaller uncertainty 

inherent in rainfall quantile, which is the result of frequency analysis, was better. From this 

point of view, it was found that the covariate-based non-stationary frequency analysis could be 

a better model than the stationary frequency analysis if the reference covariate was properly 
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given. In addition, it was recognized that the uncertainty of the rate of change of rainfall 

quantile in future covariate conditions could also be identified by using the rainfall quantile 

ensemble in present and future covariate conditions that can be obtained in the uncertainty 

analysis process. 
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Table captions: 

 

Table 1. Parameter estimation of stationary GP distribution at Busan and Seoul sites 

Table 2. Uncertainty of stationary and DPT-based non-stationary frequency analysis at 

Busan and Seoul sites 
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Table 1. Parameter estimation of stationary GP distribution at Busan and Seoul sites 

Site Parameter PWM MH 

Busan 
α 33.5972 33.966 (8.54 %) 
k -0.1423 -0.1477 (47.44 %) 

nllh 1630.38 1630.42 

Seoul 
α 34.9666 35.1785 (8.93 %) 
k -0.1633 -0.1772 (38.59 %) 

nllh 1340.82 1340.87 
 

Table 2. Uncertainty of stationary and DPT-based non-stationary frequency analysis at Busan 

and Seoul sites 

Site Factor Parameter Stationary Non-stationary 

Busan 

m − factor 

𝛼𝛼1  

 

0.3278 

0.5463 

𝛼𝛼2 0.8700 

α 0.2920 

k 1.7507 1.5717 

h − factor 100-yr 0.7595 
0.4771 

(1.0274) 

Seoul 

m − factor 

𝛼𝛼1  

 

0.3407 

0.7127 

𝛼𝛼2 0.8588 

α 0.3349 

k 1.4204 1.5613 

h − factor 100-yr 0.7421 
0.5331 

(1.0273) 
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Figure captions: 

Figure 1. Sensitivity of 95 % daily rainfall depth to dew-point temperature at (a) Busan 

and (b) Seoul sites. 

Figure 2. Mean residual life plot at (a) Busan and (b) Seoul sites. The solid line is the mean 

of the excesses of the threshold, and the dotted line is approximated 95% confidence 

intervals. 

Figure 3. Posterior distribution of parameters of stationary and non-stationary GP 

distribution. (a) Scale and (b) shape parameters at Busan site, and (c) scale and (d) shape 

parameters at Seoul site. The black vertical lines are a parameter calculated by PWM, 

which is expressed as a single value. The posterior distribution of parameters for the 

stationary GP distribution sampled using the MH algorithm is indicated by red lines. The 

posterior distribution of parameters for the non-stationary GP distribution is indicated 

by blue lines. The scale parameter of the non-stationary GP distribution using covariate 

is defined as a function of DPT. Therefore, the posterior distribution of the scale 

parameters were derived on the assumption that DPT was given at 20.2567 ℃ (Busan site) 

and 21.4958 ℃ (Seoul site), respectively. 

Figure 4. Changes in uncertainty for co-variate at (a) Busan and (b) Seoul sites. The upper 

left figures in Figure 4(a) and (b) show the POT series (blank line), and the ensemble 

average of stationary (blue line) and non-stationary (red line) rainfall quantile 

corresponding to the return level of 100-year. In the upper right figures, the ensemble 

average (blue line for stationary model, and red line for non-stationary model), and 

95PPU of the stationary (blue dotted line) and non-stationary (red dotted line) rainfall 

quantile for the return level of 100-year are shown. The lower left figures show the h-

factor of the stationary (blue line) and non-stationary (black line) rainfall quantile 

corresponding to the return level of 100-year. Red lines mean the average of black line. 

The lower right figures show the ensemble average (blue line for stationary model, and 

red line for non-stationary model), and 95 PPU of the stationary (blue dotted line) and 

non-stationary (red dotted line) scale parameter. 
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Figure 5. Rainfall quantile estimates at (a) Busan, and (b) Seoul sites for return level of 

100-year using observed dew-point temperature and global warming scenarios. The 

stationary rainfall quantile is indicated as a blue vertical line since it is a single value. The 

non-stationary rainfall quantiles were calculated using the average of the parameter 

ensemble sampled by MCMC and the DPT observed on the day of POT excesses (red 

dotted line). In this figures, ‘NS (3 ℃ up)’ is an empirical distribution of rainfall quantile 

derived using DPTs that add 3 ℃ to DPTs observed on the day of POT excesses. Likewise, 

'NS (5 ℃ up)' is an empirical distribution of rainfall quantile under the scenario condition 

where DPT has risen 5 ℃ due to global warming. 

Figure 6. Selection of reference dew-point temperature for estimating rainfall quantiles 

at (a) Busan and (b) Seoul sites. In this figure, 'RF' refers to the empirical relative 

frequency of DPT on the day of POT excess. 

Figure 7. Performance of stationary and non-stationary frequency analysis models. At 

Site ID, 1: Ghangreung, 2: Seoul, 3: Incheon, 4: Chupungryeong, 5: Pohang, 6: Daegu, 7: 

Jeonju, 8: Ulsan, 9: Ghwangju, 10: Busan, 11: Mokpo, 12: Yeosu and 13: Jeju site. 

Figure 8. Effect of the number of samples on the uncertainty of rainfall quantile using 

reference dew-point temperature. 

Figure 9. Likelihood of increase over change rate of rainfall quantile for return level of 

100-year. 

Figure 10. Procedure for analyzing uncertainty in rate of change. In upper left figures, 

the blue line is the probability distribution of 𝑿𝑿𝒑𝒑𝑻𝑻 in the present condition, and the red 

line is the probability distribution of 𝑿𝑿𝒇𝒇𝑻𝑻 in the DPT 4 ℃ rising condition. In the lower 

left figures, the section of the standard deviation was colored in pink. 
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(a)                                        (b) 

Figure 1. Sensitivity of 95 % daily rainfall depth to dew-point temperature at (a) Busan and (b) 

Seoul sites. 

 

 

(a)                                        (b) 

Figure 2. Mean residual life plot at (a) Busan and (b) Seoul sites. The solid line is the mean of 

the excesses of the threshold, and the dotted line is approximated 95% confidence intervals. 
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(a)                                        (b) 

 

(c)                                        (d) 

Figure 3. Posterior distribution of parameters of stationary and non-stationary GP distribution. 

(a) Scale and (b) shape parameters at Busan site, and (c) scale and (d) shape parameters at Seoul 

site. The black vertical lines are a parameter calculated by PWM, which is expressed as a single 

value. The posterior distribution of parameters for the stationary GP distribution sampled using 

the MH algorithm is indicated by red lines. The posterior distribution of parameters for the 

non-stationary GP distribution is indicated by blue lines. The scale parameter of the non-

stationary GP distribution using covariate is defined as a function of DPT. Therefore, the 

posterior distribution of the scale parameters were derived on the assumption that DPT was 

given at 20.2567 ℃ (Busan site) and 21.4958 ℃ (Seoul site), respectively. 
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(a) 

 

(b) 

Figure 4. Changes in uncertainty for co-variate at (a) Busan and (b) Seoul sites. The upper left 

figures in Figure 4(a) and (b) show the POT series (blank line), and the ensemble average of 

stationary (blue line) and non-stationary (red line) rainfall quantile corresponding to the return 

level of 100-year. In the upper right figures, the ensemble average (blue line for stationary 

model, and red line for non-stationary model), and 95PPU of the stationary (blue dotted line) 

and non-stationary (red dotted line) rainfall quantile for the return level of 100-year are shown. 

The lower left figures show the h-factor of the stationary (blue line) and non-stationary (black 
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line) rainfall quantile corresponding to the return level of 100-year. Red lines mean the average 

of black line. The lower right figures show the ensemble average (blue line for stationary model, 

and red line for non-stationary model), and 95 PPU of the stationary (blue dotted line) and non-

stationary (red dotted line) scale parameter. 

 

(a)                                   (b) 

Figure 5. Rainfall quantile estimates at (a) Busan, and (b) Seoul sites for return level of 100-

year using observed dew-point temperature and global warming scenarios. The stationary 

rainfall quantile is indicated as a blue vertical line since it is a single value. The non-stationary 

rainfall quantiles were calculated using the average of the parameter ensemble sampled by 

MCMC and the DPT observed on the day of POT excesses (red dotted line). In this figures, 

‘NS (3 ℃ up)’ is an empirical distribution of rainfall quantile derived using DPTs that add 3 ℃ 

to DPTs observed on the day of POT excesses. Likewise, 'NS (5 ℃ up)' is an empirical 

distribution of rainfall quantile under the scenario condition where DPT has risen 5 ℃ due to 

global warming. 
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(a) Busan                                (b) Seoul 

Figure 6. Selection of reference dew-point temperature for estimating rainfall quantiles at (a) 

Busan and (b) Seoul sites. In this figure, 'RF' refers to the empirical relative frequency of DPT 

on the day of POT excess. 

 

 

(a) negative log likelihood                     (b) h factor 

Figure 7. Performance of stationary and non-stationary frequency analysis models. At Site ID, 

1: Ghangreung, 2: Seoul, 3: Incheon, 4: Chupungryeong, 5: Pohang, 6: Daegu, 7: Jeonju, 8: 

Ulsan, 9: Ghwangju, 10: Busan, 11: Mokpo, 12: Yeosu and 13: Jeju site. 
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(a) Busan                           (b) Seoul 

Figure 8. Effect of the number of samples on the uncertainty of rainfall quantile using reference 

dew-point temperature. 

 

 

(a) Busan                            (b) Seoul 

Figure 9. Likelihood of increase over change rate of rainfall quantile for return level of 100-

year. 
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(a) Busan                                   (b) Seoul 

Figure 10. Procedure for analyzing uncertainty in rate of change. In upper left figures, the blue 

line is the probability distribution of 𝑋𝑋𝑝𝑝𝑇𝑇  in the present condition, and the red line is the 

probability distribution of 𝑋𝑋𝑜𝑜𝑇𝑇 in the DPT 4 ℃ rising condition. In the lower left figures, the 

section of the standard deviation was colored in pink. 

 

 


